from the De Rham cohomology onto the cohomology with values in the constant sheaf \mathbb{R} . Instead of using \mathscr{C}^{∞} differential forms, one can consider the resolution of \mathbb{R} given by the exterior derivative d acting on currents:

$$0 \to \mathbb{R} \to \mathcal{D}'_n \xrightarrow{d} \mathcal{D}'_{n-1} \to \dots \to \mathcal{D}'_{n-q} \xrightarrow{d} \mathcal{D}'_{n-q-1} \to \dots \to \mathcal{D}'_0 \to 0.$$

The sheaves \mathfrak{D}'_q are also \mathscr{E}_X -modules, hence acyclic. Thanks to (6.3), the inclusion $\mathscr{E}^q \subset \mathfrak{D}'_{n-q}$ induces an isomorphism

(6.8)
$$H^q(\mathcal{E}^{\bullet}(X)) \simeq H^q(\mathcal{D}'_{n-\bullet}(X)),$$

both groups being isomorphic to $H^q(X, \mathbb{R})$. The isomorphism between cohomology of differential forms and singular cohomology (another topological invariant) was first established by [De Rham 1931]. The above proof follows essentially the method given by [Weil 1952], in a more abstract setting. As we will see, the isomorphism (6.7) can be put under a very explicit form in terms of Čech cohomology. We need a simple lemma.

(6.9) Lemma. Let X be a paracompact differentiable manifold. There are arbitrarily fine open coverings $\mathcal{U} = (U_{\alpha})$ such that all intersections $U_{\alpha_0...\alpha_q}$ are diffeomorphic to convex sets.

Proof. Select locally finite coverings $\Omega'_j \subset \Omega_j$ of X by open sets diffeomorphic to concentric euclidean balls in \mathbb{R}^n . Let us denote by τ_{jk} the transition diffeomorphism from the coordinates in Ω_k to those in Ω_j . For any point $a \in \Omega'_j$, the function $x \mapsto |x - a|^2$ computed in terms of the coordinates of Ω_j becomes $|\tau_{jk}(x) - \tau_{jk}(a)|^2$ on any patch $\Omega_k \ni a$. It is clear that these functions are strictly convex at a, thus there is a euclidean ball $B(a, \varepsilon) \subset \Omega'_j$ such that all functions are strictly convex on $B(a, \varepsilon) \cap \Omega'_k \subset \Omega_k$ (only a finite number of indices k is involved). Now, choose \mathscr{U} to be a (locally finite) covering of X by such balls $U_\alpha = B(a_\alpha, \varepsilon_\alpha)$ with $U_\alpha \subset \Omega'_{\rho(\alpha)}$. Then the intersection $U_{\alpha_0...\alpha_q}$ is defined in $\Omega_k, k = \rho(\alpha_0)$, by the equations

$$|\tau_{jk}(x) - \tau_{jk}(a_{\alpha_m})|^2 < \varepsilon_{\alpha_m}^2$$

where $j = \rho(\alpha_m), \ 0 \leq m \leq q$. Hence the intersection is convex in the open coordinate chart $\Omega_{\rho(\alpha_0)}$.

Let Ω be an open subset of \mathbb{R}^n which is starshaped with respect to the origin. Then the De Rham complex $\mathbb{R} \longrightarrow \mathscr{E}^{\bullet}(\Omega)$ is acyclic: indeed, Poincaré's lemma yields a homotopy operator $k^q : \mathscr{E}^q(\Omega) \longrightarrow \mathscr{E}^{q-1}(\Omega)$ such that

$$k^{q} f_{x}(\xi_{1}, \dots, \xi_{q-1}) = \int_{0}^{1} t^{q-1} f_{tx}(x, \xi_{1}, \dots, \xi_{q-1}) dt, \quad x \in \Omega, \quad \xi_{j} \in \mathbb{R}^{n},$$

$$k^{0} f = f(0) \in \mathbb{R} \quad \text{for} \quad f \in \mathcal{E}^{0}(\Omega).$$

Hence $H_{DR}^q(\Omega, \mathbb{R}) = 0$ for $q \ge 1$. Now, consider the resolution \mathcal{E}^{\bullet} of the constant sheaf \mathbb{R} on X, and apply the proof of the De Rham-Weil isomorphism theorem to Čech cohomology groups over a covering \mathcal{U} chosen as in Lemma 6.9. Since the intersections $U_{\alpha_0...\alpha_s}$ are convex, all Čech cochains in $C^s(\mathcal{U}, \mathcal{Z}^q)$ are liftable in \mathcal{E}^{q-1} by means of k^q . Hence