# DESINGULARIZED MODULI SPACES OF SHEAVES ON A $K 3 . *$ 

January 272002<br>Kieran G. O'Grady

## Contents

0 Introduction ..... 1
1 Kirwan's desingularization of $\mathcal{M}_{c}$ ..... 3
1.1 The Quot-scheme and Kirwan's desingularization ..... 3
1.2 Luna's étale slice ..... 5
1.3 Normal cones and deformation of sheaves ..... 7
1.4 The normal cone of $\Sigma_{Q}^{0}$ ..... 9
1.5 The normal cone of $\Omega_{Q}^{0}$ ..... 12
1.6 Description of $\Omega_{R}^{s s}$ ..... 15
1.7 Description of $\Sigma_{R}^{s s}$ ..... 16
1.8 Analysis of Kirwan's desingularization ..... 22
1.9 The two-form on the moduli space ..... 26
2 A symplectic desingularization of $\mathcal{M}_{4}$ ..... 26
2.1 Proof of Proposition (2.0.1) ..... 27
2.2 Proof of Proposition (2.0.3) ..... 28
$3 \widetilde{\mathcal{M}}_{4}$ is irreducible and $h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right)=1$ ..... 31
3.1 Proof of Propositions (3.0.2)-(3.0.3) ..... 35
$3.2 V_{C}$ and elementary modifications ..... 37
3.3 Proof of Proposition (3.0.4) ..... 39
3.4 Proof of Propositions (3.0.5) and (3.0.8) ..... 42
$4 \widetilde{\mathcal{M}}_{4}$ is simply-connected ..... 44
$4.1 \mathcal{M}_{4}$ is birational to a Jacobian fibration $\mathcal{J}$ ..... 44
$4.2 \mathcal{J}$ is simply-connected ..... 46
5 Proof that $b_{2}\left(\widetilde{\mathcal{M}}_{4}\right) \geq 24$ ..... 47
6 Towards a smooth minimal model of $\mathcal{M}_{c}$, for $c \geq 6$ ..... 48
6.1 Proof of Proposition (6.0.1) ..... 49
6.2 Proof of Proposition (6.0.2)-Item (1) ..... 51
6.3 Digression on $\widehat{\Sigma}_{c}$ ..... 53
6.4 The canonical class, and intersection numbers ..... 53
6.5 Digression on $\widehat{\Delta}_{c}$ ..... 55
6.6 Proof of Proposition (6.0.2)-Item (2) ..... 58
6.7 Proof of Proposition (6.0.3) ..... 58
6.8 Proof of Proposition (6.0.4) ..... 59
References ..... 60

## 0. Introduction.

Let $X$ be a projective $K 3$ surface and $\mathcal{M}\left(r, c_{1}, c_{2}\right)$ be the moduli space of semistable (with respect to the polarization $\left.\mathcal{O}_{X}(1)\right)$ torsion-free sheaves on $X$ of rank $r$, with Chern classes $c_{1}, c_{2}$. If it so happens that every semistable sheaf is actually stable, e.g. when $c_{1}$ is non-divisible or when $r=2, c_{1}=0$ and $c_{2}$ is odd (the polarization must be "generic"), then $\mathcal{M}\left(r, c_{1}, c_{2}\right)$ is smooth and holomorphically symplectic [M1]. It has been proved [O1,O3] that in both of the above mentioned cases the moduli space is equivalent, up

[^0]to deformation of complex structure and birational modifications, to a Hilbert scheme parametrizing zerodimensional subschemes of $X$; one expects that the same statement is true whenever semistability implies stability (Yoshioka [ Y$]$ proved this in many cases). The present paper deals with the "opposite" case, that is when there do exist strictly semistable (i.e. non stable) sheaves. We will analyze the moduli space $\mathcal{M}_{c}$ of rank-two torsion-free sheaves with $c_{1}=0$ and $c_{2}=c$ even. The sheaf $I_{W} \oplus I_{Z}$, where $2 \ell(W)=2 \ell(Z)=c$, is strictly semistable for any choice of polarization; conversely if the polarization is generic (see ( 0.2 ) for the precise definition) these are the only strictly semistable sheaves. When $c=0$ or $c=2$ no stable sheaves exist, thus $\mathcal{M}_{0}$ is a point and $\mathcal{M}_{2} \cong X^{(2)}$ : in short not much is going on. Instead if $c \geq 4$ the moduli space $\mathcal{M}_{c}$ is interesting: it is singular exactly along the locus parametrizing strictly semistable sheaves, and the smooth locus is symplectic. A natural question to ask is the following:

Does there exist a symplectic desingularization (or smooth model) of $\mathcal{M}_{c}$ ?
Our main result is the construction of a symplectic desingularization $\widetilde{\mathcal{M}}_{4}$ of $\mathcal{M}_{4}$, and the proof that $\widetilde{\mathcal{M}}_{4}$ is a new (ten-dimensional) irreducible symplectic variety. Explicitely, we show that $\widetilde{\mathcal{M}}_{4}$ is one-connected and that $h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right)=1$; this means $\widetilde{\mathcal{M}}_{4}$ is an irreducible symplectic variety. Furthermore we prove that $b_{2}\left(\widetilde{\mathcal{M}}_{4}\right) \geq 24$. Since all known ten-dimensional irreducible symplectic varieties have $b_{2}=7$ or $b_{2}=23[\mathrm{~B}, \mathrm{H}]$, our results show that all deformations of $\widetilde{\mathcal{M}}_{4}$ are new irreducible symplectic varieties.

The paper is organized as follows. In §1 we explicitely describe Kirwan's desingularization $\widehat{\mathcal{M}}_{c} \rightarrow \mathcal{M}_{c}$, obtained by blowing up loci parametrizing strictly semistable sheaves. The desingularization $\widehat{\mathcal{M}}_{c}$ carries a regular two-form $\widehat{\omega}_{c}$ which degenerates on all three exceptional divisors if $c \geq 6$, while $\widehat{\omega}_{4}$ degenerates on a single divisor $\widehat{\Omega}_{4}$, namely the inverse image of the locus parametrizing sheaves equivalent to $I_{Z} \oplus I_{Z}$. In $\S 2$ we show that $\widehat{\Omega}_{4}$ is a $\mathbf{P}^{2}$-fibration, and the normal bundle has degree -1 on the $\mathbf{P}^{2}$ 's. Hence we can contract $\widehat{\mathcal{M}}_{4}$ along this fibration, and we get a smooth complex manifold $\widetilde{\mathcal{M}}_{4}$ with a holomorphic symplectic form. We identify this contraction with the contraction of a certain $K_{\widehat{\mathcal{M}}_{4}}$-negative extremal ray, hence $\overline{\mathcal{M}}_{4}$ is projective by Mori theory. We also show that the a priori rational map $\widetilde{\mathcal{M}}_{4} \cdots>\mathcal{M}_{4}$ is regular, thus $\widetilde{\mathcal{M}}_{4}$ is a symplectic desingularization of $\mathcal{M}_{4}$. (It is plausible that it equals the blow-up of $\mathcal{M}_{4}$ along the locus parametrizing strictly semistable sheaves.) In $\S 3$ we prove that $\widetilde{\mathcal{M}}_{4}$ is connected and $h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right)=1$. First, by a well-known deformation argument we can assume $\mathcal{O}_{X}(1)$ has degree 2 . Let $C \in\left|\mathcal{O}_{X}(1)\right|$ be a smooth curve: we prove that

$$
H^{q}\left(\widetilde{\mathcal{M}}_{4} ; \mathbf{Z}\right) \cong H^{q}\left(\widetilde{\pi}^{-1}\left\{[F] \in \mathcal{M}_{4}|F|_{C} \text { is either singular or unstable }\right\} ; \mathbf{Z}\right)
$$

for $q \leq 5$. (Here $\widetilde{\pi}: \widetilde{\mathcal{M}}_{4} \rightarrow \mathcal{M}_{4}$ is the desingularization map.) The proof of this result is "copied" from [Li3]. Hence to get our result we must describe the above set. There are three components: the first is mapped by $\widetilde{\pi}$ to the locus parametrizing strictly semistable sheaves $I_{Z} \oplus I_{W}$ which are singular along $C$, the second is mapped by $\tilde{\pi}$ to the closure of the locus parametrizing stable sheaves which are singular along $C$, the third is mapped to the closure of the locus parametrizing vector-bundles whose restriction to $C$ is unstable. The first two sets are easily analyzed. The analysis of the third set requires more work: by considering elementary modifications (along $C$ ) we can describe this set in terms of the moduli space of rank-two semistable sheaves on $X$ with $c_{1}=c_{1}\left(\mathcal{O}_{X}(1)\right), c_{2}=3$. Once we have a birational description of these three sets, it is an easy matter to conclude that $h^{0}\left(\widetilde{\mathcal{M}}_{4}\right)=h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right)=1$. In $\S 4$ we prove that $\widetilde{\mathcal{M}}_{4}$ is simply-connected: first we show $\widetilde{\mathcal{M}}_{4}$ is birational to a certain Jacobian fibration over $\left|\mathcal{O}_{X}(2)\right|$, then we prove the Jacobian fibration is simply-connected via a monodromy argument. In $\S 5$ we show that the subspace of $H^{2}\left(\widetilde{\mathcal{M}}_{4} ; \mathbf{Q}\right)$ spanned by the (pulled-back) image of the $\mu$-map together with two "geometric" divisors has dimension 24 . In the final section we are concerned with Question (0.1) for $c \geq 6$. We do not have an answer, but we describe how to get a desingularization $\widetilde{\mathcal{M}}_{c}$ which is "closer" to being symplectic than $\widehat{\mathcal{M}}_{c}$ is by contracting extremal $K$-negative rays . (We suspect that there is no smooth symplectic model of $\mathcal{M}_{c}$ for $c \geq 6$.)

We close this discussion by mentioning one of our motivations for posing Question (0.1). Vafa and Witten [VW] have proposed formulae for the Euler characteristics (suitably interpreted?) of moduli spaces of semistable sheaves on surfaces. If the answer to (0.1) is affirmative, the Euler characteristic of any smooth symplectic model of $\mathcal{M}_{c}$ (which is independent of the model chosen) should be equal to Vafa-Witten's
characteristic. If on the contrary the answer to (0.1) is negative it is not clear which mathematical Euler characteristic should equal the physicists' characteristic.

## Notation used throughout the paper.

We let $c$ be an even integer with $c \geq 4$, and we set $c=2 n$.
We let $X$ be a projective $K 3$ surface and $H=\mathcal{O}_{X}(1)$ be a $c$-generic polarization, i.e. an ample divisor class such that for $D \in \operatorname{Div}(S)$,

$$
\begin{equation*}
\text { if } D \cdot H=0 \text { and }-c \leq D \cdot D \text {, then } D \sim 0 \tag{0.2}
\end{equation*}
$$

There exist c-generic polarizations for any choice of $c$, because the collection of hyperplanes $D^{\perp}$, for $D \in$ $\operatorname{Div}(X)$ with

$$
-c \leq D \cdot D<0
$$

defines a set of locally finite walls in the ample cone of $X$.
A torsion-free sheaf $F$ on $X$ is Gieseker-Maruyama semistable (with respect to the polarization $\mathcal{O}_{X}(1)$ ) if for every exact sequence

$$
\begin{gathered}
0 \rightarrow L \rightarrow F \rightarrow Q \rightarrow 0 \\
(\operatorname{rk} Q) \cdot \chi(L(n)) \leq(\operatorname{rk} L) \cdot \chi(Q(n)), \text { for } n \gg 0
\end{gathered}
$$

If strict inequality holds (when $n \gg 0$ ) for all such sequences with $\operatorname{rk} L \neq 0 \neq \operatorname{rk} Q$ then $F$ is GiesekerMaruyama stable. A semistable non-stable sheaf is strictly semistable.
We let $\mathcal{M}_{c}$ be the moduli space of rank-two (Gieseker-Maruyama) semistable torsion-free sheaves $F$ on $X$ with $c_{1}(F)=0, c_{2}(F)=c$; this is a projective scheme whose closed points are in one-to-one correspondence with S-equivalence classes of such sheaves [G,Ma].

## Acknowledgments.

It's a pleasure to thank C. De Concini and C. Procesi for useful conversations, and P. Gauduchon for pointing out a blunder during a talk on this work.

## 1. Kirwan's desingularization of $\mathcal{M}_{c}$.

F. Kirwan $[\mathrm{K}]$ defined a procedure for partially desingularizing G.I.T. quotients: in short one blows up loci parametrizing strictly semistable points, until all semistable points are actually stable, and then one takes the quotient of this blown up space. The aim of this section is to desingularize $\mathcal{M}_{c}$ by applying Kirwan's method. In (1.1) we recall how one can realize the moduli space $\mathcal{M}_{c}$ as the G.I.T. quotient of a Quot-scheme $Q_{c}$ acted on by PGL $(N)$, and we give a detailed description of Kirwan's procedure as applied to our case. In order to describe the resulting space (in particular to show it is smooth) we must analyze the local structure of $Q_{c}$ at points corresponding to semistable sheaves $F \cong I_{W} \oplus I_{Z}$; in (1.2) we show that, by Luna'étale slice Theorem, this is equivalent to studying the versal deformation space of such sheaves. In (1.4)-(1.5) we give the required results about these deformation spaces; the main results are (1.4.1)-(1.5.1). In particular we will see that $Q_{c}$ is singular at such points; thus the general results of $[\mathrm{K}]$ do not apply to our case, because Kirwan assumes that the semistable locus is smooth. However we are lucky: we show that Kirwan's blow-ups, dictated by the need to eliminate strictly semistable points, give a $\mathrm{PGL}(N)$-space $S_{c}$ which is smooth along its semistable locus. This result is stated in (1.8.10), but the main ingredients of its proof are the results of (1.6)-(1.7). The quotient $S_{c} / / \operatorname{PGL}(N)$ will not be smooth (except when $c=4$ ), it has quotient singularities, but a last blow-up gives a space with smooth quotient $\widehat{\mathcal{M}}_{c}$; this is the main result of (1.8). In Subsection (1.9) we show that there is a regular two-form on $\widehat{\mathcal{M}}_{c}$ extending the symplectic form on the smooth locus of $\mathcal{M}_{c}$.

### 1.1. The Quot-scheme and Kirwan's desingularization.

We briefly recall the construction of $\mathcal{M}_{c}$ according to Simpson [S,Le]. By Serre's F.A.C. theorems, the following holds if $k \gg 0$. Let $F$ be a sheaf parametrized by $\mathcal{M}_{c}$; then $H^{p}(F(k))=0$ for $p>0$, and $F$ can be realized as a quotient

$$
\begin{equation*}
\mathcal{O}_{X}(-k)^{(N)} \rightarrow F, \tag{1.1.1}
\end{equation*}
$$

in such a way that the induced map $\mathbf{C}^{N} \rightarrow H^{0}(F(k))$ is an isomorphism. Let $Q u o t(k)$ be the Quot-scheme parametrizing quotients (1.1.1) whose Hilbert polynomial is that of rank-two sheaves with $c_{1}=0, c_{2}=c$; if $x \in \operatorname{Quot}(k)$ we let $F_{x}$ be the quotient sheaf parametrized by $x$. Then $\operatorname{PGL}(N)$ acts on $\operatorname{Quot}(k)$ and also on some positive multiple of the "Plücker" line-bundle over $Q u o t(k)$, i.e. the action is linearized. Hence it makes sense to speak of $\operatorname{PGL}(N)$-(semi)stable points: let $Q_{c}^{s s}, Q_{c}^{s} \subset Q u o t(k)$ be the open subsets consisting of $\operatorname{PGL}(N)$-semistable (respectively stable) points $x$ such that $F_{x}$ is torsion-free and $\operatorname{rk}\left(F_{x}\right)=2, c_{1}\left(F_{x}\right)=0$, $c_{2}\left(F_{x}\right)=c$. Let $Q_{c}$ be the schematic closure of $Q_{c}^{s s}$ in $Q u o t(k)$. Simpson proves that for $k$ sufficiently large a point $x \in Q_{c}$ is $\operatorname{PGL}(N)$-semistable (stable) if and only if $F_{x}$ is Gieseker-Maruyama semistable (respectively stable), and that

$$
\mathcal{M}_{c}=Q_{c} / / \operatorname{PGL}(N)
$$

Kirwan's partial desingularization will be the $\operatorname{PGL}(N)$-quotient of a variety obtained by successively blowing up $Q_{c}$ along (the closure of) loci parametrizing strictly semistable points: the idea is that strictly semistable points will gradually disappear and in the end all semistable points will be stable (in particular their stabilizers will be finite). A key ingredient is a theorem of Kirwan relating stability on a $G$-scheme to stability on the blow-up of a $G$-invariant subscheme. More precisely, let $G$ be a reductive group acting linearly on a complex projective scheme $Y$ (linearly means: the $G$-action has been lifted to an action on $\mathcal{O}_{Y}(1)$ ), let $V$ be a $G$-invariant closed subscheme of $Y$, and $\pi: \widetilde{Y} \rightarrow Y$ be the blow-up of $V$. Then $G$ acts on $\widetilde{Y}$, and also on

$$
D_{\ell}:=\pi^{*} \mathcal{O}_{Y}(\ell) \otimes \mathcal{O}_{\widetilde{Y}}(-E)
$$

where $E$ is the exceptional divisor of $\pi$. Thus the action on $\widetilde{Y}$ is linearized. Let $Y^{s s} \subset Y, Y^{s} \subset Y$ be the loci of semistable (stable) points with respect to $\mathcal{O}_{Y}(1)$, and let $\widetilde{Y}^{s s}(\ell) \subset \widetilde{\widetilde{Y}}$ and $\widetilde{Y}^{s}(\ell) \subset \widetilde{Y}$ be the loci of semistable (stable) points with respect to $D_{\ell}$.
(1.1.2) Theorem (Kirwan [K, 3.1-3.2-3.11]). Keep notation as above. For $\ell \gg 0$ the loci $\widetilde{Y}^{s s}(\ell)$ and $\widetilde{Y}^{s}(\ell)$ are independent of $\ell$ : denote them by $\widetilde{Y}^{s s}$ and $\widetilde{Y}^{s}$ respectively. The following holds:

$$
\begin{gather*}
\pi\left(\widetilde{Y}^{s s}\right) \subset Y^{s s}  \tag{1.1.3}\\
\pi^{-1}\left(Y^{s}\right) \subset \widetilde{Y}^{s} \tag{1.1.4}
\end{gather*}
$$

In particular $\pi$ induces a morphism

$$
\bar{\pi}: \tilde{Y} / / G \rightarrow Y / / G
$$

If $\ell$ is also sufficiently divisible, this morphism is identified with the blow-up of $V / / G$.
We will blow up (the closure of) loci parametrizing strictly semistable sheaves.
(1.1.5) Lemma. A point $x \in Q_{c}$ is strictly semistable (i.e. $x \in Q_{c}^{s s} \backslash Q_{c}^{s}$ ) if and only if $F_{x}$ fits into an exact sequence

$$
\begin{equation*}
0 \rightarrow I_{Z} \rightarrow F_{x} \rightarrow I_{W} \rightarrow 0 \tag{1.1.6}
\end{equation*}
$$

where $Z$, $W$ are zero-dimensional subschemes of $X$ of length $\ell(Z)=\ell(W)=n$, and $I_{Z}, I_{W}$ are their ideal sheaves. Furthermore the orbit $\mathrm{PGL}(N) x$ is closed in $Q_{c}^{s s}$ if and only if the exact sequence above is split.
Proof. A straightforward computation shows that if $F_{x}$ fits into Exact sequence (1.1.6) then it is strictly Gieseker-Maruyama semistable, hence $x$ is strictly semistable. Now assume $x \in Q_{c}$ is strictly semistable. Then by Simpson $F_{x}$ is strictly Gieseker-Maruyama semistable, i.e. it fits into an exact sequence

$$
\begin{equation*}
0 \rightarrow I_{Z}(D) \rightarrow F_{x} \rightarrow I_{W}(-D) \rightarrow 0 \tag{*}
\end{equation*}
$$

where $Z, W$ are zero-dimensional subschemes of $X$, and $D \in \operatorname{Div}(X)$, with

$$
\chi\left(I_{Z}(D) \otimes \mathcal{O}_{X}(n)\right)=\chi\left(I_{W}(-D) \otimes \mathcal{O}_{X}(n)\right) \text { for } n \gg 0
$$

Applying Whitney's formula to $(*)$ and writing out explicitely ( $\dagger$ ) we get

$$
-c+\ell(Z)+\ell(W)=D \cdot D \text { and } D \cdot H=0
$$

respectively. Since $H$ is $c$-generic (see (0.2)) we conclude that $D \sim 0$, hence the destabilizing subsheaf and quotient sheaf are $I_{Z}$ and $I_{W}$ respectively. Equality $(\dagger)$ then gives $\ell(Z)=\ell(W)$, hence $F_{x}$ fits into Exact sequence (1.1.6). Let $e \in \operatorname{Ext}^{1}\left(I_{W}, I_{Z}\right)$ be the extension class of (1.1.6), and assume $e \neq 0$. One can construct a family of extensions $\left\{\mathcal{E}_{t}\right\}_{t \in \mathbf{A}^{1}}$ of $I_{W}$ by $I_{Z}$ with extension class $t e$ : for $t \neq 0$ the sheaves $\mathcal{E}_{t}$ are all isomorphic non-split extensions, while $\mathcal{E}_{0} \cong I_{Z} \oplus I_{W}$. From this it follows that if (1.1.6) is non-split the orbit $\operatorname{PGL}(N) x$ is not closed. Since there must be a closed orbit in $Q_{c}^{s s}$ which corresponds to the S-equivalence class of the semistable sheaf appearing in (1.1.6), this orbit must parametrize split extensions.
q.e.d.

Let

$$
\begin{aligned}
& \Omega_{Q}^{0}:=\left\{x \in Q \mid F_{x} \cong I_{Z} \oplus I_{Z},[Z] \in X^{[n]}\right\}, \\
& \Gamma_{Q}^{0}:=\left\{x \in Q \mid F_{x} \text { is a non-trivial extension of } I_{Z} \text { by } I_{Z},[Z] \in X^{[n]}\right\} \\
& \Sigma_{Q}^{0}:=\left\{x \in Q \mid F_{x} \cong I_{Z} \oplus I_{W},[Z],[W] \in X^{[n]}, Z \neq W\right\}, \\
& \Lambda_{Q}^{0}:=\left\{x \in Q \mid F_{x} \text { is a non-trivial extension of } I_{Z} \text { by } I_{W},[Z],[W] \in X^{[n]}, Z \neq W\right\}
\end{aligned}
$$

Here and in the rest of the paper we drop the subscript $c$ from $\mathcal{M}_{c}, Q_{c}$, etc. whenever this causes no confusion. We let $\Omega_{Q}, \Gamma_{Q}, \Sigma_{Q}, \Lambda_{Q}$ be the closures in $Q$ of $\Omega_{Q}^{0}, \Gamma_{Q}^{0}, \Sigma_{Q}^{0}$ and $\Lambda_{Q}^{0}$ respectively. By Lemma (1.1.5),

$$
\begin{equation*}
Q^{s s} \backslash Q^{s}=\Omega_{Q}^{0} \amalg \Gamma_{Q}^{0} \amalg \Sigma_{Q}^{0} \amalg \Lambda_{Q}^{0} . \tag{1.1.7}
\end{equation*}
$$

If $G$ is a group acting on a set $A$, and $x \in A$, we let $S t(x)$ be the stabilizer of $x$.
(1.1.8) Corollary. Let $x \in Q^{s s}$. Then

$$
S t(x) \cong \begin{cases}\mathrm{PGL}(2) & \text { if } x \in \Omega_{Q}^{0}, \\ (\mathbf{C},+) & \text { if } x \in \Gamma_{Q}^{0}, \\ \mathbf{C}^{*} & \text { if } x \in \Sigma_{Q}^{0}, \\ \{1\} & \text { if } x \in \Lambda_{Q}^{0} \amalg Q^{s} .\end{cases}
$$

Proof. For $x \in Q$, one has $S t(x) \cong \operatorname{Aut}\left(F_{x}\right) /$ scalars; the result follows easily.
q.e.d.

By the above corollary the points of $Q_{c}^{s s}$ with non-trivial reductive stabilizers are parametrized by $\Omega_{Q}^{0}$ and $\Sigma_{Q}^{0}$. Thus Kirwan's method for (partially) desingularizing $\mathcal{M}_{c}$ is the following. Let

$$
\begin{equation*}
\pi_{R}: R \rightarrow Q \tag{1.1.9}
\end{equation*}
$$

be the blow-up of $\Omega_{Q}$. We let $\Sigma_{R} \subset R$ be the strict transform of $\Sigma_{Q}$. (Notice that $\Sigma_{Q} \supset \Omega_{Q}$.) Let

$$
\begin{equation*}
\pi_{S}: S \rightarrow R \tag{1.1.10}
\end{equation*}
$$

be the blow-up of $\Sigma_{R}$. The linear action of $\operatorname{PGL}(N)$ on $Q$ lifts to linear actions on $R$ and $S$. Applying Theorem (1.1.2) to $\pi_{R}$ and $\pi_{S}$ we get a morphism

$$
S_{c} / / \operatorname{PGL}(N) \rightarrow Q_{c} / / \operatorname{PGL}(N)=\mathcal{M}_{c} .
$$

We will prove that $\widehat{\mathcal{M}}_{4}:=S_{4} / / \mathrm{PGL}(N)$ is smooth. If $c \geq 6$ then $S_{c} / / \operatorname{PGL}(N)$ has quotient singularities; a last blow up will produce a smooth desingularization of $\mathcal{M}_{c}$, which we denote $\widehat{\mathcal{M}}_{c}$. Both of these statements will be proved in Subsection (1.8).

### 1.2. Luna's étale slice.

If $W$ is a subscheme of a scheme $Z$ we let $C_{W} Z$ be the normal cone to $W$ in $Z$ [Fu]. Since the exceptional divisor of $\pi_{R}$ is equal to $\operatorname{Proj}\left(C_{\Omega_{Q}} Q\right)$, we will need to determine the normal cone to $\Omega_{Q}$ in $Q$ (at semistable points); similarly we will need to know $C_{\Sigma_{R}} R$. Luna's étale slice theorem reduces this to a problem about deformations of sheaves. We recall Luna's theorem. Let $G$ be a reductive group acting linearly on a quasiprojective scheme $Y$. For $y \in Y$ we let $O(y)$ be its orbit. If $y \in Y^{s s}$ and $O(y)$ is closed (in $\left.Y^{s s}\right)$ then $S t(y)$ is reductive.
(1.2.1) Luna's étale slice Theorem [Lu]. Keeping notation as above, suppose $y_{0} \in Y^{s s}$ and $O\left(y_{0}\right)$ is closed in $Y^{s s}$. Then there exists a slice normal to $O\left(y_{0}\right)$, i.e. an affine subscheme $\mathcal{V} \hookrightarrow Y^{s s}$, containing $y_{0}$ and invariant under the action of $S t\left(y_{0}\right)$, such that the following holds. The (multiplication) morphism

$$
G \times_{S t\left(y_{0}\right)} \mathcal{V} \xrightarrow{\phi} Y^{s s}
$$

has open image, and is étale over its image. (Here St $\left(y_{0}\right)$ acts on $G \times \mathcal{V}$ by $h(g, y):=\left(g h^{-1}, h y\right)$.) Furthermore $\phi$ is $G$-equivariant (the $G$-action on $G \times_{S t\left(y_{0}\right)} \mathcal{V}$ is induced by left multiplication on the first factor). The quotient map

$$
\bar{\phi}: \mathcal{V} / / S t\left(y_{0}\right) \rightarrow Y^{s s} / / G
$$

has open image and is étale over its image. If $Y^{s s}$ is smooth at $y_{0}$, then $\mathcal{V}$ is also smooth at $y_{0}$.
Now assume $W \subset Y^{s s}$ is a locally closed subset containing $y_{0}$, stable for the action of $G$; for example $W$ could be $\Omega_{Q}^{0} \subset Q^{s s}$. Set

$$
\mathcal{W}:=W \cap \mathcal{V}
$$

(1.2.2) Corollary. Keep notation and hypotheses as above. There is a $S t\left(y_{0}\right)$-equivariant isomorphism

$$
\left(C_{W} Y^{s s}\right)_{y_{0}} \cong\left(C_{\mathcal{W}} \mathcal{V}\right)_{y_{0}}
$$

Proof. We work throughout in neighborhoods of $\left(1, y_{0}\right) \in G \times_{S t\left(y_{0}\right)} \mathcal{V}$ and of $y_{0} \in Y$. Set

$$
\widetilde{W}:=G \times_{S t\left(y_{0}\right)} \mathcal{W}
$$

Since $\phi^{-1} W=\widetilde{W}$, and since $\phi$ is étale there is an isomorphism

$$
C_{W} Y^{s s} \cong C_{\widetilde{W}}\left(G \times_{S t\left(y_{0}\right)} \mathcal{V}\right)
$$

The projections

$$
\left(G \times_{S t\left(y_{0}\right)} \mathcal{V}\right) \rightarrow G / S t\left(y_{0}\right) \quad \widetilde{W}=\left(G \times_{S t\left(y_{0}\right)} \mathcal{W}\right) \rightarrow G / \operatorname{St}\left(y_{0}\right)
$$

are fibrations étale locally trivial, with fibers $\mathcal{V}$ and $\mathcal{W}$ respectively. Taking the fiber over the coset $\left[\operatorname{St}\left(y_{0}\right)\right]$ we get the corollary.

## q.e.d.

Let's go back to our case: $\operatorname{PGL}(N)$ acting on $Q^{s s}$. The following result identifies the normal slice with a versal deformation space. (See also Wehler [W].)
(1.2.3) Proposition. Let $x \in Q^{s s}$ be a point such that $O(x)$ is closed (in $Q^{s s}$ ). Let $\mathcal{V}$ be a normal slice (see (1.2.1)), and $(\mathcal{V}, x)$ be the germ of $\mathcal{V}$ at $x$. Let $\mathcal{F}$ be the restriction to $X \times(\mathcal{V}, x)$ of the tautological quotient sheaf on $X \times Q$. The couple $((\mathcal{V}, x), \mathcal{F})$ is a versal deformation space of $F_{x}$.
Proof. We must prove two things: that the family $\mathcal{F}$ is complete and that the Kodaira-Spencer map

$$
\bar{\kappa}: T_{x} \mathcal{V} \rightarrow \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)
$$

is an isomorphism. Completeness follows easily from the universal property of the Quot-scheme. Let's prove that $\bar{\kappa}$ is an isomorphism. Since $\mathcal{F}$ is complete $\bar{\kappa}$ is surjective, thus it suffices to show that $\bar{\kappa}$ is injective. Letting

$$
\kappa: T_{x} Q \rightarrow \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)
$$

be the Kodaira-Spencer map at $x$ of the tautological quotient on $X \times Q$, we must show that

$$
\operatorname{ker}(\kappa)=T_{x} O(x)
$$

Letting $E_{x}$ be the kernel of the map (1.1.1) for $F=F_{x}$, we have

$$
\begin{equation*}
0 \rightarrow E_{x} \rightarrow \mathcal{O}_{X}(-k)^{(N)} \rightarrow F_{x} \rightarrow 0 \tag{*}
\end{equation*}
$$

This gives the exact sequence

$$
0 \rightarrow \operatorname{Hom}\left(F_{x}, F_{x}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}(-k)^{(N)}, F_{x}\right) \xrightarrow{\alpha} \operatorname{Hom}\left(E_{x}, F_{x}\right) \xrightarrow{\kappa} \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right),
$$

where $\operatorname{Hom}\left(E_{x}, F_{x}\right)=T_{x} Q$ and $\kappa$ is Kodaira-Spencer. Thus we are reduced to proving that $\operatorname{Im} \alpha=T_{x} O(x)$. Let

$$
\beta: \operatorname{Hom}\left(\mathcal{O}_{X}(-k)^{(N)}, \mathcal{O}_{X}(-k)^{(N)}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{X}(-k)^{(N)}, F_{x}\right)
$$

be the obvious map. Since $T_{x} O(x)=\operatorname{Im}(\alpha \circ \beta)$, it suffices to check that $\beta$ is surjective. This follows at once from the isomorphism $H^{0}\left(\mathcal{O}_{X}^{(N)}\right) \xrightarrow{\sim} H^{0}\left(F_{x}(k)\right)$.
q.e.d.

### 1.3. Normal cones and deformations of sheaves.

We will need to describe $C_{\Omega} Q^{s s}$ and similar normal cones. By Corollary (1.2.2) and Proposition (1.2.3) this will be equivalent to describing the normal cone of certain loci in the versal deformation space of semistable sheaves; in this subsection we provide the necessary tools.

The Hessian cone. Let $Y$ be a scheme, and $B \hookrightarrow Y$ a locally-closed subscheme such that

$$
\begin{equation*}
B \text { is smooth and } \operatorname{dim} T_{b} Y \text { is constant for every } b \in B . \tag{1.3.1}
\end{equation*}
$$

By (1.3.1) we have a normal vector-bundle $N_{B} Y$. Let $I_{B}$ be the ideal sheaf of $B$ in $Y$ : the graded surjection

$$
\bigoplus_{d=0}^{\infty} S^{d}\left(I_{B} / I_{B}^{2}\right) \rightarrow \bigoplus_{d=0}^{\infty}\left(I_{B}^{d} / I_{B}^{d+1}\right)
$$

defines an embedding of cones $\iota: C_{B} Y \hookrightarrow N_{B} Y$. The (homogeneous) ideal $I\left(\iota\left(C_{B} Y\right)\right)$ contains no linear terms. We let the Hessian cone of $B$ in $Y$ be the subscheme $H_{B} Y \hookrightarrow N_{B} Y$ whose homogeneous ideal is generated by the quadratic terms $I\left(\iota\left(C_{B} Y\right)\right)_{2}$. Thus we have a chain of cones over $B$ :

$$
C_{B} Y \subset H_{B} Y \subset N_{B} Y
$$

Notice that if $b \in B$, then

$$
\begin{equation*}
\mathbf{P}\left(H_{b} Y\right) \text { is the cone over } \mathbf{P}\left(H_{B} Y\right)_{b} \text { with vertex } \mathbf{P}\left(T_{b} B\right) \tag{1.3.2}
\end{equation*}
$$

Let $I_{m}:=\operatorname{Spec}\left(\mathbf{C}[t] /\left(t^{m+1}\right)\right)$; thus tangent vectors to $Y$ at $b$ are identified with pointed maps $I_{1} \rightarrow(Y, b)$. Then

$$
\begin{equation*}
\left(H_{b} Y\right)_{\text {red }}=\left\{f_{1}: I_{1} \rightarrow(Y, b) \mid \text { there exists } f_{2}: I_{2} \rightarrow(Y, b) \text { extending } f_{1}\right\} . \tag{1.3.3}
\end{equation*}
$$

Deformations of sheaves. Let $\mathcal{E}$ be a coherent sheaf on a projective scheme, and let $(\operatorname{Def}(\mathcal{E}), 0)$ be the parameter space of the versal deformation space of $\mathcal{E}$. Thus

$$
\begin{equation*}
T_{0} \operatorname{Def}(\mathcal{E}) \cong \operatorname{Ext}^{1}(\mathcal{E}, \mathcal{E}) \tag{1.3.4}
\end{equation*}
$$

We will give explicit equations of the reduced Hessian cone of $\operatorname{Def}(\mathcal{E})$ at the origin. Let

$$
\operatorname{Ext}^{p}(\mathcal{E}, \mathcal{E})^{0}:=\operatorname{ker}\left(\operatorname{Tr}: \operatorname{Ext}^{p}(\mathcal{E}, \mathcal{E}) \rightarrow H^{p}\left(\mathcal{O}_{X}\right)\right),
$$

where the trace $\operatorname{Tr}$ is defined as in [DL]. The composition of Trace with Yoneda product

$$
\operatorname{Ext}^{p}(\mathcal{E}, \mathcal{E}) \times \operatorname{Ext}^{q}(\mathcal{E}, \mathcal{E}) \xrightarrow{\mathrm{Yon}} \operatorname{Ext}^{p+q}(\mathcal{E}, \mathcal{E}) \xrightarrow{\operatorname{Tr}} H^{p+q}\left(\mathcal{O}_{Y}\right)
$$

is a bilinear map, symmetric if $(-1)^{p q}=1$, anti-symmetric if $(-1)^{p q}=-1$. We are particularly interested in the Yoneda square map

$$
\begin{array}{ccc}
\operatorname{Ext}^{1}(\mathcal{E}, \mathcal{E}) & \xrightarrow{\Upsilon_{\mathcal{E}}} & \operatorname{Ext}^{2}(\mathcal{E}, \mathcal{E})^{0} \\
e & \longrightarrow & e \cup e
\end{array}
$$

Proposition. Keep notation as above. Then

$$
\begin{equation*}
\left(H_{0} \operatorname{Def}(\mathcal{E})\right)_{r e d}=\left(\Upsilon_{\mathcal{E}}^{-1}(0)\right)_{r e d} \tag{1.3.5}
\end{equation*}
$$

Proof. An $m$-th order deformation of $\mathcal{E}$ is a sheaf $\mathcal{E}_{m}$ on $Y \times I_{m}$, flat over $I_{m}$, such that $\mathcal{E}_{m} \otimes \mathbf{C} \cong \mathcal{E}$. By (1.3.3), the left-hand side of (1.3.5) consists of first order deformations of $\mathcal{E}$ which can be extended to second order deformations. Let $e \in \operatorname{Ext}^{1}(\mathcal{E}, \mathcal{E})$, and let

$$
\begin{equation*}
0 \rightarrow t \mathcal{E} \xrightarrow{\alpha} \mathcal{E}_{1} \xrightarrow{\beta} \mathcal{E} \rightarrow 0 \tag{*}
\end{equation*}
$$

be the first-order deformation of $\mathcal{E}$ corresponding to $e$. Here $t \mathcal{E}$ means that the $\mathbf{C}[t] /\left(t^{2}\right)$-module structure of $\mathcal{E}_{1}$ is described as follows: if $\sigma$ is a local section of $\mathcal{E}_{1}$, then $t \sigma:=\alpha(t \beta(\sigma))$. From (*) we get

$$
\operatorname{Ext}^{1}\left(\mathcal{E}, \mathcal{E}_{1}\right) \longrightarrow \operatorname{Ext}^{1}(\mathcal{E}, \mathcal{E}) \xrightarrow{\partial} \operatorname{Ext}^{2}(\mathcal{E}, \mathcal{E})
$$

Since $\partial$ is Yoneda product with $e$ we must prove that $\mathcal{E}_{1}$ can be extended to a second order deformation if and only if $\partial(e)=0$. By the above exact sequence $\partial(e)=0$ if and only if Extension $(*)$ is the push-out (via $\beta$ ) of an extension

$$
0 \rightarrow t \mathcal{E}_{1} \xrightarrow{\gamma} \mathcal{F} \rightarrow \mathcal{E} \rightarrow 0 .
$$

So let' assume that $\mathcal{E}_{1}$ can be extended to a second order deformation $\mathcal{E}_{2}$ : thus $\mathcal{E}_{2}$ is an extension

$$
0 \rightarrow t \mathcal{E}_{1} \xrightarrow{\iota} \mathcal{E}_{2} \rightarrow \mathcal{E} \rightarrow 0
$$

Let's check that the push-out of $\mathcal{E}_{2}$ is isomorphic to $(*)$. Since $\beta$ is surjective and $\operatorname{ker}(\beta)=\alpha(t \mathcal{E})$,

$$
\text { push-out of } \mathcal{E}_{2}=\mathcal{E}_{2} / \iota \circ(t \alpha(t \mathcal{E}))=\mathcal{E}_{2} / t^{2} \mathcal{E} \cong \mathcal{E}_{1}
$$

Now let's prove the converse: assuming there is an extension $(\dagger)$ whose push-out is (*) we will give $\mathcal{F}$ a structure of $\mathbf{C}[t] /\left(t^{3}\right)$-module making it a second order extension of $\mathcal{E}_{1}$. Since the push-out of $\mathcal{F}$ is equal to $\mathcal{F} / \gamma(t \alpha(t \mathcal{E}))$, we have

$$
0 \rightarrow t^{2} \mathcal{E} \xrightarrow{\gamma \circ t \alpha} \mathcal{F} \xrightarrow{\delta} \mathcal{E}_{1} \rightarrow 0
$$

If $\sigma$ is a local section of $\mathcal{F}$ we set $t \sigma:=\gamma(t \delta(\sigma))$.
q.e.d.

We will need the following result.
(1.3.6) Proposition. Let $x \in Q^{s s}$ be a point with closed orbit, and $\mathcal{V} \ni x$ be a slice normal to the orbit. Then

$$
\operatorname{dim}_{x} \mathcal{V} \geq \operatorname{dim} \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)-\operatorname{dim} \operatorname{Ext}^{2}\left(F_{x}, F_{x}\right)^{0}
$$

More precisely, every irreducible component of the $\operatorname{germ}(\mathcal{V}, x)$ has dimension at least equal to the right-hand side of the above inequality.
Proof. By Proposition (1.2.3) there is an identification between $(\mathcal{V}, x)$ and $\operatorname{Def}\left(F_{x}\right)$. It is known that $\operatorname{Def}\left(F_{x}\right)$ is the zero-locus of an obstruction map with domain a smooth germ of dimension $\operatorname{dim} \operatorname{Ext}{ }^{1}\left(F_{x}, F_{x}\right)$, and codomain $\operatorname{Ext}^{2}\left(F_{x}, F_{x}\right)^{0}$ : this implies the proposition. Alternatively, one can use the following result about the local structure of the Hilbert scheme $Q$ at $x$. Let $E_{x}$ be the sheaf on $X$ defined by the exact sequence

$$
\begin{equation*}
0 \rightarrow E_{x} \rightarrow \mathcal{O}_{X}(-k)^{(N)} \rightarrow F_{x} \rightarrow 0 \tag{1.3.7}
\end{equation*}
$$

(See (1.1.1).) Then by Lemmas (1.4)-(1.8) of [Li2] we have

$$
\operatorname{dim}_{x} Q \geq \operatorname{dim} T_{x} Q-\operatorname{dim} \operatorname{Ext}^{2}\left(F_{x}, F_{x}\right)^{0}=\operatorname{dim} \operatorname{Hom}\left(E_{x}, F_{x}\right)-\operatorname{dim} \operatorname{Ext}^{2}\left(F_{x}, F_{x}\right)^{0}
$$

or more precisely every irreducible component of the germ $(Q, x)$ has dimension at least equal to the righthand side of the above inequality. Applying the functor $\operatorname{Hom}\left(\cdot, F_{x}\right)$ to (1.3.7) one gets

$$
\operatorname{dim} \operatorname{Hom}\left(E_{x}, F_{x}\right)=\operatorname{dim} \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)+\left(N^{2}-1\right)-\operatorname{dim} S t(x) .
$$

On the other hand, by Luna's étale slice Theorem (1.2.1) we have

$$
\operatorname{dim}_{x} Q=\operatorname{dim} \operatorname{PGL}(N)+\operatorname{dim}_{x} \mathcal{V}-\operatorname{dim} S t(x) .
$$

Putting together the above (in)equalities one gets the proposition.
q.e.d.

### 1.4. The normal cone of $\Sigma_{Q}^{0}$.

Let $x \in \Sigma_{Q}^{0}$, and set

$$
F_{x}=I_{Z_{1}} \oplus I_{Z_{2}}, \quad \ell\left(Z_{i}\right)=n, \quad Z_{1} \neq Z_{2} .
$$

Recall (1.1.8) that $S t(x) \cong \mathbf{C}^{*}$. To simplify notation we often set $\Sigma=\Sigma_{Q}^{0}$.
(1.4.1) Proposition. Keep notation as above. Then $\Sigma_{Q}^{0}$ is smooth, and its normal cone in $Q$ is a locallytrivial fibration over $\Sigma_{Q}^{0}$, with fiber the affine cone over a smooth quadric in $\mathbf{P}^{2 c-5}$. More precisely, for $x \in \Sigma_{Q}^{0}$ there is a canonical isomorphism

$$
\begin{equation*}
\left(C_{\Sigma} Q\right)_{x} \cong\left\{\left(e_{12}, e_{21}\right) \in \operatorname{Ext}^{1}\left(I_{Z_{1}}, I_{Z_{2}}\right) \oplus \operatorname{Ext}^{1}\left(I_{Z_{2}}, I_{Z_{1}}\right) \mid e_{12} \cup e_{21}=0\right\} \tag{1.4.2}
\end{equation*}
$$

Furthermore the action of $S t(x)$ on $\left(C_{\Sigma} Q\right)_{x}$ is given by

$$
\begin{equation*}
\lambda\left(e_{12}, e_{21}\right)=\left(\lambda e_{12}, \lambda^{-1} e_{21}\right) \tag{1.4.3}
\end{equation*}
$$

The proposition will be proved in several steps.
I. Yoneda square. Since

$$
\operatorname{Ext}^{p}\left(F_{x}, F_{x}\right)=\bigoplus_{i, j} \operatorname{Ext}^{p}\left(I_{Z_{i}}, I_{Z_{j}}\right)
$$

we can write Yoneda square $\Upsilon:=\Upsilon_{F_{x}}$ as

$$
\Upsilon\left(\sum_{i, j} e_{i j}\right)=\sum_{k} e_{1 k} \cup e_{k 1}+\sum_{k} e_{1 k} \cup e_{k 2}+\sum_{k} e_{2 k} \cup e_{k 1}+\sum_{k} e_{2 k} \cup e_{k 2} \quad e_{i j} \in \operatorname{Ext}^{1}\left(I_{Z_{i}}, I_{Z_{j}}\right) .
$$

By Serre duality

$$
\operatorname{Ext}^{2}\left(I_{Z_{i}}, I_{Z_{j}}\right) \cong \operatorname{Hom}\left(I_{Z_{j}}, I_{Z_{i}}\right)^{\vee},
$$

hence
(1.4.4) $\quad \operatorname{Ext}^{2}\left(I_{Z_{i}}, I_{Z_{j}}\right)=0$ if $i \neq j$ and $\operatorname{Tr}: \operatorname{Ext}^{2}\left(I_{Z_{i}}, I_{Z_{i}}\right) \rightarrow H^{2}\left(\mathcal{O}_{X}\right)$ is an isomorphism.

In particular

$$
\begin{equation*}
\operatorname{Ext}^{2}\left(F_{x}, F_{x}\right)^{0}=\left\{\left(f_{1}, f_{2}\right) \in \operatorname{Ext}^{2}\left(I_{Z_{1}}, I_{Z_{1}}\right) \oplus \operatorname{Ext}^{2}\left(I_{Z_{2}}, I_{Z_{2}}\right) \mid f_{1}+f_{2}=0\right\} \tag{1.4.5}
\end{equation*}
$$

Furthermore

$$
\Upsilon(e)=\left(e_{11} \cup e_{11}+e_{12} \cup e_{21}, e_{21} \cup e_{12}+e_{22} \cup e_{22}\right)
$$

By skew-commutativity (see (1.3)) $\operatorname{Tr}\left(e_{i i} \cup e_{i i}\right)=0$, hence (1.4.4) implies that $e_{i i} \cup e_{i i}=0$. This gives

$$
\begin{equation*}
\Upsilon(e)=\left(e_{12} \cup e_{21}, e_{21} \cup e_{12}\right) . \tag{1.4.6}
\end{equation*}
$$

Let

$$
\begin{array}{ccc}
\Psi: \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right) & \rightarrow & \operatorname{Ext}^{2}\left(I_{Z_{1}}, I_{Z_{1}}\right) \\
e & \mapsto & e_{12} \cup e_{21}
\end{array}
$$

By (1.4.6)-(1.4.5) we can identify $\Upsilon$ with $\Psi$, in particular $\Upsilon^{-1}(0)=\Psi^{-1}(0)$. Let

$$
\begin{array}{cccc}
\bar{\Psi}: \operatorname{Ext}^{1}\left(I_{Z_{1}}, I_{Z_{2}}\right) \oplus \operatorname{Ext}^{1}\left(I_{Z_{2}}, I_{Z_{1}}\right) & \rightarrow & \operatorname{Ext}^{1}\left(I_{Z_{1}}, I_{Z_{1}}\right)  \tag{1.4.7}\\
\left(e_{12}, e_{21}\right) & \mapsto & e_{12} \cup e_{21} .
\end{array}
$$

Thus $\bar{\Psi}$ is identified with the map induced by $\Psi$ on $\operatorname{Ext}^{1}\left(F_{x}, F_{x}\right) / \operatorname{ker} \Psi$.
(1.4.8) Claim. $\mathbf{P} \bar{\Psi}^{-1}(0)$ is a smooth quadric hypersurface in $\mathbf{P}^{2 c-5}$. In particular, since $c \geq 4, \mathbf{P} \Psi^{-1}(0)$ is a reduced irreducible quadric.

Proof. By Serre duality, Yoneda product

$$
\begin{equation*}
\operatorname{Ext}^{1}\left(I_{Z_{1}}, I_{Z_{2}}\right) \times \operatorname{Ext}^{1}\left(I_{Z_{2}}, I_{Z_{1}}\right) \rightarrow \operatorname{Ext}^{2}\left(I_{Z_{1}}, I_{Z_{1}}\right) \tag{1.4.9}
\end{equation*}
$$

is a perfect pairing. Hence

$$
\mathbf{P} \bar{\Psi}^{-1}(0) \subset \mathbf{P}\left(\operatorname{Ext}^{1}\left(I_{Z_{1}}, I_{Z_{2}}\right) \oplus \operatorname{Ext}^{1}\left(I_{Z_{2}}, I_{Z_{1}}\right)\right)
$$

is a smooth quadric hypersurface. The claim follows from the equalities

$$
-\operatorname{dim} \operatorname{Ext}^{1}\left(I_{Z_{1}}, I_{Z_{2}}\right)=\chi\left(I_{Z_{1}}, I_{Z_{2}}\right)=\chi\left(I_{Z_{1}}, I_{Z_{1}}\right)=2-c
$$

q.e.d.
II. The cone at the origin of the deformation space. Let $\mathcal{V}$ be a slice normal to the (closed) orbit $\operatorname{PGL}(N) x$ : by Proposition (1.2.3) there is a natural isomorphism of germs $(\mathcal{V}, x) \cong \operatorname{Def}\left(F_{x}\right)$. In particular we have an embedding

$$
C_{x} \mathcal{V} \subset \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)
$$

(1.4.10) Proposition. Keep notation as above. There are natural isomorphisms of schemes

$$
C_{x} \mathcal{V}=H_{x} \mathcal{V} \cong \Psi^{-1}(0)
$$

Proof. By (1.3.5) and Claim (1.4.8), we have

$$
\left(\mathbf{P} H_{x} \mathcal{V}\right)_{r e d}=\mathbf{P} \Upsilon^{-1}(0)=\mathbf{P} \Psi^{-1}(0)
$$

Since $\mathbf{P} \Psi^{-1}(0)$ is a reduced irreducible quadric hypersurface and $\mathbf{P} H_{x} \mathcal{V}$ is cut out by quadrics, it follows that

$$
\mathbf{P} H_{x} \mathcal{V}=\mathbf{P} \Psi^{-1}(0)
$$

Next, consider the inclusion

$$
C_{x} \mathcal{V} \subset H_{x} \mathcal{V}=\Psi^{-1}(0) .
$$

By Proposition (1.3.6) and by (1.4.5)-(1.4.4) we have

$$
\operatorname{dim} C_{x} \mathcal{V}=\operatorname{dim} \mathcal{V} \geq \operatorname{dim} \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)-1=\operatorname{dim} \Psi^{-1}(0)
$$

Since $\Psi^{-1}(0)$ is reduced irreducible, we must have $C_{x} \mathcal{V}=\Psi^{-1}(0)$.
III. The normal cone. Let

$$
\mathcal{W}:=\mathcal{V} \cap \Sigma_{Q}^{0}
$$

By Corollary (1.2.2) there is a $S t(x)$-equivariant isomorphism

$$
\begin{equation*}
\left(C_{\Sigma} Q\right)_{x} \cong\left(C_{\mathcal{W}} \mathcal{V}\right)_{x} . \tag{1.4.11}
\end{equation*}
$$

(1.4.12) Claim. Keeping notation as above, $\mathcal{W}$ is smooth at $x$ and

$$
\begin{equation*}
T_{x} \mathcal{W} \cong \operatorname{Ext}^{1}\left(I_{Z_{1}}, I_{Z_{1}}\right) \oplus \operatorname{Ext}^{1}\left(I_{Z_{2}}, I_{Z_{2}}\right) \tag{1.4.13}
\end{equation*}
$$

Furthermore, shrinking $\mathcal{V}$ if necessary, we can assume that

$$
\begin{equation*}
\operatorname{dim} T_{x^{\prime}} \mathcal{V}=\operatorname{dim} T_{x} \mathcal{V} \text { for all } x^{\prime} \in \mathcal{W} \tag{1.4.14}
\end{equation*}
$$

Proof. We continue identifying $(\mathcal{V}, x)$ with $\operatorname{Def}\left(F_{x}\right)$. First we prove (1.4.13). Let $\mathcal{F}$ be a first order deformation of $F_{x}$ and let $e=\sum_{i, j} e_{i j} \in \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)$ be the corresponding extension class. Then $e$ is tangent to $\mathcal{W}$ if and only if the (two) exact sequences

$$
0 \rightarrow I_{Z_{i}} \rightarrow F_{x} \rightarrow I_{Z_{j}} \rightarrow 0, \quad i \neq j
$$

lift to $\mathcal{F}$. This condition is equivalent $[\mathrm{O} 2,(1.17)]$ to

$$
e_{12}=e_{21}=0
$$

This proves (1.4.13). To prove smoothness of $\mathcal{W}$, notice that $\mathcal{W}$ parametrizes all sheaves of the form $I_{Z^{\prime}} \oplus I_{W^{\prime}}$, for $Z^{\prime}$ near $Z$ and $W^{\prime}$ near $W$; this implies that $\operatorname{dim}_{x} \mathcal{W} \geq 2 c$. On the other hand the right-hand side of (1.4.13) has dimension $2 c$, hence $\mathcal{W}$ is smooth at $x$. To prove the last statement, notice that the family $\mathcal{F}$ of sheaves parametrized by $\mathcal{V}$ is complete at all $x^{\prime}$ in a neighborhood of $x$, and that $\operatorname{dim} \operatorname{Ext}^{1}\left(F_{x^{\prime}}, F_{x^{\prime}}\right)$ is constant for $x^{\prime} \in \mathcal{W}$.
q.e.d.

Now let's prove Proposition (1.4.1), except for (1.4.3). First we show $\Sigma_{Q}^{0}$ is smooth. Let $x \in \Sigma_{Q}^{0}$, let $\mathcal{V}$ be a slice normal to $O(x)$, and $\mathcal{W}:=\mathcal{V} \cap \Sigma_{Q}^{0}$. By the Étale slice Theorem (1.2.1), a neighborhood of $x$ in $\Sigma_{Q}^{0}$ is isomorphic to a neighborhood of $(1, x)$ in $\operatorname{PGL}(N) \times_{S t(x)} \mathcal{W}$. This last space is smooth at $(1, x)$ because by (1.4.12) $\mathcal{W}$ is smooth at $x$. Thus $x$ is a smooth point of $\Sigma_{Q}^{0}$. Now let's prove (1.4.2). By (1.4.11), in order to prove (1.4.2) we must give an isomorphism

$$
\begin{equation*}
\left(C_{\mathcal{W}} \mathcal{V}\right)_{x} \cong \bar{\Psi}^{-1}(0) \tag{1.4.15}
\end{equation*}
$$

where $\bar{\Psi}$ is as in (1.4.7). By Claim (1.4.12) the normal bundle $N_{\mathcal{W}} \mathcal{V}$ is defined, hence we have inclusions of cones

$$
\left(C_{\mathcal{W}} \mathcal{V}\right)_{x} \subset\left(H_{\mathcal{W}} \mathcal{V}\right)_{x} \subset\left(N_{\mathcal{W}} \mathcal{V}\right)_{x} \cong \operatorname{Ext}^{1}\left(I_{Z_{1}}, I_{Z_{2}}\right) \oplus \operatorname{Ext}^{1}\left(I_{Z_{2}}, I_{Z_{1}}\right)
$$

(The last isomorphism follows from (1.4.13).) Equality (1.3.2) together with Proposition (1.4.10) gives an isomorphism

$$
\left(H_{\mathcal{W}} \mathcal{V}\right)_{x} \cong \bar{\Psi}^{-1}(0)
$$

Arguing as in the proof of (1.4.10), we conclude that $\left(C_{\mathcal{W}} \mathcal{V}\right)_{x}=\left(H_{\mathcal{W}} \mathcal{V}\right)_{x}$. In detail:

$$
\operatorname{dim}\left(C_{\mathcal{W}} \mathcal{V}\right)_{x} \geq \operatorname{dim} \mathcal{V}-\operatorname{dim} \mathcal{W} \geq \operatorname{dim}\left(H_{\mathcal{W}} \mathcal{V}\right)_{x}=\operatorname{dim} \bar{\Psi}^{-1}(0)
$$

where the second inequality follows from (1.3.6). Since $\left(C_{\mathcal{W}} \mathcal{V}\right)_{x} \subset\left(H_{\mathcal{W}} \mathcal{V}\right)_{x}=\bar{\Psi}^{-1}(0)$ and $\bar{\Psi}^{-1}(0)$ is reduced irreducible, we get (1.4.15). The rest of Proposition (1.4.1), except for (1.4.3), follows at once from (1.4.2).

## q.e.d.

IV. Action of $S t(x)$. Let $x \in Q^{s s}$ be a point with closed orbit ( $x$ need not be in $\Sigma_{Q}^{0}$ ), and let $\mathcal{V}$ be a slice normal to $O(x)$. Since $S t(x)=\operatorname{Aut}\left(F_{x}\right) /\{$ scalars $\}$, the action of $S t(x)$ on $\mathcal{V}$ defines also an action of $\operatorname{Aut}\left(F_{x}\right)$ on $\mathcal{V}$. For $g \in \operatorname{Aut}\left(F_{x}\right)$ we let

$$
g_{*}: T_{x} \mathcal{V} \rightarrow T_{x} \mathcal{V}
$$

be the differential at $x$ of the map corresponding to $g$.
(1.4.16) Lemma. Keeping notation as above, let

$$
e \in T_{x} \mathcal{V} \cong T_{0} \operatorname{Def}\left(F_{x}\right) \cong \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)
$$

Then $g_{*}(e)=g \cup e \cup g^{-1}$.
Proof. Set $F_{0}=F_{x}$. Let $F_{1}$ and $E_{1}$ be the first order deformations of $F_{0}$ corresponding to $e$ and $g_{*} e$ respectively. The lemma follows from the existence of an isomorphism $\alpha_{g}: F_{1} \rightarrow E_{1}$ fitting into a commutative diagram


The isomorphism $\alpha_{g}$ exists because $\operatorname{Aut}\left(F_{0}\right)$ also acts on the restriction to $X \times \mathcal{V}$ of the tautological quotient on $X \times Q$, compatibly with the action on $\mathcal{V}$.

Now let's assume $x \in \Sigma_{Q}^{0}$, and let

$$
g=(\alpha, \beta) \in \mathbf{C}^{*} \times \mathbf{C}^{*}=\operatorname{Aut}\left(F_{x}\right) \quad e=\sum_{i, j} e_{i j} \in \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)
$$

By Lemma (1.4.16) we have

$$
g_{*}(e)=g e g^{-1}=e_{11}+\alpha \beta^{-1} e_{12}+\alpha^{-1} \beta e_{12}+e_{22} .
$$

Equation (1.4.3) follows at once from the above formula.

### 1.5. The normal cone of $\Omega_{Q}^{0}$.

Let $x \in \Omega_{Q}^{0}$. If $V$ is a two-dimensional complex vector space, then

$$
F_{x} \cong I_{Z} \otimes_{\mathbf{C}} V, \quad \ell(Z)=n \quad S t(x)=\operatorname{Aut}\left(F_{x}\right) /\{\operatorname{scalars}\} \cong \operatorname{PGL}(V)
$$

Let $W:=s l(V)$ be the Lie algebra of $\operatorname{PGL}(V)$, and let

$$
(m, n)=4 \operatorname{Tr}(m n)
$$

be the Killing form. The adjoint representation gives an identification

$$
\operatorname{PGL}(V) \cong \mathrm{SO}(W)
$$

Let

$$
E_{Z}=\operatorname{Ext}^{1}\left(I_{Z}, I_{Z}\right)
$$

Choose a non-zero two-form $\omega \in H^{0}\left(K_{X}\right)$ : the composition

$$
E_{Z} \times E_{Z} \xrightarrow{\text { Yon }} \operatorname{Ext}^{2}\left(I_{Z}, I_{Z}\right) \xrightarrow{\operatorname{Tr}} H^{2}\left(\mathcal{O}_{X}\right) \xrightarrow{\cup \omega} H^{2}\left(K_{X}\right) \xrightarrow{\int_{X}} \mathbf{C}
$$

defines a skew-symmetric form $\langle$,$\rangle , non-degenerate by Serre duality. Set$

$$
\operatorname{Hom}^{\omega}\left(W, E_{Z}\right):=\left\{\varphi: W \rightarrow E_{Z} \mid \varphi^{*}\langle,\rangle \equiv 0\right\}
$$

Then $S t(x)=\operatorname{SO}(W)$ acts (by composition) on $\operatorname{Hom}^{\omega}\left(W, E_{Z}\right)$. In this subsection we will prove the following result.
(1.5.1) Proposition. Keep notation as above. Then $\Omega_{Q}^{0}$ is a smooth locally closed subset of $Q$, and its normal cone is a locally trivial bundle over $\Omega_{Q}^{0}$. If $x \in \Omega_{Q}^{0}$ there is a natural $\operatorname{St}(x)$-equivariant isomorphism

$$
\begin{equation*}
\left(C_{\Omega} Q\right)_{x} \cong \operatorname{Hom}^{\omega}\left(W, E_{Z}\right) \tag{1.5.2}
\end{equation*}
$$

I. Yoneda square. There is a natural isomorphism

$$
\operatorname{Ext}^{p}\left(F_{x}, F_{x}\right) \cong \operatorname{Ext}^{p}\left(I_{Z}, I_{Z}\right) \otimes g l(V)
$$

and Yoneda product is the tensor product of Yoneda product on $\operatorname{Ext}^{p}\left(I_{Z}, I_{Z}\right)$ times the composition on $g l(V)$. Hence if $\Upsilon: E_{Z} \otimes g l(V) \rightarrow s l(V)$ is Yoneda square,

$$
\Upsilon\left(\sum_{i} e_{i} \otimes m_{i}\right)=\sum_{i, j}\left(e_{i} \cup e_{j}\right) \otimes\left(m_{i} m_{j}\right)
$$

Since the composition

$$
\operatorname{Ext}^{2}\left(I_{Z}, I_{Z}\right) \xrightarrow{\operatorname{Tr}} H^{2}\left(\mathcal{O}_{X}\right) \xrightarrow{\cup \omega} H^{2}\left(K_{X}\right)=\mathbf{C}
$$

is an isomorphism we can write, with a slight abuse of notation,

$$
\begin{equation*}
\Upsilon\left(\sum_{i} e_{i} \otimes m_{i}\right)=\frac{1}{2} \sum_{i, j}\left\langle e_{i}, e_{j}\right\rangle\left[m_{i}, m_{j}\right], \tag{1.5.3}
\end{equation*}
$$

where $[\cdot, \cdot]$ is the commutator (bracket). Now consider the decomposition

$$
\begin{equation*}
E_{Z} \otimes g l(V)=E_{Z} \otimes s l(V) \oplus E_{Z} \otimes \mathbf{C I d}_{V}=E_{Z} \otimes W \oplus E_{Z} \otimes \mathbf{C I d}_{V} \tag{1.5.4}
\end{equation*}
$$

and let $\bar{\Upsilon}:=\left.\Upsilon\right|_{E_{Z} \otimes W}$. Since bracket in $\operatorname{sl}(V)$ corresponds to wedge product in $W$, we have

$$
\bar{\Upsilon}\left(\sum_{i} e_{i} \otimes v_{i}\right)=\frac{1}{2} \sum_{i, j}\left\langle e_{i}, e_{j}\right\rangle v_{i} \wedge v_{j}
$$

The map $\bar{\Upsilon}$ has the following geometric interpretation. The Killing form (, ) on $W$ gives isomorphisms

$$
E_{Z} \otimes W \cong \operatorname{Hom}\left(W, E_{Z}\right) \quad W \cong \bigwedge^{2} W^{*}
$$

Let $\varphi \in \operatorname{Hom}\left(W, E_{Z}\right)$; a straightforward computation shows that, via the above identifications,

$$
\begin{aligned}
\bar{\Upsilon}: \operatorname{Hom}\left(W, E_{Z}\right) & \rightarrow \bigwedge^{2} W^{*} \\
\varphi & \mapsto 2 \varphi^{*}\langle,\rangle
\end{aligned}
$$

In particular

$$
\begin{equation*}
\bar{\Upsilon}^{-1}(0)=\operatorname{Hom}^{\omega}\left(W, E_{Z}\right) \tag{1.5.5}
\end{equation*}
$$

(1.5.6) Lemma. $\mathbf{P} \bar{\Upsilon}^{-1}(0)$ is a reduced irreducible complete intersection of three quadrics in $\mathbf{P}\left(E_{Z} \otimes W\right)$. Since $\mathbf{P} \Upsilon^{-1}(0)$ is a cone over $\mathbf{P} \bar{\Upsilon}^{-1}(0)$ with vertex $\mathbf{P}\left(E_{Z} \otimes \operatorname{CId}_{V}\right)$, it follows that $\mathbf{P} \Upsilon^{-1}(0)$ is a reduced irreducible complete intersection of three quadrics in $\mathbf{P}\left(E_{Z} \otimes g l(V)\right)$.

Proof. The symmetric bilinear form

$$
\widetilde{\Upsilon}\left(\sum_{i} e_{i} \otimes v_{i}, \sum_{j} f_{j} \otimes w_{j}\right):=\frac{1}{2} \sum_{i, j}\left\langle e_{i}, f_{j}\right\rangle v_{i} \wedge w_{j}
$$

is the polarization of $\bar{\Upsilon}$, hence the differential of $\bar{\Upsilon}$ at $\varphi=\sum_{i} e_{i} \otimes v_{i}$ is given by

$$
\begin{array}{rccc}
d \bar{\Upsilon}(\varphi): & \operatorname{Hom}\left(W, E_{Z}\right) & \rightarrow & \bigwedge^{2} W^{*} \cong W  \tag{1.5.7}\\
\sum_{j} f_{j} \otimes w_{j} & \mapsto & \frac{1}{2} \sum_{i, j}\left\langle e_{i}, f_{j}\right\rangle v_{i} \wedge w_{j} .
\end{array}
$$

From the above formula one easily gets

$$
\operatorname{rk}(d \bar{\Upsilon}(\varphi))= \begin{cases}3 & \text { if } \operatorname{rk} \varphi \geq 2  \tag{1.5.8}\\ 2 & \text { if } \operatorname{rk} \varphi=1 \\ 0 & \text { if } \varphi=0\end{cases}
$$

Let $\mathrm{cr} \bar{\Upsilon}$ be the set of critical points of $\bar{\Upsilon}$. Since $c \geq 4$, Equation (1.5.8) gives

$$
\operatorname{dim} \mathbf{P}(\operatorname{cr} \bar{\Upsilon})=c+2<3 c-4=\operatorname{dim} \mathbf{P}\left(E_{Z} \otimes W\right)-3
$$

This proves $\mathbf{P} \bar{\Upsilon}^{-1}(0)$ is a reduced complete intersection of three quadrics. To prove irreducibility, notice that by the above formulae

$$
\begin{equation*}
\operatorname{cod}\left(\operatorname{sing} \mathbf{P} \bar{\Upsilon}^{-1}(0), \mathbf{P} \bar{\Upsilon}^{-1}(0)\right) \geq 2 . \tag{1.5.9}
\end{equation*}
$$

On the other hand, Equation (1.5.8) shows that

$$
\operatorname{dim} T_{p} \mathbf{P} \bar{\Upsilon}^{-1}(0)=\operatorname{dim} \mathbf{P} \bar{\Upsilon}^{-1}(0)+1
$$

at every $p \in \operatorname{sing} \mathbf{P} \bar{\Upsilon}^{-1}(0)$. Now assume $\mathbf{P} \bar{\Upsilon}^{-1}(0)$ is reducible. Since $\mathbf{P} \bar{\Upsilon}^{-1}(0)$ is connected, there are two irreducible components which meet. The above equality shows that the intersection of these components is locally the intersection of two divisors in a smooth ambient space, hence it has codimension one in $\mathbf{P} \bar{\Upsilon}^{-1}(0)$. This contradicts (1.5.9).
q.e.d.
II. The cone at the origin of the deformation space. Let $\mathcal{V}$ be a slice normal to the (closed) orbit PGL $(N) x$ : by Proposition (1.2.3) there is a natural isomorphism of germs $(\mathcal{V}, x) \cong \operatorname{Def}\left(F_{x}\right)$.
(1.5.10) Proposition. Keeping notation as above, there are natural isomorphisms of schemes

$$
C_{x} \mathcal{V}=H_{x} \mathcal{V} \cong \Upsilon^{-1}(0)
$$

Proof. The proof is similar to that of Proposition (1.4.10). By (1.3.5) and Lemma (1.5.6), we have

$$
\left(\mathbf{P} H_{x} \mathcal{V}\right)_{r e d}=\mathbf{P} \Upsilon^{-1}(0) .
$$

By (1.5.6), $\mathbf{P} \Upsilon^{-1}(0)$ is a reduced irreducible complete intersection of quadrics. Since $\mathbf{P} H_{x} \mathcal{V}$ is cut out by quadrics, it follows that

$$
\mathbf{P} H_{x} \mathcal{V}=\mathbf{P} \Upsilon^{-1}(0) .
$$

Next, consider the inclusion

$$
C_{x} \mathcal{V} \subset H_{x} \mathcal{V}=\Psi^{-1}(0) .
$$

By Proposition (1.3.6) and (1.5.6) we have

$$
\operatorname{dim} C_{x} \mathcal{V}=\operatorname{dim} \mathcal{V} \geq \operatorname{dim} \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)-3=\operatorname{dim} \Upsilon^{-1}(0)
$$

By (1.5.6) $\Upsilon^{-1}(0)$ is reduced irreducible, hence $C_{x} \mathcal{V}=\Upsilon^{-1}(0)$.
q.e.d.
III. Proof of Proposition (1.5.1). Let $\mathcal{V}$ be a slice normal to the (closed) orbit PGL( $N$ ) $x$, and let

$$
\mathcal{W}:=\mathcal{V} \cap \Omega_{Q}^{0} .
$$

By Corollary (1.2.2) there is a $S t(x)$-equivariant isomorphism

$$
\begin{equation*}
\left(C_{\Omega} Q\right)_{x} \cong\left(C_{\mathcal{W}} \mathcal{V}\right)_{x} . \tag{1.5.11}
\end{equation*}
$$

The following result is analogous to Claim (1.4.12).
(1.5.12) Claim. Keeping notation as above, $\mathcal{W}$ is smooth at $x$ and

$$
\begin{equation*}
T_{x} \mathcal{W}=E_{Z} \otimes \mathbf{C I d}_{V} \tag{1.5.13}
\end{equation*}
$$

(See Decomposition (1.5.4).) Furthermore, shrinking $\mathcal{V}$ if necessary, we can assume that

$$
\operatorname{dim} T_{x^{\prime}} \mathcal{V}=\operatorname{dim} T_{x} \mathcal{V} \text { for all } x^{\prime} \in \mathcal{W}
$$

Proof. Identifying the germ $(\mathcal{V}, x)$ with $\left(\operatorname{Def}\left(F_{x}\right), 0\right)$ (see Proposition (1.2.3)), we see that a neighborhood of $x \in \mathcal{W}$ parametrizes all sheaves of the form $I_{Z^{\prime}} \oplus I_{Z^{\prime}}$, for $Z^{\prime}$ near $Z$. In particular

$$
\operatorname{dim} \mathcal{W} \geq c=\operatorname{dim} E_{Z}
$$

Hence Equation (1.5.13) implies the first statement. We prove (1.5.13). Let

$$
\epsilon \in T_{0} \operatorname{Def}\left(F_{x}\right)=\operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)=E_{Z} \otimes g l(V)
$$

and let $\mathcal{F}$ be the corresponding first order deformation of $F_{x}$. Then $\epsilon$ is tangent to $\mathcal{W}$ if and only if, for every exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbf{C} \rightarrow V \rightarrow \mathbf{C} \rightarrow 0 \tag{*}
\end{equation*}
$$

the following holds: the exact sequence

$$
0 \rightarrow I_{Z} \rightarrow F_{x} \rightarrow I_{Z} \rightarrow 0
$$

obtained tensoring $(*)$ by $I_{Z}$, lifts to $\mathcal{F}$. Choosing a basis of $V$ adapted to $(*)$, write $\epsilon$ as a $2 \times 2$-matrix with entries in $E_{Z}$ : then by $[\mathrm{O} 2,(1.17)]$ Exact sequence $(\dagger)$ lifts to $\mathcal{F}$ if and only if $\epsilon$ is uppertriangular. Since this must hold for any choice of $(*)$, the matrix $\epsilon$ must be a scalar, i.e. $\epsilon \in E_{Z} \otimes \mathbf{C I d}_{V}$. To prove the second statement, notice that the family $\mathcal{F}$ of sheaves parametrized by $\mathcal{V}$ is complete at all $x^{\prime}$ in a neighborhood of $x$, and that $\operatorname{dim} \operatorname{Ext}^{1}\left(F_{x^{\prime}}, F_{x^{\prime}}\right)$ is constant for $x^{\prime} \in \mathcal{W}$.
q.e.d.

Using (1.5.12) and arguing as in the proof of Proposition (1.4.1) we see that $\Omega_{Q}^{0}$ is smooth. Let's prove Isomorphism (1.5.2) (we leave it to the reader to verify that the normal cone of $\Omega_{Q}^{0}$ is locally trivial). By (1.5.11)-(1.5.5) we must give an isomorphism

$$
\begin{equation*}
\left(C_{\mathcal{W}} \mathcal{V}\right)_{x} \cong \bar{\Upsilon}^{-1}(0) \tag{1.5.14}
\end{equation*}
$$

We proceed as in the proof of (1.4.15). By (1.5.12) the normal bundle $N_{\mathcal{W}} \mathcal{V}$ is defined, hence we have inclusions of cones

$$
\left(C_{\mathcal{W}} \mathcal{V}\right)_{x} \subset\left(H_{\mathcal{W}} \mathcal{V}\right)_{x} \subset\left(N_{\mathcal{W}} \mathcal{V}\right)_{x} \cong E_{Z} \otimes W
$$

(The last isomorphism follows from (1.5.13).) By (1.3.2) and (1.5.10) we have

$$
\left(H_{\mathcal{W}} \mathcal{V}\right)_{x} \cong \bar{\Upsilon}^{-1}(0)
$$

Furthermore

$$
\operatorname{dim}\left(C_{\mathcal{W}} \mathcal{V}\right)_{x} \geq \operatorname{dim} \mathcal{V}-\operatorname{dim} \mathcal{W} \geq \operatorname{dim}\left(H_{\mathcal{W}} \mathcal{V}\right)_{x}=\operatorname{dim} \bar{\Upsilon}^{-1}(0)
$$

where the second inequality follows from (1.3.6). Since $\left(C_{\mathcal{W}} \mathcal{V}\right)_{x} \subset\left(H_{\mathcal{W}} \mathcal{V}\right)_{x}=\bar{\Upsilon}^{-1}(0)$ and $\bar{\Upsilon}^{-1}(0)$ is reduced irreducible, we get (1.5.14). Finally, to prove that Isomorphism (1.5.2) is $S t(x)$-equivariant, we apply Lemma (1.4.16) to $(\mathcal{V}, x)=\operatorname{Def}\left(F_{x}\right)$. If $g \in \operatorname{Aut}\left(F_{x}\right)=\mathrm{GL}(V)$, and $\epsilon \in \operatorname{Ext}^{1}\left(F_{x}, F_{x}\right)=E_{Z} \otimes g l(V)$,

$$
g_{*}(\epsilon)=g \cup \epsilon \cup g^{-1}
$$

Since Yoneda products are given by composition in $g l(V)$, the automorphism group GL $(V)$ acts by conjugation on $E_{Z} \otimes g l(V)$, i.e. we get the standard action of $\mathrm{SO}(W)$ on $W$.

### 1.6. Description of $\Omega_{R}^{s s}$.

Recall that $\pi_{R}: R \rightarrow Q$ is the blow-up of $\Omega_{Q}$. Let $\Omega_{R} \subset R$ be the exceptional divisor. By Theorem (1.1.2) we have

$$
\pi_{R}\left(\Omega_{R}^{s s}\right) \subset \Omega_{Q}^{s s}=\Omega_{Q}^{0}
$$

In order to describe $\Omega_{R}^{s s}$ we will need a general result in the style of Theorem (1.1.2). Let $G$ be a reductive group acting linearly on a projective scheme $Y$, let $W \hookrightarrow Y$ be a $G$-invariant closed subscheme, let $\pi: \widetilde{Y} \rightarrow Y$ be the blow-up of $W$. Then $G$ acts also on $D_{\ell}:=\pi^{*} \mathcal{O}_{Y}(\ell)(-E)$, where $E$ is the exceptional divisor. The following lemma can be extracted from $[\mathrm{K}]$; we sketch a proof for the reader's convenience.
(1.6.1) Lemma. Keep notation as above. If $\ell \gg 0$ then the following holds. Let $\widetilde{y} \in \widetilde{Y}$ be such that $y=\pi(\widetilde{y})$ is semistable with orbit closed in $Y^{s s}$. Then $\widetilde{y}$ is $G$-(semi)stable if and only if it is (semi)stable for the action of $S t(y)$ on $\pi^{-1}(y)$ (with the linearization obtained by restriction).
Proof. First we prove the lemma when $G$ is a torus $T$. Let $\ell_{0}$ be such that $\pi^{*} \mathcal{O}_{Y}\left(\ell_{0}\right)(-E)$ is very ample. Let $\left\{\sigma_{i}\right\},\left\{\tau_{j}\right\}$ be diagonal bases for the action of $T$ on $H^{0}\left(D_{\ell_{0}}\right)$ and $H^{0}\left(\mathcal{O}_{Y}(1)\right)$ respectively. Let $\left\{p_{i}\right\},\left\{q_{j}\right\}$ be the corresponding sets of characters of $T$. Letting $\Phi$ be the lattice of characters of $T$, and $\Phi_{\mathbf{R}}:=\Phi \otimes \mathbf{R}$, we set

$$
\begin{aligned}
\Delta_{\sigma} & :=\text { convex hull in } \Phi_{\mathbf{R}} \text { of the } p_{i} \text { such that } \sigma_{i}(\widetilde{y}) \neq 0 \\
\Delta_{\tau} & :=\text { convex hull in } \Phi_{\mathbf{R}} \text { of the } q_{j} \text { such that } \tau_{j}(y) \neq 0 \\
\Lambda & :=\text { linear span of } \Delta_{\tau}
\end{aligned}
$$

Since $O(y)$ is closed in $Y^{s s}$, there is an open $\mathcal{U} \subset \Lambda$ such that $0 \in \mathcal{U} \subset \Delta_{\tau}$. Thus there exists $m_{0}$ such that the following holds for all $m \geq m_{0}$. If $V \subset \Phi_{\mathbf{R}}$ is a codimension-one subspace not containing $\Lambda$, the image of $\left(\Delta_{\sigma}+m \Delta_{\tau}\right)$ in $\Phi_{\mathbf{R}} / V$ contains an open neighborhood of the origin. We claim that if $\ell=\left(\ell_{0}+m\right)$, with $m \geq m_{0}$, the lemma holds for $\widetilde{y}$. By the numerical criterion for (semi)stability [Mm, (2.1)] it suffices to show that if $\lambda$ is a one-parameter subgroup of $G$ not contained in $S t(y)$ then $\lambda$ does not desemistabilize $\widetilde{y}$. Semistability with respect to the complete linear system $H^{0}\left(D_{\ell}\right)$ is the same as with respect to the sublinear system

$$
H^{0}\left(D_{\ell_{0}}\right) \otimes H^{0}\left(\pi^{*} \mathcal{O}_{Y}(m)\right)
$$

Identifying one-parameter subgroups of $T$ with $\operatorname{Hom}(\Phi, \mathbf{Z})$, we get a one-to-one correspondence

$$
\left\{\lambda: \mathbf{C}^{*} \rightarrow T \mid \lambda\left(\mathbf{C}^{*}\right) y=y\right\} \leftrightarrow\left\{f \in \operatorname{Hom}(\Phi, \mathbf{Z}) \mid \Delta_{\tau} \subset \operatorname{ker}(f \otimes \mathbf{R})\right\}
$$

Hence, with our choice of $m$, if $\lambda$ does not fix $y$ then $\lambda$ does not desemistabilize $\widetilde{y}$ with respect to the above sublinear system. This proves the result for a single $y$, but in fact we can choose an $m_{0}$ which works for every $y$. Now let $G$ be an arbitrary reductive group. Let $T<G$ be a maximal torus. Since the lemma holds for the action of $T$, and since every one-parameter subgroup of $G$ is conjugate to a subgroup of $T$, the numerical criterion for (semi)stability shows that the lemma holds also for the action of $G$. q.e.d.
Remark. If $y$ is stable, the proof above is exactly Kirwan's proof of (1.1.4).
By Proposition (1.5.1) there is a locally trivial fibration

(1.6.2) Proposition. Keeping notation as above, a point $[\varphi] \in \operatorname{PHom}^{\omega}\left(W, E_{Z}\right)$ is $\operatorname{PGL}(N)$-semistable if and only if:

$$
\operatorname{rk} \varphi \begin{cases}\geq 2, & \text { or } \\ =1 & \text { and } \operatorname{ker} \varphi^{\perp} \text { is non-isotropic. }\end{cases}
$$

Proof. By Lemma (1.6.1) [ $\varphi$ ] is $\operatorname{PGL}(N)$-semistable if and only if it is semistable for the $\mathrm{SO}(W)$-action on $\mathbf{P H o m}{ }^{\omega}\left(W, E_{Z}\right)$. The proposition follows easily from the numerical criterion for semistability. q.e.d.

### 1.7. Description of $\Sigma_{R}^{s s}$.

Recall that $\Sigma_{R} \subset R$ is the strict transform of $\Sigma_{Q}$ under the blow-up $\pi_{R}: R \rightarrow Q$. We are interested in $\Sigma_{R}^{s s}$, a locally closed subset of $R$. The main result of this subsection is the following.
(1.7.1) Proposition. Keeping notation as above,
(1) $\Sigma_{R}^{s s}$ is smooth,
(2) The scheme-theoretic intersection of $\Sigma_{R}^{s s}$ and $\Omega_{R}$ is smooth and reduced.
(3) The normal cone of $\Sigma_{R}^{s s}$ in $R$ is a locally trivial bundle over $\Sigma_{R}^{s s}$, with fiber the cone over a smooth quadric in $\mathbf{P}^{2 c-5}$.
I. Description of $\Sigma_{R}^{s s} \backslash \Omega_{R}$. We will prove that

$$
\begin{equation*}
\Sigma_{R}^{s s} \backslash \Omega_{R}=\pi_{R}^{-1}\left(\Sigma_{Q}^{0}\right) \tag{1.7.2}
\end{equation*}
$$

By Theorem (1.1.2) we know

$$
\Sigma_{R}^{s s} \backslash \Omega_{R} \subset \pi_{R}^{-1}\left(\Sigma_{Q}^{s s}-\Omega_{Q}\right)
$$

From (1.1.7) one gets

$$
\Sigma_{Q}^{0} \subset\left(\Sigma_{Q}^{s s}-\Omega_{Q}\right) \subset \Sigma_{Q}^{0} \cup \Gamma_{Q}^{0}
$$

In fact the middle term is equal to the third term, but we will not need this because

$$
\begin{equation*}
\pi_{R}^{-1}\left(\Gamma_{Q}^{0}\right) \cap R^{s s}=\emptyset \tag{1.7.3}
\end{equation*}
$$

Before proving (1.7.3) we give a general lemma. We assume $G$ is a reductive group acting linearly on a complex projective scheme $Y$, and $V \subset Y$ is a $G$-invariant closed subscheme. Let $\pi: \widetilde{Y} \rightarrow Y$ be the blow-up of $V$.
(1.7.4) Lemma. Keep notation as above. Let $\widetilde{x} \in \widetilde{Y}$ be a point such that $x:=\pi(\widetilde{x})$ satisfies:

$$
x \notin V, \quad \overline{O(x)} \cap V^{s s} \neq \emptyset .
$$

Then $\widetilde{x}$ is not semistable.
Proof. It follows from our hypothesis that there exists a one-parameter subgroup $\lambda: \mathbf{C}^{*} \rightarrow G$ such that

$$
\lim _{t \rightarrow 0} \lambda(t) x=y \in V^{s s}
$$

Let $E$ be the exceptional divisor of $\pi$, and

$$
\sigma_{0}, \ldots, \sigma_{r} \in H^{0}\left(\pi^{*} \mathcal{O}_{Y}(\ell)(-E)\right)
$$

be a diagonal basis for the action of $\lambda$; set $\lambda(t) \sigma_{i}=t^{n_{i}} \sigma_{i}$. We make the identification

$$
H^{0}\left(\pi^{*} \mathcal{O}_{Y}(\ell)(-E)\right) \cong H^{0}\left(I_{V}(\ell)\right)
$$

Since $y$ is semistable, $n_{i} \geq 0$ for all $i$ such that $\sigma_{i}(\widetilde{x})=\sigma_{i}(x) \neq 0$. We will show that in fact $n_{i}>0$ for all such $i$; this will prove $\widetilde{x}$ is not semistable. Suppose $n_{i}=0$; then $\sigma_{i}$ is $\lambda$-invariant, hence $\sigma_{i}(x) \neq 0$ implies $\sigma_{i}(y) \neq 0$. This is absurd because $\sigma_{i}$ vanishes on $V$.

Let's prove (1.7.3). Assume $\pi_{R}(y)=x \in \Gamma_{Q}^{0}$. Then $\overline{O(x)} \cap \Omega_{Q}^{0} \neq \emptyset$, hence by Lemma (1.7.4) $y$ is not semistable. This proves the left-hand side of (1.7.2) is contained in the right-hand side. Let's show that $\pi_{R}^{-1}\left(\Sigma_{Q}^{0}\right)$ is contained in $R^{s s}$. For $y \in \pi_{R}^{-1}\left(\Sigma_{Q}^{0}\right)$, let $x=\pi_{R}(y)$. Since $O(x)$ is closed in $Q^{s s}$, and disjoint from the closed $\operatorname{PGL}(N)$-invariant subset $\Omega_{Q}^{0}$, there exists a PGL $(N)$-invariant section $\sigma \in H^{0}\left(\mathcal{O}_{Q}(\ell)\right)$ such that $\sigma(x) \neq 0$ and $\sigma$ vanishes on $\Omega_{Q}$. Viewing $\sigma$ as a (invariant) section of $\pi_{R}^{*} \mathcal{O}_{Q}(\ell)(-E)$ we see that $y$ is semistable.
II. Description of $\Sigma_{R}^{s s} \cap \Omega_{R}$. Of course $\Sigma_{R}^{s s} \cap \Omega_{R}$ is contained in $\Omega_{R}^{s s} \subset \pi_{R}^{-1} \Omega_{Q}^{s s}=\pi_{R}^{-1} \Omega_{Q}^{0}$. For $x \in \Omega_{Q}^{0}$, set $F_{x}=\left(I_{Z} \oplus I_{Z}\right)$, where $[Z] \in X^{[n]}$, and let

$$
\begin{aligned}
& \operatorname{Hom}_{k}\left(W, E_{Z}\right):=\left\{\varphi \in \operatorname{Hom}\left(W, E_{Z}\right) \mid \operatorname{rk} \varphi \leq k\right\} \\
& \operatorname{Hom}_{k}^{\omega}\left(W, E_{Z}\right):=\operatorname{Hom}_{k}\left(W, E_{Z}\right) \cap \operatorname{Hom}^{\omega}\left(W, E_{Z}\right) .
\end{aligned}
$$

(1.7.5) Lemma. Let $x \in \Omega_{Q}^{0}$, and set $F_{x}=\left(I_{Z} \oplus I_{Z}\right)$. Then

$$
\begin{equation*}
\pi_{R}^{-1}(x) \cap \Sigma_{R}^{s s}=\mathbf{P} \operatorname{Hom}_{1}^{s s}\left(W, E_{Z}\right) \tag{1.7.6}
\end{equation*}
$$

Proof. If $y \in \Sigma_{Q}^{0}$ then $S t(y) \cong \mathbf{C}^{*}$. Thus $\operatorname{dim} S t(\widetilde{y}) \geq 1$ for all $\widetilde{y} \in \Sigma_{R}$. In particular, if

$$
[\varphi] \in \pi_{R}^{-1}(x) \cap \Sigma_{R}^{s s},
$$

the stabilizer $S t([\varphi])(<S O(W))$ is positive dimensional. An easy analysis shows that $S t([\varphi])$ is positive dimensional if and only if $\operatorname{rk} \varphi=1$. By Proposition (1.6.2) we conclude that the left-hand side of (1.7.6) is contained in the right-hand side. Let's prove inclusion in the other direction. Assume $[\varphi] \in \mathbf{P} \operatorname{Hom}_{1}^{s s}\left(W, E_{Z}\right)$. The identifications

$$
W^{*} \cong s l(V)^{\vee} \cong s l(V)
$$

(the second isomorphism is given by the Killing form), allow us to write

$$
\varphi=m \otimes \alpha, \quad m \in \operatorname{sl}(V), \alpha \in E_{Z}, \operatorname{Tr}\left(m^{2}\right) \neq 0
$$

Since $\operatorname{Tr}\left(m^{2}\right) \neq 0$ we can diagonalize $m$, hence using a basis of eigenvectors we can write

$$
\varphi=\left[\begin{array}{cc}
e & 0  \tag{1.7.7}\\
0 & -e
\end{array}\right] \quad e \in E_{Z}
$$

Since $X^{[n]}$ is smooth there exist sheaves $\mathcal{L}, \mathcal{L}^{\prime}$ on $X \times C$, flat over $C$, where $C$ is a smooth curve, such that the following holds. For a certain point $0 \in C$

$$
\mathcal{L}_{0} \cong \mathcal{L}_{0}^{\prime} \cong I_{Z}
$$

and furthermore, if $\kappa, \kappa^{\prime}$ are the Kodaira-Spencer maps of $\mathcal{L}, \mathcal{L}^{\prime}$ at 0 , respectively, then

$$
\kappa(\partial / \partial t)=e \quad \kappa^{\prime}(\partial / \partial t)=-e, \quad \partial / \partial t \in T_{0} C .
$$

Lastly we can assume $\mathcal{L}_{p} \not \approx \mathcal{L}_{p}^{\prime}$ for all $p \neq 0$. Set $\mathcal{G}:=\mathcal{L} \oplus \mathcal{L}^{\prime}$. If $\mathcal{V}$ is a slice normal to $O(x)$ at $x$ then, by versality of the tautological quotient on $X \times \mathcal{V}$ (Proposition (1.2.3)), there exists a map

$$
f: C \rightarrow \mathcal{V} \quad f(0)=x
$$

such that $\mathcal{G}$ is the pull-back of the tautological family of quotient sheaves on $X \times \mathcal{V}$. (We might have to shrink $C \ni 0$.) Hence the differential of $f$ at 0 has image spanned by $\varphi$ (see (1.7.7)). Since $f^{-1} \Omega_{Q}=\{0\}$, there is a well-defined lift $\tilde{f}: C \rightarrow R$ of $f$, and clearly $\tilde{f}(C) \subset \Sigma_{R}$. Thus

$$
[\varphi]=\widetilde{f}(0) \in \Sigma_{R}^{s s} \cap \Omega_{R}
$$

q.e.d.
III. Explicit construction of $\Sigma_{R}^{s s}$ and proof of Items (1)-(2) of (1.7.1). Let

$$
\beta: \mathcal{X}\{n\} \rightarrow X^{[n]} \times X^{[n]}
$$

be the blow-up of the diagonal. Set $N:=h^{0}\left(I_{Z}(k) \oplus I_{W}(k)\right)$, where $[Z],[W] \in X^{[n]}$. Let

$$
\alpha: \widetilde{\mathcal{U}} \rightarrow \mathcal{X}\{n\}
$$

be the principal $\operatorname{PGL}(N)$-fibration whose fiber over $y \in \mathcal{X} \mathcal{X}^{\{n\}}$ is

$$
\begin{equation*}
\operatorname{PIsom}\left(\mathbf{C}^{N}, H^{0}\left(I_{Z}(k) \oplus I_{W}(k)\right)\right), \tag{1.7.8}
\end{equation*}
$$

where $([Z],[W])=\beta(y)$. Over $\tilde{\mathcal{U}} \times X$ there is a tautological family of quotients

$$
\begin{equation*}
\mathcal{O}_{\widetilde{\mathcal{U}} \times X}^{(N)} \rightarrow \mathcal{L}_{1}(k) \oplus \mathcal{L}_{2}(k) \rightarrow 0 \tag{1.7.9}
\end{equation*}
$$

Here $\mathcal{L}_{i}$ is defined as follows. Let

$$
p_{i}: X^{[n]} \times X^{[n]} \times X \rightarrow X^{[n]} \times X, \quad i=1,2
$$

be the projection which forgets the $i$-th factor, and let $\mathcal{Z} \subset X^{[n]} \times X$ be the tautological subscheme; then

$$
\mathcal{L}_{i}(k):=\left((\beta \circ \alpha) \times \operatorname{id}_{X}\right)^{*} p_{i}^{*}\left(I_{\mathcal{Z}} \otimes \mathcal{O}_{X}(k)\right) .
$$

The family of quotients (1.7.9) defines a morphism

$$
\widetilde{h}: \widetilde{\mathcal{U}} \rightarrow Q \quad \widetilde{h}(\tilde{\mathcal{U}})=\left(\Sigma_{Q}^{0} \cup \Omega_{Q}^{0}\right) .
$$

There is an action of $\mathrm{O}(2)$ on $\tilde{\mathcal{U}}$. In fact realize $\mathrm{O}(2)$ as the subgroup of PGL(2) generated by

$$
\mathrm{SO}(2)=\left\{\theta_{\alpha}:=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right]\right\} /\{ \pm \mathrm{Id}\}, \quad \tau:=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Then each $\theta_{\alpha}$ can be viewed as an isomorphism of $\mathcal{L}_{1}(k) \oplus \mathcal{L}_{2}(k)$, hence it acts on $\tilde{\mathcal{U}}$. Similarly, let $\iota: \mathcal{U} \rightarrow \mathcal{U}$ be the map induced by the involution interchanging the factors of $X^{[n]} \times X^{[n]}$ : viewing $\tau$ as an isomorphism between $\mathcal{L}_{1}(k) \oplus \mathcal{L}_{2}(k)$ and $\iota^{*}\left(\mathcal{L}_{1}(k) \oplus \mathcal{L}_{2}(k)\right)$ we get an action of $\tau$ on $\widetilde{\mathcal{U}}$. Consider the G.I.T. quotient

$$
\mathcal{U}:=\widetilde{\mathcal{U}} / / \mathrm{O}(2)
$$

A word about the linearization. Taking first the quotient by $\mathrm{SO}(2)$ and then by $\mathrm{O}(2) / \mathrm{SO}(2)$ we see that a choice of linearization is relevant only for the quotient $\widetilde{\mathcal{U}} / / \mathrm{SO}(2)$. Since $\mathrm{SO}(2)$ preserves the fibers of $\alpha$ we need only specify what is the linearization on each fiber (1.7.8); but the fiber is affine, thus a linearization is "not needed", or more precisely we choose the trivial linearization of the trivial line-bundle. The action of $\mathrm{O}(2)$ is free, hence $\mathcal{U}$ is an orbit space, and since $\widetilde{\mathcal{U}}$ is smooth, also $\mathcal{U}$ is smooth. The map $\widetilde{h}$ is constant on $O(2)$-orbits, hence it factors through a map

$$
h_{Q}: \mathcal{U} \rightarrow\left(\Sigma_{Q}^{0} \cup \Omega_{Q}^{0}\right)
$$

The following proposition proves Items (1)-(2) of (1.7.1).
(1.7.10) Proposition. Keep notation as above. The map $h_{Q}$ lifts to a map $h_{R}: \mathcal{U} \rightarrow R$, whose image is $\Sigma_{R}^{s s}$. Furthermore

$$
h_{R}: \mathcal{U} \rightarrow \Sigma_{R}^{s s}
$$

is an isomorphism, in particular $\Sigma_{R}^{s s}$ is smooth. Finally, the scheme-theoretic intersection of $\Sigma_{R}^{s s}$ and $\Omega_{R}$ is smooth and reduced.
Proof. First let's prove that $h_{Q}$ lifts. Let $D^{[n]} \subset X^{[n]} \times X^{[n]}$ be the diagonal, and set

$$
D^{\{n\}}:=\text { exc. div. of } \beta=\beta^{-1} D^{[n]}, \quad \widetilde{D}:=\alpha^{*} D^{\{n\}}, \quad D:=\widetilde{D} / / \mathrm{O}(2)
$$

Notice that $\widetilde{D}$ is an $\mathrm{O}(2)$ invariant divisor, hence $D$ is a (Cartier) divisor. We will show that

$$
\widetilde{h}^{*} I_{\Omega_{Q}}=\mathcal{O}_{\widetilde{\mathcal{u}}}(-\widetilde{D})
$$

This implies that $h_{Q}^{*} I_{\Omega_{Q}}=\mathcal{O}_{\mathcal{U}}(-D)$, and hence, by the universal property of blow-up, $h_{Q}$ lifts. As sets $\widetilde{h}^{-1} \Omega_{Q}=\widetilde{D}$, hence to prove $(\dagger)$ it will suffice to show the following: for any $u \in \widetilde{D}$, there exists a tangent vector $v \in T_{u} \widetilde{\mathcal{U}}$ such that

$$
\begin{equation*}
(\widetilde{h})_{*}(v) \notin T_{\widetilde{h}(u)} \Omega_{Q} . \tag{*}
\end{equation*}
$$

To prove it, let $y=\alpha(u),([Z],[Z])=\beta(y)$, and $x=\widetilde{h}(y)$. The normal bundle of $D^{[n]}$ in $X^{[n]} \times X^{[n]}$ is canonically identified with the $(-1)$-eigenbundle for the action on

$$
\left.\left(T_{X^{[n]} \times X[n]}\right)\right|_{D^{[n]}}
$$

of the involution interchanging the factors of $X^{[n]} \times X^{[n]}$, hence

$$
\beta^{-1}([Z],[Z])=\mathbf{P}\left\{\left(e, e^{\prime}\right) \in \operatorname{Ext}^{1}\left(I_{Z}, I_{Z}\right) \oplus \operatorname{Ext}^{1}\left(I_{Z}, I_{Z}\right) \mid e=-e^{\prime}\right\}
$$

Thus, if $w \in T_{y} \mathcal{X}{ }^{\{n\}}$ is transversal to $T_{y} D^{\{n\}}$,

$$
\beta_{*}(w)=(e,-e) \quad 0 \neq e \in \operatorname{Ext}^{1}\left(I_{Z}, I_{Z}\right)
$$

Since $\alpha$ is a smooth fibration there exists $v \in T_{u} \tilde{\mathcal{U}}$ such that $\alpha_{*}(v)=w$. Identifying $\left(C_{\Omega} Q\right)_{x}$ with $\operatorname{Hom}^{\omega}\left(W, E_{Z}\right)$ as in (1.5.2) we see that

$$
\widetilde{h}_{*}(v)=e \otimes\left[\begin{array}{cc}
1 & 0  \tag{1.7.11}\\
0 & -1
\end{array}\right] .
$$

In particular, since the right-hand side is non-zero, we have proved (*). Thus the lift $h_{R}$ exists. Now let's prove that $h_{R}$ is an isomorphism between $\mathcal{U}$ and $\Sigma_{R}^{s s}$. Clearly $h_{R}(\mathcal{U}-D)=\pi_{R}^{-1} \Sigma_{Q}^{0}$, and hence by (1.7.2) we get a surjective map

$$
\left.h_{R}\right|_{(\mathcal{U}-D)}:(\mathcal{U}-D) \rightarrow\left(\Sigma_{R}^{s s} \backslash \Omega_{R}\right)
$$

The above map is clearly one-to-one, and since $\left(\Sigma_{R}^{s s} \backslash \Omega_{R}\right)$ is smooth it must be an isomorphism. Next, let's examine $\left.h_{R}\right|_{D}$. The restriction

$$
\left.\widetilde{h}\right|_{\widetilde{D}}: \widetilde{D} \rightarrow \Omega_{Q}^{0}
$$

is surjective; if $x \in \Omega_{Q}^{0}$, and $F_{x}=V \otimes I_{Z}$, then

$$
\widetilde{h}^{-1}(x)=\operatorname{PGL}(V) \times \mathbf{P}\left(\operatorname{Ext}^{1}\left(I_{Z}, I_{Z}\right)\right),
$$

and thus

$$
h_{Q}^{-1}(x)=(\operatorname{PGL}(V) / \mathrm{O}(2)) \times \mathbf{P}\left(E_{Z}\right)=\mathbf{P}(\{\varphi \in W \mid \varphi \text { is non-isotropic }\}) \times \mathbf{P}\left(E_{Z}\right) .
$$

On the other hand, by (1.7.6) the term on the right is identified, via the Segre embedding, with $\pi_{R}^{-1}(x) \cap \Sigma_{R}^{s s}$. It follows from (1.7.11) that

$$
\left.h_{R}\right|_{h_{Q}^{-1}(x)}: h_{Q}^{-1}(x) \rightarrow \pi_{R}^{-1}(x) \cap \Sigma_{R}^{s s}
$$

is the Segre isomorphism. Since $\Sigma_{R}^{s s} \cap \Omega_{R}$ is smooth, we get that

$$
\left.h_{R}\right|_{D}: D \rightarrow \Sigma_{R}^{s s} \cap \Omega_{R}
$$

is an isomorphism. Now we can finish proving that $h_{R}$ is an isomorphism onto $\Sigma_{R}^{s s}$. First notice that $h_{R}$ is a homeomorphism, hence $\Sigma_{R}^{s s}$ is unibranch at every point of $\Sigma_{R}^{s s} \cap \Omega_{R}$. Thus it remains only to show that the differential $d h_{R}(u)$ is an isomorphism for all $u \in D$. Since $(\bullet)$ is an isomorphism it is sufficient to verify that $\left(h_{R}\right)_{*}(v) \notin T_{h_{R}(u)} \Omega_{R}$ for some $v \in T_{u} \mathcal{U}$ : look at $(*)$. The proof just given also shows that the scheme-theoretic intersection of $\Sigma_{R}^{s s}$ and $\Omega_{R}$ is smooth and reduced.
IV. Proof of Item (3) of Proposition (1.7.1). Since $\pi_{R}$ is an isomorphism outside $\Omega_{R}$, it follows from (1.7.2) that the normal cone of ( $\Sigma_{R}^{s s} \backslash \Omega_{R}$ ) in $R$ is isomorphic to that of $\Sigma_{Q}^{0}$ in $Q$. Thus "outside $\Omega_{R}$ " Item (3) of (1.7.1) follows from Proposition (1.4.1). Now let $y \in \Sigma_{R}^{s s} \cap \Omega_{R}$, and set $x=\pi_{R}(y)$. Following the notation of Lemma (1.7.5) we let $y=[\varphi]$, where $\varphi \in \operatorname{Hom}_{1}\left(W, E_{Z}\right)$. Let $\omega_{\varphi}$ be the symplectic form induced by $\omega$ on $\left(\operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi\right)$. We let $\operatorname{Hom}^{\omega_{\varphi}}\left(\operatorname{ker} \varphi, \operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi\right)$ be the set of homomorphisms whose image is $\omega_{\varphi}$-isotropic.

Proposition. Keep notation as above. If $[\varphi] \in \Sigma_{R}^{s s} \cap \Omega_{R}$ there is a $S t([\varphi])$-equivariant isomorphism

$$
\begin{equation*}
\left(C_{\Sigma} R\right)_{[\varphi]} \cong \operatorname{Hom}^{\omega}\left(\operatorname{Ker} \varphi, \operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi\right) \tag{1.7.12}
\end{equation*}
$$

The above proposition implies that Item (3) of (1.7.1) holds also "over $\Sigma_{R}^{s s} \cap \Omega_{R}$ ". In fact the right-hand side of (1.7.12) embeds into the $2(c-2)$-dimensional vector space $\operatorname{Hom}\left(\operatorname{Ker} \varphi, \operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi\right)$, and since $\omega_{\varphi}$ is non-degenerate the image is the affine cone over a smooth projective quadric. Let's prove (1.7.12). By Item (2) of (1.7.1) the Cartier divisor $\Omega_{R}$ intersects transversely $\Sigma_{R}^{s s}$, hence

$$
\left(C_{\Sigma} R\right)_{[\varphi]} \cong\left(C_{\Sigma \cap \Omega} \Omega_{R}\right)_{[\varphi]} .
$$

Furthermore $\Omega_{R}^{s s} \rightarrow \Omega_{Q}^{0}$ is a locally-trivial fibration with smooth base, hence we can replace the right-hand side of the above equation by the normal in the fiber through $[\varphi]$. More precisely, if $x=\pi_{R}([\varphi])$,

$$
\left(C_{\Sigma \cap \Omega} \Omega_{R}\right)_{[\varphi]} \cong\left(C_{\mathbf{P H o m}}^{1}\left(W, E_{Z}\right) \quad \mathbf{P H o m}^{\omega}\left(W, E_{Z}\right)\right)_{[\varphi]}
$$

Thus (1.7.12) follows from the following result.
Lemma. Let $[\varphi] \in \mathbf{P H o m}_{1}\left(W, E_{Z}\right)$ (not necessarily semistable). There is a $S t([\varphi]$ )-equivariant isomorphism

$$
\begin{equation*}
\left(C_{\mathbf{P H o m}}^{1}\left(W, E_{Z}\right) \mathbf{P H o m}^{\omega}\left(W, E_{Z}\right)\right)_{[\varphi]} \cong \operatorname{Hom}^{\omega_{\varphi}}\left(\operatorname{Ker} \varphi, \operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi\right) \tag{1.7.13}
\end{equation*}
$$

Proof. Clearly

$$
\left(C_{\mathbf{P H o m}}^{1}\left(W, E_{Z}\right) \mathbf{P H o m}^{\omega}\left(W, E_{Z}\right)\right)_{[\varphi]} \cong\left(C_{\operatorname{Hom}_{1}\left(W, E_{Z}\right)} \operatorname{Hom}^{\omega}\left(W, E_{Z}\right)\right)_{\varphi}
$$

and we will work with the right-hand side. We will show that the Hessian cone of $\operatorname{Hom}_{1}\left(W, E_{Z}\right)$ in $\operatorname{Hom}^{\omega}\left(W, E_{Z}\right)$ satisfies the hypothesis of Lemma (1.3.6), hence the normal cone will be equal to the Hessian cone. First we check that the Hessian cone is defined, i.e. that (1.3.1) is satisfied. First $\operatorname{Hom}_{1}\left(W, E_{Z}\right)$ is smooth, and secondly, since $\operatorname{Hom}^{\omega}\left(W, E_{Z}\right)$ is the zero-scheme of $\Upsilon_{0}$, and the differential $d \Upsilon_{0}$ has constant rank along $\operatorname{Hom}_{1}\left(W, E_{Z}\right)$ by (1.5.6), the tangent space to $\operatorname{Hom}^{\omega}\left(W, E_{Z}\right)$ has constant rank along $\operatorname{Hom}_{1}\left(W, E_{Z}\right)$. By (1.3.5) the Hessian cone is given by the zeroes of the Hessian map along $\operatorname{Hom}_{1}^{\omega}\left(W, E_{Z}\right)$. Let's compute the Hessian cone. For this we will choose bases $\left\{e_{1}, \ldots, e_{2 n}\right\}$ of $E_{Z}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ of $W$ such that $\varphi=e_{1} \otimes v_{1}$, and so that

$$
\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}1 & \text { if } i=2 q-1, j=2 q \\ -1 & \text { if } i=2 q, j=2 q-1 \\ 0 & \text { otherwise }\end{cases}
$$

Using Formula (1.5.7) for the differential $d \Upsilon_{0}$ we get

$$
\begin{equation*}
d \Upsilon_{0}(\varphi)\left(\sum_{i j} Z_{i j} e_{i} \otimes v_{j}\right)=-\frac{1}{2} Z_{2,2} v_{1} \wedge v_{2}-\frac{1}{2} Z_{2,3} v_{1} \wedge v_{3} \tag{1.7.14}
\end{equation*}
$$

hence

$$
\left(T \operatorname{Hom}^{\omega}\left(W, E_{Z}\right)\right)_{\varphi}=\left\{\sum_{i j} Z_{i j} e_{i} \otimes v_{j} \mid Z_{2,2}=Z_{2,3}=0\right\}
$$

Furthermore

$$
\left(T \operatorname{Hom}_{1}\left(W, E_{Z}\right)\right)_{\varphi}=\left\{\sum_{i j} Z_{i j} e_{i} \otimes v_{j} \mid Z_{i j}=0 \text { if } i \geq 2, j \geq 2 .\right\}
$$

Thus we have an isomorphism

$$
\begin{equation*}
\left(N_{\mathrm{Hom}_{1}} \operatorname{Hom}^{\omega}\left(W, E_{Z}\right)\right)_{\varphi} \cong\left\{\sum_{\substack{3 \leq i \\ 2 \leq j}} Z_{i j} e_{i} \otimes v_{j}\right\} \tag{1.7.15}
\end{equation*}
$$

To give an intrinsic formulation notice that there is a natural isomorphism

$$
\left(N_{\mathrm{Hom}_{1}} \operatorname{Hom}\left(W, E_{Z}\right)\right)_{\varphi} \cong \operatorname{Hom}\left(\operatorname{Ker} \varphi, E_{Z} / \operatorname{Im} \varphi\right)
$$

hence Isomorphism (1.7.15) can be read as

$$
\left(N_{\operatorname{Hom}_{1}} \operatorname{Hom}^{\omega}\left(W, E_{Z}\right)\right)_{\varphi} \cong\left\{\alpha: \operatorname{Ker} \varphi \rightarrow E_{Z} / \operatorname{Im} \varphi \mid \operatorname{Im} \alpha \subset\left(\operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi\right)\right\}
$$

Referring to (1.3.4), it follows from (1.7.14) that $p_{\mathcal{K}}(\bullet)=\left(\bullet, v_{1}\right)$ : a computation gives the following equation (see (1.3.4)) for the Hessian cone of $\operatorname{Hom}_{1}\left(W, E_{Z}\right)$ in $\operatorname{Hom}^{\omega}\left(W, E_{Z}\right)$ at $\varphi$ :

$$
\sum_{2 \leq q \leq n}\left(Z_{2 q-1,2} Z_{2 q, 3}-Z_{2 q, 2} Z_{2 q-1,3}\right)=0
$$

In particular the hypothesis of Lemma (1.3.6) is satisfied, hence the normal cone is equal to the Hessian cone. Since the equation above defines the right-hand side of (1.7.13), we have proved that (1.7.13) holds. The isomorphism is clearly $S t([\varphi])$-equivariant.

The action of stabilizers. We are interested in the action of $S t(y)$ on $\left(C_{\Sigma} R\right)_{y}$ at a point $y \in \Sigma_{R}^{s s}$. If $y$ is outside $\Omega_{R}$, then by (1.7.2) the action is described by (1.4.3). Now let's assume $y \in \Sigma_{R}^{s s} \cap \Omega_{R}$, and set $x=\pi_{R}(y)$. Apply Lemma (1.7.5) and write $y=[\varphi]$, where $\varphi \in \operatorname{Hom}_{1}^{s s}\left(W, E_{Z}\right)$; thus $\operatorname{ker} \varphi^{\perp}$ is non-isotropic by (1.6.2). We choose bases of $E_{Z}$ and $W$ as in the previous subsubsection, and we add the condition that

$$
\begin{aligned}
& \left(v_{1}, v_{i}\right)=-\delta_{1 i}, \\
& \left(v_{j}, v_{j}\right)=0, \quad j=2,3, \\
& \left(v_{2}, v_{3}\right)=1,
\end{aligned}
$$

and $v_{1} \wedge v_{2} \wedge v_{3}$ is the volume form. Easy considerations show that $S t([\varphi])=O(\operatorname{Ker} \varphi)$, and more precisely $S t([\varphi])$ is generated by

$$
\theta_{\alpha}:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \alpha^{-1}
\end{array}\right] \quad \tau:=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

The action of $S t([\varphi])$ on $\left(C_{\Sigma} R\right)_{[\varphi]}$ is given by:

$$
\begin{gather*}
\theta_{\alpha}\left(\sum_{3 \leq i}\left(Z_{i, 2} e_{i} \otimes v_{2}+Z_{i, 3} e_{i} \otimes v_{3}\right)\right)=\sum_{3 \leq i}\left(\alpha Z_{i, 2} e_{i} \otimes v_{2}+\alpha^{-1} Z_{i, 3} e_{i} \otimes v_{3}\right),  \tag{1.7.16}\\
\tau\left(\sum_{3 \leq i}\left(Z_{i, 2} e_{i} \otimes v_{2}+Z_{i, 3} e_{i} \otimes v_{3}\right)\right)=\sum_{3 \leq i}\left(-Z_{i, 3} e_{i} \otimes v_{2}-Z_{i, 2} e_{i} \otimes v_{3}\right) .
\end{gather*}
$$

### 1.8. Analysis of Kirwan's desingularization.

Recall that $\pi_{S}: S \rightarrow R$ is the blow-up of $R$ along $\Sigma_{R}$ (see (1.1.10)). Let $\Omega_{S} \subset S$ be the strict transform of $\Omega_{R}$, and $\Sigma_{S} \subset S$ be the exceptional divisor (i.e. the inverse image of $\Sigma_{R}$ ). Let $x \in \Omega_{Q}^{0}$, and set $F_{x}=I_{Z} \oplus I_{Z}$. By Item (2) of (1.7.1) and by (1.7.6) we have

$$
\begin{equation*}
\left(\pi_{R} \circ \pi_{S}\right)^{-1}(x)=B l_{\mathbf{P H o m}}^{1} 10 ~\left(~ P H o m^{\omega}\left(W, E_{Z}\right) .\right. \tag{1.8.1}
\end{equation*}
$$

Thus

$$
\bigcup_{x \in \Omega_{Q}^{0}} B l_{\mathbf{P H o m}_{1}} \mathbf{P} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) \subset \Omega_{S} .
$$

Let $\Delta_{S} \subset \Omega_{S}$ be the closure of the left-hand side. Notice that

$$
\begin{equation*}
\operatorname{cod}\left(\Delta_{S_{c}}, S_{c}\right)=c-3 \tag{1.8.2}
\end{equation*}
$$

In particular $\Delta_{S_{c}}=\Omega_{S_{c}}$ if and only if $c=4$. Let $\pi_{T_{c}}: T_{c} \rightarrow S_{c}$ be the blow-up of $\Delta_{S_{c}}$; of course $T_{c} \neq S_{c}$ only if $c>4$. Let $\Delta_{T_{c}} \subset T_{c}$ be the exceptional divisor, and $\Omega_{T_{c}}, \Sigma_{T_{c}} \subset T_{c}$ be the proper transforms of $\Omega_{S_{c}}$, $\Sigma_{S_{c}}$ respectively. Let

$$
\widehat{\mathcal{M}}_{c}:=T_{c} / / \operatorname{PGL}(N), \quad \widehat{\pi}: \widehat{\mathcal{M}}_{c} \rightarrow \mathcal{M}_{c}
$$

where $\widehat{\pi}$ is induced by the $\operatorname{PGL}(N)$-equivariant map $\left(\pi_{R} \pi_{S} \pi_{T}\right)$. Set

$$
\begin{gathered}
\widehat{\Omega}_{c}:=\Omega_{T_{c}} / / \operatorname{PGL}(N), \quad \widehat{\Sigma}_{c}:=\Sigma_{T_{c}} / / \operatorname{PGL}(N), \quad \widehat{\Delta}_{c}:=\Delta_{T_{c}} / / \operatorname{PGL}(N), \\
\Omega_{c}:=\Omega_{Q_{c}} / / \operatorname{PGL}(N) \cong X^{[n]}, \quad \Sigma_{c}:=\Sigma_{Q_{c}} / / \operatorname{PGL}(N) \cong\left(X^{[n]} \times X^{[n]}\right) / \text { involution } .
\end{gathered}
$$

The following is the main result of this section.
(1.8.3) Proposition. Keep notation as above. Then $\widehat{\mathcal{M}}_{c}$ is a desingularization of $\mathcal{M}_{c}$.

The proof of the proposition will be given after some preliminary results.
Analysis of $\Omega_{S}^{s s}$. We will prove the following result.

## (1.8.4) Proposition.

(1) $\Omega_{S}^{s s}$ is smooth.
(2) $\Omega_{S}^{s s}=\Omega_{S}^{s}$.

First some lemmas.
(1.8.5) Lemma. Let $[Z] \in X^{[n]}$. Then the blow-up

$$
B l_{\mathbf{P H o m}}^{1} \text { } \mathbf{P H o m}{ }^{\omega}\left(W, E_{Z}\right)
$$

is smooth.
Proof. By (1.7.13) the exceptional divisor is a (locally-trivial) fibration over $\mathbf{P H o m}\left(W, E_{Z}\right)$, and the fiber over $[\varphi]$ is

$$
\mathbf{P H o m}^{\omega_{\varphi}}\left(\operatorname{Ker} \varphi, \operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi\right),
$$

i.e. a smooth quadric in $\mathbf{P}^{2 c-5}$. Since $\mathbf{P H o m}\left(W, E_{Z}\right)$ is smooth, it follows that the exceptional divisor is smooth. Thus the blow-up is smooth along the exceptional divisor. The complement of the exceptional divisor is smooth by (1.5.6).
q.e.d.
(1.8.6) Lemma. All $\mathrm{SO}(W)$-semistable points of $B l_{\mathbf{P H o m}}^{1} \boldsymbol{} \mathbf{P H o m}^{\omega}\left(W, E_{Z}\right)$ are $\mathrm{SO}(W)$-stable. Explicitely:
(1) Semistable points in the exceptional divisor are given by (referring to (1.7.12))

$$
\left\{([\varphi],[\alpha]) \mid[\varphi] \in \mathbf{P H o m}_{1}^{s s}\left(W, E_{Z}\right),[\alpha] \in \mathbf{P} \operatorname{Hom}^{\omega_{\varphi}}\left(\operatorname{Ker} \varphi, \operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi\right) \alpha\left(v_{2}\right) \neq 0 \neq \alpha\left(v_{3}\right)\right\}
$$

Furthermore, for $([\varphi],[\alpha])$ in the above set,

$$
S t([\varphi],[\alpha]) \cong \begin{cases}\mathbf{Z} /(2) & \text { if } \mathrm{rk} \alpha=2 \\ \mathbf{Z} /(2) \oplus \mathbf{Z} /(2) & \text { if } \mathrm{rk} \alpha=1\end{cases}
$$

(2) Semistable points not in the exceptional divisor are given by

$$
\left\{[\varphi] \in \mathbf{P} \operatorname{Hom}^{\omega}\left(W, E_{Z}\right) \mid \operatorname{rk} \varphi=3 \text { or } \operatorname{rk} \varphi=2 \text { and } \operatorname{ker} \varphi \text { non-isotropic }\right\} .
$$

For $[\varphi]$ belonging to the above set, $S t([\varphi])$ is trivial if $\operatorname{rk}(\varphi)=3$, and $S t([\varphi]) \cong \mathbf{Z} /(2)$ if $\operatorname{rk}(\varphi)=2$.
Proof. Let's prove Item (1). By (1.1.2) semistable points of the exceptional divisor are contained in the inverse image of $\mathbf{P H o m}_{1}^{s s}\left(W, E_{Z}\right)$. Applying Lemma (1.6.1) we get that a point in the exceptional divisor lying over $[\varphi] \in \mathbf{P H o m}_{1}$ is $\mathrm{SO}(W)$-(semi)stable if and only if it is $S t([\varphi])$-(semi)stable. One easily verifies that the points described in Item (1) are exactly the $S t([\varphi])$-semistable points, and that in fact they are all stable. The computation of stabilizers is an easy exercise. Let's prove Item (2). Applying the numerical criterion for (semi)stability one checks that the points described are $\mathrm{SO}(W)$-stable. By Proposition (1.1.2) they remain stable in the blow-up. Now let's show that if $\operatorname{rk} \varphi=2$ and $\operatorname{ker} \varphi$ is isotropic, then $[\varphi]$ is not semistable in the blow-up. Choose $v \in W$ with $v \perp \operatorname{ker} \varphi$ and $v \notin \operatorname{ker} \varphi$. Then there exists a one-parameter subgroup $\lambda: \mathbf{C}^{*} \rightarrow \mathrm{SO}(W)$ such that

$$
\lim _{t \rightarrow 0} \lambda(t) \varphi=\psi
$$

where $\operatorname{rk} \psi=1$ and $\operatorname{ker} \psi^{\perp}=v$. Thus $[\psi] \in \mathbf{P} \operatorname{Hom}_{1}^{s s}\left(W, E_{Z}\right)$. Since $\mathbf{P H o m}{ }_{1}$ is the center of the blow-up, Lemma (1.7.4) tells us that $[\varphi]$ becomes non-semistable in the blow-up, as claimed. The stabilizers are easily computed.
q.e.d.

Proof of (1.8.4). By (1.1.2) we know that $\left(\pi_{R} \circ \pi_{S}\right)\left(\Omega_{S}^{s s}\right) \subset \Omega_{Q}^{0}$. Let $x \in \Omega_{Q}^{0}$, and set $F_{x}=I_{Z} \oplus I_{Z}$. By (1.8.1)-(1.8.5) the fiber $\left(\pi_{R} \circ \pi_{S}\right)^{-1}(x)$ is smooth. Since, by (1.5.1), $\Omega_{Q}^{0}$ is smooth, and since semistability is an open condition, we get that $\Omega_{S}^{s s}$ is smooth. This proves Item (1). The second item follows at once from (1.6.1) and (1.8.6).

Analysis of $\Sigma_{S}^{s s}$. We will prove the following result.

## (1.8.7) Proposition.

(1) $\Sigma_{S}^{s s}$ is smooth.
(2) $\Sigma_{S}^{s s}=\Sigma_{S}^{s}$.

Proof. By (1.1.2) we know that

$$
\Sigma_{S}^{s s} \subset \pi_{S}^{-1}\left(\Sigma_{R}^{s s}\right)=\mathbf{P}\left(C_{\Sigma_{R}^{s s}} R\right)
$$

Let $y \in \Sigma_{R}^{s s}$, and let $x=\pi_{R}(y)$. By (1.7.2) either $x \in \Sigma_{Q}^{0}$ or $x \in \Omega_{Q}^{0}$. In the latter case $\pi_{S}^{-1}(y)^{s s}$ is described in (1.8.6). In the former case, an easy computation together with (1.6.1) gives the following.
(1.8.8) Claim. Keep notation as above. If $x \in \Sigma_{Q}^{0}$ then (referring to (1.4.2))

$$
\Sigma_{S}^{s s} \cap\left(\pi_{R} \circ \pi_{S}\right)^{-1}(x)=\mathbf{P}\left\{\left(e_{12}, e_{21}\right) \mid e_{12} \cup e_{21}=0 \quad e_{12} \neq 0 \neq e_{21}\right\}
$$

and all semistable points are stable. The stabilizer of any point in the above set is $\mathbf{Z} /(2)$.
Thus for every $y \in \Sigma_{R}^{s s}, \pi_{S}^{-1}(y)$ is a smooth quadric in $\mathbf{P}^{2 c-5}$ (see Item (3) of (1.7.1)). By Item (1) of (1.7.1) $\Sigma_{R}^{s s}$ is smooth. Since semistability is an open condition, we conclude that $\Sigma_{S}^{s s}$ is smooth. This proves Item (1) of (1.8.7). The second Item follows from (1.6.1) and (1.8.8).
q.e.d.

Analysis of $S^{s s}$. Let's show that

$$
\begin{equation*}
S^{s s}=\Sigma_{S}^{s s} \cup \Omega_{S}^{s s} \cup\left(\pi_{S} \circ \pi_{R}\right)^{-1}\left(Q^{s}\right) \tag{1.8.9}
\end{equation*}
$$

By (1.1.4) the term on the right is contained in the term on the left. On the other hand, by (1.1.2)

$$
S^{s s} \subset \Sigma_{S}^{s s} \cup \Omega_{S}^{s s} \cup\left(\pi_{S} \circ \pi_{R}\right)^{-1}\left(Q^{s} \cup \Gamma_{Q}^{0} \cup \Lambda_{Q}^{0}\right)
$$

By (1.7.3) and (1.1.3) there are no semistable points in $\left(\pi_{S} \circ \pi_{R}\right)^{-1}\left(\Gamma_{Q}^{0}\right)$. Now apply (1.7.4) to $Y=R$, $\widetilde{Y}=S$, and $V=\Sigma_{R}$; since for $y \in \pi_{R}^{-1}\left(\Lambda_{Q}^{0}\right)$ we have $O(y) \cap \Sigma_{R}^{s s} \neq \emptyset$, there are no semistable points in $\left(\pi_{S} \circ \pi_{R}\right)^{-1}\left(\Lambda_{Q}^{0}\right)$. This finishes the proof of (1.8.9).

## (1.8.10) Claim.

(1) $S^{s s}=S^{s}$.
(2) $S^{s}$ is smooth.

Proof. Let's prove Item (1). By (1.1.4) $\left(\pi_{S} \circ \pi_{R}\right)^{-1}\left(Q^{s}\right)$ is in the stable locus. By (1.8.7)-(1.8.4) $\Omega_{S}^{s s}=\Omega_{S}^{s}$ and $\Sigma_{S}^{s s}=\Sigma_{S}^{s}$. Thus Item (1) follows from (1.8.9). Let's prove Item (2). First of all we show $Q^{s}$ is smooth: by (1.2.1)-(1.2.3) it suffices to prove that for $x \in Q^{s}$ the deformation space $\operatorname{Def}\left(F_{x}\right)$ is smooth, and this follows (see (1.3.8)) from

$$
\operatorname{Ext}^{2}\left(F_{x}, F_{x}\right)^{0} \cong\left(\operatorname{Hom}\left(F_{x}, F_{x}\right)^{0}\right)^{\vee}=0
$$

Since $\left(\pi_{S} \circ \pi_{R}\right)$ is an isomorphism outside $\Sigma_{S} \cup \Omega_{S}$, we get that $\left(\pi_{S} \circ \pi_{R}\right)^{-1}\left(Q^{s}\right)$ is smooth. Secondly $\Sigma_{S}^{s}$ and $\Omega_{S}^{s}$ are smooth by (1.8.7)-(1.8.4); since they are Cartier divisors $S^{s}$ is smooth along $\Sigma_{S}^{s}$ and $\Omega_{S}^{s}$. By (1.8.9) we conclude that $S^{s}$ is smooth.
q.e.d.

Analysis of $\Delta_{S}^{s}$. We will prove the following.
(1.8.11) Proposition. Keeping notation as above, $\Delta_{S}^{s}$ is smooth.

First we need a preliminary result. For $[Z] \in X^{[n]}$ let

$$
\begin{aligned}
\mathbf{G r}^{\omega}\left(k, E_{Z}\right) & :=\left\{[A] \in \mathbf{G r}\left(k, E_{Z}\right) \mid A \text { is } \omega \text {-isotropic. }\right\} \\
\widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) & :=\left\{([K],[A],[\varphi]) \in \mathbf{P}(W) \times \mathbf{G r}^{\omega}\left(2, E_{Z}\right) \times \mathbf{P H o m}_{2}^{\omega}\left(W, E_{Z}\right) \mid K \subset \operatorname{Ker} \varphi, \operatorname{Im} \varphi \subset A\right\},
\end{aligned}
$$

and let $g: \widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) \rightarrow \mathbf{P} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right)$ be the map which forgets the first two "entries".
(1.8.12) Lemma. Keeping notation as above, there exists an $\mathrm{SO}(W)$-equivariant isomorphism

$$
f: \widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) \xrightarrow{\sim} B l_{\mathbf{P H o m}}^{1} \text { } \mathbf{P} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) .
$$

The map $g$ corresponds to the blow-down map.
Proof. The ideal $I_{\mathbf{P H o m}_{1}}$ of $\mathbf{P H o m}{ }_{1}$ is generated by $2 \times 2$ minors (Second Fundamental Theorem of Invariant Theory). Thus $g^{*} I_{\mathbf{P H o m}}^{1}$ is locally generated by the "determinant" of $\bar{\varphi}: W / K \rightarrow A$, hence it is locally principal. By the universal property of the blow-up, there exists a map $f$ as in the statement of the claim. Let's prove $f$ is an isomorphism. Choose bases of $W$ and $E_{Z}$, and realize the blow-up as the closure in $\mathbf{P} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) \times \mathbf{P}^{17}$ of
$\left\{\left([\varphi], \ldots,\left[m_{I J}(\varphi)\right], \ldots\right) \mid \varphi \in\left(\operatorname{Hom}_{2}\left(W, E_{Z}\right) \backslash \operatorname{Hom}_{1}\left(W, E_{Z}\right)\right), m_{I J}(\varphi)=(I \times J)\right.$-minor of $\left.\varphi,|I|=|J|=2\right\}$.
A computation shows that $f$ is given by

$$
([K],[A],[\varphi]) \mapsto\left([\varphi], \ldots,\left[p_{I}(K) q_{J}(A)\right], \ldots\right),
$$

where $p_{I}(K)$ are Plücker coordinates of $\left[K^{\perp}\right] \in \mathbf{G r}\left(2, W^{*}\right)$, and $q_{J}(A)$ are Plücker coordinates of $[A]$. This proves $f$ is an isomorphism. Clearly $f$ is $\mathrm{SO}(W)$-equivariant.
q.e.d.

Proof of (1.8.11). By (1.1.2) we have $\pi_{R} \pi_{S}\left(\Delta_{S}^{s}\right) \subset \Omega_{Q}^{0}$. If $x \in \Omega_{Q}^{0}$ and $F_{x}=I_{Z} \oplus I_{Z}$, then

$$
\Delta_{S}^{s} \cap\left(\pi_{R} \pi_{S}\right)^{-1}(x) \subset B l_{\mathbf{P H o m}}^{1} \text { } \mathbf{P H o m}_{2}^{\omega}\left(W, E_{Z}\right)
$$

The right-hand side is smooth by (1.8.12). Since $\Omega_{Q}^{0}$ is smooth by (1.5.1), and since stability is an open condition, we conclude that $\Delta_{S}^{s}$ is smooth.
Proof of Proposition (1.8.3). By Item (1) of (1.8.10) we have $S^{s s}=S^{s}$, hence (1.1.2) implies that

$$
\begin{equation*}
T^{s s}=T^{s}=\pi_{T}^{-1}\left(S^{s}\right)=B l_{\Delta_{S}^{s}}\left(S^{s}\right) \tag{1.8.13}
\end{equation*}
$$

By (1.8.11) $\Delta_{S}^{s}$ is smooth; since $S^{s}$ is smooth (by (1.8.10)) we get that $T^{s}$ is smooth. Let $x \in \Omega_{Q}^{0}$ and let $F_{x}=I_{Z} \oplus I_{Z}$; one easily proves that

$$
\Delta_{S} \cap \Sigma_{S} \cap\left(\pi_{R} \pi_{S}\right)^{-1}(x)=\left\{([\varphi],[\alpha]) \mid[\varphi] \in \mathbf{P H o m}_{1}\left(W, E_{Z}\right), \quad[\alpha] \in \mathbf{P} \operatorname{Hom}^{\omega_{\varphi}}\left(\operatorname{Ker} \varphi, \operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi\right), \operatorname{rk} \alpha=1\right\}
$$

where notation is as in (1.8.6). Hence if $z \in T^{s}$ we get by (1.8.6)-(1.8.8) that

$$
S t(z) \cong \begin{cases}\{1\} & \text { if } z \notin \Sigma_{T}^{s} \cup \Delta_{T}^{s}, \\ \mathbf{Z} /(2) & \text { if } z \in\left(\Sigma_{T}^{s} \cup \Delta_{T}^{s}\right) \backslash\left(\Sigma_{T}^{s} \cap \Delta_{T}^{s}\right), . \\ \mathbf{Z} /(2) \oplus \mathbf{Z} /(2) & \text { if } z \in\left(\Sigma_{T}^{s} \cap \Delta_{T}^{s}\right)\end{cases}
$$

Since $\Sigma_{T}^{s}$ and $\Delta_{T}^{s}$ are divisors, we conclude that $\widehat{\mathcal{M}}=T / / \operatorname{PGL}(N)$ is smooth.

### 1.9. The two-form on the moduli space.

Let $B$ be a smooth scheme, and $\mathcal{E}$ be a sheaf on $X \times B$, flat over $B$. The Mukai-Tyurin form $\omega_{\mathcal{E}} \in \Gamma\left(\Omega_{B}^{2}\right)$ is defined as follows [M1,T]: if $v, w \in T_{b} B$

$$
\left\langle\omega_{\mathcal{E}}(b), v \wedge w\right\rangle:=\int_{X} \operatorname{Tr}\left(\kappa_{\mathcal{E}}(b)(v) \cup \kappa_{\mathcal{E}}(b)(w)\right) \wedge \omega
$$

where $\kappa_{\mathcal{E}}(b): T_{b} B \rightarrow \operatorname{Ext}^{1}\left(E_{b}, E_{b}\right)$ is the Kodaira-Spencer map at $b$. We apply this construction to $B=T_{c}^{s}$, and $\mathcal{E}$ the pull-back via $X \times T_{c}^{s} \rightarrow X \times Q_{c}$ of the tautological quotient sheaf on $X \times Q_{c}$.
(1.9.1) Claim. The two-form $\omega_{\mathcal{E}}$ on $T_{c}^{s}$ is $\operatorname{PGL}(N)$-invariant.

Proof. The group $\mathrm{GL}(N)$ acts on $T_{c}^{s}$ and on $\mathcal{E}$. For $g \in \mathrm{GL}(N)$ we have $g^{*} \omega_{\mathcal{E}}=\omega_{g^{*} \mathcal{E}}$. Thus

$$
\begin{aligned}
\left\langle g^{*} \omega_{\mathcal{E}}(b), v \wedge w\right\rangle & =\left\langle\omega_{g^{*} \mathcal{E}}(b), v \wedge w\right\rangle \\
& =\int_{X} \operatorname{Tr}\left(\kappa_{g^{*} \mathcal{E}}(b)(v) \cup \kappa_{g^{*} \mathcal{E}}(b)(w)\right) \wedge \omega \\
& =\int_{X} \operatorname{Tr}\left(g^{-1} \kappa_{\mathcal{E}}(b)(v) \cup \kappa_{\mathcal{E}}(b)(w) g\right) \wedge \omega \\
& =\int_{X} \operatorname{Tr}\left(\kappa_{\mathcal{E}}(b)(v) \cup \kappa_{\mathcal{E}}(b)(w)\right) \wedge \omega \\
& =\left\langle\omega_{\mathcal{E}}(b), v \wedge w\right\rangle
\end{aligned}
$$

where the third equality is proved similarly to Lemma (1.4.16).
q.e.d.

Applying Claim (1.9.1) and the étale slice Theorem (1.2.1) one sees that the two-form $\omega_{\mathcal{E}}$ on $T_{c}^{s}$ descends to a holomorphic two-form $\widehat{\omega}_{c}$ on $\widehat{\mathcal{M}}_{c}$. By a theorem of Mukai [Muk] we get the following.
(1.9.2) Proposition. The two-form $\widehat{\omega}_{c}$ on $\widehat{\mathcal{M}}_{c}$ is non-degenerate outside $\widehat{\Omega}_{c} \cup \widehat{\Sigma}_{c} \cup \widehat{\Delta}_{c}$.

Proof. The map $\widehat{\pi}$ gives an isomorphism between the complement of $\widehat{\Omega}_{c} \cup \widehat{\Sigma}_{c} \cup \widehat{\Delta}_{c}$ and $\left(\mathcal{M}_{c} \backslash \Omega_{c} \backslash \Sigma_{c}\right)$ If $[F] \in\left(\mathcal{M}_{c} \backslash \Omega_{c} \backslash \Sigma_{c}\right)$, then by (1.2.3) $T_{[F]} \mathcal{M}_{c} \cong \operatorname{Ext}^{1}(F, F)$, thus $\widehat{\omega}_{c}$ is non-degenerate at $[F]$ by Serre duality.
q.e.d.

## 2. A symplectic desingularization of $\mathcal{M}_{4}$.

Let $\mathbf{G r}^{\omega}\left(2, T_{X^{[2]}}\right)$ be the relative symplectic Grassmannian over $X^{[2]}$, with fiber $\mathbf{G r}^{\omega}\left(2, E_{Z}\right)$ over $[Z] \in X^{[2]}$, and let $\mathcal{A}$ be the tautological $\mathbf{C}^{2}$-bundle over $\mathbf{G r}^{\omega}\left(2, T_{X^{[2]}}\right)$. In subsection (2.1) we will prove the following.
(2.0.1) Proposition. Keep notation as above.

1. There is an isomorphism $\widehat{\Omega}_{4} \cong \mathbf{P}\left(S^{2} \mathcal{A}\right)$ such that the map

$$
\left.\widehat{\pi}\right|_{\widehat{\Omega}_{4}}: \widehat{\Omega}_{4} \rightarrow \Omega_{4} \cong X^{[2]}
$$

corresponds to the composition of the maps $\mathbf{P}\left(S^{2} \mathcal{A}\right) \rightarrow \mathbf{G r}^{\omega}\left(2, T_{X^{[2]}}\right) \rightarrow X^{[2]}$.
2. Let $A$ be a fiber of the $\mathbf{C}^{2}$-bundle $\mathcal{A}$, so that $\mathbf{P}\left(S^{2} A\right) \hookrightarrow \widehat{\Omega}_{4}$ by Item (1). Then

$$
\left.\left[\widehat{\Omega}_{4}\right]\right|_{\mathbf{P}\left(S^{2} A\right)} \cong \mathcal{O}_{\mathbf{P}\left(S^{2} A\right)}(-1)
$$

Let $\widehat{\epsilon}_{4} \in N E_{1}\left(\widehat{\mathcal{M}}_{4}\right)$ be the class of a line in a fiber of the $\mathbf{P}^{2}$-fibration

$$
\begin{equation*}
\widehat{\Omega}_{4} \rightarrow \mathbf{G r}^{\omega}\left(2, T_{X^{[2]}}\right) \tag{2.0.2}
\end{equation*}
$$

The main result of this section is the following.
(2.0.3) Proposition. Keep notation as above.

1. $\mathbf{R}^{+} \widehat{\epsilon}_{4}$ is a $K_{\widehat{\mathcal{M}}_{4}}$-negative extremal ray.
2. The contraction $\theta: \widehat{\mathcal{M}}_{4} \underset{\mathcal{M}}{4}$ of $\mathbf{R}^{+} \widehat{\epsilon}_{4}$ is identified with the contraction of $\widehat{\Omega}_{4}$ along the fibers of Fibration (2.0.2). Thus $\widetilde{\mathcal{M}}_{4}$ is smooth (and projective by Mori theory).
3. The two-form $\widetilde{\omega}_{4}$ on $\widetilde{\mathcal{M}}_{4}$ induced by $\widehat{\omega}_{4}$ is non-degenerate.
4. The rational map $\widetilde{\pi}: \widetilde{\mathcal{M}}_{4} \cdots>\mathcal{M}_{4}$ induced by $\widehat{\pi}$ is a morphism.

Summarizing: $\widetilde{\mathcal{M}}_{4}$ is a smooth projective symplectic desingularization of $\mathcal{M}_{4}$.

### 2.1. Proof of Proposition (2.0.1).

Proof of Item (1). For $[Z] \in X^{[2]}$, set

$$
\widehat{\Omega}_{Z}:=\widehat{\pi}^{-1}\left(\left[I_{Z} \oplus I_{Z}\right]\right)
$$

Since $\widehat{\Omega}_{4}$ and $\Omega_{4}$ are orbit spaces, we have (see (1.8.1)-(1.8.12))

$$
\widehat{\Omega}_{Z}=B l_{\mathbf{P H o m}}^{1} \boldsymbol{P} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) / / \mathrm{SO}(W)=\widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) / / \mathrm{SO}(W)
$$

Since $\operatorname{SO}(W)$ acts trivially on $\mathbf{G r}^{\omega}\left(2, E_{Z}\right)$, we get a map

$$
f: \widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) / / \mathrm{SO}(W) \rightarrow \mathbf{G r}^{\omega}\left(2, E_{Z}\right)
$$

It follows easily from (1.8.12), (1.8.6) and (1.6.1) that

$$
\begin{equation*}
\widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right)^{s s}=\widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right)^{s}=\{([K],[A],[\varphi]) \mid[K] \text { is non-isotropic }\} \tag{2.1.1}
\end{equation*}
$$

hence the projection $\widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) \rightarrow \mathbf{P}(W)$ maps the stable locus to the complement of the isotropic conic, i.e. $\mathbf{P}(W)^{s s}$. Since $\mathrm{SO}(W)$ acts transitively on $\mathbf{P}(W)^{s s}$, we get that

$$
f^{-1}([A]) \cong \mathbf{P H o m}\left(K^{\perp}, A\right) / / \mathrm{O}\left(K^{\perp}\right)
$$

where $[K] \in \mathbf{P}(W)^{s s}$ is any chosen point. As is easily verified, the map

$$
\begin{array}{cl}
\operatorname{PHom}\left(K^{\perp}, A\right) & \rightarrow  \tag{2.1.2}\\
{[\alpha]} & \mapsto
\end{array} \mathbf{P}^{2}\left(S^{2} A\right)
$$

is the quotient map for the $\mathrm{O}\left(K^{\perp}\right)$-action. This proves Item (1) of Proposition (2.0.1).
Proof of Item (2). Recall that $T_{4}=S_{4}$, hence $\widehat{\mathcal{M}}_{4}=S_{4} / / \mathrm{PGL}(N)$. We let $q: S_{4}^{s} \rightarrow \widehat{\mathcal{M}}_{4}$ be the quotient map.

Claim. Keeping notation as above,

$$
\begin{equation*}
q^{*} \widehat{\Omega}_{4} \sim 2 \Omega_{S_{4}}^{s} . \tag{2.1.3}
\end{equation*}
$$

Proof. Since $q^{-1} \widehat{\Omega}_{4}=\Omega_{S_{4}}^{s}$, all we have to do is determine the multiplicity of $q^{*} \widehat{\Omega}_{4}$ at a generic point of $\Omega_{S_{4}}^{s}$. Let $z \in\left(\Omega_{S_{4}}^{s} \backslash \Sigma_{S_{4}}\right)$; by (1.8.8) $\operatorname{St}(z)=\mathbf{Z} /(2)$. Let $\mathcal{V} \subset S_{4}^{s}$ be a slice normal to $O(z)$. By (1.2.1)

$$
\mathcal{V} / /(\mathbf{Z} /(2)) \cong \text { neighborhood of } q(z) \in \widehat{\mathcal{M}}_{4}
$$

Since the fixed locus for the action of $\mathbf{Z} /(2)$ is $\Omega_{S_{4}}^{s} \cap \mathcal{V}$, it follows that Equation (2.1.3) holds on $\mathcal{V}$. This proves (2.1.3).
q.e.d.

Let $[K] \in \mathbf{P}(W)^{s s}$. It follows from (2.1.1) that there exists a straight line

$$
\Lambda \subset \mathbf{P} \operatorname{Hom}\left(K^{\perp}, A\right)^{s} \subset \widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right)^{s} \subset S_{4}^{s} .
$$

Claim. Keeping notation as above,

$$
\begin{equation*}
\Omega_{S_{4}} \cdot \Lambda=-1 \tag{2.1.4}
\end{equation*}
$$

Proof. We have $\Omega_{S_{4}} \sim \pi_{S_{4}}^{*} \Omega_{R_{4}}$, and

$$
\left.\left[\Omega_{R_{4}}\right]\right|_{\mathbf{P H o m}}{ }^{\omega}\left(W, E_{Z}\right) \cong \mathcal{O}_{\mathbf{P H o m}}{ }^{\omega}\left(W, E_{Z}\right)(-1)
$$

Since the restriction of $\pi_{S}$ to $\Lambda$ is an isomorphism to a straight line in $\mathbf{P H o m}^{\omega}\left(W, E_{Z}\right)$, Equation (2.1.4) follows at once

Let $\left.\left[\widehat{\Omega}_{4}\right]\right|_{\mathbf{P}^{2}\left(S^{2} A\right)} \cong \mathcal{O}_{\mathbf{P}^{2}\left(S^{2} A\right)}(\ell) . \quad$ By (2.1.2) $q$ maps $\Lambda$ one-to-one onto a conic $\Gamma \subset \mathbf{P}^{2}\left(S^{2} A\right)$. Using (2.1.3)-(2.1.4) we get

$$
2 \ell=\widehat{\Omega}_{4} \cdot \Gamma=q^{*} \widehat{\Omega}_{4} \cdot \Lambda=2 \Omega_{S_{4}} \cdot \Lambda=-2 .
$$

Thus $\ell=-1$; this proves Item (2) of Proposition (2.0.1).

### 2.2. Proof of Proposition (2.0.3)

Proof of Item(1). We will prove the following formula:

$$
\begin{equation*}
K_{\widehat{\mathcal{M}}_{4}} \sim 2 \widehat{\Omega}_{4} . \tag{2.2.1}
\end{equation*}
$$

That $\widehat{\epsilon}_{4}$ is $K$-negative follows immediately from this together with Item (2) of Proposition (2.0.1). To prove (2.2.1) notice that by (1.9.2) the two-form $\widehat{\omega}_{4}$ is non-degenerate outside $\widehat{\Omega}_{4} \cup \widehat{\Sigma}_{4}$, hence

$$
\begin{equation*}
K_{\widehat{\mathcal{M}}_{4}} \sim\left(\wedge^{5} \widehat{\omega}_{4}\right)=x \widehat{\Omega}_{4}+y \widehat{\Sigma}_{4} \tag{2.2.2}
\end{equation*}
$$

for non-negative integers $x, y$.
(2.2.3) Claim. The coefficient of $\widehat{\Sigma}_{4}$ in Formula (2.2.2) is equal to zero.

Proof. For $[Z],[W] \in X^{[2]}$ with $[Z] \neq[W]$ we set

$$
\widehat{\Sigma}_{Z, W}:=\widehat{\pi}^{-1}\left(\left[I_{Z} \oplus I_{W}\right]\right) \cap \widetilde{\Sigma}_{4} .
$$

By (1.4.2),

$$
\begin{equation*}
\widehat{\Sigma}_{Z, W}=\mathbf{P}\left\{\left(e_{12}, e_{21}\right) \mid e_{12} \cup e_{21}=0\right\} / / \mathbf{C}^{*}, \tag{*}
\end{equation*}
$$

where $e_{12} \in \operatorname{Ext}^{1}\left(I_{Z}, I_{W}\right), e_{21} \in \operatorname{Ext}^{1}\left(I_{W}, I_{Z}\right)$, and $\mathbf{C}^{*}$ acts as in (1.4.3). Taking into account that, by Serre duality, the cup-product appearing in the above formula gives a perfect pairing between $\operatorname{Ext}^{1}\left(I_{Z}, I_{W}\right)$ and $\operatorname{Ext}^{1}\left(I_{W}, I_{Z}\right)$, one verifies easily that the the quotient $(*)$ is isomorphic to $\mathbf{P}^{1}$. Thus

$$
\begin{equation*}
\widehat{\Sigma}_{Z, W} \cong \mathbf{P}^{1} \tag{2.2.4}
\end{equation*}
$$

Let's prove that

$$
\begin{equation*}
\widehat{\Sigma}_{4} \cdot \widehat{\Sigma}_{Z, W}=-2 . \tag{2.2.5}
\end{equation*}
$$

Let $f: \operatorname{Ext}^{1}\left(I_{Z}, I_{W}\right) \rightarrow \operatorname{Ext}^{1}\left(I_{W}, I_{Z}\right)$ be a skew-symmetric isomorphism, and let

$$
\Lambda:=\{[e, f(e)]\} \subset \mathbf{P}\left\{\left(e_{12}, e_{21}\right) \mid e_{12} \cup e_{21}=0\right\}^{s}
$$

As is easily checked $\left.q\right|_{\Lambda}: \Lambda \rightarrow \widehat{\Sigma}_{Z, W}$ is an isomorphism. Thus

$$
\widehat{\Sigma}_{4} \cdot \widehat{\Sigma}_{Z, W}=q^{*} \widehat{\Sigma}_{4} \cdot \Lambda
$$

Arguing as in the proof of (2.1.3), one sees that $q^{*} \widehat{\Sigma}_{4} \sim 2 \Sigma_{S_{4}}^{s}$. Furthermore, since $\Lambda$ is a line in the quadric

$$
\mathbf{P}\left\{\left(e_{12}, e_{21}\right) \mid e_{12} \cup e_{21}=0\right\}
$$

we have $\Sigma_{S_{4}} \cdot \Lambda=-1$. Thus

$$
\widehat{\Sigma}_{4} \cdot \widehat{\Sigma}_{Z, W}=q^{*} \widehat{\Sigma}_{4} \cdot \Lambda=2 \Sigma_{S_{4}} \cdot \Lambda=-2
$$

proving (2.2.5). Now we can prove the claim. We notice that an open dense subset of $\widehat{\Sigma}_{4}$ is a $\mathbf{P}^{1}$-fibration with base the symmetric product of $X^{[2]}$ minus the diagonal, and fiber $\widehat{\Sigma}_{Z, W}$ over ( $[Z],[W]$ ). Applying adjunction to $\widehat{\Sigma}_{4}$, and noticing that $\widehat{\Sigma}_{Z, W} \cap \widehat{\Omega}_{4}=\emptyset$, we get that the coefficient of $\widehat{\Sigma}_{4}$ in (2.2.indet) is zero, as claimed.
q.e.d.

Let's finish the proof of (2.2.1). By adjunction and Claim (2.2.3),

$$
\left.K_{\widehat{\Omega}_{4}} \cong\left[(x+1) \widehat{\Omega}_{4}\right]\right|_{\widehat{\Omega}_{4}} .
$$

Since $\widehat{\Omega}_{4}$ is a $\mathbf{P}^{2}$ fibration over $\mathbf{G r}{ }^{\omega}\left(2, T_{X^{[2]}}\right)$, and since $\left[\widehat{\Omega}_{4}\right]$ has degree -1 on the $\mathbf{P}^{2}$-fibers, it follows that $x=2$. We have proved (2.2.1). Thus we are left with the task of proving $\mathbf{R}^{+} \widehat{\epsilon}_{4}$ is extremal. In order to accomplish this we introduce another class in $N E_{1}\left(\widehat{\mathcal{M}}_{4}\right)$ as follows. Let $[Z] \in X^{[2]}$. Choose $[L] \in \mathbf{P}\left(E_{Z}\right)$, and let $\left\{\left[A_{t}\right] \in \mathbf{G r}^{\omega}\left(2, E_{Z}\right)\right\}_{t \in \mathbf{P}^{1}}$ be the line through $[L]$, i.e. the family of dimension-two subspaces $A_{t} \subset E_{Z}$ such that $L \subset A_{t} \subset L^{\perp}$. Let $\iota^{t}: S^{2} L \hookrightarrow S^{2} A_{t}$ be inclusion, and set

$$
\widehat{\gamma}_{Z}:=\text { class in } N E_{1}\left(\widehat{\Omega}_{Z}\right) \text { of }\left\{\left(\left[A_{t}\right], \iota_{t}\left(S^{2} L\right)\right)\right\}
$$

Let $\widehat{\gamma}_{4} \in N E_{1}\left(\widehat{\mathcal{M}}_{4}\right)$ be the image of $\widehat{\gamma}_{Z}$ for the map $\iota_{*}^{Z}: \overline{N E}_{1}\left(\widehat{\Omega}_{Z}\right) \rightarrow \overline{N E}_{1}\left(\widehat{\mathcal{M}}_{4}\right)$ induced by inclusion $\iota^{Z}: \widehat{\Omega}_{Z} \hookrightarrow \widehat{\mathcal{M}}_{4}$.

## (2.2.6) Claim. Keep notation as above.

a. The classes $\widehat{\epsilon}_{4}, \widehat{\gamma}_{4} \in N_{1}\left(\widehat{\mathcal{M}}_{4}\right)$ are linearly independent.
b. Let $[Z] \in X^{[2]}$. The map $\iota_{*}^{Z}$ is injective, with image $\mathbf{R}^{+} \widehat{\epsilon}_{4} \oplus \mathbf{R}^{+} \widehat{\gamma}_{4}$.

Proof. From Item (2) of (2.0.1) we get $\widehat{\Omega}_{4} \cdot \widehat{\epsilon}_{4}=-1$. We claim that

$$
\begin{equation*}
\widehat{\Omega}_{4} \cdot \widehat{\gamma}_{4}=0 \tag{2.2.7}
\end{equation*}
$$

Clearly Item (a) follows from these two formulae. To prove (2.2.7) it suffices to show that

$$
\begin{equation*}
\mathbf{R}^{+}\left[\widehat{\Sigma}_{Z, W}\right]=\mathbf{R}^{+} \widehat{\gamma}_{4}, \tag{2.2.8}
\end{equation*}
$$

because $\widehat{\Sigma}_{Z, W} \cap \widehat{\Omega}_{4}=\emptyset$. Let $[W]$ approach $[Z]$ : we see that $\left[\widehat{\Sigma}_{Z, W}\right]$ can be represented by a one-cycle $\Gamma$ on $\widehat{\Omega}_{Z} \cap \widehat{\Sigma}$. The cycle $\Gamma$ must be mapped to a single point by the map induced from $\pi_{S_{4}}$

$$
\widehat{\Omega}_{Z}=\widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) / / \mathrm{SO}(W) \rightarrow \mathbf{P} \operatorname{Hom}^{\omega}\left(W, E_{Z}\right) / / \mathrm{SO}(W) \subset R_{4} / / \mathrm{PGL}(N)
$$

This implies $[\Gamma] \in \mathbf{R}^{+} \widehat{\gamma}_{Z}$, proving (2.2.8). Let's prove Item (b). Let $\widehat{\epsilon}_{Z} \in N E_{1}\left(\widehat{\Omega}_{Z}\right)$ be the class of a line in a fiber of the $\mathbf{P}^{2}$-fibration $\widehat{\Omega}_{Z} \rightarrow \mathbf{G r}{ }^{\omega}\left(2, E_{Z}\right)$; thus $\widehat{\epsilon}_{4}=\iota_{*}^{Z} \widehat{\epsilon}_{Z}$. By Item (a) it suffices to show that

$$
\overline{N E}_{1}\left(\widehat{\Omega}_{Z}\right)=\mathbf{R}^{+} \widehat{\epsilon}_{Z} \oplus \mathbf{R}^{+} \widehat{\gamma}_{Z}
$$

We have two projections

$$
\begin{equation*}
\mathbf{G r}^{\omega}\left(2, E_{Z}\right) \stackrel{f}{\leftarrow} \widehat{\Omega}_{Z} \xrightarrow{g} \mathbf{P H o m}^{\omega}\left(W, E_{Z}\right) / / \mathrm{SO}(W) \tag{2.2.9}
\end{equation*}
$$

As is easily verified, the maps $f, g$ are the contractions of $\mathbf{R}^{+} \widehat{\epsilon}_{Z}, \mathbf{R}^{+} \widehat{\gamma}_{Z}$ respectively. Thus each of $\mathbf{R}^{+} \widehat{\epsilon}_{Z}$, $\mathbf{R}^{+} \widehat{\gamma}_{Z}$ is an extremal ray. On the other hand, since $f$ is a $\mathbf{P}^{2}$-fibration over a smooth quadric threefold, $N_{1}\left(\widehat{\Omega}_{Z}\right)$ has rank two.
q.e.d.

Now let's prove that $\mathbf{R}^{+} \widehat{\epsilon}_{4} \oplus \mathbf{R}^{+} \widehat{\gamma}_{4}$ is an extremal face of $\overline{N E}_{1}\left(\widehat{\mathcal{M}}_{4}\right)$. Assume

$$
\Gamma:=\sum_{\alpha \in I} m_{\alpha}\left[\Gamma_{\alpha}\right] \in \mathbf{R}^{+} \widehat{\epsilon}_{4} \oplus \mathbf{R}^{+} \widehat{\gamma}_{4}
$$

where, for each $\alpha \in I, m_{\alpha}>0$ and $\Gamma_{\alpha}$ is an irreducible curve on $\widehat{\mathcal{M}}_{4}$. We must show that

$$
\begin{equation*}
\left[\Gamma_{\alpha}\right] \in \mathbf{R}^{+} \widehat{\epsilon}_{4} \oplus \mathbf{R}^{+} \widehat{\gamma}_{4} \text { for all } \alpha \in I \tag{2.2.10}
\end{equation*}
$$

From $\widehat{\pi}_{*} \widehat{\epsilon}_{4}=\widehat{\pi}_{*} \widehat{\gamma}_{4}=0$ we get $\widehat{\pi}_{*} \Gamma \equiv 0$, and since $\mathcal{M}_{4}$ is projective we conclude that $\widehat{\pi}\left(\Gamma_{\alpha}\right)$ is a point, for each $\alpha \in I$. Hence we can partition the indexing set as $I=I_{\Omega} \amalg I_{\Sigma}$, so that

$$
\text { if } \begin{cases}\alpha \in I_{\Omega}, & \text { then } \Gamma_{\alpha} \subset \widehat{\Omega}_{Z_{\alpha}} \text { for some } Z_{\alpha} \in X^{[2]} \\ \alpha \in I_{\Sigma}, & \text { then } \Gamma_{\alpha} \subset \widehat{\Sigma}_{Z_{\alpha}, W_{\alpha}} \text { for } Z_{\alpha}, W_{\alpha} \in X^{[2]} \text { with } Z_{\alpha} \neq W_{\alpha}\end{cases}
$$

Statement (2.2.10) follows from Claim (2.2.6)-Item (b) if $\alpha \in I_{\Omega}$, and from (2.2.8) if $\alpha \in I_{\Sigma}$. This concludes the proof of Item (1) of Proposition (2.0.3).
q.e.d.

Proof of Item(2). We must prove that if $C \subset \widetilde{\mathcal{M}}_{4}$ is an irreducible curve such that $[C] \in \mathbf{R}^{+} \widehat{\epsilon}_{4}$, then $C$ belongs to a fiber of (2.0.2). By Item (2) of (2.0.1), $C \cdot \widehat{\Omega}_{4}<0$, hence $C \subset \widehat{\Omega}_{4}$. Since $\widehat{\pi}_{*} C \equiv 0$, there exists $[Z] \in X^{[2]}$ such that $C \subset \widehat{\Omega}_{Z}$. By (2.2.6)-Item (b) the relation $[C] \in \mathbf{R}^{+} \widehat{\epsilon}_{Z}$ must hold in $N_{1}\left(\widehat{\Omega}_{Z}\right)$. This implies that $C$ belongs to a fiber of the map $f$ of (2.2.9), i.e. to a fiber of (2.0.2).
Proof of Item(3). Let $\widetilde{\Omega}_{4}:=\theta\left(\widehat{\Omega}_{4}\right)$. By (2.2.2) and Claim (2.2.3) we see that $\widetilde{\omega}_{4}$ is non-degenerate outside $\widetilde{\Omega}_{4}$. By Item (2) of Proposition (2.0.3)

$$
\begin{equation*}
\operatorname{cod}\left(\widetilde{\Omega}_{4}, \widetilde{\mathcal{M}}_{4}\right)=3 \tag{2.2.11}
\end{equation*}
$$

Since the degeneracy locus of $\widetilde{\omega}_{4}$ is a divisor, we conclude that $\widetilde{\omega}_{4}$ is non-degenerate everywhere.
Proof of Item(4). Let $\Gamma \subset \widetilde{\mathcal{M}}_{4} \times \mathcal{M}_{4}$ be the graph of $\widetilde{\pi}$, and let $\rho: \Gamma \rightarrow \widetilde{\mathcal{M}}_{4}$ be the projection. Since $\widetilde{\mathcal{M}}_{4}$ is smooth, it suffices, by Zariski's Main Theorem, to prove that there are no exceptional divisors of $\rho$. The graph $\Gamma$ is the image of

$$
(\theta \times \widehat{\pi}): \widehat{\mathcal{M}}_{4} \rightarrow \widetilde{\mathcal{M}}_{4} \times \mathcal{M}_{4}
$$

Since outside $\widehat{\Omega}_{4}$ the contraction $\theta$ is an isomorphism onto its image, the map $\widetilde{\pi}$ is regular on $\left(\widetilde{\mathcal{M}}_{4} \backslash \widetilde{\Omega}_{4}\right)$ ). Thus an exceptional divisor of $\rho$ must be contained in $(\theta \times \widehat{\pi})\left(\widehat{\Omega}_{4}\right)$. Since the $\mathbf{P}^{2}$-fibers of $\widehat{\Omega}_{4} \rightarrow \widetilde{\Omega}_{4}$ are contained in the fibers of $\widehat{\pi}$, we have an embedding

$$
(\theta \times \widehat{\pi})\left(\widehat{\Omega}_{4}\right) \subset \widetilde{\Omega}_{4} \times_{\Omega_{4}} \Omega_{4}=\widetilde{\Omega}_{4}
$$

By (2.2.11) there can be no exceptional divisors contained in $(\theta \times \widehat{\pi})\left(\widehat{\Omega}_{4}\right)$, hence $\widetilde{\pi}$ is a regular map.
(2.2.12) Remark. By Proposition (2.0.3), $\widetilde{\mathcal{M}}_{4}$ is obtained from $\widehat{\mathcal{M}}_{4}$ by contracting the extremal ray $\mathbf{R}^{+} \widehat{\epsilon}_{4}$. On the other hand, by (2.2.8) the morphism

$$
\widehat{\mathcal{M}}_{4}=S_{4} / / \operatorname{PGL}(N) \rightarrow R_{4} / / \operatorname{PGL}(N)
$$

is identified with the contraction of the extremal ray $\mathbf{R}^{+} \widehat{\gamma}_{4}$. Let $\epsilon_{4} \in N E_{1}\left(R_{4} / / \mathrm{PGL}(N)\right)$ be the image of $\widehat{\epsilon}_{4}$ under the map induced by the above contraction. One easily verifies that the morphism

$$
R_{4} / / \operatorname{PGL}(N) \rightarrow Q_{4} / / \operatorname{PGL}(N)=\mathcal{M}_{4}
$$

is identified with the contraction of the extremal ray $\mathbf{R}^{+} \epsilon_{4}$.
3. $\widetilde{\mathcal{M}}_{4}$ is irreducible and $h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right)=1$.

The proof goes as follows. First, by well-known arguments involving deformations of polarized $K 3$ 's [GH,O6 §2] we can assume the polarization has degree two, i.e. $H^{2}=2$; this will be assumed for the rest of the paper. We fix a smooth $C \in|H|$; since $\left.K_{C} \cong[H]\right|_{C}$, the curve $C$ has genus two. Let

$$
\begin{aligned}
& J_{C}:=\left\{[F] \in \mathcal{M}_{4}|F|_{C} \text { is not locally-free semistable }\right\} \\
& \widetilde{J}_{C}:=\widetilde{\pi}^{-1} J_{C} .
\end{aligned}
$$

(3.0.1) Proposition. Let $\widetilde{\pi}: \widetilde{\mathcal{M}}_{4} \rightarrow \mathcal{M}_{4}$ be the desingularization map (see Proposition (2.0.3)). For all $q \leq 5$ the inclusion $\widetilde{J}_{C} \hookrightarrow \widetilde{\mathcal{M}}_{4}$ induces an isomorphism

$$
H^{q}\left(\widetilde{\mathcal{M}}_{4} ; \mathbf{Z}\right) \cong H^{q}\left(\widetilde{J}_{C} ; \mathbf{Z}\right)
$$

The proof, "copied" from [Li3], is as follows. Consider the determinant map $\phi: \mathcal{M}_{4} \rightarrow \mathbf{P}^{N}$ associated to a high power of the determinant line-bundle [LP1,Li1], and let $\widetilde{\phi}:=\phi \circ \widetilde{\pi}$. In (3.1) we will prove the following two propositions.
(3.0.2) Proposition. Keep notation as above. The map $\widetilde{\phi}$ is semi-small, i.e. setting

$$
\Gamma_{d}:=\left\{x \in \widetilde{\mathcal{M}}_{4} \mid \operatorname{dim} \widetilde{\phi}^{-1}(\widetilde{\phi}(x))=d\right\},
$$

we have

$$
\operatorname{cod}\left(\Gamma_{d}, \widetilde{\mathcal{M}}_{4}\right) \geq d
$$

(3.0.3) Proposition. Keep notation as above. There exists a linear subspace $\Lambda \subset \mathbf{P}^{N}$, of codimension at most 4, such that $\widetilde{\phi}^{-1} \Lambda=\widetilde{J}_{C}$.
(The hypothesis that $H^{2}=2$ is needed to prove this last proposition.) Granting these two propositions, (3.0.1) follows immediately by applying the generalized LHS Theorem [GM, p.150] to the map $\widetilde{\phi}$. Thus to prove our results about the topology of $\widetilde{\mathcal{M}}_{4}$ we must study $\widetilde{J}_{C}$. For simplicity we assume that $X$ is a very general degree-two $K 3$, i.e. that $\operatorname{Pic}(X)=\mathbf{Z}[H]$. We start by describing $J_{C}$. Let

$$
V_{C}^{0}:=\left\{[F] \in \mathcal{M}_{4}|F|_{C} \text { is locally-free but not semistable }\right\}
$$

and let $V_{C}$ be its closure. Since local freeness is an open condition, $V_{C}^{0}$ is an open subset of $J_{C}$, hence $V_{C}$ is a union of irreducible components of $J_{C}$. In Subsection (3.3) we will prove the following.
(3.0.4) Proposition. Keep notation and assumptions as above. Let $\mathcal{M}(H, 3)$ be the moduli space of ranktwo torsion-free semistable sheaves on $X$ with $c_{1}=c_{1}(H)$ and $c_{2}=3$. There exist an open dense subset $\mathcal{U} \subset \operatorname{Pic}^{1}(C) \times \mathcal{M}(H, 3)$ and a $\mathbf{P}^{1}$-fibration $\alpha: P_{C} \rightarrow \mathcal{U}$ with the following properties:
(1) There is a birational morphism $\psi: P_{C} \rightarrow V_{C}$.
(2) There is a bisection $N_{C} \subset P_{C}$ of the $\mathbf{P}^{1}$-fibration $\alpha$ such that $\psi\left(N_{C}\right) \subset(\Sigma \backslash \Omega)$.
(Here $\Sigma:=\left\{\left[I_{Z} \oplus I_{W}\right]\right\}$.) In particular, since $\mathcal{M}(H, 3)$ is irreducible and four-dimensional [O3], $V_{C}$ is irreducible of dimension 7 .

We explain briefly the idea behind the proof of (3.0.4). Let $[F] \in V_{C}^{0}$ be generic: we will prove that in the desemistabilizing sequence

$$
\left.0 \rightarrow L \rightarrow F\right|_{C} \rightarrow L^{-1} \rightarrow 0
$$

(with $L^{-1}$ locally-free) $\operatorname{deg} L=1$ (see Proposition (3.2.8)). Let $\iota: C \hookrightarrow X$ be inclusion, and let $G$ be the sheaf fitting into the exact sequence

$$
0 \rightarrow G \rightarrow F \rightarrow \iota_{*} L^{-1} \rightarrow 0
$$

(Thus $G$ is an elementary modification of $F$.) The sheaf $E:=G(1)$ is stable (see Lemma (3.2.3)), and $c_{1}(E)=c_{1}(H), c_{2}(E)=3$. This defines a map $V_{C}^{0} \rightarrow \mathcal{M}(H, 3)$. Associating to [ $F$ ] the isomorphism class of $L$ we get a map $V_{C}^{0} \rightarrow \operatorname{Pic}^{1}(C)$. We will show that the product map $V_{C}^{0} \rightarrow \operatorname{Pic}^{1} \times \mathcal{M}(H, 3)$ is dominant, and the fiber over $([L],[E])$ is identified with the open subset of $\mathbf{P} H^{0}\left(\left.L \otimes E\right|_{C}\right)$ corresponding to sections which have no zeroes. One also proves that $h^{0}\left(\left.L \otimes E\right|_{C}\right)=2$ generically. This gives $\mathcal{U}, P_{C}$ as in the proposition, and a morphism $\psi: P_{C} \rightarrow V_{C}$, birational onto an irreducible component of $V_{C}$. (The bisection $N_{C}$ corresponds to $[\sigma] \in \mathbf{P} H^{0}\left(\left.L \otimes E\right|_{C}\right)$ such that $\sigma$ has a zero.) Finally a dimension count shows that there are no other components of $V_{C}$. Now let's pass to sheaves whose restriction to $C$ is not locally-free. Let $B \subset \mathcal{M}_{4}$ be the locus parametrizing singular (i.e. not locally-free) sheaves, and let

$$
B_{C}:=\{[F] \in B \mid F \text { is singular at some point of } C\} .
$$

We state propositions describing open dense subsets of $B$ and $B_{C}$; the proofs are in Subsection (3.4).
(3.0.5) Proposition. Keep notation and assumptions as above. There is an open dense subset $B^{0} \subset B$ such that the determinant map $\phi$ on $B^{0}$ is naturally identified with a $\mathbf{P}^{1}$-fibration

$$
B^{0} \xrightarrow{\phi} X_{(4)}^{(4)}:=\left\{q_{1}+q_{2}+q_{3}+q_{4} \in X^{(4)} \mid \text { the } q_{i} \text { 's are pairwise distinct }\right\} .
$$

If $[F] \in B^{0}$ and $\phi([F])=q_{1}+q_{2}+q_{3}+q_{4}$, then $F$ fits into an exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow \mathcal{O}_{X} \otimes \mathbf{C}^{2} \xrightarrow{\Psi} \bigoplus_{i=1}^{4} \mathbf{C}_{q_{i}} \rightarrow 0 \tag{3.0.6}
\end{equation*}
$$

The fiber of $\phi$ over $q_{1}+q_{2}+q_{3}+q_{4}$ is identified with the quotient

$$
\left(\prod_{i=1}^{4} \mathbf{P}\left(\operatorname{Hom}\left(\mathbf{C}^{2}, \mathbf{C}_{q_{i}}\right)\right)\right) / / \mathrm{PGL}(2) \cong \mathbf{P}^{1}
$$

(The PGL(2)-linearization on $\mathbf{P}^{1} \times \cdots \times \mathbf{P}^{1}$ is the symmetric one.)
Keeping notation as above, let $B_{C}^{0} \subset B^{0}$ be given by

$$
\begin{equation*}
B_{C}^{0}:=\phi^{-1}\left\{q_{1}+q_{2}+q_{3}+q_{4} \mid q_{1} \in C, q_{i} \notin C \text { for } 2 \leq i \leq 4\right\} . \tag{3.0.7}
\end{equation*}
$$

It follows from Proposition (3.0.5) that $B_{C}^{0}$ is open in $B_{C}$. We will prove in Subsection (3.4) the following result.
(3.0.8) Proposition. Keep notation as above. $B_{C}^{0}$ is dense in $B_{C}$.

In particular $B_{C}$ is irreducible of dimension 8. Since by Proposition (3.0.4) dim $V_{C}=7$, it follows that $B_{C}$ is not in the closure of $V_{C}$; thus we have the following result.
(3.0.9) Lemma. The decomposition of $J_{C}$ into irreducible components is given by

$$
J_{C}=V_{C} \cup B_{C}
$$

Now let's describe the irreducible components of $\widetilde{J}_{C}$. Let $\widetilde{V}_{C}, \widetilde{B}_{C} \subset \widetilde{\mathcal{M}}_{4}$ be the proper transforms of $V_{C}, B_{C}$ respectively. From (3.0.9) we get

$$
\widetilde{J}_{C}=\widetilde{V}_{C} \cup \widetilde{B}_{C} \cup \widetilde{\pi}^{-1}\left(J_{C} \cap \Sigma\right)
$$

(Recall that $\Sigma \subset \mathcal{M}_{4}$ is the indeterminacy locus of the inverse of $\tilde{\pi}$.) By Lemma (1.1.5)

$$
J_{C} \cap \Sigma=\Sigma_{C}:=\left\{\left[I_{Z} \oplus I_{W}\right] \in \mathcal{M}_{4} \mid Z \cap C \neq \emptyset \text { or } W \cap C \neq \emptyset\right\} .
$$

Let $\widetilde{\Sigma}_{C}:=\widetilde{\pi}^{-1} \Sigma_{C}$.
(3.0.10) Claim. $\widetilde{\Sigma}_{C}$ is irreducible of dimension 8.

Proof. Consider the surjection

$$
\widetilde{\Sigma} \xrightarrow{\widetilde{\pi}} \Sigma \cong X^{[2]} \times X^{[2]} \text { /involution. }
$$

Let $\Omega:=\left\{\left[I_{Z} \oplus I_{Z}\right]\right\}$, and set $\widetilde{\Omega}:=\widetilde{\pi}^{-1} \Omega$. Since $\widetilde{\Omega} \subset \widetilde{\Sigma}$ (because under the isomorphism in Item (1) of Proposition (2.0.1) the intersection $\widehat{\Sigma}_{4} \cap \widehat{\Omega}_{4}$ corresponds to degenerate conics),

$$
\widetilde{\Sigma}_{C}=\left(\left.\widetilde{\pi}\right|_{\widetilde{\Sigma}}\right)^{-1} \Sigma_{C}
$$

Since $\Sigma$ has quotient singularities, the divisor $\Sigma_{C}$ is $\mathbf{Q}$-Cartier, hence the above equality shows that every irreducible component of $\widetilde{\Sigma}_{C}$ has dimension 8. The map

$$
\tilde{\Sigma}_{C} \backslash \widetilde{\Omega} \xrightarrow{\widetilde{\pi}} \Sigma_{C} \backslash \Omega
$$

is a $\mathbf{P}^{1}$-fibration, by (2.2.4). Thus $\left(\widetilde{\Sigma}_{C} \backslash \widetilde{\Omega}\right)$ is an open irreducible subset of $\widetilde{\Sigma}_{C}$, of dimension 8: we will show that the closure of $\left(\widetilde{\Sigma}_{C} \backslash \widetilde{\Omega}\right)$ is the whole of $\widetilde{\Sigma}_{C}$. The map

$$
\widetilde{\Sigma}_{C} \cap \widetilde{\Omega} \xrightarrow{\widetilde{\pi}} \Sigma_{C} \cap \Omega
$$

is a fibration with fiber $\mathbf{G r}^{\omega}\left(2, E_{Z}\right)$ over $\left[I_{Z} \oplus I_{Z}\right]$ (see Proposition (2.0.3)). Since $\Sigma_{C} \cap \Omega$ has dimension 3, we get that $\operatorname{dim}\left(\widetilde{\Sigma}_{C} \cap \widetilde{\Omega}\right)=6$. Hence $\widetilde{\Sigma}_{C} \cap \widetilde{\Omega}$ is in the closure of $\widetilde{\Sigma}_{C} \backslash \widetilde{\Omega}$ because every irreducible component of $\widetilde{\Sigma}_{C}$ has dimension 8 . q.e.d.

Since $\operatorname{dim} \widetilde{V}_{C}=7$ and $\operatorname{dim} \widetilde{B}_{C}=8$, the above claim shows that $\widetilde{\Sigma}_{C}$ is an irreducible component of $\widetilde{J}_{C}$. Recalling (3.0.9) we get the following.
(3.0.11) Lemma. The decomposition of $\widetilde{J}_{C}$ into irreducible components is the following:

$$
\widetilde{J}_{C}=\widetilde{V}_{C} \cup \widetilde{B}_{C} \cup \widetilde{\Sigma}_{C}
$$

To determine the topology of $\widetilde{J}_{C}$ we need to examine the intersections of its irreducible components. Item (2) of Proposition (3.0.4) will give us enough information regarding $\widetilde{V}_{C} \cup \widetilde{\Sigma}_{C}$. Let's examine $\widetilde{B}_{C} \cap \widetilde{\Sigma}_{C}$. First we show that $\widetilde{B}_{C}$ contains a subset isomorphic to $B_{C}^{0}$. To this end notice that by Proposition (3.0.5)

$$
\begin{equation*}
B^{0} \cap \Sigma=\left\{\left(\left[\Psi_{1}\right], \ldots,\left[\Psi_{4}\right]\right) \mid \text { two (but not three) of the }\left[\Psi_{i}\right] \text { coincide }\right\} / / \text { PGL(2). } \tag{3.0.12}
\end{equation*}
$$

Thus $B^{0} \cap \Sigma$ is open in $\Sigma$. Since $\widetilde{\pi}$ outside $\Omega$ is the blow-up of $\Sigma$, and $B^{0} \cap \Omega=\emptyset$, we get that

$$
\begin{equation*}
\tilde{\pi}^{-1} B^{0}=B l_{B^{0} \cap \Sigma}\left(B^{0}\right) \tag{3.0.13}
\end{equation*}
$$

Furthermore $B^{0} \cap \Sigma$ is a three-section of $B^{0} \rightarrow X_{(4)}^{(4)}$ (by (3.0.12)), hence it is a Cartier divisor in $B^{0}$. By (3.0.13) we get that the inclusion $B^{0} \hookrightarrow \mathcal{M}_{4}$ lifts to an inclusion $\iota: B^{0} \hookrightarrow \widetilde{\mathcal{M}}_{4}$. Let $\widetilde{B}_{C}^{0}:=\iota\left(B_{C}^{0}\right)$ : then $\widetilde{B}_{C}^{0}$ is an open subset of $\widetilde{B}_{C}$ isomorphic to $B_{C}^{0}$. Set

$$
\widetilde{S}_{C}:=\widetilde{B}_{C}^{0} \cap \widetilde{\Sigma}_{C}
$$

The following result follows at once from (3.0.12) and Definition (3.0.7).
(3.0.14) Lemma. Keeping notation as above,

$$
\widetilde{\pi}\left(\widetilde{S}_{C}\right)=\left\{\left[I_{Z} \oplus I_{W}\right] \mid Z, W \text { are reduced disjoint, } Z \cap C \text { is a point, } W \cap C=\emptyset\right\}
$$

The map $\widetilde{S}_{C} \xrightarrow{\widetilde{\pi}} \widetilde{\pi}\left(\widetilde{S}_{C}\right)$ is one-to-one.
Now we are ready to prove that $b_{0}\left(\widetilde{\mathcal{M}}_{4}\right)=h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right)=1$. Let's show that $b_{0}\left(\widetilde{\mathcal{M}}_{4}\right)=1$. By Proposition (3.0.1) we know that $b_{0}\left(\widetilde{\mathcal{M}}_{4}\right)=b_{0}\left(\widetilde{J}_{C}\right)$. Since, by Lemma (3.0.11), $\widetilde{V}_{C}, \widetilde{B}_{C}, \widetilde{\Sigma}_{C}$ are the irreducible components of $\widetilde{J}_{C}$ it suffices to verify that

$$
\widetilde{V}_{C} \cap \widetilde{\Sigma}_{C} \neq \emptyset \neq \widetilde{\Sigma}_{C} \cap \widetilde{B}_{C} .
$$

The second intersection is non-empty by Lemma (3.0.14). To show that $\widetilde{V}_{C} \cap \widetilde{\Sigma}_{C} \neq \emptyset$ we use Proposition (3.0.4). The morphism $\psi: P_{C} \rightarrow V_{C}$ gives rise to a rational map $\tilde{\psi}: P_{C} \cdots>\widetilde{V}_{C}$. Since $P_{C}$ is smooth, the indeterminacy locus $I$ of $\widetilde{\psi}$ has codimension at least two, hence $N_{C} \backslash I$ is non-empty. By Item (2) of (3.0.4), $\psi\left(N_{C}\right) \subset \Sigma \cap V_{C}$, and Lemma (1.1.5) gives $\Sigma \cap V_{C} \subset \Sigma_{C}$. Thus $\psi\left(N_{C}\right) \subset \Sigma_{C}$, and hence $\widetilde{\psi}\left(N_{C} \backslash I\right) \subset \widetilde{\Sigma}_{C}$. Since $\operatorname{Im} \widetilde{\psi} \subset \widetilde{V}_{C}$ we get that $\widetilde{V}_{C} \cap \widetilde{\Sigma}_{C} \neq \emptyset$. Now let's show that $h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right)=1$. For a projective variety $Y$ we define $H^{2,0}(Y)$ to be $H^{2,0}\left(Y^{\prime}\right)$, where $Y^{\prime}$ is any desingularization of $Y$. It will suffice to prove that

$$
\begin{equation*}
\text { the restriction map } H^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right) \rightarrow H^{2,0}\left(\widetilde{B}_{C}\right) \text { is injective. } \tag{3.0.15}
\end{equation*}
$$

(Of course restriction really means "pull-back to a resolution".) In fact by (3.0.5)-(3.0.7) any desingularization $Y$ of $\widetilde{B}_{C}$ has a dominant rational map to $C \times X^{[3]}$, with generic fiber isomorphic to $\mathbf{P}^{1}$, hence $h^{2,0}(Y)=h^{2,0}\left(X^{[3]}\right)=1$. Thus (3.0.15) implies $h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right) \leq 1$; since $h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right) \geq 1$ it follows that $h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right)=1$. So let $\tau$ be a two-form on $\widetilde{\mathcal{M}}_{4}$, and assume that

$$
\begin{equation*}
\left.[\tau]\right|_{\widetilde{B}_{C}}=0 \tag{3.0.16}
\end{equation*}
$$

i.e. the two-form $\tau_{\widetilde{B}_{C}}$ is zero (holomorphic forms on projective manifolds inject into cohomology !). Let's prove

$$
\begin{equation*}
\left.\tau\right|_{\widetilde{\Sigma}_{C}}=0 \tag{3.0.17}
\end{equation*}
$$

It follows from Lemma (3.0.14) that $\widetilde{\pi}^{-1}\left(\widetilde{\pi}\left(\widetilde{S}_{C}\right)\right)$ is an open dense subset of $\widetilde{\Sigma}_{C}$, hence it suffices to show that the restriction of $\tau$ to $\widetilde{\pi}^{-1}\left(\widetilde{\pi}\left(\widetilde{S}_{C}\right)\right)$ is zero. Now $\widetilde{\pi}^{-1}\left(\widetilde{\pi}\left(\widetilde{S}_{C}\right)\right)$ is a $\mathbf{P}^{1}$-fibration over $\widetilde{\pi}\left(\widetilde{S}_{C}\right)$, hence every two-form is the pull-back of a form on $\widetilde{\pi}\left(\widetilde{S}_{C}\right)$. Since $\widetilde{S}_{C} \subset \widetilde{B}_{C}$, we know that the restriction of $\tau$ to $\widetilde{S}_{C}$ is zero, hence $\tau$ is zero on all of $\widetilde{\pi}^{-1}\left(\widetilde{\pi}\left(\widetilde{S}_{C}\right)\right)$. Finally let's show that

$$
\begin{equation*}
\left.\tau\right|_{\widetilde{V}_{C}}=0 \tag{3.0.18}
\end{equation*}
$$

Let $\alpha: P_{C} \rightarrow \mathcal{U}$ be the $\mathbf{P}^{1}$-fibration of Proposition (3.0.4), and let

$$
\widetilde{P}_{C}:=\alpha^{-1}(\mathcal{U} \backslash \alpha(I)) \quad \widetilde{N}_{C}:=N_{C} \cap \widetilde{P}_{C}
$$

where $I$ is the indeterminacy locus of $\widetilde{\psi}$. Since $I$ is closed of codimension at least two, $\widetilde{P}_{C}$ is an open dense subset of $P_{C}$, and $\widetilde{N}_{C}$ is a non empty divisor on $\widetilde{P}_{C}$. Since $\widetilde{\psi}\left(\widetilde{N}_{C}\right) \subset \widetilde{\Sigma}_{C}$, we get from (3.0.17) that $\left.\widetilde{\psi}^{*} \tau\right|_{\widetilde{N}_{C}}=0$. Since $\widetilde{P}_{C}$ is a $\mathbf{P}^{1}$-fibration over $(\mathcal{U} \backslash \alpha(I))$, every two-form on $\widetilde{P}_{C}$ is the pull-back of a form on $(\mathcal{U} \backslash \alpha(I))$. Since the restriction of $\widetilde{\psi}^{*} \tau$ to the bisection $\widetilde{N}_{C}$ is zero we get that $\widetilde{\psi}^{*} \tau=0$; this proves (3.0.18) because $\widetilde{\psi}\left(\widetilde{P}_{C}\right)$ is dense in $\widetilde{V}_{C}$. Now we can prove (3.0.15). If (3.0.16) holds, then by (3.0.17)-(3.0.18) [ $\left.\tau\right]$ is in the kernel of the map

$$
H^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right) \rightarrow H^{2,0}\left(\widetilde{V}_{C}\right) \oplus H^{2,0}\left(\widetilde{B}_{C}\right) \oplus H^{2,0}\left(\widetilde{\Sigma}_{C}\right)
$$

defined by restrictions. By Proposition (3.0.1) the above map is injective, hence $[\tau]=0$.
Summarizing: we have shown that to prove $b_{0}\left(\widetilde{\mathcal{M}}_{4}\right)=h^{2,0}\left(\widetilde{\mathcal{M}}_{4}\right)=1$ it suffices to prove Propositions (3.0.2)-(3.0.5) and (3.0.8).

Remark. The procedure outlined above should allow us to determine the Betti numbers of $\widetilde{\mathcal{M}}_{4}$ up to $b_{5}$ included. However, even the determination of $b_{2}$ (which should be equal to 24) requires a much more detailed analysis of $\widetilde{V}_{C} \cup \widetilde{\Sigma}_{C} \cup \widetilde{B}_{C}$; the calculation of $h^{2,0}$ is simpler because $h^{2,0}$ is a birational invariant.

### 3.1. Proof of Propositions (3.0.2)-(3.0.3).

Let $\mathcal{M}$ be a moduli space of rank-two semistable torsion-free sheaves on a surface, with fixed Chern classes. Le Potier and Jun Li [LP1,Li1] have constructed a determinant line bundle $\mathcal{L}$ on $\mathcal{M}$. They proved that if $m \gg 0$ then $\mathcal{L}^{\otimes m}$ is base-point free [Li1, Thm.3]; furthermore Jun Li proved that the image of the determinant map

$$
\phi_{m}: \mathcal{M} \rightarrow \mathbf{P}\left(H^{0}\left(\mathcal{M}, \mathcal{L}^{\otimes m}\right)^{*}\right)
$$

associated to the complete linear system $\left|\mathcal{L}^{\otimes m}\right|$ can be identified with the Uhlenbeck compactification in such a way that $\phi_{m}: \mathcal{M} \rightarrow \operatorname{Im} \phi_{m}$ is the standard map [Li1 Thm.4, FM]. We will study $\phi_{m}$ for our moduli space $\mathcal{M}_{4}$. We assume $m$ is very large, so that Jun Li's results apply, and we set $\phi=\phi_{m}$.
Explicit description of $\phi$. Let $\mathcal{M}_{4}^{l f}, \mathcal{M}_{4}^{s t} \subset \mathcal{M}_{4}$ be the (open) subsets parametrizing stable and locally-free sheaves, respectively. By Lemma (1.1.5) we have $\mathcal{M}_{4}^{l f} \subset \mathcal{M}_{4}^{s t}$. Since the restriction of the determinant map to the moduli space of stable vector-bundles is an isomorphism [Li1, Thm.4], the restriction of $\phi$ to $\mathcal{M}^{l f}$ is an isomorphism onto its image. Now let's examine the restriction of $\phi$ to $B=\mathcal{M}_{4} \backslash \mathcal{M}_{4}^{l f}$, i.e. of the boundary of $\mathcal{M}_{4}$. We introduce the singularity cycle of a point $[F] \in \mathcal{M}_{4}$. Assuming that the representative $F$ has been chosen so that it is isomorphic to the direct sum of the successive quotients of its Harder-Narasimhan filtration (hence if $F$ is strictly semistable, $F \cong I_{Z} \oplus I_{W}$ ), we set

$$
\operatorname{sing}[F]:=\sum_{p \in X} \ell_{F}(p)
$$

where $\ell_{F}(p)$ is the length at $p$ of the Artinian sheaf $F^{* *} / F$. The following proposition will be used to describe the singularity cycle of points $[F] \in B$.
(3.1.1) Proposition. Keeping notation as above, let $[F] \in B \cap \mathcal{M}_{4}^{s t}$. Then $F^{* *} \cong \mathcal{O}_{X}^{(2)}$.

Proof. Since $F$ is not locally-free, $c_{2}\left(F^{* *}\right)<c_{2}(F)=4$. Thus Hirzebruch-Riemann-Roch gives $\chi\left(F^{* *}\right)>0$. By Serre duality $h^{2}\left(F^{* *}\right)=h^{0}\left(F^{*}\right)=h^{0}\left(F^{* *}\right)$, hence $h^{0}\left(F^{* *}\right)>0$. A non-zero section of $F^{* *}$ must have isolated zeroes by slope-semistability, hence we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \xrightarrow{\alpha} F^{* *} \rightarrow I_{Z} \rightarrow 0
$$

where $\ell(Z)=c_{2}\left(F^{* *}\right)$. If $\ell(Z)=0$ then $F^{* *} \cong \mathcal{O}_{X}^{(2)}$, and we are done. By Cayley-Bacharach $\ell(Z) \neq 1$. Now assume $\ell(Z) \geq 2$ : then we can find a subsheaf $I_{W} \subset \mathcal{O}_{X}$, with $\ell(W)=(4-\ell(Z))$, such that $\alpha\left(I_{W}\right) \subset F$, and this contradicts stability of $F$.
q.e.d.

Proposition (3.1.1) together with Lemma (1.1.5) implies that if $[F] \in B$, then $\operatorname{sing}[F] \in X^{(4)}$. By [Li1, Thm.4] the restriction of $\phi$ to $B$ is simply the singularity map

$$
\begin{array}{ccc}
B & \xrightarrow{\phi} & X^{(4)}  \tag{3.1.2}\\
{[F]} & \mapsto & \operatorname{sing}[F]
\end{array}
$$

The image $\phi(B)$ contains the dense subset of $X^{(4)}$ parametrizing cycles $q_{1}+\cdots+q_{4}$ with the $q_{i}$ pairwise distinct; in fact one easily verifies that a sheaf $F$ fitting into an exact sequence

$$
0 \rightarrow F \rightarrow \mathcal{O}_{X} \otimes \mathbf{C}^{2} \xrightarrow{\Psi} \bigoplus_{i=1}^{4} \mathbf{C}_{q_{i}} \rightarrow 0
$$

where the kernels of $\Psi$ at the points $q_{i}$ are pairwise distinct elements of $\mathbf{P}\left(\mathbf{C}^{2}\right)$ is Gieseker-Maruyama stable. Since $B$ is projective $\phi(B)$ is closed, hence $\phi(B)=X^{(4)}$. Thus the Uhlenbeck stratification [FM] is as follows:

$$
\operatorname{Im} \phi=\phi\left(\mathcal{M}_{4}^{l f}\right) \coprod X^{(4)}
$$

Proof of (3.0.2). The reason why (3.0.2) holds is that the non-degenerate two-form $\widetilde{\omega}_{4}$ is in a "stratified" sense the pull-back of a two-form on the Uhlenbeck compactification (strictly speaking this is nonsense because the Uhlenbeck compactification is singular). The precise statement is as follows. There is a stratification

$$
\begin{equation*}
X^{(4)}=\coprod_{p} X_{p}^{(4)} \tag{3.1.3}
\end{equation*}
$$

indexed by partitions of 4 . If $p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is a partition, i.e. $\sum_{i=1}^{4} i p_{i}=4$, the stratum $X_{p}^{(4)}$ parametrizes cycles

$$
\gamma=\sum_{j=1}^{p_{1}} q_{j}^{1}+2 \sum_{j=1}^{p_{2}} q_{j}^{2}+\cdots
$$

where the $q_{j}^{i}$ are pairwise distinct. Letting $X_{\delta}^{(s)}:=\left(X^{(s)} \backslash\right.$ diagonals $)$, we have an open inclusion

$$
X_{p}^{(4)} \subset X_{\delta}^{\left(p_{1}\right)} \times X_{\delta}^{\left(p_{2}\right)} \times \cdots
$$

in particular $X_{p}^{(4)}$ is smooth. Let $\omega^{(s)} \in \Gamma\left(\Omega_{X_{\delta}^{(s)}}^{2}\right)$ be the holomorphic two-form obtained from $\omega$ by symmetrization, and for a partition $p$, let $\omega_{p}^{(4)}$ be the two-form on $X_{p}^{(4)}$ given by

$$
\omega_{p}^{(4)}:=\sum_{i=1}^{4} i \pi_{i}^{*} \omega^{\left(p_{i}\right)}
$$

where $\pi_{i}: X_{p}^{(4)} \rightarrow X_{\delta}^{\left(p_{i}\right)}$ is the $i$-th projection. Stratification (3.1.3) gives a stratification of $\operatorname{Im} \widetilde{\phi}=\operatorname{Im} \phi$, in which $\phi\left(\mathcal{M}_{4}^{l f}\right)$ is the open stratum, and the $X_{p}^{(4)}$ are the remaining strata. The stratified pull-back formula is the following:

$$
\begin{equation*}
\left.\widetilde{\omega}_{4}\right|_{\widetilde{\phi}^{-1} X_{p}^{(4)}}=-\frac{1}{4 \pi^{2}} \widetilde{\phi}^{*} \omega_{p}^{(4)} \tag{3.1.4}
\end{equation*}
$$

The equality is an immediate consequence of $[\mathrm{O} 5,(2-9)]$. Now let's prove (3.0.2). Let $V \subset \Gamma_{d}$ be an irreducible component of maximum dimension. If $V \cap \mathcal{M}_{4}^{l f} \neq \emptyset$, then $d=0$ and there is nothing to prove. So assume $V \subset \widetilde{\phi}^{-1} X^{(4)}$. Then $V \cap \widetilde{\phi}^{-1} X_{p}^{(4)}$ is dense in $V$ for some partition $p$. Let $y \in V$ be such that $V$ is smooth at $y$ and the restriction $\widetilde{\phi}: V \rightarrow \widetilde{\phi}(V)$ is submersive at $y$; it follows from (3.1.4) that

$$
\widetilde{\omega}_{4}\left(T_{y} V, T_{y} \widetilde{\phi}^{-1}(\widetilde{\phi}(y))\right) \equiv 0
$$

Thus $\widetilde{\omega}_{4}$ induces a map

$$
T_{y} \widetilde{\mathcal{M}}_{4} / T_{y} V \rightarrow T_{y} \tilde{\phi}^{-1}(\widetilde{\phi}(y))^{*}
$$

which is surjective because $\widetilde{\omega}_{4}$ is non-degenerate. Hence

$$
\operatorname{cod}\left(\Gamma_{d}, \widetilde{\mathcal{M}}_{4}\right)=\operatorname{cod}\left(V, \widetilde{\mathcal{M}}_{4}\right)=\operatorname{dim}\left(T_{y} \widetilde{\mathcal{M}}_{4} / T_{y} V\right) \geq \operatorname{dim} T_{y} \widetilde{\phi}^{-1}(\widetilde{\phi}(y))=d
$$

Proof of (3.0.3). Let $\theta$ be line bundle on $C$ of degree one (i.e. half the canonical degree, since $C$ has genus two); if $[F] \in \mathcal{M}_{4}$ then by Riemann-Roch

$$
\begin{equation*}
\chi\left(\left.F\right|_{C} \otimes \theta\right)=0 . \tag{3.1.5}
\end{equation*}
$$

There is a canonical section [FM,Li1] $\sigma_{\theta}$ of the determinant line-bundle $\mathcal{L}$ such that

$$
\operatorname{supp}\left(\sigma_{\theta}\right)=\left\{[F] \in \mathcal{M}_{4} \mid h^{0}\left(\left.F\right|_{C} \otimes \theta\right)>0\right\}
$$

By (3.1.5) the right-hand side has codimension at most one in every component of $\mathcal{M}_{4}$, but a priori it might contain a whole component. In any case there exists a linear subspace $\Lambda_{\theta} \subset \mathbf{P}^{N}$ of codimension at most one such that $\phi^{-1} \Lambda_{\theta}=\operatorname{supp}\left(\sigma_{\theta}\right)$. The moduli space of rank-two semistable vector-bundles on $C$ with trivial determinant has dimension three, hence a theorem of Raynaud $[\mathrm{R}]$ shows that if $\theta_{1}, \ldots, \theta_{4}$ are generic line-bundles of degree one, there is no semistable vector-bundle $V$ with trivial determinant such that

$$
h^{0}\left(V \otimes \theta_{i}\right)>0, \quad i=1, \ldots, 4
$$

On the other hand, if $V$ is a degree zero rank-two sheaf on $C$ which is either singular or locally-free nonsemistable, then $h^{0}(V \otimes \theta)>0$ for any choice of a degree-one line-bundle $\theta$ on $C$. Hence Proposition (3.0.3) holds with

$$
\Lambda:=\Lambda_{\theta_{1}} \cap \cdots \cap \Lambda_{\theta_{4}}
$$

where $\theta_{1}, \ldots, \theta_{4}$ are chosen generically.

## 3.2. $V_{C}$ and elementary modifications.

From now on we will assume that $X$ is a very general genus two $K 3$, i.e. that $\operatorname{Pic}(X)=\mathbf{Z}[H]$. Let $[F] \in V_{C}^{0}$, and let

$$
\begin{equation*}
\left.0 \rightarrow L \rightarrow F\right|_{C} \rightarrow L^{-1} \rightarrow 0 \tag{3.2.1}
\end{equation*}
$$

be the desemistabilizing sequence, i.e. $L$ is a line bundle of degree $d>0$. Let $\iota: C \hookrightarrow X$ be inclusion, and let $G$ be the elementary modification of $F$ determined by (3.2.1), i.e. the sheaf fitting into the exact sequence

$$
\begin{equation*}
0 \rightarrow G \xrightarrow{\alpha} F \rightarrow \iota_{*} L^{-1} \rightarrow 0 . \tag{3.2.2}
\end{equation*}
$$

By (1.1.5) the sheaf $F$ is stable, hence by Proposition (3.1.1) $F$ is locally-free. Thus $G$ is a rank-two locallyfree sheaf. Furthermore $c_{1}(G)=-H, c_{2}(G)=(4-d)$. (First compute the Chern classes of $\iota_{*} L^{-1}$ by applying Grothendieck-Riemann-Roch to $\iota$.)
(3.2.3) Lemma. Keep notation as above. The vector-bundle $G$ is slope-stable.

Proof. Assume $G$ is not slope-stable. Since $\operatorname{Pic}(X)=\mathbf{Z}[H]$, there exists an injection $\mathcal{O}_{X}(k) \hookrightarrow G$ with $k \geq 0$. Composing with $\alpha$ we get an injection $\mathcal{O}_{X}(k) \hookrightarrow F$, contradicting (Gieseker-Maruyama) semistability of $F$.
q.e.d.

Corollary. Keeping notation as above, either $d=1$ or $d=2$.
Proof. By Serre duality $h^{2}\left(G^{*} \otimes G\right)=h^{0}\left(G^{*} \otimes G\right)$. Since $G$ is slope-stable $h^{0}\left(G^{*} \otimes G\right)=1$, hence $\chi\left(G^{*} \otimes G\right) \leq 2$. Hirzebruch-Riemann-Roch gives $\chi\left(G^{*} \otimes G\right)=(4 d-6)$, thus $d \leq 2$.
q.e.d.

By the above corollary we have a decomposition into locally closed subsets

$$
\begin{equation*}
V_{C}^{0}=V_{C}^{0}(1) \coprod V_{C}^{0}(2), \tag{3.2.4}
\end{equation*}
$$

where $V_{C}^{0}(d)$ is the set of $[F] \in V_{C}^{0}$ for which the line-bundle $L$ of (3.2.1) has degree $d$. We will describe $V_{C}^{0}(d)$ in terms of $\mathcal{M}(H, 4-d)$, where $\mathcal{M}(H, 4-d)$ is the moduli space of semistable rank-two torsion-free sheaves on $X$ with $c_{1}=H, c_{2}=(4-d)$. Let $\mathcal{M}(H, 4-d)^{l f} \subset \mathcal{M}(H, 4-d)$ be the subset parametrizing locally-free
sheaves. Let $\mathcal{E}_{d}$ be a tautological vector-bundle on $X \times \mathcal{M}^{l f}(H, 4-d)$ (it exists by [M2,(A.7)]). Let $\mathcal{Q}_{C}(d)$ be the relative quot-scheme of $\left.\mathcal{E}_{d}\right|_{C \times \mathcal{M}^{l f}(H, 4-d)}$ over $\mathcal{M}^{l f}(H, 4-d)$ parametrizing quotients $\left.E\right|_{C} \rightarrow \xi$, where $\xi$ is a rank-one sheaf of degree $(2+d)$, and let $\mathcal{Q}_{C}^{0}(d) \subset \mathcal{Q}_{C}(d)$ be the open subset parametrizing locally-free quotients. We will define an isomorphism

$$
\begin{equation*}
V_{C}^{0}(d) \xrightarrow{\sim} \mathcal{Q}_{C}^{0}(d) \tag{3.2.5}
\end{equation*}
$$

Keeping notation as above, let $E:=G(1)$; then $c_{1}(E)=H, c_{2}(E)=(4-d)$, so that by (3.2.3) $[E] \in$ $\mathcal{M}(H, 4-d)^{l f}$. Notice also that the bundle $\left.E\right|_{C}$ comes with a canonical rank-one subsheaf: in fact the long exact sequence of $\operatorname{Tor}\left(\cdot, \mathcal{O}_{C}\right)$ associated to (3.2.2) gives

$$
\left.0 \rightarrow L^{-1} \otimes \mathcal{O}_{C}(-C) \xrightarrow{\beta} G\right|_{C} \rightarrow L \rightarrow 0
$$

and if we tensor the above sequence with $\mathcal{O}_{C}(1)$ we obtain

$$
\begin{equation*}
\left.0 \rightarrow L^{-1} \rightarrow E\right|_{C} \xrightarrow{\gamma} L \otimes K_{C} \rightarrow 0 . \tag{3.2.6}
\end{equation*}
$$

Since $\operatorname{deg}\left(L \otimes K_{C}\right)=(2+d)$, the couple $([E], \gamma)$ is a point of $\mathcal{Q}_{C}^{0}(d)$. This defines the map (3.2.5). This map is an isomorphism onto its image because one recovers $F$ from $E$ and (3.2.6) as follows. First notice that $F(-C) \hookrightarrow G$, secondly that the restriction to $C$ of this inclusion has image equal to $\operatorname{Im} \beta$, thus we have an exact sequence

$$
0 \rightarrow F(-1) \rightarrow G \rightarrow \iota_{*} L \rightarrow 0
$$

Tensoring with $\mathcal{O}_{X}(1)$ we see that $F$ is the elementary modification of $E$ associated to (3.2.6); thus (3.2.5) is an isomorphism of $V_{C}^{0}(d)$ onto its image. The following result says that (3.2.5) is onto.

Lemma. Let $d=1,2$, and let $[E] \in \mathcal{M}^{l f}(H, 4-d)$. Assume $\left.E\right|_{C}$ fits into Exact Sequence (3.2.6), where $L$ is a line-bundle with $\operatorname{deg} L=d$. Let $F$ be the elementary modification of $E$ associated to (3.2.6), i.e. we have

$$
\begin{equation*}
0 \rightarrow F \xrightarrow{\delta} E \rightarrow \iota_{*}\left(L \otimes K_{C}\right) \rightarrow 0 \tag{3.2.7}
\end{equation*}
$$

Then $F$ is a rank-two slope-stable vector-bundle with $c_{1}(F)=0, c_{2}(F)=4$, and $[F] \in V_{C}^{0}(d)$. Thus (3.2.5) maps $[F]$ to the couple $([E], \beta)$.

Proof. The Chern classes of $F$ are easily computed from the exact sequence defining $F$. Furthermore, applying the functor $\operatorname{Tor}\left(\cdot, \mathcal{O}_{C}\right)$ to (3.2.7) we get Exact sequence (3.2.1), so all we have to prove is that $F$ is slope-stable. Suppose $F$ is not slope-stable. Since $\operatorname{Pic}(X)=\mathbf{Z}[H]$, there is an injection $\mathcal{O}_{X}(k) \hookrightarrow F$, with $k \geq 0$. Composing with $\delta$ we get $\mathcal{O}_{X}(k) \hookrightarrow E$; since $E$ is semistable we must have $k=0$, i.e. we have a non-zero section $\sigma \in H^{0}(E)$. The restriction of $\sigma$ to $C$ is a section of $L^{-1}$, hence zero because $\operatorname{deg}\left(L^{-1}\right)<0$. Since $C \in\left|\mathcal{O}_{X}(1)\right|$ the section $\sigma$ gives rise to an injection $\mathcal{O}_{X}(1) \hookrightarrow E$, contradicting semistability of $E$. q.e.d.
(3.2.8) Proposition. $V_{C}^{0}(1)$ is (open) dense in $V_{C}^{0}$.

Proof. By an argument similar to that proving Proposition (1.13) of [O6], one shows that every irreducible component of $V_{C}^{0}$ has codimension at most $g(C)+1=3$. Since $\mathcal{M}_{4}$ is of pure dimension 10 , every component of $V_{C}^{0}$ has dimension at least 7 . Hence by (3.2.4) and (3.2.5) it suffices to show that

$$
\begin{equation*}
\operatorname{dim} \mathcal{Q}_{C}^{0}(2)=5 \tag{3.2.9}
\end{equation*}
$$

The moduli space $\mathcal{M}(H, 2)$ has expected dimension zero: by a result of Mukai [M2,(3.6)] it consists of a single point $[W]$, parametrizing a slope-stable vector-bundle.
(3.2.10) Claim. Keep notation as above. Then $W$ is isomorphic to the pull-back by the double cover map

$$
X \rightarrow\left|\mathcal{O}_{X}(1)\right|^{*} \cong \mathbf{P}^{2}
$$

of the bundle $T_{\mathbf{P}^{2}}(-1)$.
Proof of the claim. Computing Chern classes we get $c_{1}(W)=H, c_{2}(W)=2$. Hence by Mukai's result all we have to do is show that $W$ is slope-stable. Since $T_{\mathbf{P}^{2}}(-1)$ has sections with isolated zeroes, so does $W$, hence we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow W \rightarrow I_{Z}(1) \rightarrow 0
$$

where $Z \subset X$ is a zero-dimensional subscheme of length 2 . Since $\operatorname{Pic}(X)=\mathbf{Z}[H]$, it follows immediately that $W$ is slope-stable.
q.e.d.

Now we notice that

$$
\begin{equation*}
\left.W\right|_{C} \cong \mathcal{O}_{C} \oplus K_{C} \tag{3.2.11}
\end{equation*}
$$

In fact if $R$ is a line in $\mathbf{P}^{2}$ the exact sequence

$$
\left.0 \rightarrow T_{R} \rightarrow T_{\mathbf{P}^{2}}\right|_{R} \rightarrow N_{R / \mathbf{P}^{2}} \rightarrow 0
$$

gives

$$
\left.T_{\mathbf{P}^{2}}(-1)\right|_{R} \cong \mathcal{O}_{R} \oplus \mathcal{O}_{R}(1)
$$

which implies (3.2.11). Now let's prove (3.2.9). Claim (3.2.10) gives a morphism

$$
\begin{array}{ccc}
\mathcal{Q}_{C}^{0}(2) & \rightarrow & \operatorname{Pic}^{2}(C) \\
\left(\left.W\right|_{C} \rightarrow L \otimes K_{C} \rightarrow 0\right) & \mapsto & {[L]}
\end{array}
$$

The fiber over $[L]$ is the open subset of $\mathbf{P} H^{0}\left(\left.L \otimes W\right|_{C}\right)$ corresponding to sections with no zeroes. By (3.2.11) we have

$$
\operatorname{dim} \mathbf{P} H^{0}\left(\left.L \otimes W\right|_{C}\right)= \begin{cases}3 & \text { if } L \not \approx K_{C} \\ 4 & \text { if } L \cong K_{C}\end{cases}
$$

Equality (3.2.9) follows immediately from this. This proves Proposition (3.2.8).

### 3.3. Proof of Proposition (3.0.4).

Given Isomorphism (3.2.5) and Proposition (3.2.8), it is clear that we must examine the restriction to $C$ of vector-bundles parametrized by $\mathcal{M}(H, 3)^{l f}$. By [M1] the moduli space $\mathcal{M}(H, 3)$ is smooth symplectic of dimension 4, and by [O6] it is irreducible.
(3.3.1) Lemma. If $[E] \in \mathcal{M}(H, 3)$ then $h^{0}(E)=2$.

Proof. By Riemann-Roch $\chi(E)=2$. By Serre duality $h^{2}(E)=\operatorname{dim} \operatorname{Hom}\left(E, \mathcal{O}_{X}\right)$, hence stability gives $h^{2}(E)=0$. Thus $h^{0}(E) \geq 2$. Let $\sigma \in H^{0}(E)$ be non-zero. We claim the quotient $Q:=E / \mathcal{O}_{X} \sigma$ is torsionfree. Suppose $Q$ has torsion: then $\sigma$ must vanish on a divisor, and since $\operatorname{Pic}(X)=\mathbf{Z}[H]$ this implies we have an injection $I_{W}(k) \hookrightarrow E$, where $k \geq 1$, and $W \subset X$ is a zero-dimensional subscheme. This contradicts semistability of $E$. Thus we have an exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow E \rightarrow I_{Z}(1) \rightarrow 0
$$

where $Z \subset X$ is a zero-dimensional subscheme of length $c_{2}(E)=3$. Since $H \cdot H=2$, we have $h^{0}\left(I_{Z}(1)\right) \leq 1$, hence $h^{0}(E) \leq 2$.
q.e.d.

By the lemma above we can define a morphism

$$
\begin{equation*}
\rho: \mathcal{M}(H, 3) \rightarrow\left|\mathcal{O}_{X}(1)\right| \tag{3.3.2}
\end{equation*}
$$

as follows. Choose a basis $\{\sigma, \tau\}$ of $h^{0}(E)$. We claim $\sigma \wedge \tau \not \equiv 0$. Assume the contrary: then $\sigma, \tau$ generate a rank-one subsheaf of $E$ with two linearly independent global sections, i.e. a sheaf isomorphic to $I_{W}(k)$, where $k \geq 1$ and $W \subset X$ is a zero-dimensional subscheme. This contradicts semistability of $E$. Thus we can set

$$
\rho([E]):=(\sigma \wedge \tau) \in\left|\mathcal{O}_{X}(1)\right| .
$$

(3.3.3) Lemma. For all $D \in\left|\mathcal{O}_{X}(1)\right|$, the fiber $\rho^{-1} D$ has pure dimension 2. In particular the map $\rho$ is surjective.
Proof. Since $\operatorname{dim} \mathcal{M}(H, 3)=4$, every component of $\rho^{-1} D$ has dimension at least 2. It follows from [O5,(2$9)]$ that the symplectic form on $\mathcal{M}(H, 3)$ is identically zero on $\rho^{-1} D$, hence every component of $\rho^{-1} D$ has dimension at most 2 .

Now we are ready to examine the restriction to $C$ of vector-bundles parametrized by $\mathcal{M}^{l f}(H, 3)$.
(3.3.4) Proposition. Let $[E] \in \mathcal{M}(H, 3)^{l f}$. Then $\left.E\right|_{C}$ is not semistable if and only if $\rho([E])=C$. In this case

$$
\left.E\right|_{C} \cong \xi \oplus\left(K_{C} \otimes \xi^{-1}\right),
$$

where $\xi$ is degree 3 line-bundle.
Proof. Assume $\rho([E])=C$. Choose a basis $\{\sigma, \tau\}$ of $H^{0}(E)$, and consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}^{(2)} \xrightarrow{(\sigma, \tau)} E \rightarrow \iota_{*} \eta \rightarrow 0 .
$$

Restricting to $C$ we get

$$
\begin{equation*}
\left.0 \rightarrow \xi \rightarrow E\right|_{C} \rightarrow \eta \rightarrow 0 \tag{3.3.5}
\end{equation*}
$$

where $\xi, \eta$ are rank-one sheaves. Thus $\xi$ is locally-free of rank-one, and a Chern class computation gives $\operatorname{deg} \xi=3$. Since $C=(\sigma \wedge \tau)$ is smooth, $\sigma$ and $\tau$ have no zeroes in common, and this implies $\eta$ is also locallyfree. Since $\operatorname{det}\left(\left.E\right|_{C}\right) \cong K_{C}$, we have $\eta \cong \xi^{-1} \otimes K_{C}$. Exact Sequence (3.3.5) splits because $H^{1}\left(\xi^{\otimes 2} \otimes K_{C}^{-1}\right)=0$. Now suppose $\left.E\right|_{C}$ is not semistable, and let (3.3.5) be the desemistabilizing sequence, i.e. $\eta$ is a line-bundle and $d=\operatorname{deg} \xi \geq 2$. Let $F$ be the elementary modification of $E$ defined by (3.3.5), i.e. we have

$$
0 \rightarrow F \rightarrow E \rightarrow \iota_{*} \eta \rightarrow 0
$$

Then $\operatorname{rk} F=2, c_{1}(F)=0$ and $c_{2}(F)=(3-d) \leq 1$. Arguing as in the proof of Lemma (3.2.3) we see that $F$ is slope-semistable. Since there are no slope-semistable rank-two vector-bundles on $X$ with $c_{1}=0, c_{2}=1$ (see the proof of (1.1.1)), we conclude that $c_{2}(F)=0$, hence $F \cong \mathcal{O}_{X}^{(2)}$. This means that $\rho([E])=C$. q.e.d.
(3.3.6) Proposition. Let $[E] \in \mathcal{M}(H, 3)^{l f}$. Assume $D=\rho([E])$ is not equal to $C$, and set $D \cdot C=p+p^{\prime}$. There is an exact sequence

$$
\begin{equation*}
\left.0 \rightarrow \mathcal{O}_{C}(p) \rightarrow E\right|_{C} \rightarrow \mathcal{O}_{C}\left(p^{\prime}\right) \rightarrow 0, \tag{3.3.7}
\end{equation*}
$$

which is split if $p \neq p^{\prime}$.
Proof. Choose a basis $\{\sigma, \tau\}$ of $H^{0}(E)$. Since $p \in D$, the vectors $\sigma(p), \tau(p)$ are linearly dependent. Hence there exists a non-trivial linear combination $\lambda \sigma+\mu \tau$ which is zero at $p$. Let

$$
\epsilon:=\left.(\lambda \sigma+\mu \tau)\right|_{C} \in H^{0}\left(\left.E\right|_{C}\right) .
$$

Since $\epsilon$ vanishes at $p$, it defines a non-zero map $\left.\mathcal{O}_{C}(p) \rightarrow E\right|_{C}$. By Proposition (3.3.4) the bundle $\left.E\right|_{C}$ is semistable, hence $\epsilon$ vanishes only at $p$ and with multiplicity one. This gives Exact Sequence (3.3.7). Reversing the roles of $p$ and $p^{\prime}$, we see that if $p \neq p^{\prime}$ the sequence is split.
q.e.d.

Now we can define the varieties $\mathcal{U}, P_{C}, N_{C}$ appearing in the statement of Proposition (3.0.4). Let $([E], f) \in \mathcal{Q}_{C}(1) ;$ thus $[E] \in \mathcal{M}^{l f}(H, 3)$ and

$$
\begin{equation*}
\left.E\right|_{C} \xrightarrow{f} \xi \rightarrow 0 \tag{3.3.8}
\end{equation*}
$$

is a quotient with $\xi$ a degree-3 rank-one sheaf on $C$. Since $\left.E\right|_{C}$ is locally-free of degree 2 , the kernel of $f$ is a rank-one locally-free sheaf of degree $(-1)$, say $L^{-1}$. Thus we can define a morphism

$$
\begin{array}{ccc}
\mathcal{Q}_{C}(1) & \xrightarrow{\alpha} & \operatorname{Pic}^{1}(C) \times \mathcal{M}(H, 3)^{l f}  \tag{3.3.9}\\
([E], f) & \mapsto & ([L],[E])
\end{array}
$$

Let $\mathcal{U} \subset \operatorname{Pic}^{1}(C) \times \mathcal{M}(H, 3)^{l f}$ be the open subset consisting of couples $([L],[E])$ such that $h^{0}(L)=0$ and $\rho([E])$ intersects $C$ in exactly two points. By Lemma (3.3.3) $\mathcal{U}$ is non-empty. Let

$$
P_{C}:=\alpha^{-1}(\mathcal{U}), \quad P_{C}^{0}:=P_{C} \cap \mathcal{Q}_{C}^{0}(1), \quad N_{C}:=P_{C} \backslash \mathcal{Q}_{C}^{0}(1)
$$

(3.3.10) Claim. Keep notation as above. Then $\alpha: P_{C} \rightarrow \mathcal{U}$ is a $\mathbf{P}^{1}$-fibration, and $N_{C}$ is a bisection of this fibration.

Proof. Let $([L],[E]) \in \mathcal{U}$. Then

$$
\begin{align*}
\alpha^{-1}([L],[E]) & \cong \mathbf{P} H^{0}\left(\left.L \otimes E\right|_{C}\right) \\
N_{C} \cap \alpha^{-1}([L],[E]) & \cong \mathbf{P}\left\{\sigma \in H^{0}\left(\left.L \otimes E\right|_{C}\right) \mid \quad \sigma \text { has a zero }\right\} . \tag{3.3.11}
\end{align*}
$$

Now let $\rho([E]) \cap C=\left\{p, p^{\prime}\right\}$. By (3.3.6)

$$
\begin{equation*}
H^{0}\left(\left.L \otimes E\right|_{C}\right)=H^{0}(L(p)) \oplus H^{0}\left(L\left(p^{\prime}\right)\right) \tag{3.3.12}
\end{equation*}
$$

Since $K_{C} \sim p+p^{\prime}$, and since $L \not \approx\left[p^{\prime}\right]$, we see that $h^{0}(L(p))=1$. Similarly $h^{0}\left(L\left(p^{\prime}\right)\right)=1$, hence the space of sections in (3.3.12) is two-dimensional. By (3.3.11) we conclude that the fibers of $\alpha$ are isomorphic to $\mathbf{P}^{1}$. An easy argument identifies $P_{C}$ with the projectivization of a direct image sheaf over $\mathcal{U}$ with fiber $H^{0}\left(\left.L \otimes E\right|_{C}\right)$ over the point $([L],[E])$. This proves that $\alpha: P_{C} \rightarrow \mathcal{U}$ is a $\mathbf{P}^{1}$-fibration. To finish the proof we remark that, since $h^{0}(L)=0$, a section

$$
\sigma=\left(\sigma_{1}, \sigma_{2}\right) \in H^{0}(L(p)) \oplus H^{0}\left(L\left(p^{\prime}\right)\right)
$$

has a zero if and only if $\sigma_{1}=0$ or $\sigma_{2}=0$.
q.e.d.
(3.3.13) Lemma. Keeping notation as above, $P_{C}^{0}$ is dense in $\mathcal{Q}_{C}^{0}(1)$.

Proof. This is a dimension count. Stratify the complement of $\mathcal{U}$ in $\operatorname{Pic}^{1}(C) \times \mathcal{M}(H, 3)^{l f}$ according to the dimension of the fibers of $\alpha$ (see (3.3.9)). Using (3.3.3), (3.3.4) and (3.3.6), one easily verifies that for each stratum $\mathcal{S}$,

$$
\operatorname{dim} \alpha^{-1}(\mathcal{S})<7
$$

On the other hand (see the proof of (3.2.8)) every irreducible component of $V_{C}^{0}(1)$ has dimension at least 7. By (3.2.5) $\mathcal{Q}_{C}^{0}(1) \cong V_{C}^{0}(1)$, hence the above inequality shows that $\alpha^{-1}(\mathcal{S}) \cap \mathcal{Q}_{C}^{0}(1)$ is not dense in any component of $\mathcal{Q}_{C}^{0}(1)$.
q.e.d.

Restricting the inverse of Isomorphism (3.2.5) to $P_{C}^{0}$, we get a morphism

$$
\psi_{0}: P_{C}^{0} \rightarrow V_{C} .
$$

By Proposition (3.2.8) and Lemma (3.3.13) $\psi_{0}$ is birational. In order to prove Proposition (3.0.4) we must extend $\psi_{0}$ to all of $P_{C}$. Let $([E], f) \in P_{C}$, where $f$ is as in (3.3.8), and let $F$ be the associated elementary modification, i.e. we have

$$
\begin{equation*}
0 \rightarrow F \rightarrow E \rightarrow \iota_{*} \xi \rightarrow 0 \tag{3.3.14}
\end{equation*}
$$

The sheaf $F$ is torsion-free of rank two, with $c_{1}(F)=0, c_{2}(F)=4$. We know that if $([E], f) \in P_{C}^{0}$ then $F$ is stable, and $\psi_{0}([E], f)=[F]$. To extend $\psi_{0}$ over $N_{C}$ we must show that $F$ is semistable also for $([E], f) \in N_{C}$.
(3.3.15) Claim. Keep notation as above. Let $([E], f) \in N_{C}$, and let $F$ be the sheaf fitting into (3.3.14). Then $F$ is a strictly (Gieseker-Maruyama) semistable sheaf. More precisely there is an exact sequence

$$
\begin{equation*}
0 \rightarrow I_{Z} \rightarrow F \rightarrow I_{W} \rightarrow 0 \tag{3.3.16}
\end{equation*}
$$

where $Z, W \subset X$ are zero-dimensional subschemes of length 2 , with $Z \neq W$.
Proof. Let $\alpha([E], f)=([L],[E])$. Since $\rho([E]) \cap C$ consists of two distinct points, Proposition (3.3.6) gives

$$
\left.E\right|_{C} \cong \mathcal{O}_{C}(p) \oplus \mathcal{O}_{C}\left(p^{\prime}\right)
$$

where $p \neq p^{\prime}$. Since $([E], f) \in N_{C}$ we can assume (see the proof of (3.3.10)) that $f$ corresponds to the quotient of the injection given by the composition

$$
\left.L^{-1} \stackrel{\sigma}{\hookrightarrow} \mathcal{O}_{C}(p) \hookrightarrow E\right|_{C} .
$$

The map $\sigma$ vanishes on a divisor $Z \subset C$ of degree 2. There is a global section $\tau: \mathcal{O}_{X} \rightarrow E$ which restricted to $C$ gives the non-zero section of $\mathcal{O}_{C}(p)$ (see the proof of (3.3.6)), hence

$$
\left.\tau\left(I_{Z}\right)\right|_{C}=\operatorname{Im} \sigma
$$

Thus $\tau\left(I_{Z}\right)$ is a subsheaf of the elementary modification $F$, i.e. we have an exact sequence

$$
0 \rightarrow I_{Z} \rightarrow F \rightarrow \eta \rightarrow 0
$$

for some rank-one sheaf $\eta$. We claim $\eta$ is torsion-free. First, a local computation shows that $\eta$ is locallyfree at points of $C$. Secondly, since outside $C$ the sheaves $F$ and $E$ are isomorphic, also $\eta$ and $E / \operatorname{Im} \tau$ are isomorphic outside $C$. By slope-stability, the section $\tau$ has isolated zeroes, hence $E / \operatorname{Im} \tau$ is torsion-free, and we conclude that $\eta$ is torsion-free outside $C$. Thus $\eta \cong I_{W}(k)$ for some integer $k$. Since $c_{1}(F)=0$, we have $k=0$, and since $c_{2}(F)=4$ the length of $W$ is 2 . This proves $F$ fits into Exact Sequence (3.3.16). Finally, since $\eta$ is locally-free on $C, W$ does not intersect $C$. Since $Z \subset C$, we conclude $Z \neq W$.
q.e.d.

By Claim (3.3.15) we get the desired extension of $\psi_{0}$ by setting

$$
\begin{array}{ccc}
P_{C} & \xrightarrow{\psi} & V_{C} \\
([E], f) & \mapsto & {[F]}
\end{array},
$$

where notation is as above. Let's prove Proposition (3.0.4). Item (1) holds by Isomorphism (3.2.5) and Proposition (3.2.8). Item (2) holds by Claim (3.3.15).

### 3.4. Proof of Propositions (3.0.5) and (3.0.8).

Proof of Proposition (3.0.5). Consider the restriction of the determinant map $\phi$ to $B$, given by (3.1.2). Let $X_{(4)}^{(4)} \subset X^{(4)}$ be the open stratum of Stratification (3.1.3), i.e. the partition is (4) := (4, 0, 0, 0), and set

$$
B^{0}:=\phi^{-1} X_{(4)}^{(4)} .
$$

Let $\gamma \in X_{(4)}^{(4)}$, so $\gamma=q_{1}+\cdots+q_{4}$, where the $q_{j}$ are pairwise distinct. Let $\operatorname{Quot}\left(\mathcal{O}_{X}^{(2)}, \gamma\right)$ be the quot-scheme parametrizing quotients $\Psi: \mathcal{O}_{X}^{(2)} \rightarrow \bigoplus_{j=1}^{4} \mathbf{C}_{q_{j}}$. Thus

$$
\operatorname{Quot}\left(\mathcal{O}_{X}^{(2)}, \gamma\right) \cong \mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1}
$$

The group $\mathbf{P A u t}\left(\mathcal{O}_{X}^{(2)}\right) \cong \operatorname{PGL}(2)$ acts on this quot-scheme (the diagonal action on $\left.\mathbf{P}^{1} \times \cdots \times \mathbf{P}^{1}\right)$. Choose the symmetric linearization of this action: as is easily verified (semi)stability of $\left(\left[\Psi_{1}\right],\left[\Psi_{2}\right],\left[\Psi_{3}\right],\left[\Psi_{4}\right]\right) \in\left(\mathbf{P}^{1}\right)^{4}$ is equivalent to (semi)stability of the sheaf $F$ fitting into the exact sequence

$$
0 \rightarrow F \rightarrow \mathcal{O}_{X}^{(2)} \xrightarrow{\Psi} \bigoplus_{j=1}^{4} \mathbf{C}_{q_{j}} \rightarrow 0
$$

Hence we get a morphism

$$
\begin{array}{clc}
\mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1} / / \mathrm{PGL}(2) & \stackrel{\iota}{\rightarrow} & B \\
\text { point representing }\left(\left[\Psi_{1}\right],\left[\Psi_{2}\right],\left[\Psi_{3}\right],\left[\Psi_{4}\right]\right) & \mapsto & {[F] .}
\end{array}
$$

As is easily checked this map is injective. Since every sheaf parametrized by $\phi^{-1} \gamma$ is equivalent to the kernel $F$ of some quotient in $\operatorname{Quot}\left(\mathcal{O}_{X}^{(2)}, \gamma\right)^{s s}$, the map is one-to-one onto $\phi^{-1}(\gamma)$. A local computation shows that the differential if $\iota$ is injective everywhere. This shows that $B^{0}$ is a $\mathbf{P}^{1}$-fibration as claimed. It remains to prove that $B^{0}$ is dense in $B$. As is well-known the locus $B_{Q} \subset Q_{4}$ in the Quot-scheme (see (1.1)) parametrizing singular sheaves has codimension one. It follows immediately that $B^{s t}$ is of pure codimension one in $\mathcal{M}_{4}$. Since $\Sigma$ is in the closure of $B^{s t}$ (easy), we get that $B$ has pure codimension one. Since $\operatorname{dim} \mathcal{M}_{4}=10$, we get $\operatorname{dim} B=9$. Hence to prove that $B^{0}$ is dense in $B$ it suffices to show that for all partitions $p$ of 4 different from (4), we have

$$
\begin{equation*}
\operatorname{dim} \phi^{-1} X_{p}^{(4)}<9 \tag{3.4.1}
\end{equation*}
$$

Since $\operatorname{dim} \phi^{-1} X_{p}^{(4)} \leq \operatorname{dim} \widetilde{\phi}^{-1} X_{p}^{(4)}$ ( $\widetilde{\pi}$ is surjective !) it suffices to prove Inequality (3.4.1) with $\phi$ replaced by $\widetilde{\phi}$. This follows at once from the lemma below.
(3.4.2) Lemma. Let $p=\left(p_{1}, \ldots, p_{4}\right)$ be a partition of 4 . If $\gamma \in X_{p}^{(4)}$, then

$$
\operatorname{dim} \tilde{\phi}^{-1}(\gamma) \leq 5-\sum_{i=1}^{4} p_{i}
$$

Proof. The map

$$
\widetilde{\phi}^{-1} X_{p}^{(4)} \xrightarrow{\widetilde{\phi}} X_{p}^{(4)}
$$

is a locally trivial fibration in the analytic topology, hence the fibers have a constant dimension, say $d$. Thus $\widetilde{\phi}^{-1} X_{p}^{(4)} \subset \Gamma_{d}$, so that by Proposition (3.0.2)

$$
d \leq \operatorname{cod}\left(\widetilde{\phi}^{-1} X_{p}^{(4)}, \widetilde{\mathcal{M}}_{4}\right)=10-\left(\operatorname{dim} X_{p}^{(4)}+d\right)
$$

Since $\operatorname{dim} X_{p}^{(4)}=2 \sum_{i=1}^{4} p_{i}$, the lemma follows . q.e.d.

Proof of Proposition (3.0.8). We claim that every irreducible component of $B_{C}$ has dimension at least 8 . Let

$$
X_{C}^{(4)}:=\left\{\gamma \in X^{(4)} \mid \operatorname{supp} \gamma \cap C \neq \emptyset\right\}
$$

so that

$$
\begin{equation*}
B_{C}=\left(\left.\phi\right|_{B}\right)^{-1} X_{C}^{(4)} \tag{3.4.3}
\end{equation*}
$$

Since $X^{(4)}$ is the Quotient of a smooth variety by a finite group, $X_{C}^{(4)}$ is a $\mathbf{Q}$-Cartier divisor in $X^{(4)}$; by (3.4.3) every component of $B_{C}$ has codimension at most one in $B$, and this proves our claim. To prove that $B_{C}^{0}$ is dense in $B_{C}$ one proceeds as in the proof that $B^{0}$ is dense in $B$. We consider the stratification of $\phi\left(B_{C}\right)$
obtained by intersecting with the strata $X_{p}^{(4)}$, and applying Lemma (3.4.2) we get that $\phi^{-1}\left(X_{(4)}^{(4)} \cap X_{C}^{(4)}\right)$ is dense in $B_{C}$. Proposition (3.0.8) follows immediately from this.

## 4. $\widetilde{\mathcal{M}}_{4}$ is simply-connected.

We assume that $H^{2}=2$ and that $\operatorname{Pic}(X)=\mathbf{Z}[H]$. We will show that $\widetilde{\mathcal{M}}_{4}$ is birational to (a component of) the Jacobian fibration parametrizing (stable) degree-six line-bundles on curves in $\left|\mathcal{O}_{X}(2)\right|$. This implies that $\pi_{1}(\mathcal{J})$ surjects onto $\pi_{1}\left(\widetilde{\mathcal{M}}_{4}\right)$, hence it will suffice to show that $\mathcal{J}$ is simply connected. The latter result is proved by a monodromy argument.

## 4.1. $\widetilde{\mathcal{M}}_{4}$ is birational to a Jacobian fibration.

Let $C \subset\left|\mathcal{O}_{X}(2)\right|$ be a reduced irreducible curve, $\iota: C \hookrightarrow X$ be inclusion, and $L$ a degree-six line-bundle on $C$. We let $\mathcal{N}$ be Simpson's moduli space [LP2,S] of pure one-dimensional sheaves $\xi$ on $X$, stable with respect to $\mathcal{O}_{X}(1)$, with

$$
\chi(\xi(n))=\chi\left(\iota_{*} L(n)\right)
$$

Thus $\left[\iota_{*} L\right]$ is a typical point of $\mathcal{N}$. We will be interested in a certain open subset of $\mathcal{N}$ defined as follows. First, let $U \subset\left|\mathcal{O}_{X}(2)\right|$ be the open subset parametrizing reduced curves. The following result is a straightforward application of the definition of stability according to Simpson [LP2,S].
(4.1.1) Lemma. Let $[C] \in U$, and let $L$ be a line-bundle on $C$ such that:

1. if $C$ is irreducible, the degree of $L$ is 6 ,
2. if $C=C_{1} \cup C_{2}$ and $L_{i}:=\left.L\right|_{C_{i}}$, the degree of $L_{i}$ is 3 .

Then $\iota_{*} L$ is a stable pure one-dimensional sheaf on $X$.
Definition. Let $\mathcal{J} \subset \mathcal{N}$ be the open set parametrizing sheaves $\iota_{*} L$, where $[C] \in U, \iota: C \hookrightarrow X$ is inclusion, and $L$ is a line-bundle on $C$ satisfying the hypotheses of Lemma (4.1.1). We will often denote by $(C, L)$ the point $\left[\iota_{*} L\right] \in \mathcal{J}$.
(4.1.2) Proposition. $\mathcal{J}$ is smooth of dimension 10.

Proof. By results of Mukai [M1] we know that $\mathcal{N}$ is smooth of dimension 10. Since $\mathcal{J}$ is open in $\mathcal{N}$, the proposition follows.

Let

$$
\mathcal{J}^{0}:=\left\{(C, L) \in \mathcal{J} \mid C \text { is smooth, } h^{0}(L)=2 \text { and } L \text { is globally generated }\right\}
$$

If $(C, L) \in \mathcal{J}$, then $\chi(L)=2$, hence $h^{0}(L) \geq 2$; thus $\mathcal{J}^{0}$ is open in $\mathcal{J}$. Furthermore, as is easily verified, $\mathcal{J}^{0}$ is non-empty. Let $(C, L) \in \mathcal{J}^{0}$. Following Lazarsfeld [La] we will associate to ( $C, L$ ) a stable rank-two vector-bundle on $X$ with $c_{1}=0, c_{2}=4$; this construction will define an isomorphism between $\mathcal{J}^{0}$ and an open subset of $\widetilde{\mathcal{M}}_{4}$. Since $L$ is globally generated, the evaluation map $H^{0}(L) \otimes \mathcal{O}_{X} \rightarrow \iota_{*} L$ is surjective: let $E$ be the sheaf on $X$ fitting into the exact sequence

$$
\begin{equation*}
0 \rightarrow E \xrightarrow{\epsilon} H^{0}(L) \otimes \mathcal{O}_{X} \rightarrow \iota_{*} L \rightarrow 0 \tag{4.1.3}
\end{equation*}
$$

Lemma. Keeping notation as above, $E$ is a slope-stable rank-two vector bundle on $X$ with Chern classes $c_{1}(E)=-2 H, c_{2}(E)=6$.
Proof. The Chern classes are easily computed from (4.1.3). To show stability, consider the exact sequence

$$
0 \rightarrow L^{-1} \rightarrow H^{0}(L) \otimes \mathcal{O}_{C} \rightarrow L \rightarrow 0
$$

By (4.1.3) we have

$$
\begin{equation*}
\operatorname{Im}\left(\left.\epsilon\right|_{C}\right)=L^{-1} \tag{4.1.4}
\end{equation*}
$$

Now suppose $E$ is not stable: since $\operatorname{Pic}(X)=\mathbf{Z}[H]$ there is an injection of sheaves $\mathcal{O}_{X}(k) \stackrel{\alpha}{\hookrightarrow} E$, where $k \geq-1$. By (4.1.4)

$$
\left.(\epsilon \circ \alpha)\right|_{C} \in H^{0}\left(L^{-1}(-k)\right) .
$$

Since $\operatorname{deg} L=6$, we have $\operatorname{deg} L^{-1}(-k) \leq-2$. Thus $\epsilon \circ \alpha$ vanishes on $C$, i.e.

$$
\epsilon \circ \alpha \in H^{0}\left(\mathcal{O}_{X}^{(2)}(-k)(-C)\right)=H^{0}\left(\mathcal{O}_{X}^{(2)}(-k-2)\right)
$$

Since $k \geq-1$, this last group is zero, contradiction.
q.e.d.

Set $F:=E(1)$; by the above lemma $F$ is a slope-stable rank-two vector-bundle on $X$ with $c_{1}(F)=0$, $c_{2}(F)=4$. Thus we can define $\Phi^{0}: \mathcal{J}^{0} \rightarrow \mathcal{M}_{4}$ by setting

$$
\begin{array}{rlll}
\mathcal{J}^{0} & \xrightarrow{\Phi^{0}} & \mathcal{M}_{4} \\
(C, L) & \mapsto & {[F] .}
\end{array}
$$

Let $\mathcal{M}_{4}^{0} \subset \mathcal{M}_{4}^{l f}$ be the subset parametrizing sheaves $F$ such that $h^{0}(F(1))=2$, and such that the locus where the evaluation map

$$
H^{0}(F(1)) \otimes \mathcal{O}_{X} \xrightarrow{f} F(1)
$$

drops rank is a smooth curve.
(4.1.5) Proposition. Keeping notation as above, $\mathcal{M}_{4}^{0}$ is an open subset of $\mathcal{M}_{4}$. The map $\Phi^{0}$ is an isomorphism of $\mathcal{J}^{0}$ onto $\mathcal{M}_{4}^{0}$.
Proof. To simplify notation we set $G:=F(1)$, where $[F] \in \mathcal{M}_{4}^{l f}$. By Riemann-Roch we get $\chi(G)=2$. By Serre duality $h^{2}(G)=h^{0}\left(G^{*}\right)$, hence stability gives $h^{2}(G)=0$. Thus $h^{0}(G) \geq 2$, so that the locus where $h^{0}(G)=2$ is open in $\mathcal{M}_{4}^{l f}$ (which is open in $\mathcal{M}_{4}$ ). The other condition defining $\mathcal{M}_{4}^{0}$ is clearly open. Now let's prove $\Phi^{0}\left(\mathcal{J}^{0}\right) \subset \mathcal{M}_{4}^{0}$. Tensoring (4.1.3) by $\mathcal{O}_{X}(2)$ and observing that $G=E(2)$, we get

$$
\begin{equation*}
0 \rightarrow G \rightarrow \mathcal{O}_{X}^{(2)}(2) \rightarrow \iota_{*} L(2) \rightarrow 0 \tag{4.1.6}
\end{equation*}
$$

The long exact sequence of $\operatorname{Tor}\left(\cdot, \mathcal{O}_{C}\right)$ associated to (4.1.6) gives

$$
\left.0 \rightarrow L \rightarrow G\right|_{C} \rightarrow L^{-1}(2) \rightarrow 0
$$

From (4.1.6) we get a natural injection $\beta: \mathcal{O}_{X}^{(2)}(2)(-C) \hookrightarrow G$, and $\operatorname{Im}\left(\left.\beta\right|_{C}\right)=L$. Since $C \in\left|\mathcal{O}_{X}(2)\right|$ we get an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}^{(2)} \xrightarrow{\gamma} G \rightarrow \iota_{*} L^{-1}(2) \rightarrow 0 \tag{4.1.7}
\end{equation*}
$$

By adjunction $\mathcal{O}_{C}(2) \cong K_{C}$, hence Serre duality gives $h^{0}\left(L^{-1}(2)\right)=h^{1}(L)$. By hypothesis $h^{0}(L)=\chi(L)$, hence $h^{1}(L)=0$. Thus the cohomology long exact sequence of (4.1.7) gives $h^{0}(G)=2$. Furthermore the map $\gamma$ drops rank along $C$, which is smooth, hence $[F] \in \mathcal{M}_{4}^{0}$. Now we define an inverse

$$
\left(\Phi^{0}\right)^{-1}: \mathcal{M}_{4}^{0} \rightarrow \mathcal{J}^{0} .
$$

Let $[F] \in \mathcal{M}_{4}^{0}$. Since $[F] \in \mathcal{M}_{4}^{0}$, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow H^{0}(G) \otimes \mathcal{O}_{X} \xrightarrow{f} G \rightarrow \iota_{*} \xi \rightarrow 0 \tag{4.1.8}
\end{equation*}
$$

where $(\operatorname{det} f) \in\left|\mathcal{O}_{X}(2)\right|$ is smooth: set $C:=(\operatorname{det} f)$. The map $f$ is nowhere zero because $C$ is smooth, hence $\xi$ is a line-bundle on $C$ : we can write $\xi=L^{-1} \otimes K_{C}$, where $L$ is a line-bundle. By a Chern class computation one gets $\operatorname{deg} L=6$. Since $h^{0}(G)=2$, the cohomology long exact sequence of (4.1.8) gives $h^{0}\left(L^{-1} \otimes K_{C}\right)=0$.

Thus $h^{1}(L)=0$, so that $h^{0}(L)=2$. Furthermore, the long exact sequence of $\operatorname{Tor}\left(\cdot, \mathcal{O}_{C}\right)$ associated to (4.1.8) gives

$$
\left.0 \rightarrow L \rightarrow G\right|_{C} \rightarrow L^{-1} \otimes K_{C} \rightarrow 0
$$

Since $\left.(\operatorname{Im} f)\right|_{C}=L$, the line-bundle $L$ is generated by global sections. We have proved $(C, L) \in \mathcal{J}^{0}$. As is easily verified the map

$$
\begin{array}{ccc}
\mathcal{M}_{4}^{0} & \rightarrow & \mathcal{J}^{0} \\
{[F]} & \rightarrow & (C, L)
\end{array}
$$

is the inverse of $\Phi^{0}$.
q.e.d.

We can view $\Phi^{0}$ as a map to $\widetilde{\mathcal{M}}_{4}$, because by Proposition (1.1.5) $\mathcal{M}_{4}^{0}$ is in the stable locus of $\mathcal{M}_{4}$. Since $\widetilde{\mathcal{M}}_{4}$ is irreducible, Proposition (4.1.5) implies that $\Phi^{0}$ extends to a birational map

$$
\Phi: \mathcal{J} \cdots>\widetilde{\mathcal{M}}_{4}
$$

Let $I(\Phi) \subset \mathcal{J}$ be the indeterminacy locus of $\Phi$. By Proposition (4.1.2) $\mathcal{J}$ is smooth, hence $I(\Phi)$ has codimension at least two and the map induced by inclusion

$$
\pi_{1}(\mathcal{J} \backslash I(\Phi)) \rightarrow \pi_{1}(\mathcal{J})
$$

is an isomorphism. On the other hand, since $\Phi$ is a birational map and $\widetilde{\mathcal{M}}_{4}$ is smooth, the map

$$
\pi_{1}(\mathcal{J} \backslash I(\Phi)) \rightarrow \pi_{1}\left(\widetilde{\mathcal{M}}_{4}\right)
$$

is surjective. Thus we have proved the following result.
(4.1.9) Proposition. The map $\Phi$ induces a surjection $\pi_{1}(\mathcal{J}) \rightarrow \pi_{1}\left(\widetilde{\mathcal{M}}_{4}\right)$.

## 4.2. $\mathcal{J}$ is simply-connected.

Let $f: X \rightarrow\left|\mathcal{O}_{X}(1)\right|^{*} \cong \mathbf{P}^{2}$ be the two-to-one cover, and let $B \subset \mathbf{P}^{2}$ be the (sextic) branch curve. Let $V \subset U$ be the open subset parametrizing smooth curves $C \in\left|\mathcal{O}_{X}(2)\right|$. Then

$$
\begin{equation*}
V=U \backslash(\Delta \cup \Lambda), \tag{4.2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta & :=\left\{C \in\left|\mathcal{O}_{X}(2)\right| \mid\right. \\
\Lambda:=\left\{C \in\left|\mathcal{O}_{X}(2)\right| \mid\right. & f(C) \text { is a smooth conic tangent to } B\}, \\
\Lambda & :=\left\{\begin{array}{l}
\text { ingular reduced conic }\} .
\end{array}\right.
\end{aligned}
$$

Let

$$
\begin{array}{ccc}
\mathcal{J} & \xrightarrow{\rho} & \left|\mathcal{O}_{X}(2)\right| \cong \mathbf{P}^{5} \\
\xi & \mapsto & \operatorname{supp} \xi,
\end{array}
$$

and set $\mathcal{J}_{V}:=\rho^{-1} V$. By Proposition (4.1.2) $\mathcal{J}$ is smooth, hence the map

$$
j_{\#}: \pi_{1}\left(\mathcal{J}_{V}\right) \rightarrow \pi_{1}(\mathcal{J})
$$

induced by inclusion $j: \mathcal{J}_{V} \hookrightarrow \mathcal{J}$ is surjective. We will show $j_{\#}$ is trivial: this will prove $\mathcal{J}$ is simplyconnected. The map $\mathcal{J}_{V} \rightarrow V$ is a fibration with fibers 5 -dimensional Jacobians. The homotopy exact sequence of a fibration gives an exact sequence

$$
\pi_{1}(J a c(C)) \rightarrow \pi_{1}\left(\mathcal{J}_{V}\right) \rightarrow \pi_{1}(V) \rightarrow\{1\}
$$

where $C \in\left|\mathcal{O}_{X}(2)\right|$ is a fixed smooth curve.
(4.2.2) Lemma. Keeping notation as above, the restriction of $j_{\#}$ to $\pi_{1}(\operatorname{Jac}(C))$ is trivial.

Proof. We have an isomorphism $\pi_{1}(\operatorname{Jac}(C)) \cong H_{1}(C ; \mathbf{Z})$. As is easily seen the vanishing cycles on $C$ for the family of curves parametrized by $V$ generate all of $H_{1}(C ; \mathbf{Z})$. Since $j_{\#}$ is trivial on vanishing cycles, the lemma follows.
q.e.d.

By the above lemma, $j_{\#}$ induces a surjective homomorphism $\bar{j}_{\#}: \pi_{1}(V) \rightarrow \pi_{1}(\mathcal{J})$. We will finish the proof by showing that $\bar{j}_{\#}$ is trivial. This is a consequence of the following easy result.
(4.2.3) Lemma. Let $D \subset \mathbf{C}$ be a disc centered at 0 , and let $\psi: D \hookrightarrow U$ be a (holomorphic) embedding such that:

1. $\psi\left(D^{0}\right) \subset V$, where $D^{0}:=D \backslash\{0\}$,
2. $\psi(0)$ is a smooth point of $\Delta$ (or $\Lambda$ ), and $D$ intersects $\Delta$ (respectively $\Lambda$ ) transversely.

Then, after shrinking $D$, we can assume there exists a lift $\widetilde{\psi}: D \rightarrow \mathcal{J}$ of $\psi$.
Proof. Let $q: \mathcal{C} \rightarrow D$ be the family of curves in $\left|\mathcal{O}_{X}(2)\right|$ parametrized by $D$. By Item (2) the analytic surface $\mathcal{C}$ is smooth. Shrinking $D$ we can assume there exists a line-bundle $\mathcal{L}$ on $\mathcal{C}$ such that for each $t \in D$, the couple $\left(q^{-1} t,\left.\mathcal{L}\right|_{q^{-1} t}\right)$ satisfies the hypotheses of Lemma (4.1.1). By the modular property of $\mathcal{J}$ the couple $(\mathcal{C}, \mathcal{L})$ induces a morphism $\widetilde{\psi}: D \rightarrow \mathcal{J}$ lifting $\psi$.
q.e.d.

To finish the proof that $\bar{j}_{\#}$ is trivial, let $R \subset U$ be a straight line (notice that $\left|\mathcal{O}_{X}(2)\right| \backslash U$ has codimension 3) transverse to $\Delta$ and $\Lambda$. The map induced by inclusion

$$
\pi_{1}(R \backslash(\Delta \cup \Lambda)) \rightarrow \pi_{1}(V)
$$

is a surjection by Bertini's Theorem [GM, p.151]. The fundamental group on the left is generated by $\pi_{1}\left(D_{x_{i}}^{0}\right)$, where $R \cap(\Delta \cup \Lambda)=\left\{x_{1}, \ldots, x_{k}\right\}$, and $D_{x_{i}}^{0} \subset(R \backslash(\Delta \cup \Lambda))$ is a small punctured disc centered at $x_{i}$. By Lemma (4.2.3) the map $\bar{j}_{\#}$ is trivial on each $\pi_{1}\left(D_{x_{i}}^{0}\right)$. This shows $\bar{j}_{\#}$ is trivial, and concludes the proof that $\mathcal{J}$ is simply-connecetd.

## 5. Proof that $b_{2}\left(\widetilde{\mathcal{M}}_{4}\right) \geq 24$.

Let $\phi: \mathcal{M}_{4} \rightarrow \mathbf{P}^{N}$ be the determinant map of Subsection (3.1). Composing Donaldson's map $\mu: H_{2}(X ; \mathbf{Q}) \rightarrow$ $H^{2}\left(\phi\left(\mathcal{M}_{4}\right) ; \mathbf{Q}\right)$ (see [FM,Mo]) with pull-back by $\phi$, we get

$$
\phi^{*} \mu: H_{2}(X ; \mathbf{Q}) \rightarrow H^{2}\left(\mathcal{M}_{4} ; \mathbf{Q}\right)
$$

This map is an injection, because by [FM VII.2.17,Mo]

$$
\begin{equation*}
\int_{\mathcal{M}_{4}} \wedge^{10}\left(\phi^{*} \mu(\alpha)\right)=\frac{10!}{5!2^{5}}\left(\int_{X} \wedge^{2} \alpha\right)^{5} \tag{5.1}
\end{equation*}
$$

(5.2) Claim. Keep notation as above, and let $h \in H^{2}\left(\mathcal{M}_{4}\right)$ be the class of an ample divisor. Then

$$
\operatorname{dim}\left(\mathbf{Q} \widetilde{\pi}^{*} h+\widetilde{\pi}^{*} \phi^{*} \mu\left(H_{2}(X ; \mathbf{Q})\right)\right)=23
$$

Proof. Consider the boundary divisor $B \subset \mathcal{M}_{4}$ (see (3.1)). By Proposition (3.0.5) $B$ contains $\mathbf{P}^{1}$ 's contracted by $\phi$. If $\widetilde{\mathbf{P}}^{1} \subset \widetilde{\mathcal{M}}_{4}$ is the proper transform of a $\mathbf{P}^{1} \subset B$ contracted by $\phi$, then

$$
\left\langle\widetilde{\pi}^{*} h, \widetilde{\mathbf{P}}^{1}\right\rangle \neq 0, \quad\left\langle\widetilde{\pi}^{*} \phi^{*} \mu\left(H_{2}(X ; \mathbf{Q})\right), \widetilde{\mathbf{P}}^{1}\right\rangle=0
$$

Thus $\mathbf{Q} \widetilde{\pi}^{*} h$ is not contained in $\widetilde{\pi}^{*} \phi^{*} \mu\left(H_{2}(X ; \mathbf{Q})\right)$. Furthermore the subspace $\widetilde{\pi}^{*} \phi^{*} \mu\left(H_{2}(X ; \mathbf{Q})\right)$ has dimension 22 by (5.1). This proves the claim.
q.e.d.

Finally let's show that $\mathbf{Q} c_{1}(\widetilde{\Sigma})$ and $\mathbf{Q} \widetilde{\pi}^{*} h+\widetilde{\pi}^{*} \phi^{*} \mu\left(H_{2}(X ; \mathbf{Q})\right)$ span a 24 -dimensional subspace of $H^{2}\left(\widetilde{\mathcal{M}}_{4} ; \mathbf{Q}\right)$. Let $\widetilde{\Sigma}_{Z, W} \subset \widetilde{\mathcal{M}}_{4}$ be the fiber of $\widetilde{\pi}$ over $\left[I_{Z} \oplus I_{W}\right]$, where $Z \neq W$. By (2.2.4) $\widetilde{\Sigma}_{Z, W} \cong \mathbf{P}^{1}$, and by (2.2.5)

$$
\left\langle c_{1}(\widetilde{\Sigma}), \widetilde{\Sigma}_{Z, W}\right\rangle=-2, \quad\left\langle\mathbf{Q} \widetilde{\pi}^{*} h \oplus \widetilde{\pi}^{*} \phi^{*} \mu\left(H_{2}(X ; \mathbf{Q})\right), \widetilde{\Sigma}_{Z, W}\right\rangle=0 .
$$

Thus $\mathbf{Q} c_{1}(\widetilde{\Sigma})$ is not contained in $\mathbf{Q} \widetilde{\pi}^{*} h+\widetilde{\pi}^{*} \phi^{*} \mu\left(H_{2}(X ; \mathbf{Q})\right)$. By Claim (5.2) we conclude that

$$
\operatorname{dim}\left(\mathbf{Q} c_{1}(\widetilde{\Sigma})+\mathbf{Q} \widetilde{\pi}^{*} h+\widetilde{\pi}^{*} \phi^{*} \mu\left(H_{2}(X ; \mathbf{Q})\right)\right)=24
$$

## 6. Towards a smooth minimal model of $\mathcal{M}_{c}$, for $c \geq 6$.

We begin by stating some auxiliary results. If $V$ is a three-dimensional vector space, let

$$
\mathbf{C C}(V):=\text { closure of }\left\{(C, D) \in \mathbf{P}\left(S^{2} V\right) \times \mathbf{P}\left(S^{2} \check{V}\right) \mid C, D \text { are smooth conics dual to each other }\right\}
$$

i.e. the space of complete conics in $\mathbf{P}(\check{V})$. Let $\mathbf{G r}^{\omega}\left(3, T_{X}{ }^{[n]}\right)$ be the relative symplectic Grassmannian over $X^{[n]}$, with fiber $\mathbf{G r}^{\omega}\left(3, E_{Z}\right)$ over $[Z] \in X^{[n]}$. Let $\mathcal{B}$ be the tautological rank-three bundle over $\mathbf{G r}^{\omega}\left(3, T_{X[n]}\right)$, and $\mathbf{C C}(\mathcal{B})$ be the tautological family of complete conics over $\mathbf{G r}^{\omega}\left(3, T_{X^{[n]}}\right)$. Thus we have a locally-trivial fibration


We will prove (later) the following.
(6.0.1) Proposition. Keep notation as above, and assume $c \geq 6$. Then $\widehat{\Omega}_{c}$ is isomorphic to $\mathbf{C C}(\mathcal{B})$; under this isomorphism the map

$$
\left.\widehat{\pi}\right|_{\widehat{\Omega}_{c}}: \widehat{\Omega}_{c} \rightarrow \Omega_{c} \cong X^{[n]}
$$

corresponds to the natural projection $\mathbf{C C}(\mathcal{B}) \rightarrow X^{[n]}$.
For $[Z] \in X^{[n]}$, let

$$
\widehat{\Omega}_{Z}:=\mathbf{C C}\left(\mathcal{B}_{Z}\right) \cong \widehat{\pi}^{-1}\left(\left[I_{Z} \oplus I_{Z}\right]\right) \cap \widehat{\Omega}_{c}
$$

where $\mathcal{B}_{Z}$ is the restriction of $\mathcal{B}$ to $\mathbf{G r}^{\omega}\left(3, E_{Z}\right)$. Let's define classes $\widehat{\sigma}_{Z}, \widehat{\epsilon}_{Z}, \widehat{\gamma}_{Z} \in N E_{1}\left(\widehat{\Omega}_{Z}\right)$ as follows. If $[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$ let $\widehat{\Omega}_{B}$ be the fiber over $[B]$ of the natural fibration $\widehat{\Omega}_{Z} \rightarrow \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$; thus $\widehat{\Omega}_{B} \cong \mathbf{C C}(B)$. We have two projections

$$
\mathbf{P}\left(S^{2} B\right) \stackrel{\Phi_{B}}{\longleftrightarrow} \mathbf{C C}(B) \xrightarrow{\check{\Phi}_{B}} \mathbf{P}\left(S^{2} \check{B}\right)
$$

Each of $\Phi_{B}, \check{\Phi}_{B}$ is the blow-up of the locus parametrizing conics of rank one. Set

$$
\begin{aligned}
& \widehat{\sigma}_{Z}:=\text { class in } N_{1}\left(\widehat{\Omega}_{Z}\right) \text { of a line in a } \mathbf{P}^{2} \text {-fiber of } \check{\Phi}_{B} \\
& \widehat{\epsilon}_{Z}:=\text { class in } N_{1}\left(\widehat{\Omega}_{Z}\right) \text { of a line in a } \mathbf{P}^{2} \text {-fiber of } \Phi_{B}
\end{aligned}
$$

To define $\hat{\gamma}_{Z}$, choose $[A] \in \mathbf{G r}^{\omega}\left(2, E_{Z}\right), q \in S^{2} A$ of rank two, and a line $\Lambda \subset \mathbf{P}\left(A^{\perp} / A\right)$. For $t \in \Lambda$, let $B_{t} \subset E_{Z}$ be the three-dimensional subspace containing $A$ and projecting to the line corresponding to $t$; clearly $\left[B_{t}\right] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$. Furthermore, let $q_{t} \in S^{2} B_{t}$ be the image of $q$ under the inclusion $A \hookrightarrow B_{t}$. We set

$$
\widehat{\gamma}_{Z}:=\text { class in } N_{1}\left(\widehat{\Omega}_{Z}\right) \text { of }\left\{\Phi_{B_{t}}^{-1}\left(\left[q_{t}\right]\right)\right\}_{t \in \Lambda} .
$$

Notice that since $q_{t}$ has rank two for all $t,\left[q_{t}\right]$ is never in the exceptional locus of $\Phi_{B_{t}}$, and thus the right-hand side of the above equality is indeed a curve. Now let $i^{Z}: \widehat{\Omega}_{Z} \hookrightarrow \widehat{\mathcal{M}}_{c}$ be inclusion, and set

$$
\begin{aligned}
\widehat{\sigma}_{c} & :=i_{*}^{Z} \widehat{\sigma}_{Z}, \\
\widehat{\epsilon}_{c} & :=i_{*}^{Z} \widehat{\epsilon}_{Z}, \\
\widehat{\gamma}_{c} & :=i_{*}^{Z} \widehat{\gamma}_{Z} .
\end{aligned}
$$

Notice that the right-hand sides of the above equalities are independent of $Z$, thus $\widehat{\sigma}_{c}, \widehat{\epsilon}_{c}, \widehat{\gamma}_{c}$ are well-defined elements of $N E_{1}\left(\widehat{\mathcal{M}}_{c}\right)$. Later we will prove the following.
(6.0.2) Proposition. Keep notation as above, and assume $c \geq 6$. Then:

1. $\widehat{\sigma}_{c}, \widehat{\epsilon}_{c}, \widehat{\gamma}_{c}$ are linearly independent.
2. $\mathbf{R}^{+} \widehat{\sigma}_{c} \oplus \mathbf{R}^{+} \widehat{\epsilon}_{c} \oplus \mathbf{R}^{+} \widehat{\gamma}_{c}$ is a $K_{\widehat{\mathcal{M}}_{c}}$-negative extremal face of $\overline{N E}_{1}\left(\widehat{\mathcal{M}}_{c}\right)$.

Let $\overline{\mathcal{M}}_{c}$ be the scheme obtained contracting the $K_{\widehat{\mathcal{M}}_{c}}$-negative extremal ray $\mathbf{R}^{+} \widehat{\sigma}_{c}$.
(6.0.3) Proposition. Keep notation as above. Then $\overline{\mathcal{M}}_{c}$ is a smooth projective desingularization of $\mathcal{M}_{c}$.

Let $\bar{\epsilon}_{c} \in N_{1}\left(\overline{\mathcal{M}}_{c}\right)$ be the image of $\widehat{\epsilon}_{c}$. We will prove the following.
(6.0.4) Proposition. Keep notation as above. Then $\mathbf{R}^{+} \bar{\epsilon}_{c}$ is a $K_{\overline{\mathcal{M}}_{c}}$-negative extremal ray of $\overline{N E}_{1}\left(\overline{\mathcal{M}}_{c}\right)$. The scheme $\widetilde{\mathcal{M}}_{c}$ obtained contracting $\mathbf{R}^{+} \bar{\epsilon}_{c}$ is a smooth projective desingularization of $\mathcal{M}_{c}$. It carries a holomorphic two-form, degenerate on a single irreducible divisor (the image of $\widehat{\Sigma}_{c}$ under the map $\widehat{\mathcal{M}}_{c} \rightarrow \widetilde{\mathcal{M}}_{c}$ ).

We stop at $\widetilde{\mathcal{M}}_{c}$ : it is the best we can do in trying to find a smooth symplectic model of $\mathcal{M}_{c}$. If $\widetilde{\gamma}_{c} \in N E_{1}\left(\widetilde{\mathcal{M}}_{c}\right)$ denotes the image of $\widehat{\gamma}_{c}$, then $\mathbf{R}^{+} \widetilde{\gamma}_{c}$ is a $K_{\widetilde{\mathcal{M}}_{c}}$-negative extremal ray; let $\mathcal{M}_{c}^{b}$ be the scheme obtained contracting $\mathbf{R}^{+} \widetilde{\gamma}_{c}$. Then $\mathcal{M}_{c}^{b}$ is a minimal model (the canonical bundle is trivial) of $\mathcal{M}_{c}$, but it is not smooth. In fact

$$
\left(\mathcal{M}_{c} \backslash \Omega_{c}\right) \cong\left(\mathcal{M}_{c}^{b} \backslash \Omega_{c}^{b}\right),
$$

where $\Omega_{c}^{b}$ is the image of $\widehat{\Omega}_{c}$. As a last observation, we remark that $\mathcal{M}_{c}$ is obtained from $\widehat{\mathcal{M}}_{c}$ as follows: first we contract $\mathbf{R}^{+} \widehat{\gamma}_{c}$ to get $S_{c} / / \operatorname{PGL}(N)$, then we contract the image of $\mathbf{R}^{+} \widehat{\epsilon}_{c}$ in $N E_{1}\left(S_{c} / / \mathrm{PGL}(N)\right)$ to get $R_{c} / / \mathrm{PGL}(N)$, finally the contraction of the image of $\mathbf{R}^{+} \widehat{\sigma}_{c}$ in $N E_{1}\left(R_{c} / / \operatorname{PGL}(N)\right)$ gives $\mathcal{M}_{c}$. In other words, $\mathcal{M}_{c}^{b}$ is obtained from $\widehat{\mathcal{M}}_{c}$ by reversing the order of the contractions.

### 6.1. Proof of Proposition (6.0.1).

Let $x \in \Omega_{Q}^{0}$ : set $F_{x}=I_{Z} \otimes V$ and $W=\operatorname{sl}(V)$. (Here $V \cong \mathbf{C}^{2}$.) Consider the following fiber bundles over $\mathbf{G r}^{\omega}\left(3, E_{Z}\right)$ :

```
\(\operatorname{PHom}\left(W, \mathcal{B}_{Z}\right):=\mathbf{P}\left(\check{W} \otimes \mathcal{B}_{Z}\right)\),
\(\mathbf{P} \operatorname{Hom}_{k}\left(W, \mathcal{B}_{Z}\right):=\left\{\varphi \in \mathbf{P} \operatorname{Hom}\left(W, \mathcal{B}_{Z}\right) \mid \operatorname{rk} \varphi \leq k\right\}\),
\(\widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right):=\) blow-up of \(\mathbf{P} \operatorname{Hom}\left(W, \mathcal{B}_{Z}\right)\) along \(\operatorname{PHom}_{1}\left(W, \mathcal{B}_{Z}\right)\).
```

Let $h: \widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right) \rightarrow \mathbf{P H o m}\left(W, \mathcal{B}_{Z}\right)$ be the blow-down map, and

$$
f: \widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right) \rightarrow \mathbf{P} \operatorname{Hom}^{\omega}\left(W, E_{Z}\right)
$$

be the composition of $h$ with the obvious map $\operatorname{PHom}\left(W, \mathcal{B}_{Z}\right) \rightarrow \mathbf{P} \operatorname{Hom}^{\omega}\left(W, E_{Z}\right)$. Proposition (6.0.1) will be a straightforward consequence of the following result.
(6.1.1) Proposition. Let $x \in \Omega_{Q}^{0}$, and keep notation as above. There is an isomorphism

$$
\widehat{f}: \widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right) \xrightarrow{\sim}\left(\pi_{R} \pi_{S} \pi_{T}\right)^{-1}(x)
$$

such that $\pi_{S} \pi_{T} \widehat{f}=f .\left(\right.$ Recall (1.5.2) that $\pi_{R}^{-1}(x) \cong \mathbf{P} \operatorname{Hom}^{\omega}\left(W, E_{Z}\right)$.)
Proof. We brake up the proof into various steps.
I. The map $\bar{f}$. We will prove there exists a map

$$
\bar{f}: \widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right) \rightarrow\left(\pi_{R} \pi_{S}\right)^{-1}(x)
$$

lifting $f$. Let $\mathbf{D}_{1} \subset \widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right)$ be the exceptional divisor of $h$. Equality (1.8.1) gives that $\left(\pi_{R} \pi_{S}\right)^{-1}(x)$ is the blow-up of $\pi_{R}^{-1}(x) \cong \mathbf{P} \operatorname{Hom}^{\omega}\left(W, E_{Z}\right)$ along $\mathbf{P H o m}_{1}\left(W, E_{Z}\right)$; hence to prove $\bar{f}$ exists it is sufficient to verify that

$$
\begin{equation*}
f^{*} I_{\mathbf{P H o m}}^{1}\left(W, E_{Z}\right)=\mathcal{O}_{\widehat{\mathbf{H o m}\left(W, \mathcal{B}_{Z}\right)}}\left(-\mathbf{D}_{1}\right) \tag{6.1.2}
\end{equation*}
$$

Since we have an equality of sets $f^{-1}\left(\mathbf{P} \operatorname{Hom}_{1}\left(W, E_{Z}\right)\right)=\mathbf{D}_{1}$, we must show that given any $p \in \mathbf{D}_{1}$, there exists $w \in T_{p} \widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right)$ such that

$$
\begin{equation*}
f_{*}(w) \notin T_{f(p)} \mathbf{P H o m}_{1}\left(W, E_{Z}\right) \tag{6.1.3}
\end{equation*}
$$

Let $[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$ be the image of $p$ under the bundle projection. Thus $h(p) \in \mathbf{P H o m}(W, B)$, and $p$ is in the image of the inclusion

$$
\begin{equation*}
\iota: B l_{\mathbf{P H o m}_{1}(W, B)} \mathbf{P} \operatorname{Hom}(W, B) \hookrightarrow \widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right) \tag{6.1.4}
\end{equation*}
$$

The intersection of $\mathbf{D}_{1}$ with the left-hand side is smooth, thus there exists

$$
v \in T_{p}\left(B l_{\mathbf{P H o m}_{1}(W, B)} \mathbf{P H o m}(W, B)\right)
$$

transverse to $\mathbf{D}_{1}$. The vector $w:=\iota_{*}(v)$ satisfies (6.1.3).
II. The restriction of $\bar{f}$ to $\mathbf{D}_{1}$. For vector spaces $A, B$, let $\operatorname{Hom}_{k}(A, B)$ be the determinantal variety of linear maps $A \rightarrow B$ of rank at most $k$, and let $\operatorname{PHom}_{k}(A, B)$ be its projectivization. Let $\varphi \in \operatorname{Hom}_{h}(A, B)$ be of rank exactly $h$; recall that the natural map

$$
T_{\varphi} \operatorname{Hom}(A, B)=\operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}(\operatorname{Ker} \varphi, B / \operatorname{Im} \varphi)
$$

induces an isomorphism

$$
\left(C_{\operatorname{Hom}_{h}} \operatorname{Hom}_{k}(A, B)\right)_{\varphi} \cong \operatorname{Hom}_{k-h}(\operatorname{Ker} \varphi, B / \operatorname{Im} \varphi),
$$

Projectivizing we get an isomorphism

$$
\begin{equation*}
\left(C_{\mathbf{P H o m}}^{h} \text { } \mathbf{P H o m}_{k}(A, B)\right)_{[\varphi]} \cong \operatorname{Hom}_{k-h}(\operatorname{Ker} \varphi, B / \operatorname{Im} \varphi) \tag{6.1.5}
\end{equation*}
$$

canonical up to scalars. Applying this isomorphism to $\mathbf{P} \operatorname{Hom}_{1}(W, B) \subset \mathbf{P H o m}(W, B)$, for $[B] \in \mathbf{G r}{ }^{\omega}\left(3, E_{Z}\right)$, we get

$$
\mathbf{D}_{1} \cong\left\{([B],[\varphi],[\alpha]) \mid[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right),[\varphi] \in \mathbf{P H o m}_{1}(W, B),[\alpha] \in \mathbf{P H o m}(\operatorname{Ker} \varphi, B / \operatorname{Im} \varphi)\right\}
$$

By (6.1.2) we know $\bar{f}$ maps $\mathbf{D}_{1}$ to $\Sigma_{S}$. By (1.7.12) there is a canonical isomorphism

$$
\Sigma_{S} \cap\left(\pi_{R} \pi_{S}\right)^{-1}(x) \cong\left\{([\varphi],[\alpha]) \mid[\varphi] \in \mathbf{P}_{\operatorname{Hom}_{1}}\left(W, E_{Z}\right),[\alpha] \in \mathbf{P} \operatorname{Hom}^{\omega_{\varphi}}\left(\operatorname{Ker} \varphi, \operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi\right)\right\}
$$

For $([B],[\varphi],[\alpha]) \in \mathbf{D}_{1}$, let $j: B \hookrightarrow E_{Z}, \bar{j}: B / \operatorname{Im} \varphi \hookrightarrow \operatorname{Im} \varphi^{\perp} / \operatorname{Im} \varphi$ be the inclusion maps; one verifies easily that

$$
\begin{equation*}
\bar{f}([B],[\varphi],[\alpha])=([j \circ \varphi],[\bar{j} \circ \circ \alpha]) \tag{6.1.6}
\end{equation*}
$$

This describes the restriction of $\bar{f}$ to $\mathbf{D}_{1}$. Let $\mathbf{D}_{2} \subset \widehat{\operatorname{Hom}}{ }^{\omega}\left(W, \mathcal{B}_{Z}\right)$ be the strict transform of $\mathbf{P H o m}{ }_{2}\left(W, \mathcal{B}_{Z}\right)$; applying (6.1.5) one gets

$$
\begin{aligned}
\mathbf{D}_{1} \cap \mathbf{D}_{2} & =\{([B],[\varphi],[\alpha]) \mid \mathrm{rk} \alpha=1\}, \\
\left(\Sigma_{S} \cap \Delta_{S}\right) \cap\left(\pi_{R} \pi_{D}\right)^{-1}(x) & =\{([\varphi],[\alpha]) \mid \mathrm{rk} \alpha=1\} .
\end{aligned}
$$

In particular we have an isomorphism

$$
\begin{equation*}
\left.\bar{f}\right|_{\left(\mathbf{D}_{1} \backslash \mathbf{D}_{2}\right)}:\left(\mathbf{D}_{1} \backslash \mathbf{D}_{2}\right) \xrightarrow{\sim}\left(\Sigma_{S} \backslash \Delta_{S}\right) \cap\left(\pi_{R} \pi_{S}\right)^{-1}(x) \tag{6.1.7}
\end{equation*}
$$

III. The map $\widehat{f}$. We will lift $\bar{f}$ to a map

$$
\widehat{f}: \widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right) \rightarrow\left(\pi_{R} \pi_{S} \pi_{T}\right)^{-1}(x)
$$

Let

$$
\Delta:=\Delta_{S} \cap\left(\pi_{R} \pi_{S}\right)^{-1}(x) \cong \widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right)
$$

(See (1.8.12).) Since $\left(\pi_{R} \pi_{S} \pi_{T}\right)^{-1}(x)$ is the blow-up of $\left(\pi_{R} \pi_{S}\right)^{-1}(x)$ along $\Delta$, the existence of a lift $\widehat{f}$ will follow from

$$
\begin{equation*}
\bar{f}^{*} I_{\Delta}=\mathcal{O}_{\widehat{\mathbf{H o m}}\left(W, \mathcal{B}_{Z}\right)}\left(-\mathbf{D}_{2}\right) \tag{6.1.8}
\end{equation*}
$$

To prove this equality, first notice that set-theoretically $\bar{f}^{-1}(\Delta)=\mathbf{D}_{2}$. Thus it suffices to show that for any $p \in \mathbf{D}_{2}$, there exists $w \in T_{p} \widehat{\mathbf{H o m}}\left(W, \mathcal{B}_{Z}\right)$ such that $\bar{f}_{*} w \notin T_{\Delta}$. Let $[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$ be the image of $p$ under the bundle projection; thus $p$ is in the image of Inclusion (6.1.4). Since

$$
\mathbf{D}_{2} \cap B l_{\mathbf{P H o m}_{1}(W, B)} \mathbf{P H o m}(W, B)=B l_{\mathbf{P H o m}_{1}(W, B)} \mathbf{P} \operatorname{Hom}_{2}(W, B),
$$

and the right-hand side is smooth (see (1.8.12)), there exists $v \in T_{p}\left(B l_{\mathbf{P H o m}_{1}(W, B)} \mathbf{P H o m}(W, B)\right)$ transverse to $\mathbf{D}_{2}$. As is easily checked $w:=\iota_{*} v$ has the stated property.
IV. Proof that $\widehat{f}$ is an isomorphism. Clearly $\widehat{f}$ is birational. Since $\left(\pi_{R} \pi_{S} \pi_{T}\right)^{-1}(x)$ is smooth, it suffices by Zariski's Main Theorem to show that $\widehat{f}$ is an isomorphism in codimension one. One checks easily that the restriction of $\widehat{f}$ to the complement of $\left(\mathbf{D}_{1} \cap \mathbf{D}_{2}\right)$ is an isomorphism onto its image.
q.e.d.

Now we prove Proposition (6.0.1). Let $[Z] \in X^{[n]}$, and let $x \in \Omega_{Q}^{0}$ be such that $F_{x} \cong I_{Z} \otimes V$. By Proposition (6.1.1)

$$
\widehat{\pi}^{-1}\left(\left[I_{Z} \otimes V\right]\right)=\widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right) / / \mathrm{SO}(W)
$$

The projection $\widehat{\mathbf{H o m}}\left(W, \mathcal{B}_{Z}\right) \rightarrow \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$ is $\mathrm{SO}(W)$-invariant, hence it descends to

$$
\lambda: \widehat{\operatorname{Hom}}\left(W, \mathcal{B}_{Z}\right) / / \mathrm{SO}(W) \rightarrow \mathbf{G r}^{\omega}\left(3, E_{Z}\right)
$$

For $[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$ we have

The map

$$
\begin{array}{ccc}
\mathbf{P H o m}(W, B)^{s s} & \rightarrow \mathbf{P}\left(S^{2} B\right) \\
\alpha & \mapsto & \alpha \circ \alpha^{t},
\end{array}
$$

identifies $\mathbf{P H o m}(W, B) / / \mathrm{SO}(W)$ with $\mathbf{P}\left(S^{2} B\right)$. Since $\mathbf{P H o m}(W, B) / / \mathrm{SO}(W)$ is the locus of conics of rank one, and since taking the quotient commutes with blowing up (1.1.2), we conclude that $\lambda^{-1}([B])=\mathbf{C C}\left(S^{2} B\right)$. Proposition (6.0.1) follows at once.

### 6.2. Proof of Proposition (6.0.2)-Item (1).

Let $[Z] \in X^{[n]}$; we will introduce a basis of $N^{1}\left(\widehat{\Omega}_{Z}\right)$. Letting $\rho: \mathbf{P}\left(S^{2} \mathcal{B}_{Z}\right) \rightarrow \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$ be bundle projection, and $\theta: \widehat{\Omega}_{Z} \rightarrow \mathbf{P}\left(S^{2} \mathcal{B}_{Z}\right)$ be the blow-down map (see (6.0.1)), set

$$
\begin{aligned}
h & :=c_{1}\left(\check{\mathcal{B}}_{Z}\right) \\
x & :=c_{1}\left(\mathcal{O}_{\mathbf{P}\left(S^{2} \mathcal{B}_{Z}\right)}(1)\right) \\
e & :=\text { class of the exceptional divisor of } \theta .
\end{aligned}
$$

Abusing notation we will denote with the same symbols the classes obtained pulling back $h$ and $x$ to $\widehat{\Omega}_{Z}$.
(6.2.1) Claim. The classes $h, x, e$ form a basis of $N^{1}\left(\widehat{\Omega}_{Z}\right)$.

Proof. For $[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$ the restrictions of $x, e$ to $\widehat{\Omega}_{B}$ give a basis of $H^{2}\left(\widehat{\Omega}_{B}\right)$, hence it suffices to prove that $h$ generates $H^{2}\left(\mathbf{G r}^{\omega}\left(3, E_{Z}\right)\right.$. This follows by applying Sommese's generalization of Lefschetz' hyperplane section theorem $[\mathrm{La},(1.8)]$ to the embedding $\mathbf{G r}^{\omega}\left(3, E_{Z}\right) \hookrightarrow \mathbf{G r}\left(3, E_{Z}\right)$.
(6.2.2) Corollary. Keeping notation as above,

$$
N_{1}\left(\widehat{\Omega}_{Z}\right)=\mathbf{R}^{+} \widehat{\sigma}_{Z} \oplus \mathbf{R}^{+} \widehat{\epsilon}_{Z} \oplus \mathbf{R}^{+} \widehat{\gamma}_{Z}
$$

Proof. As is easily checked the intersection matrix of $\{h, x, e\}$ with $\left\{\widehat{\sigma}_{Z}, \widehat{\epsilon}_{Z}, \widehat{\gamma}_{Z}\right\}$ is non-singular (see (6.4.8)). Hence the result follows from duality together with (6.2.1).
q.e.d.

We will prove the following formulae:

$$
\begin{align*}
c_{1}\left(\widehat{\Sigma}_{c} \cap \widehat{\Omega}_{Z}\right) & =e  \tag{6.2.3}\\
c_{1}\left(\widehat{\Delta}_{c} \cap \widehat{\Omega}_{Z}\right) & =-2 e-2 h+3 x  \tag{6.2.4}\\
c_{1}\left(K_{\widehat{\Omega}_{Z}}\right) & =2 e-(c-6) h-6 x \tag{6.2.5}
\end{align*}
$$

Before proving the formulae we draw some consequences.
(6.2.6) Lemma. The map $i_{*}^{Z}: N_{1}\left(\widehat{\Omega}_{Z}\right) \rightarrow N_{1}\left(\widehat{\mathcal{M}}_{c}\right)$ induced by inclusion is injective.

Proof. By the adjunction formula $K_{\widehat{\Omega}_{Z}}$ is in the image of the restriction map $\operatorname{Pic}\left(\widehat{\mathcal{M}}_{c}\right) \rightarrow \operatorname{Pic}\left(\widehat{\Omega}_{Z}\right)$. By (6.2.3)-(6.2.5) we get that $N^{1}\left(\widehat{\mathcal{M}}_{c}\right) \rightarrow N^{1}\left(\widehat{\Omega}_{Z}\right)$ is surjective. Dualizing we conclude $i_{*}^{Z}$ is injective. q.e.d.

In particular, since by (6.2.2) $\widehat{\sigma}_{Z}, \widehat{\epsilon}_{Z}, \widehat{\gamma}_{Z}$ are linearly independent, we see that $\widehat{\sigma}_{c}, \widehat{\epsilon}_{c}$, $\widehat{\gamma}_{c}$ are linearly independent; this proves Item (1) of Proposition (6.0.2). Now let's prove Formulae (6.2.3)-(6.2.5). The first one is the easiest: it follows immediately from (6.1.2).
Proof of (6.2.4). Let $D_{Z} \subset \mathbf{P}\left(S^{2} \mathcal{B}_{Z}\right)$ be the locus parametrizing singular conics. Then $\widehat{\Delta}_{c} \cap \widehat{\Omega}_{Z}$ is the strict transfrom of $D_{Z}$ under $\theta$. Since, for $[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$, the locus of singular conics in $\mathbf{P}\left(S^{2} B\right)$ has multiplicity two along the locus of rank-one conics, we get that

$$
c_{1}\left(\widehat{\Delta}_{c} \cap \widehat{\Omega}_{Z}\right)=\theta^{*} c_{1}\left(D_{Z}\right)-2 e
$$

hence Formula (6.2.4) will follow from the following equation:

$$
\begin{equation*}
c_{1}\left(D_{Z}\right)=-2 h+3 x \tag{6.2.7}
\end{equation*}
$$

To prove it, we observe that $D_{Z}$ is the degeneracy locus of the tautological map

$$
\rho^{*} \check{\mathcal{B}}_{Z} \otimes \mathcal{O}_{\mathbf{P}\left(S^{2} \mathcal{B}_{Z}\right)}(-1) \xrightarrow{\Phi} \rho^{*} \mathcal{B}_{Z}
$$

Since $\operatorname{Det} \Phi \in \Gamma\left(\wedge^{3} \rho^{*} \mathcal{B}_{Z} \otimes \wedge^{3} \rho^{*} \mathcal{B}_{Z} \otimes \mathcal{O}_{\mathbf{P}\left(S^{2} \mathcal{B}_{Z}\right)}(3)\right)$, Equation (6.2.7) follows at once.
Proof of (6.2.5). First we prove that

$$
\begin{equation*}
c_{1}\left(K_{\mathbf{G} \mathbf{r}^{\omega}\left(3, E_{Z}\right)}\right)=-(c-2) h . \tag{6.2.8}
\end{equation*}
$$

Consider the exact sequence

$$
\left.0 \rightarrow T_{\mathbf{G r}}{ }^{\omega} \rightarrow T_{\mathbf{G r}}\right|_{\mathbf{G r} \mathbf{r}^{\omega}} \xrightarrow{\rho_{*}} N_{\mathbf{G r}}{ }^{\omega} / \mathbf{G r} \rightarrow 0 .
$$

Since $\mathbf{G r}{ }^{\omega}$ is the zero-locus of a section of $\wedge^{2} \mathcal{B}_{Z}^{\vee}$,

$$
c_{1}\left(N_{\mathbf{G r}^{\omega} / \mathbf{G r}}\right)=c_{1}\left(\wedge^{2} \mathcal{B}_{Z}^{\vee}\right)=2 h .
$$

Equation (6.2.8) follows from this together with the formula for the canonical bundle of a Grassmannian. Next, we get

$$
\begin{equation*}
c_{1}\left(K_{\mathbf{P}\left(S^{2} \mathcal{B}_{Z}\right)}\right)=-(c-6)-6 x \tag{6.2.9}
\end{equation*}
$$

by considering the exact sequence

$$
0 \rightarrow \operatorname{Ker} \rho_{*} \rightarrow T_{\mathbf{P}\left(S^{2} \mathcal{B}_{Z}\right)} \xrightarrow{\rho_{*}} \rho^{*} T_{\mathbf{G r}}{ }^{\omega} \rightarrow 0
$$

Finally, Formula (6.2.5) follows from (6.2.9) because $\widehat{\Omega}_{Z}$ is obtained by blowing up a codimension-two subset of $\mathbf{P}\left(S^{2} \mathcal{B}_{Z}\right)$, and $e$ is the class of the exceptional divisor.

We close this subsection with a description of $\overline{N E}_{1}\left(\widehat{\Omega}_{Z}\right)$.

Claim. Keeping notation as above, we have

$$
\begin{equation*}
\overline{N E}_{1}\left(\widehat{\Omega}_{Z}\right)=\mathbf{R}^{+} \widehat{\sigma}_{Z} \oplus \mathbf{R}^{+} \widehat{\epsilon}_{Z} \oplus \mathbf{R}^{+} \widehat{\gamma}_{Z} \tag{6.2.10}
\end{equation*}
$$

Proof. By Corollary (6.2.2) it suffices to show that each of $\mathbf{R}^{+} \widehat{\sigma}_{Z}, \mathbf{R}^{+} \widehat{\epsilon}_{Z}, \mathbf{R}^{+} \widehat{\gamma}_{Z}$ is extremal. The maps

$$
\mathbf{P}^{2}\left(S^{2} \mathcal{B}_{Z}\right) \leftarrow \mathbf{C C}\left(\mathcal{B}_{Z}\right) \rightarrow \mathbf{P}^{2}\left(S^{2} \check{\mathcal{B}}_{Z}\right)
$$

can be identified with the contraction of $\mathbf{R}^{+} \widehat{\epsilon}_{Z}$ and $\mathbf{R}^{+} \widehat{\sigma}_{Z}$ respectively. Thus $\mathbf{R}^{+} \widehat{\epsilon}_{Z}$ and $\mathbf{R}^{+} \widehat{\sigma}_{Z}$ are extremal rays of $\overline{N E}_{1}\left(\widehat{\Omega}_{Z}\right)$. Next notice that the contraction of $\mathbf{R}^{+} \widehat{\gamma}_{c}$ can be identified with the map $\widehat{\mathcal{M}}_{c} \rightarrow S_{c} / / \operatorname{PGL}(N)$, hence $\mathbf{R}^{+} \widehat{\gamma}_{c}$ is an extremal ray; by Lemma (6.2.6) we conclude that $\mathbf{R}^{+} \widehat{\gamma}_{Z}$ is an extremal ray.
q.e.d.
6.3. Digression on $\widehat{\Sigma}_{c}$.

For $[Z],[W] \in X^{[n]}$, with $Z \neq W$, set

$$
\widehat{\Sigma}_{Z, W}:=\widehat{\pi}^{-1}\left(\left[I_{Z} \oplus I_{W}\right]\right) .
$$

Thus

$$
\begin{equation*}
\widehat{\Sigma}_{Z, W} \in \widehat{\Sigma}_{c} \backslash\left(\widehat{\Omega}_{c} \cup \widehat{\Delta}_{c}\right) . \tag{6.3.1}
\end{equation*}
$$

For $k$ a positive integer, let $I_{k}:=\left\{(p, H) \in \mathbf{P}^{k} \times \check{\mathbf{P}}^{k} \mid p \in H\right\}$.
(6.3.2) Proposition. Keep notation as above. Let $[Z],[W] \in X^{[n]}$, with $Z \neq W$. There is an isomorphism

$$
\begin{equation*}
\widehat{\Sigma}_{Z, W} \cong I_{c-3} . \tag{6.3.3}
\end{equation*}
$$

Letting $r: \widehat{\Sigma}_{Z, W} \rightarrow \mathbf{P}^{c-3}$ and $\check{r}: \widehat{\Sigma}_{Z, W} \rightarrow \check{\mathbf{P}}^{c-3}$ be the maps determined by the above isomorphism,

$$
\begin{equation*}
\left.\left[\widehat{\Sigma}_{c}\right]\right|_{\widehat{\Sigma}_{z, W}} \cong r^{*} \mathcal{O}_{\mathbf{P}^{c-3}}(-1) \otimes \check{r}^{*} \mathcal{O}_{\tilde{\mathbf{P}}^{c-3}}(-1) \tag{6.3.4}
\end{equation*}
$$

Proof. Isomorphism (6.3.3) is an easy consequence of Proposition (1.4.1). Let's prove (6.3.4). By a monodromy argument,

$$
\left[\widehat{\Sigma}_{c}\right]_{\widehat{\Sigma}_{Z, W}} \cong r^{*} \mathcal{O}_{\mathbf{P}^{c-3}}(a) \otimes \check{r}^{*} \mathcal{O}_{\check{\mathbf{P}}^{c-3}}(a)
$$

for some integer $a$. Copying the proof of (2.2.5) one gets $a=-1$.
q.e.d.

### 6.4. The canonical class, and intersection numbers.

We will prove the following formula:

$$
\begin{equation*}
K_{\widehat{\mathcal{M}}_{c}} \sim(3 c-7) \widehat{\Omega}_{c}+(c-4) \widehat{\Sigma}_{c}+(2 c-6) \widehat{\Delta}_{c} . \tag{6.4.1}
\end{equation*}
$$

First notice that there exist non-negative integers $\alpha_{c}, \beta_{c}, \gamma_{c}$ such that

$$
K_{\widehat{\mathcal{M}}_{c}} \sim \alpha_{c} \widehat{\Omega}_{c}+\beta_{c} \widehat{\Sigma}_{c}+\gamma_{c} \widehat{\Delta}_{c}
$$

In fact by (1.9.2) the canonical form $\wedge^{2 c-3} \widehat{\omega}_{c}$ is non-zero on the complement of $\left(\widehat{\Omega}_{c} \cup \widehat{\Sigma}_{c} \cup \widehat{\Delta}_{c}\right)$.
(6.4.2) Lemma. Keeping notation as above, we have $\beta_{c}=(c-4)$.

Proof. Let $[Z],[W] \in X^{[n]}$, with $Z \neq W$. Applying adjunction to $\widehat{\Sigma}_{c}$ we get that

$$
\left.K_{\widehat{\Sigma}_{z, W}} \cong\left[K_{\widehat{\mathcal{M}}_{c}}+\widehat{\Sigma}_{c}\right]\right|_{\widehat{\Sigma}_{z, W}}=\left.\left[\left(\beta_{c}+1\right) \widehat{\Sigma}_{c}\right]\right|_{\widehat{\Sigma}_{z, W}}
$$

By (6.3.3) we know $\widehat{\Sigma}_{Z, W} \cong I_{c-3}$, hence

$$
K_{\widehat{\Sigma}_{z, W}} \cong r^{*} \mathcal{O}_{\mathbf{P}^{c-3}}(-(c-3)) \otimes \check{r}^{*} \mathcal{O}_{\check{\mathbf{P}}^{c-3}}(-(c-3))
$$

By (6.3.4) we conclude that $\beta_{c}=(c-4)$.
q.e.d.
(6.4.3) Lemma. Let $[Z] \in X^{[n]}$ and $[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$. Then

$$
\left.c_{1}\left(\widehat{\Omega}_{c}\right)\right|_{\widehat{\Omega}_{B}}=\left.(-2 x+e)\right|_{\widehat{\Omega}_{B}}
$$

(see (6.2) for the definition of $x$, e.)
Proof. Let $\widehat{\operatorname{Hom}}(W, B)$ be the blow up of $\mathbf{P H o m}(W, B)$ along the locus of rank-one homomorphisms. Then

$$
\widehat{\Omega}_{B}=\widehat{\operatorname{Hom}}(W, B) / / \mathrm{SO}(W)=\widehat{\operatorname{Hom}}(W, B)^{s} / \mathrm{SO}(W)
$$

Let $\widehat{f}: \widehat{\operatorname{Hom}}(W, B)^{s} \rightarrow \widehat{\Omega}_{B}$ be the quotient map; we have

$$
\left.\left.\widehat{f}^{*}[\widehat{\Omega}]\right|_{\widehat{\Omega}_{B}} \cong\left[\Omega_{T}\right]\right|_{\widehat{\operatorname{Hom}}(W, B)^{s}} .
$$

By (1.8.4)-(1.8.10)-(1.8.11), $\Omega_{S}^{s}, S^{s}$, and $\Delta_{S}^{s}$ are all smooth, hence

$$
\Omega_{T}^{s} \sim\left(\pi_{S} \pi_{T}\right)^{*} \Omega_{R}^{s}-\Delta_{T}^{s}
$$

Now let $\lambda: \widehat{\operatorname{Hom}}(W, B)^{s} \rightarrow \mathbf{P H o m}(W, B)$ be the blow-down map, i.e. the restriction of $\left(\pi_{S} \pi_{T}\right)$ (see (6.1.1)). By the previous linear equivalence we have

$$
\begin{equation*}
\left[\Omega_{T}\right] \cong \lambda^{*}\left[\Omega_{R}\right] \otimes\left[-\Delta_{T}\right] \text { in } \operatorname{Pic}\left(\widehat{\operatorname{Hom}}(W, B)^{s}\right) \tag{6.4.4}
\end{equation*}
$$

Clearly $\lambda^{*}\left[\Omega_{R}\right] \cong \lambda^{*} \mathcal{O}_{\mathbf{P H o m}(W, B)}(-1)$. On the other hand, $\left.\Delta_{T}\right|_{\widehat{\operatorname{Hom}(W, B)}}$ is the strict transfrom under $\lambda$ of the locus parametrizing morphisms of rank at most two; an easy computation gives

$$
\left.\left[\Delta_{T}\right]\right|_{\widehat{\mathbf{H o m}}(W, B)} \cong \lambda^{*} \mathcal{O}_{\mathbf{P H o m}}(3) \otimes[-2 E],
$$

where $E$ is the exceptional divisor of $\lambda$. Thus (6.4.4) becomes

$$
\begin{equation*}
\widehat{f^{*}}[\widehat{\Omega}] \cong \lambda^{*} \mathcal{O}_{\mathbf{P H o m}}(-4) \otimes[2 E] \tag{6.4.5}
\end{equation*}
$$

Now consider the commutative diagram

where $f$ is the quotient map, and $\theta_{B}$ is the blow-up of conics of rank one. Since $f([\alpha])=\left[\alpha \alpha^{t}\right]$, we have

$$
\widehat{f}^{*} \theta_{B}^{*} x=\lambda^{*} f^{*} x=\lambda^{*} c_{1}\left(\mathcal{O}_{\mathbf{P H o m}}(2)\right)
$$

Furthermore, since the generic point of $E$ has stabilizer of order two, $\widehat{f}^{*} e=2 c_{1}(E)$. Feeding these equalities into (6.4.5) we get

$$
\widehat{f}^{*} c_{1}\left(\widehat{\Omega}_{c}\right) \cong \widehat{f}^{*}\left(-2 \theta_{B}^{*} x+e\right)
$$

Since the pull-back map $\widehat{f}^{*}: \operatorname{Pic}\left(\widehat{\Omega}_{B}\right) \rightarrow \operatorname{Pic}\left(\widehat{\operatorname{Hom}}(W, B)^{s}\right)$ is injective [DN, Lemme (3.2)], this proves the lemma.
q.e.d.

Now we prove Formula (6.4.1). Writing out adjunction for $\widehat{\Omega}_{Z}$ and applying Lemma (6.4.2), we get

$$
\begin{equation*}
\left.c_{1}\left(K_{\widehat{\Omega}_{Z}}\right) \cong\left(c_{1}\left(K_{\widehat{\mathcal{M}}_{c}}\right)+c_{1}\left(\widehat{\Omega}_{c}\right)\right)\right|_{\widehat{\Omega}_{Z}}=\left.\left(\left(\alpha_{c}+1\right) c_{1}\left(\widehat{\Omega}_{c}\right)+(c-4) c_{1}\left(\widehat{\Sigma}_{c}\right)+\gamma_{c} c_{1}\left(\widehat{\Delta}_{c}\right)\right)\right|_{\widehat{\Omega}_{Z}} . \tag{6.4.6}
\end{equation*}
$$

By (6.2.1) together with Lemma (6.4.3) we can write

$$
\left.c_{1}\left(\widehat{\Omega}_{c}\right)\right|_{\widehat{\Omega}_{Z}}=k_{c} h-2 x+e,
$$

for some integer $k_{c}$. Feeding this equality, together with (6.2.3)-(6.2.4)-(6.2.5), into Formula (6.4.6), we get three equations in the unknowns $k_{c}, \alpha_{c}, \gamma_{c}$. The equations uniquely determine the unknowns, and we get (6.4.1). We also get the formula

$$
\begin{equation*}
\left.c_{1}\left(\widehat{\Omega}_{c}\right)\right|_{\widehat{\Omega}_{Z}}=h-2 x+e . \tag{6.4.7}
\end{equation*}
$$

We close this subsection with tables of intersection numbers to be used later on. A straightforward computation gives the first table:

|  | h | x | e |
| :---: | :---: | :---: | :---: |
| $\widehat{\epsilon}_{Z}$ | 0 | 0 | -1 |
| $\hat{\sigma}_{Z}$ | 0 | 1 | 2 |
| $\widehat{\gamma}_{Z}$ | 1 | 0 | 0 |

Formulae (6.2.3)-(6.2.4)-(6.4.7), together with the table above, give the following intersection matrix:

|  | $\widehat{\Omega}_{c}$ | $\widehat{\Sigma}_{c}$ | $\widehat{\Delta}_{c}$ |
| :---: | :---: | :---: | :---: |
| $\widehat{\epsilon}_{c}$ | -1 | -1 | 2 |
| $\widehat{\sigma}_{c}$ | 0 | 2 | -1 |
| $\widehat{\gamma}_{c}$ | 1 | 0 | -2 |

### 6.5. Digression on $\widehat{\Delta}_{c}$.

For $[Z] \in X^{[n]}$ set

$$
\widehat{\Delta}_{Z}:=\widehat{\pi}^{-1}\left(\left[I_{Z} \oplus I_{Z}\right]\right) \cap \widehat{\Delta}_{c} .
$$

We will describe $\widehat{\Delta}_{Z}$ quite explicitely. Let $\mathcal{A}_{Z}$ be the tautological rank-two vector bundle on $\mathbf{G r}{ }^{\omega}\left(2, E_{Z}\right)$.
(6.5.1) Proposition. The image of the map $f: \widehat{\Delta}_{Z} \rightarrow S_{c} / / \operatorname{PGL}(N)$ is naturally identified with $\mathbf{P}\left(S^{2} \mathcal{A}_{Z}\right)$. The map $f$ is a $\mathbf{P}^{c-4}$-fibration. There is an identification

$$
\begin{equation*}
\widehat{\Delta}_{Z} \cap \widehat{\Omega}_{c} \cong\left\{([A],[B],[q]) \mid[A] \in \mathbf{G r}^{\omega}\left(2, E_{Z}\right),[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right),[q] \in \mathbf{P}\left(S^{2} A\right), A \subset B\right\} \tag{6.5.2}
\end{equation*}
$$

such that the restriction of $f$ is identified with the forgetful map $([A],[B],[q]) \mapsto([A],[q])$.
Proof. By definition, $\widehat{\Delta}_{c}=\Delta_{T_{c}} / / \operatorname{PGL}(N)$, where $\Delta_{T_{c}}$ is the exceptional divisor of $\pi_{T}: T_{c} \rightarrow S_{c}$, the blow-up of $\Delta_{S_{c}}$. By (1.8.10)-(1.8.13) there are no strictly semistable points to consider, hence we get a map

$$
\varphi: \widehat{\Delta}_{c}=\Delta_{T_{c}}^{s} / \operatorname{PGL}(N) \rightarrow \Delta_{S_{c}}^{s} / \operatorname{PGL}(N)
$$

where the single slash is a reminder that the quotients are orbit spaces. Since $S_{c}^{s}$ and $\Delta_{S_{c}}^{s}$ are both smooth (1.8.10)-(1.8.11), and since by (1.8.2) we have $\operatorname{cod}\left(\Delta_{S_{c}}^{s}, S_{c}^{s}\right)=(c-3), \Delta_{T_{c}}^{s}$ is a $\mathbf{P}^{c-4}$ bundle over $\Delta_{S_{c}}^{s}$. If $x \in \Delta_{S_{c}}^{s}$, the stabilizer of $x$ acts trivially on $\pi_{T}^{-1}(x)$, hence $\varphi$ is also a $\mathbf{P}^{c-4}$-fibration. Now let's show that the fiber of

$$
\psi: \Delta_{S_{c}}^{s} / \mathrm{PGL}(N) \rightarrow \Omega_{Q_{c}}^{s s} / / \mathrm{PGL}(N)=\Omega_{c} \cong X^{[n]}
$$

over $\left[I_{Z} \oplus I_{Z}\right]$ is isomorphic to $\mathbf{P}\left(S^{2} \mathcal{A}_{Z}\right)$. In fact, by (1.8.12)

$$
\psi^{-1}\left(\left[I_{Z} \oplus I_{Z}\right]\right) \cong \widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) / / \mathrm{SO}(W)
$$

The projection $\widetilde{\mathbf{P}} \operatorname{Hom}_{2}^{\omega}\left(W, E_{Z}\right) \rightarrow \mathbf{G r}{ }^{\omega}\left(2, E_{Z}\right)$ is $\mathrm{SO}(W)$-invariant, hence it descends to a map

$$
\psi^{-1}\left(\left[I_{Z} \oplus I_{Z}\right]\right) \rightarrow \mathbf{G r}^{\omega}\left(2, E_{Z}\right)
$$

One checks easily that the fiber over $[A]$ is naturally isomorphic to $\mathbf{P}\left(S^{2} A\right)$; this gives the isomorphism

$$
f\left(\widehat{\Delta}_{Z}\right)=\psi^{-1}\left(\left[I_{Z} \oplus I_{Z}\right]\right) \cong \mathbf{P}\left(S^{2} \mathcal{A}_{Z}\right)
$$

Hence $\widehat{\Delta}_{Z}$ is indeed a $\mathbf{P}^{c-4}$-fibration over $\mathbf{P}\left(S^{2} \mathcal{A}_{Z}\right)$. To finish the proof of the proposition we define a map from $\widehat{\Delta}_{Z} \cap \widehat{\Omega}_{c}$ to the right-hand side of (6.5.2). If $[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$, then

$$
\widehat{\Delta}_{Z} \cap \mathbf{C C}(B)=\text { closure of }\{(C, D) \in \mathbf{C C}(B) \mid C \text { has rank two }\}
$$

Thus for every $(C, D) \in \widehat{\Delta}_{Z} \cap \mathbf{C C}(B)$ the conic $D \subset \mathbf{P}(B)$ has rank one, i.e. it is the projectivization of a codimension one linear subspace $A_{D} \subset B$. Thus we get a map

$$
\begin{array}{ccc}
\widehat{\Delta}_{Z} \cap \mathbf{C C}(B) & \rightarrow & \mathbf{G r}(2, B) \\
(C, D) & \mapsto & {\left[A_{D}\right] .}
\end{array}
$$

The fiber over $\left[A_{D}\right]$ is naturally identified with $\mathbf{P}\left(S^{2} A_{D}\right)$; let $\left[q_{C, D}\right] \in \mathbf{P}\left(S^{2} A_{D}\right)$ be the point corresponding to $(C, D)$. We set

$$
\begin{array}{ccc}
\widehat{\Delta}_{Z} \cap \widehat{\Omega}_{c} & \rightarrow & \text { right-hand side of }(6.5 .2) \\
([B], C, D) & \mapsto & \left(\left[A_{D}\right],[B],\left[q_{C, D}\right]\right)
\end{array}
$$

This gives Isomorphism (6.5.2).
q.e.d.

We continue examining $\widehat{\Delta}_{Z}$. Let $[A] \in \mathbf{G r}^{\omega}\left(2, E_{Z}\right)$ and consider $\mathbf{P}\left(S^{2} A\right) \hookrightarrow \mathbf{P}\left(S^{2} \mathcal{A}_{Z}\right)$; restricting the $\mathbf{P}^{c-4}$-fibration to $\mathbf{P}\left(S^{2} A\right)$ we get a fibration

$$
\begin{equation*}
\mathbf{P}^{c-4} \rightarrow f^{-1} \mathbf{P}\left(S^{2} A\right) \tag{6.5.3}
\end{equation*}
$$

(6.5.4) Lemma. Fibration (6.5.3) is trivial.

Proof. The intersection $f^{-1} \mathbf{P}\left(S^{2} A\right) \cap \widehat{\Omega}_{c}$ is a divisor restricting to a hyperplane section (embedded linearly) on each $\mathbf{P}^{c-4}$ fiber, and furthermore by (6.5.2) it is isomorphic to $\mathbf{P}\left(S^{2} A\right) \times \mathbf{P}^{c-5}$. This implies that

$$
f^{-1} \mathbf{P}\left(S^{2} A\right) \cong \mathbf{P}(V)
$$

where $V$ is a vector-bundle fitting into an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbf{P}\left(S^{2} A\right)}(a)^{(c-4)} \rightarrow V \rightarrow \mathcal{O}_{\mathbf{P}\left(S^{2} A\right)}(b) \rightarrow 0 \tag{6.5.5}
\end{equation*}
$$

with $f^{-1} \mathbf{P}\left(S^{2} A\right) \cap \widehat{\Omega}_{c}=\mathbf{P}\left(\mathcal{O}_{\mathbf{P}\left(S^{2} A\right)}(a)^{(c-4)}\right)$. Now let $\mathbf{P}\left(S^{2} A\right) \times[B] \in \mathbf{P}\left(\mathcal{O}_{\mathbf{P}\left(S^{2} A\right)}(a)^{(c-4)}\right)$. By (6.5.5) we have

$$
\left.\left[\widehat{\Omega}_{c}\right]\right|_{\mathbf{P}\left(S^{2} A\right) \times[B]} \cong \mathcal{O}_{\mathbf{P}\left(S^{2} A\right)}(b-a)
$$

Hence to prove the lemma it suffices to check that the left-hand side of the above equality is trivial. Let $L \subset \mathbf{P}\left(S^{2} A\right) \times[B]$ be a line. In $N_{1}\left(\widehat{\mathcal{M}}_{c}\right)$ we have $[L]=\widehat{\sigma}_{c}$, so that by the entry on the first column and second row of (6.4.9) we get $\left.\left[\widehat{\Omega}_{c}\right]\right|_{L}=\mathcal{O}_{L}$. This proves $a=b$.
q.e.d.

We will need to know $N_{1}\left(\widehat{\Delta}_{Z}\right)$ and $\overline{N E}_{1}\left(\widehat{\Delta}_{Z}\right)$. Let $j^{Z}: \widehat{\Delta}_{Z} \hookrightarrow \widehat{\mathcal{M}}_{c}$ be Inclusion.
(6.5.6) Lemma. The map $j_{*}^{Z}: N_{1}\left(\widehat{\Delta}_{Z}\right) \rightarrow N_{1}\left(\widehat{\mathcal{M}}_{c}\right)$ is injective, and its image equals $\mathbf{R} \widehat{\sigma}_{c} \oplus \mathbf{R} \widehat{\epsilon}_{c} \oplus \mathbf{R} \widehat{\gamma}_{c}$.

Proof. The map $N_{1}\left(\widehat{\Delta}_{Z} \cap \widehat{\Omega}_{c}\right) \rightarrow N_{1}\left(\widehat{\Delta}_{Z}\right)$ is an isomorphism. Since also $N_{1}\left(\widehat{\Delta}_{Z} \cap \widehat{\Omega}_{c}\right) \rightarrow N_{1}\left(\widehat{\Omega}_{Z}\right)$ is an isomorphism, the result follows from (6.2.6).
q.e.d.

By the above lemma we can define $\widehat{\sigma}_{Z}^{\prime}, \widehat{\epsilon}_{Z}^{\prime}, \widehat{\gamma}_{Z}^{\prime} \in N_{1}\left(\widehat{\Delta}_{Z}\right)$ as the classes such that

$$
\begin{equation*}
j_{*}^{Z} \widehat{\sigma}_{Z}^{\prime}=\widehat{\sigma}_{c}, \quad j_{*}^{Z} \widehat{\epsilon}_{Z}^{\prime}=\widehat{\epsilon}_{c}, \quad j_{*}^{Z} \widehat{\gamma}_{Z}^{\prime}=\widehat{\gamma}_{c} \tag{6.5.7}
\end{equation*}
$$

Let's give explicit representatives of the above classes. All representatives will be contained in $\widehat{\Delta}_{Z} \cap \widehat{\Omega}_{c}$, so we refer to (6.5.2) for the description of the latter. Choose $[L] \in \mathbf{P}\left(E_{Z}\right),[A] \in \mathbf{G r}^{\omega}\left(2, E_{Z}\right),[B] \in \mathbf{G r}^{\omega}\left(3, E_{Z}\right)$, $\left[q^{L}\right] \in \mathbf{P}\left(S^{2} L\right),\left[q^{A}\right] \in \mathbf{P}\left(S^{2} A\right)$, with $A \subset B$. Let $\Lambda_{1}, \Lambda_{2}, \Lambda_{3} \subset \widehat{\Delta}_{Z} \cap \widehat{\Omega}_{c}$ be the curves defined by

$$
\begin{aligned}
& \Lambda_{1}:=\left\{\left([A],[B],\left[q_{t}\right]\right) \mid\left[q_{t}\right] \in \mathbf{P}^{2}\left(S^{2} A\right) \text { varies in a line }\right\}, \\
& \Lambda_{2}:=\left\{\left([A],\left[B_{t}\right],\left[q^{A}\right]\right) \mid\left[B_{t} / A\right] \text { varies in a line }\right\} \\
& \Lambda_{3}:=\left\{\left(\left[A_{t}\right],[B],\left[i_{*}^{t} q^{L}\right]\right) \mid i^{t}: L \hookrightarrow A_{t}, A_{t} / L \text { varies in a line }\right\} .
\end{aligned}
$$

It follows easily from (6.5.2) that

$$
\begin{aligned}
\hat{\sigma}_{Z}^{\prime} & =\left[\Lambda_{1}\right], \\
\widehat{\gamma}_{Z}^{\prime} & =\left[\Lambda_{2}\right], \\
2 \widehat{\epsilon}_{Z}^{\prime} & =\left[\Lambda_{3}\right] .
\end{aligned}
$$

(6.5.8) Lemma. Keeping notation as above, we have

$$
\overline{N E}_{1}\left(\widehat{\Delta}_{Z}\right)=\mathbf{R}^{+} \widehat{\sigma}_{Z}^{\prime} \oplus \mathbf{R}^{+} \widehat{\epsilon}_{Z}^{\prime} \mathbf{R}^{+} \widehat{\gamma}_{Z}^{\prime}
$$

Proof. By (6.5.6) it suffices to prove that each of $\mathbf{R}^{+} \widehat{\sigma}_{Z}^{\prime}, \mathbf{R}^{+} \widehat{\epsilon}_{Z}^{\prime}, \mathbf{R}^{+} \widehat{\gamma}_{Z}^{\prime}$ is extremal. By Lemma (6.5.4) there is a fibration


Correspondingly we have two maps of $\widehat{\Delta}_{Z}$, the first contracting the $\mathbf{P}^{2}$ 's, the second contracting the $\mathbf{P}^{c-4}$ 's. As is easily checked the first map can be identified with the contraction of $\mathbf{R}^{+} \widehat{\sigma}_{Z}^{\prime}$, and the second map can be identified with the contraction of $\mathbf{R}^{+} \widehat{\gamma}_{Z}^{\prime}$. Thus $\mathbf{R}^{+} \widehat{\sigma}_{Z}^{\prime}$ and $\mathbf{R}^{+} \widehat{\gamma}_{Z}^{\prime}$ are both extremal rays. To prove $\mathbf{R}^{+} \widehat{\epsilon}_{Z}^{\prime}$ is extremal, consider the natural map

$$
\begin{array}{ccc}
\mathbf{P}\left(S^{2} \mathcal{A}_{Z}\right) & \xrightarrow{\bullet} & \mathbf{P}\left(S^{2} E_{Z}\right) \\
([A],[q]) & \mapsto & {\left[i_{*}^{A} q\right],}
\end{array}
$$

where $[A] \in \mathbf{G r}^{\omega}\left(2, E_{Z}\right),[q] \in \mathbf{P}\left(S^{2} A\right)$, and $i_{*}^{A}: S^{2} A \rightarrow S^{2} E_{Z}$ is the map induced by inclusion. As is easily checked, $\phi$ is the contraction of $\mathbf{R}^{+}[\Gamma]$, where $\Gamma \subset \mathbf{P}\left(S^{2} \mathcal{A}_{Z}\right)$ is defined as follows: fix $[L] \in \mathbf{P}\left(E_{Z}\right)$ $\left[q^{L}\right] \in \mathbf{P}\left(S^{2} L\right)$, and set

$$
\Gamma:=\left\{\left[A_{t}\right],\left[i_{*}^{t} q_{L}\right] \mid i^{t}: L \hookrightarrow A_{t}, A_{t} / L \text { varies linearly in } \mathbf{P}\left(L^{\perp} / L\right) .\right\}
$$

Thus $\mathbf{R}^{+}[\Gamma]$ is an extremal ray of $\overline{N E}_{1}\left(\mathbf{P}\left(S^{2} \mathcal{A}_{Z}\right)\right)$. Now consider the map $f: \widehat{\Delta}_{Z} \rightarrow \mathbf{P}\left(S^{2} \mathcal{A}_{Z}\right)$; then

$$
f_{*} \hat{\epsilon}_{Z}^{\prime}=f_{*}\left[\Lambda_{3}\right]=[\Gamma] .
$$

Since $[\Gamma]$ generates an extremal ray, and since $f$ is the contraction of $\mathbf{R}^{+} \widehat{\gamma}_{Z}^{\prime}$ we see that if $\mathbf{R}^{+} \widehat{\epsilon}_{Z}^{\prime}$ is not extremal, there exists an irreducible curve $C \subset \widehat{\Delta}_{Z}$ such that in $N_{1}\left(\widehat{\Delta}_{Z}\right)$

$$
[C] \equiv s \widehat{\epsilon}_{Z}^{\prime}-t \widehat{\gamma}_{Z}^{\prime}, \quad s>0, t>0
$$

Intersecting with $\widehat{\Omega}_{c}$ and applying (6.4.9) we get that $C \cdot \widehat{\Omega}_{c}<0$, hence $C \subset \widehat{\Omega}_{Z}$. By (6.5.7) and by (6.2.6) we conclude that for some $s>0, t>0,[C]=\left(s \widehat{\epsilon}_{Z}-t \widehat{\gamma}_{Z}\right)$ in $N_{1}\left(\widehat{\Omega}_{Z}\right)$, contradicting (6.2.10).
q.e.d.

### 6.6. Proof of Proposition (6.0.2)-Item (2).

By Formula (6.4.1) and Table (6.4.9) we get

$$
\begin{aligned}
K_{\widehat{\mathcal{M}}_{c}} \cdot \widehat{\sigma}_{c} & =-2 \\
K_{\widehat{\mathcal{M}}_{c}} \cdot \widehat{\epsilon}_{c} & =-1 \\
K_{\widehat{\mathcal{M}}_{c}} \cdot \widehat{\gamma}_{c} & =-(c-5)
\end{aligned}
$$

Thus we are left with the task of proving $\mathbf{R}^{+} \widehat{\sigma}_{c} \oplus \mathbf{R}^{+} \widehat{\epsilon}_{c} \oplus \mathbf{R}^{+} \widehat{\gamma}_{c}$ is an extremal face. First we give a preliminary result. Let $[Z],[W] \in X^{[n]}$ with $Z \neq W$, and let $k^{Z, W}: \widehat{\Sigma}_{Z, W} \hookrightarrow \widehat{\mathcal{M}}_{c}$ be inclusion.
(6.6.1) Lemma. Keeping notation as above,

$$
k_{*}^{Z, W}\left(\overline{N E}_{1}\left(\widehat{\Sigma}_{Z, W}\right)\right)=\mathbf{R}^{+}\left(\widehat{\epsilon}_{c}+\widehat{\gamma}_{c}\right) .
$$

Proof. Letting [ $W$ ] approach $[Z]$ we see that

$$
k_{*}^{Z, W}\left(\overline{N E}_{1}\left(\widehat{\Sigma}_{Z, W}\right)\right) \subset i_{*}^{Z} \overline{N E}_{1}\left(\widehat{\Omega}_{Z}\right)
$$

Furthermore by (6.3.1)

$$
k_{*}^{Z, W}\left(\overline{N E}_{1}\left(\widehat{\Sigma}_{Z, W}\right)\right) \perp\left(\mathbf{R} c_{1}\left(\widehat{\Omega}_{c}\right) \oplus \mathbf{R} c_{1}\left(\widehat{\Delta}_{c}\right)\right)
$$

Applying Table (6.4.9) we get the lemma.
q.e.d.

Now assume that

$$
\begin{equation*}
\sum_{\alpha \in I} m_{\alpha}\left[\Gamma_{\alpha}\right] \in \mathbf{R}^{+} \widehat{\sigma}_{c} \oplus \mathbf{R}^{+} \widehat{\epsilon}_{c} \oplus \mathbf{R}^{+} \widehat{\gamma}_{c} \tag{6.6.2}
\end{equation*}
$$

where, for each $\alpha \in I, m_{\alpha}>0$ and $\Gamma_{\alpha}$ is an irreducible curve on $\widehat{\mathcal{M}}_{c}$; we must show that

$$
\begin{equation*}
\left[\Gamma_{\alpha}\right] \in \mathbf{R}^{+} \widehat{\sigma}_{c} \oplus \mathbf{R}^{+} \widehat{\epsilon}_{c} \oplus \mathbf{R}^{+} \widehat{\gamma}_{c} \text { for each } \alpha \in I \tag{6.6.3}
\end{equation*}
$$

From $\widehat{\pi}_{*} \widehat{\sigma}_{c}=\widehat{\pi}_{*} \widehat{\epsilon}_{c}=\widehat{\pi}_{*} \widehat{\gamma}_{c}=0$, we get $\widehat{\pi}_{*} \Gamma_{\alpha} \equiv 0$ for all $\alpha$, and since $\mathcal{M}_{c}$ is projective this implies $\widehat{\pi}\left(\Gamma_{\alpha}\right)$ is a point. Thus we can partition the indexing set as $I=I_{\Omega} \amalg I_{\Sigma} \amalg I_{\Delta}$ so that

$$
\text { if } \begin{cases}\alpha \in I_{\Omega}, & \text { then } \Gamma_{\alpha} \subset \widehat{\Omega}_{Z_{\alpha}} \text { for some } Z_{\alpha} \in X^{[n]} \\ \alpha \in I_{\Sigma}, & \text { then } \Gamma_{\alpha} \subset \widehat{\Sigma}_{Z_{\alpha}, W_{\alpha}} \text { for } Z_{\alpha}, W_{\alpha} \in X^{[n]} \text { with } Z_{\alpha} \neq W_{\alpha}, \\ \alpha \in I_{\Delta}, & \text { then } \Gamma_{\alpha} \subset \widehat{\Delta}_{Z_{\alpha}} \text { for some } Z_{\alpha} \in X^{[n]}\end{cases}
$$

Statement (6.6.3) follows from (6.2.10) if $\alpha \in I_{\Omega}$, from (6.6.1) if $\alpha \in I_{\Sigma}$, and from (6.5.8) if $\alpha \in I_{\Delta}$.

### 6.7. Proof of Proposition (3.0.3).

By Proposition (6.0.2)-Item(2) and Mori theory, $\overline{\mathcal{M}}_{c}$ is projective. Let's prove $\overline{\mathcal{M}}_{c}$ is smooth. Fibration (6.5.9) shows that $\widehat{\Delta}_{Z}$ is a $\mathbf{P}^{2}$-fibration (with base a $\mathbf{P}^{c-4}$-bundle over $\mathbf{G r}^{\omega}\left(2, E_{Z}\right)$ ), hence $\widehat{\Delta}_{c}$ is a $\mathbf{P}^{2}$-fibration

where $\Lambda_{c}$ fibers over $X^{[n]}$, the fiber over $[Z]$ being a $\mathbf{P}^{c-4}$-bundle over $\mathbf{G r}{ }^{\omega}\left(2, E_{Z}\right)$. Let $\mathbf{P}^{2}$ be a fiber of (6.7.1) and $L \subset \mathbf{P}^{2}$ be a line. By (6.5) we have $[L]=\widehat{\sigma}_{c}$ in $N_{1}\left(\widehat{\mathcal{M}}_{c}\right)$, hence (6.4.9) gives

$$
\begin{equation*}
\left.\left[\widehat{\Delta}_{c}\right]\right|_{\mathbf{P}^{2}} \cong \mathcal{O}_{\mathbf{P}^{2}}(-1) \tag{6.7.2}
\end{equation*}
$$

Claim. Keep notation as above. The contraction of $\mathbf{R}^{+} \widehat{\sigma}_{c}$ is identified with the contraction of $\widehat{\mathcal{M}}_{c}$ along Fibration (6.7.1).
Proof. If $L$ is line in a fiber of (6.7.1), then $[L]=\widehat{\sigma}_{c}$. Hence we must prove that if $\Gamma \subset \widehat{\mathcal{M}}_{c}$ is an irreducible curve such that $[\Gamma] \in \mathbf{R}^{+} \widehat{\sigma}_{c}$, then $\Gamma$ lies in a fiber of (6.7.1). Since $\Gamma \cdot \widehat{\Delta}_{c}<0, \Gamma$ is contained in $\widehat{\Delta}_{c}$. Furthermore $\widehat{\pi}_{*} \Gamma \equiv 0$, hence there exists $[Z] \in X^{[n]}$ such that $\Gamma \subset \widehat{\Delta}_{Z}$. Applying Lemma (6.5.6), we get the following relation in $N_{1}\left(\widehat{\Delta}_{Z}\right)$ :

$$
[\Gamma] \in \mathbf{R}^{+} \widehat{\sigma}_{Z}^{\prime}
$$

This implies $\Gamma$ is contained in a fiber of (6.7.1).
q.e.d.

The above claim together with (6.7.2) proves that $\overline{\mathcal{M}}_{c}$ is smooth. Finally we must show that the rational map $\overline{\mathcal{M}}_{c} \cdots>\mathcal{M}_{c}$ induced by $\widehat{\pi}$ is regular. One proceeds as in the proof that the analogous map $\widetilde{\mathcal{M}}_{4} \cdots>\mathcal{M}_{4}$ is regular (see the proof of (2.0.3)): the point is that $\widehat{\pi}$ is constant on the $\mathbf{P}^{2}$,s we have contracted.

### 6.8. Proof of Proposition (6.0.4).

Let $\widehat{\theta}: \widehat{\mathcal{M}}_{c} \rightarrow \overline{\mathcal{M}}_{c}$ be the contraction map, and $\bar{\pi}: \overline{\mathcal{M}}_{c} \rightarrow \mathcal{M}_{c}$ be the map induced by $\widehat{\pi}$; thus $\widehat{\pi}=\bar{\pi} \circ \widehat{\theta}$. Since, by Proposition (6.0.2), $\mathbf{R}^{+} \widehat{\epsilon}_{c}$ is extremal, so is $\mathbf{R}^{+} \bar{\epsilon}_{c}$. Applying (6.4.9) we get

$$
\begin{equation*}
K_{\overline{\mathcal{M}}_{c}} \cdot \bar{\epsilon}_{c}=\widehat{\theta}^{*} K_{\overline{\mathcal{M}}_{c}} \cdot \widehat{\epsilon}_{c}=\left(K_{\widehat{\mathcal{M}}_{c}}-2 \widehat{\Delta}_{c}\right) \cdot \widehat{\epsilon}_{c}=-5 \tag{6.8.1}
\end{equation*}
$$

Now let $\bar{\theta}: \overline{\mathcal{M}}_{c} \rightarrow \widetilde{\mathcal{M}}_{c}$ be the contraction of $\mathbf{R}^{+} \bar{\epsilon}_{c}$; by Mori theory $\widetilde{\mathcal{M}}_{c}$ is projective. To prove $\widetilde{\mathcal{M}}_{c}$ is smooth, consider $\bar{\Omega}_{c}:=\widehat{\theta}\left(\widehat{\Omega}_{c}\right)$. Clearly we have a fibration

where the fiber over $([Z], B)$ is canonically identified with $\mathbf{P}\left(S^{2} \check{B}\right)$. If $L$ is a line in a fiber of the above fibration, then $[L]=\bar{\epsilon}_{c}$, hence by (6.8.1) together with adjunction we get

$$
\left.\left[\bar{\Omega}_{c}\right]\right|_{\mathbf{P}^{5}} \cong \mathcal{O}_{\mathbf{P}^{5}}(-1)
$$

Claim. Keeping notation as above, $\widetilde{\mathcal{M}}_{c}$ is obtained contracting $\overline{\mathcal{M}}_{c}$ along Fibration (6.8.2). In particular $\widetilde{\mathcal{M}}_{c}$ is smooth.
Proof. For $[Z] \in X^{[n]}$, let $\bar{\Omega}_{Z}:=\bar{\pi}^{-1}\left(\left[I_{Z} \oplus I_{Z}\right]\right)$; we have a fibration


It follows from (6.2.6) that the map $N_{1}\left(\bar{\Omega}_{Z}\right) \rightarrow N_{1}\left(\overline{\mathcal{M}}_{c}\right)$ induced by inclusion is injective. Arguing as in (6.7) we get the claim.

The a priori rational map $\widetilde{\mathcal{M}}_{c} \cdots>\mathcal{M}_{c}$ is seen to be regular by an argument similar to that given in the proof of (2.0.3); the point is that $\bar{\pi}$ is constant on the $\mathbf{P}^{5}$ 's which have been contracted. Finally, let $\widetilde{\omega}_{c}$ be the two-form on $\widetilde{\mathcal{M}}_{c}$ induced by $\widehat{\omega}_{c}$; clearly $\widetilde{\omega}_{c}$ is non-degenerate outside $\widetilde{\Sigma}_{c}:=(\bar{\theta} \circ \widehat{\theta})\left(\widehat{\Sigma}_{c}\right)$, in fact by (6.4.1)

$$
\left(\wedge^{2 c-3} \widetilde{\omega}_{c}\right)=(c-4) \widetilde{\Sigma}_{c} .
$$

## References.

[B] A. Beauville. Variétés Kählériennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755-782.
[DL] J.M. Drezet-J. Le Potier. Fibrés stables et fibrés exeptionnels sur le plan projectif, Ann. scient. Ec. Norm. Sup. $4^{e}$ série t. 18 (1985), 193-244.
[DN] J.M. Drezet-M.S. Narasimhan. Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. math. 97 (1989), 53-94.
[FM] R. Friedman-J. Morgan. Smooth four-manifolds and complex surfaces, Ergeb. Math. Grenzgeb. (3. Folge) 27, Springer (1994).
[Fu] W. Fulton. Intersection theory, Ergeb. Math. Grenzgeb. 3. Folge-Band 2 (1984), Springer.
[G] D. Gieseker. On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106 (1977), 45-60.
[GH] L. Göttsche, D. Huybrechts. Hodge numbers of moduli spaces of stable bundles on K3 surfaces, Int. Journal of Math. 7 (1996), 359-372.
[GM] M. Goresky, R. MacPherson. Stratified Morse Theory, Ergeb. Math. Grenzgeb. (3. Folge) 14, Springer (1988).
[H] D. Huybrechts. Compact Hyperkähler manifolds: basic results, alg-geom/9705025.
[K] F. Kirwan. Partial desingularizations of quotients of nonsingular varieties and their Betti numbers, Ann. of Math. 122 (1985), 41-85.
[La] R. Lazarsfeld. Brill-Noether-Petri without degenerations, J. of Differential Geom. 23 (1986), 299-307.
[LP1] J. Le Potier. Fibré déterminant et courbes de saut sur les surfaces algébriques, Complex projective geometry, London Math. Soc. Lecture Note Series 179, Cambridge University Press (1992).
[LP2] J. Le Potier. Systèmes cohérents et structures de niveau, Astérisque 214, Soc. Math. de France (1993).
[Li1] J. Li. Algebraic geometric interpretation of Donaldson's polynomial invariants of algebraic surfaces, J. Diff. Geom. 37 (1993), 417-466.
[Li2] J. Li. Kodaira dimension of moduli spaces of vector bundles on surfaces, Invent. math. 115 (1994), 1-40.
[Li3] J. Li. The first two Betti numbers of the moduli spaces of vector bundles on surfaces, Comm. in Analysis and Geom. 5 (1997), 625-684.
[Lu] D. Luna. Slices étales, Mém. Soc. Math. France 33 (1973), 81-105.
[Ma] M. Maruyama. Moduli of stable sheaves, II, J. Math. Kyoto Univ. 18-3 (1978), 557-614.
[Mm] D. Mumford-J. Fogarty. Geometric invariant theory, Ergeb. Math. Grenzgeb. 34 (1982), Springer-Verlag.
[M1] S. Mukai. Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. math. 77 (1984), 101-116.
[M2] S. Mukai. On the moduli space of bundles on K3 surfaces, I, in Vector bundles on algebraic varieties, T.I.F.R., Oxford Univ. Press (1987), 341-413.
[O1] K. O'Grady. Donaldson's polynomials for K3 surfaces, J. Differential Geometry 35 (1992), 415-427.
[O2] K. O'Grady. Relations among Donaldson polynomials of certain algebraic surfaces, I, Forum Math. 8 (1996), 1-61.
[O3] K. O'Grady. The weight-two Hodge structure of moduli spaces of sheaves on a K3 surface, J. of Algebraic Geom. 6 (1997), 599-644.
[O4] K. O'Grady. Desingularized moduli spaces of sheaves on a K3, alg-geom/9708009.
[O5] K. O'Grady. Moduli of vector-bundles on surfaces, Algebraic Geometry Santa Cruz 1995, Proc. Symp. Pure Math. vol. 62, Amer. Math. Soc. (1997), 101-126.
[O6] K. O'Grady. Moduli of vector bundles on projective surfaces: some basic results, Invent. math. 123 (1996), 141-207.
[R] M. Raynaud. Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. Fr. 110 (1982), 103-125.
[S] C. Simpson. Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. Inst. Hautes Études Sci. 79 (1994), 47-129.
[T] A.N. Tyurin. Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with $p_{g}>0$, Math. USSR Izvestiya Vol. 33 (1989), 139-177.
[Y] K. Yoshioka. An application of exceptional bundles to the moduli of stable sheaves on a K3 surface, preprint alg-geom 9705027.
[VW] C.Vafa-E.Witten. A strong coupling test of S-duality, Nucl. Phys. B 431 (1994), 3-77.
[W] J.Wehler. Moduli space and versal deformation of stable vector bundles, Revue roumaine de math. pures et appliquées 30 (1985), 69-78.

Universitá di Roma "La Sapienza"
Dipartimento di Matematica"G. Castelnuovo"
00185 Roma
ITALIA
e-mail: ogrady@mat.uniroma1.it


[^0]:    * i.e. the union of "Desingularized ...", J. reine angew. Math. 512 (1999), and alg-geom/9708009

