Double covers of EPW-sextics

Kieran G. O'Grady*
"Sapienza" Università di Roma

June 82011

Contents

0 Introduction 1
1 Symmetric resolutions and double covers 4
1.1 Product formula and double covers 4
1.2 Structure sheaf of double EPW-sextics 8
1.3 Local models of double covers 9
2 The divisor Δ 12
2.1 Parameter counts 12
2.2 First order computations 13
3 Simultaneous resolution 16
3.1 Families of double EPW-sextics 16
3.2 The desingularization 17
4 Double EPW-sextics parametrized by Δ 20
4.1 EPW-sextics and $K 3$ surfaces 20
$4.2 \quad X_{A}^{\epsilon}$ for $A \in(\Delta \backslash \Sigma)$ 25
5 Appendix: Three-dimensional sections of $\operatorname{Gr}\left(3, \mathbb{C}^{5}\right)$ 30

0 Introduction

EPW-sextics are defined as follows. Let V be a 6 -dimensional complex vector space. Choose a volume-form vol: $\bigwedge^{6} V \xrightarrow{\sim} \mathbb{C}$ and equip $\bigwedge^{3} V$ with the symplectic form

$$
\begin{equation*}
(\alpha, \beta)_{V}:=\operatorname{vol}(\alpha \wedge \beta) \tag{0.0.1}
\end{equation*}
$$

Let $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ be the symplectic Grassmannian parametrizing Lagrangian subspaces of $\bigwedge^{3} V-$ of course $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ does not depend on the choice of volume-form. Let $F \subset \bigwedge^{3} V \otimes \mathcal{O}_{\mathbb{P}(V)}$ be the sub vector-bundle with fiber

$$
\begin{equation*}
F_{v}:=\left\{\alpha \in \bigwedge^{3} V \mid v \wedge \alpha=0\right\} \tag{0.0.2}
\end{equation*}
$$

over $[v] \in \mathbb{P}(V)$. Notice that $(,)_{V}$ is zero on F_{v} and $2 \operatorname{dim}\left(F_{v}\right)=20=\operatorname{dim} \bigwedge^{3} V$; thus F is a Lagrangian sub vector-bundle of the trivial symplectic vector-bundle on $\mathbb{P}(V)$ with fiber $\bigwedge^{3} V$. Next choose $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. Let

$$
\begin{equation*}
F \xrightarrow{\lambda_{A}}\left(\bigwedge^{3} V / A\right) \otimes \mathcal{O}_{\mathbb{P}(V)} \tag{0.0.3}
\end{equation*}
$$

[^0]be the composition of the inclusion $F \subset \bigwedge^{3} V \otimes \mathcal{O}_{\mathbb{P}(V)}$ followed by the quotient map. Since $\operatorname{rk} F=\operatorname{dim}(V / A)$ the determinat of λ_{A} makes sense. Let
$$
Y_{A}:=V\left(\operatorname{det} \lambda_{A}\right) .
$$

A straightforward computation gives that $\operatorname{det} F \cong \mathcal{O}_{\mathbb{P}(V)}(-6)$ and hence $\operatorname{det} \lambda_{A} \in H^{0}\left(\mathcal{O}_{\mathbb{P}(V)}(6)\right)$. It follows that if $\operatorname{det} \lambda_{A} \neq 0$ then Y_{A} is a sextic hypersurface. As is easily checked $\operatorname{det} \lambda_{A} \neq 0$ for generic $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ (notice that there exist "pathological" A 's such that $\lambda_{A}=0$ e.g. $A=F_{v_{0}}$). An $E P W$-sextic (after Eisenbud, Popescu and Walter [5]) is a sextic hypersurface in \mathbb{P}^{5} which is projectively equivalent to Y_{A} for some $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. Let Y_{A} be an EPW-sextic. One constructs a coherent sheaf ξ_{A} on Y_{A} and a multiplication map $\xi_{A} \times \xi_{A} \rightarrow \mathcal{O}_{Y_{A}}$ which gives $\mathcal{O}_{Y_{A}} \oplus \xi_{A}$ a structure of $\mathcal{O}_{Y_{A}}$-algebra - this is known to experts, see [4] - we will give the construction in Subsection 1.2. The double $E P W$-sextic associated to A is $X_{A}:=\operatorname{Spec}\left(\mathcal{O}_{Y_{A}} \oplus \xi_{A}\right)$; we let $f_{A}: X_{A} \rightarrow Y_{A}$ be the structure morphism. In [12] we considered X_{A} for generic A and we proved that it is a Hyperkähler deformation of (K3) ${ }^{[2]}$ (the blow-up of the diagonal in the symmetric square of a $K 3$ surface). In the present paper we will analyze X_{A} for A varying in a codimension- 1 subset of $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. In order to state our main results we will introduce some notation. Given $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ we let

$$
\begin{align*}
Y_{A}(k) & =\left\{[v] \in \mathbb{P}(V) \mid \operatorname{dim}\left(A \cap F_{v}\right)=k\right\}, \tag{0.0.4}\\
Y_{A}[k] & =\left\{[v] \in \mathbb{P}(V) \mid \operatorname{dim}\left(A \cap F_{v}\right) \geq k\right\} . \tag{0.0.5}
\end{align*}
$$

Thus $Y_{A}(0)=\left(\mathbb{P}(V) \backslash Y_{A}\right)$ and $Y_{A}=Y_{A}[1]$. Double EPW-sextics come with a natural polarization; we let

$$
\begin{equation*}
\mathcal{O}_{X_{A}}(n):=f_{A}^{*} \mathcal{O}_{Y_{A}}(n), \quad H_{A} \in\left|\mathcal{O}_{X_{A}}(1)\right| \tag{0.0.6}
\end{equation*}
$$

The following closed subsets of $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ play a key rôle in the present paper:

$$
\begin{array}{rc}
\Sigma:= & \left\{A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \mid \exists W \in \mathbb{G} r(3, V) \text { s. t. } \bigwedge^{3} W \subset A\right\} \\
\Delta:= & \left\{A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \mid Y_{A}[3] \neq \emptyset\right\} \tag{0.0.8}
\end{array}
$$

A straightforward computation, see [15], gives that Σ is irreducible of codimension 1. A similar computation, see Proposition 2.2, gives that Δ is irreducible of codimension 1 and distinct from Σ. Let

$$
\begin{equation*}
\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}:=\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \Sigma \backslash \Delta \tag{0.0.9}
\end{equation*}
$$

Thus $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$ is open dense in $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. In [12] we proved that if $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$ then X_{A} is a hyperkähler (HK) 4-fold which can be deformed to $(K 3)^{[2]}$. Moreover we showed that the family of polarized HK 4 -folds $\left(X_{A}, H_{A}\right)$ for A varying $\operatorname{in} \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$ is locally complete. Three other explicit locally complete families of projective HK's of dimension greater than 2 are known - see $[2,3,8,9]$. In all of the examples the HK manifolds are deformations of the Hilbert square of a K3: they are distinguished by the value of the Beauville-Bogomolov form on the polarization class (it equals 2 in the case of double EPW-sextics and 6, 22 and 38 in the other cases). In the present paper we will analyze X_{A} for $A \in \Delta$, mainly under the hypothesis that $A \notin \Sigma$. Let $A \in(\Delta \backslash \Sigma)$. We will prove the following results
(1) $Y_{A}[3]$ is a finite set and it equals $Y_{A}(3)$. If A is generic in $(\Delta \backslash \Sigma)$ then $Y_{A}(3)$ is a singleton.
(2) One may associate to $\left[v_{0}\right] \in Y_{A}(3)$ a $K 3$ surface $S_{A}\left(v_{0}\right) \subset \mathbb{P}^{6}$ of genus 6 , well-defined up to projectivities. Conversely the generic $K 3$ of genus 6 is projectively equivalent to $S_{A}\left(v_{0}\right)$ for some $A \in(\Delta \backslash \Sigma)$ and $\left[v_{0}\right] \in Y_{A}(3)$.
(3) The singular set of X_{A} is equal to $f_{A}^{-1} Y_{A}(3)$. There is a single $p_{i} \in X_{A}$ mapping to $\left[v_{i}\right] \in Y_{A}(3)$ and the cone of X_{A} at p_{i} is isomorphic to the cone over the set of incident couples $(x, r) \in$ $\mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{\vee}$ (i.e. $\left.\mathbb{P}\left(\Omega_{\mathbb{P}^{2}}\right)\right)$. Thus we have two standard small resolutions of a neighborhood of p_{i} in X_{A}, one with fiber \mathbb{P}^{2} over p_{i}, the other with fiber $\left(\mathbb{P}^{2}\right)^{\vee}$. Making a choice ϵ of local small resolution at each p_{i} we get a resolution $X_{A}^{\epsilon} \rightarrow X_{A}$ with the following properties: There is
a birational map $X_{A}^{\epsilon} \longrightarrow S_{A}\left(v_{i}\right)^{[2]}$ such that the pull-back of a holomorphic symplectic form on $S_{A}\left(v_{i}\right)^{[2]}$ is a symplectic form on X_{A}^{ϵ}. If $S_{A}\left(v_{i}\right)$ contains no lines (true for generic A by Item (2)) then there exists a choice of ϵ such that X_{A}^{ϵ} is isomorphic to $S_{A}\left(v_{i}\right)^{[2]}$.
(4) Given a sufficiently small open (classical topology) $\mathcal{U} \subset\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \Sigma\right)$ containing A the family of double EPW-sextics parametrized by \mathcal{U} has a simultaneous resolution of singularities (no base change) with fiber X_{A}^{ϵ} over A (for an arbitrary choice of ϵ).
A remark: if $Y_{A}(3)$ has more than one point we do not expect all the small resolutions to be projective (i.e. Kähler). Items (1)-(4) should be compared with known results on cubic 4-folds recall that if $Z \subset \mathbb{P}^{5}$ is a smooth cubic hypersurface the variety $F(Z)$ parametrizing lines in Z is a HK 4-fold which can be deformed to $(K 3)^{[2]}$ and moreover the primitive weight-4 Hodge structure of Z is isomorphic (after a Tate twist) to the primitive weight-2 Hodge structure of $F(Z)$, see [2]. Let $D \subset\left|\mathcal{O}_{\mathbb{P}^{5}}(3)\right|$ be the prime divisor parametrizing singular cubics. Let $Z \in D$ be generic: the following results are well-known.
(1') $\operatorname{sing} Z$ is a finite set.
(2') Given $p \in \operatorname{sing} Z$ the set $S_{Z}(p) \subset F(Z)$ of lines containing p is a $K 3$ surface of genus 4 and viceversa the generic such $K 3$ is isomorphic to $S_{Z}(p)$ for some Z and $p \in \operatorname{sing} Z$.
(3') $F(Z)$ is birational to $S_{Z}(p)^{[2]}$.
(4') After a local base-change of order 2 ramified along D the period map extends across Z.
Thus Items $\left(1^{\prime}\right)-\left(2^{\prime}\right)-\left(3^{\prime}\right)$ are analogous to Items (1), (2) and (3) above, Item (4') is analogous to (4) but there is an important difference namely the need for a base-change of order 2. (Actually the paper [13] contains results showing that there is a statement valid for cubic hypersurfaces which is even closer to our result for double EPW-sextics, the rôle of Σ being played by the divisor parametrizing cubics containing a plane.) We explain the relevance of Items (1)-(4). Items (3) and (4) prove the theorem of ours mentioned above i.e. that if $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$ then X_{A} is a HK deformation of $(K 3)^{[2]}$ (the family of polarized double EPW-sextics is locally complete by a straightforward parameter count). The proof in this paper is independent of the proof in [12]. Beyond giving a new proof of an "old" theorem the above results show that away from Σ the period map is regular, it lifts (locally) to the relevant classifying space and the value at $A \in(\Delta \backslash \Sigma)$ may be identified with the period point of the Hilbert square $S_{A}\left(v_{0}\right)^{[2]}$. We remark that in [14] we had proved that the period map is as well-behaved as possible at the generic $A \in(\Delta \backslash \Sigma)$, however we did not have the exact statement about X_{A}^{ϵ} and we had no statement about an arbitrary $A \in(\Delta \backslash \Sigma)$.

The paper is organized as follows. In Section 1 we will give formulae that describe double EPW-sextics locally. The formulae are known to experts, see [4], we will go through the proofs because we could not find a suitable reference. We will also perform the local computations needed to prove Item (4) above. In Section 2 we will go through some standard computations involving Δ. In Section 3 we will prove Items (1), (4) and the statements of Item (3) which do not involve the $K 3$ surface $S_{A}\left(v_{0}\right)$. In Section 4 we will prove Item (2) and the remaining statement of Item (3). Section 5 contains auxiliary results on 3 -dimensional linear sections of $\operatorname{Gr}\left(3, \mathbb{C}^{5}\right)$.

Notation and conventions: Throughout the paper V is a 6 -dimensional complex vector space.
Let W be a finite-dimensional complex vector-space. The span of a subset $S \subset W$ is denoted by $\langle S\rangle$. Let $S \subset \bigwedge^{q} W$. The support of S is the smallest subspace $U \subset W$ such that $S \subset \operatorname{im}\left(\bigwedge^{q} U \longrightarrow\right.$ $\left.\bigwedge^{q} W\right)$: we denote it by $\operatorname{supp}(S)$, if $S=\{\alpha\}$ is a singleton we let $\operatorname{supp}(\alpha)=\operatorname{supp}(\{\alpha\})$ (thus if $q=1$ we have $\operatorname{supp}(\alpha)=\langle\alpha\rangle)$. We define the support of a set of symmetric tensors analogously. If $\alpha \in \bigwedge^{q} W$ or $\alpha \in \operatorname{Sym}^{d} W$ the rank of α is the dimension of $\operatorname{supp}(\alpha)$. An element of $\operatorname{Sym}^{2} W^{\vee}$ may be viewed either as a symmetric map or as a quadratic form: we will denote the former by $\widetilde{q}, \widetilde{r}, \ldots$ and the latter by q, r, \ldots respectively.
Let $M=\left(M_{i j}\right)$ be a $d \times d$ matrix with entries in a commutative ring R. We let $M^{c}=\left(M^{i j}\right)$ be the matrix of cofactors of M, i.e. $M^{i, j}$ is $(-1)^{i+j}$ times the determinant of the matrix obtained
from M by deleting its j-th row and i-th column. We recall the following interpretation of M^{c}. Suppose that $f: A \rightarrow B$ is a linear map between free R-modules of rank d and that M is the matrix associated to f by the choice of bases $\left\{a_{1}, \ldots, a_{d}\right\}$ and $\left\{b_{1}, \ldots, b_{d}\right\}$ of A and B respectively. Then $\bigwedge^{d-1} f$ may be viewed as a map

$$
\begin{equation*}
\bigwedge^{d-1} f: A^{\vee} \otimes \bigwedge^{d} A \cong \bigwedge^{d-1} A \longrightarrow \bigwedge^{d-1} B \cong B^{\vee} \otimes \bigwedge^{d} B \tag{0.0.10}
\end{equation*}
$$

(Here $A^{\vee}:=\operatorname{Hom}(A, R)$ and similarly for B^{\vee}.) The matrix associated to $\bigwedge^{d-1} f$ by the choice of bases $\left\{a_{1}^{\vee} \otimes\left(a_{1} \wedge \ldots \wedge a_{d}\right), \ldots, a_{d}^{\vee} \otimes\left(a_{1} \wedge \ldots \wedge a_{d}\right)\right\}$ and $\left\{b_{1}^{\vee} \otimes\left(b_{1} \wedge \ldots \wedge b_{d}\right), \ldots, b_{d}^{\vee} \otimes\left(b_{1} \wedge \ldots \wedge b_{d}\right)\right\}$ is equal to M^{c}.

Let W be a finite-dimensional complex vector-space. We will adhere to pre-Grothendieck conventions: $\mathbb{P}(W)$ is the set of 1-dimensional vector subspaces of W. Given a non-zero $w \in W$ we will denote the span of w by $[w]$ rather than $\langle w\rangle$; this agrees with standard notation. Suppose that $T \subset \mathbb{P}(W)$. Then $\langle T\rangle \subset \mathbb{P}(W)$ is the projective span of T i.e. the intersection of all linear subspaces of $\mathbb{P}(W)$ containing T.

Schemes are defined over \mathbb{C}, the topology is the Zariski topology unless we state the contrary. Let W be finite-dimensional complex vector-space: $\mathcal{O}_{\mathbb{P}(W)}(1)$ is the line-bundle on $\mathbb{P}(W)$ with fiber L^{\vee} on the point $L \in \mathbb{P}(W)$. Let $F \in \operatorname{Sym}^{d} W^{\vee}$: we let $V(F) \subset \mathbb{P}(W)$ be the subscheme defined by vanishing of F. If $E \rightarrow X$ is a vector-bundle we denote by $\mathbb{P}(E)$ the projective fiber-bundle with fiber $\mathbb{P}(E(x))$ over x and we define $\mathcal{O}_{\mathbb{P}(W)}(1)$ accordingly. If Y is a subscheme of X we let $B l_{Y} X \longrightarrow X$ be the blow-up of Y.

1 Symmetric resolutions and double covers

In Subsection 1.1 we will describe a method (well-known to experts) for constructing double covers. In Subsection 1.2 we will show how to implement the construction in order to construct double EPW-sextics. Subsection 1.3 contains the main ingredients needed to construct the simultaneous desingularization described in Item (3) of Section 0.

1.1 Product formula and double covers

Let R be an integral Noetherian ring. Let N be an R-module with a free resolution

$$
\begin{equation*}
0 \longrightarrow U_{1} \xrightarrow{\lambda} U_{0} \xrightarrow{\pi} N \longrightarrow 0, \quad \text { rk } U_{1}=\operatorname{rk} U_{0}=d>0 . \tag{1.1.1}
\end{equation*}
$$

Let $\left\{a_{1}, \ldots, a_{d}\right\}$ and $\left\{b_{1}, \ldots, b_{d}\right\}$ be bases of U_{0} and U_{1} respectively. Let M_{λ} be the matrix associated to λ by our choice of bases - notice that $\operatorname{det} M_{\lambda}$ annihilates N. Given a homomorphism

$$
\begin{equation*}
\beta: N \rightarrow \operatorname{Ext}^{1}(N, R) \tag{1.1.2}
\end{equation*}
$$

one defines a product $m_{\beta}: N \times N \rightarrow R /\left(\operatorname{det} M_{\lambda}\right)$ as follows. Applying the $\operatorname{Hom}(\cdot, R)$-functor to (1.1.1) we get the exact sequence

$$
\begin{equation*}
0 \longrightarrow U_{0}^{\vee} \xrightarrow{\lambda^{t}} U_{1}^{\vee} \xrightarrow{\rho} \operatorname{Ext}^{1}(N, R) \longrightarrow 0 . \tag{1.1.3}
\end{equation*}
$$

In particular det M_{λ} kills $\operatorname{Ext}^{1}(N, R)$. Now apply the functor $\operatorname{Hom}(N, \cdot)$ to the exact sequence

$$
\begin{equation*}
0 \longrightarrow R \xrightarrow{\operatorname{det} M_{\lambda}} R \longrightarrow R /\left(\operatorname{det} M_{\lambda}\right) \longrightarrow 0 . \tag{1.1.4}
\end{equation*}
$$

Since $\operatorname{Ext}^{1}(N, R) \rightarrow \operatorname{Ext}^{1}(N, R)$ is multiplication by det M_{λ} we get a coboundary isomorphism

$$
\begin{equation*}
\partial: \operatorname{Hom}\left(N, R /\left(\operatorname{det} M_{\lambda}\right)\right) \xrightarrow{\sim} \operatorname{Ext}^{1}(N, R) . \tag{1.1.5}
\end{equation*}
$$

We let

$$
\begin{array}{ccc}
N \times N & \xrightarrow{m_{\beta}} & R /\left(\operatorname{det} M_{\lambda}\right) \tag{1.1.6}\\
\left(n, n^{\prime}\right) & \mapsto & \left(\partial^{-1} \beta(n)\right)\left(n^{\prime}\right) .
\end{array}
$$

We will give an explicit formula for m_{β}. Let $\pi: U_{0} \rightarrow N$ be as in (1.1.1). Then $\beta \circ \pi$ lifts to a homomorphism $\mu^{t}: U_{0} \rightarrow U_{1}^{\vee}$ (the map is written as a transpose in order to conform to the notation for double EPW-sextics - see Subsection 1.2). It follows that there exists $\alpha: U_{1} \rightarrow U_{0}^{\vee}$ such that

$$
\begin{array}{cccccccc}
0 & \rightarrow & U_{1} & \xrightarrow{\lambda} & U_{0} & \xrightarrow{\pi} & N & \rightarrow \tag{1.1.7}
\end{array}
$$

is a commutative diagram. Let $\left\{a_{1}^{\vee}, \ldots, a_{d}^{\vee}\right\}$ and $\left\{b_{1}^{\vee}, \ldots, b_{d}^{\vee}\right\}$ be the bases of U_{0}^{\vee} and U_{1}^{\vee} which are dual to the chosen bases of U_{0} and U_{1}. Let $M_{\mu^{t}}$ be the matrix associated to μ^{t} by our choice of bases.

Proposition 1.1. Keeping notation as above we have

$$
\begin{equation*}
m_{\beta}\left(\pi\left(a_{i}\right), \pi\left(a_{j}\right)\right) \equiv\left(M_{\lambda}^{c} \cdot M_{\mu^{t}}\right)_{j i} \quad \bmod \left(\operatorname{det} M_{\lambda}\right) \tag{1.1.8}
\end{equation*}
$$

where M_{λ}^{c} is the matrix of cofactors of M_{λ}.
Proof. Equation (1.1.3) gives an isomorphism

$$
\begin{equation*}
\nu: \operatorname{Ext}^{1}(N, R) \xrightarrow{\sim} U_{1}^{\vee} / \lambda^{t}\left(U_{0}^{\vee}\right) . \tag{1.1.9}
\end{equation*}
$$

Let $\operatorname{det}\left(U_{\bullet}\right):=\bigwedge^{d} U_{1}^{\vee} \otimes \bigwedge^{d} U_{0}$. We will define an isomorphism

$$
\begin{equation*}
\theta: U_{1}^{\vee} / \lambda^{t}\left(U_{0}^{\vee}\right) \xrightarrow{\sim} \operatorname{Hom}\left(N, \operatorname{det}\left(U_{\bullet}\right) /(\operatorname{det} \lambda)\right) . \tag{1.1.10}
\end{equation*}
$$

First let

$$
\begin{array}{ccc}
U_{1}^{\vee}=\bigwedge^{d-1} U_{1} \otimes \bigwedge^{d} U_{1}^{\vee} & \xrightarrow{\widehat{\theta}} \bigwedge^{d-1} U_{0} \otimes \bigwedge^{d} U_{1}^{\vee}=\operatorname{Hom}\left(U_{0}, \operatorname{det}\left(U_{\bullet}\right)\right) \tag{1.1.11}\\
\zeta \otimes \xi & \mapsto & \bigwedge^{d-1}(\lambda)(\zeta) \otimes \xi
\end{array}
$$

We claim that

$$
\begin{equation*}
\operatorname{im}(\widehat{\theta})=\left\{\phi \in \operatorname{Hom}\left(U_{0}, \operatorname{det}\left(U_{\bullet}\right)\right) \mid \phi \circ \lambda\left(U_{1}\right) \subset(\operatorname{det} \lambda)\right\} . \tag{1.1.12}
\end{equation*}
$$

In fact by Cramer's formula

$$
\begin{equation*}
M_{\lambda}^{c} \cdot M_{\lambda}^{t}=M_{\lambda}^{t} \cdot M_{\lambda}^{c}=\operatorname{det} M_{\lambda} \cdot 1 \tag{1.1.13}
\end{equation*}
$$

and Equation (1.1.12) follows. Thus $\widehat{\theta}$ induces a surjective homomorphism

$$
\begin{equation*}
\widetilde{\theta}: U_{1}^{\vee} \longrightarrow \operatorname{Hom}\left(N, \operatorname{det}\left(U_{\bullet}\right) /(\operatorname{det} \lambda)\right) . \tag{1.1.14}
\end{equation*}
$$

One checks easily that $\lambda^{t}\left(U_{0}^{\vee}\right)=\operatorname{ker} \widetilde{\theta}$ - use Cramer again. We define θ to be the homomorphism induced by $\widetilde{\theta}$; we have proved that it is an isomorphism. We claim that

$$
\begin{equation*}
\theta \circ \nu=\partial^{-1}, \quad \partial \text { as in (1.1.5). } \tag{1.1.15}
\end{equation*}
$$

In fact let K be the fraction field of R and $0 \rightarrow R \xrightarrow{\iota} I^{0} \rightarrow I^{1} \rightarrow \ldots$ be an injective resolution of R with $I^{0}=\operatorname{det}\left(U_{\bullet}\right) \otimes K$ and $\iota(1)=\operatorname{det} \lambda \otimes 1$. Then $\operatorname{Ext}^{\bullet}(N, R)$ is the cohomology of the double complex $\operatorname{Hom}\left(U_{\bullet}, I^{\bullet}\right)$ and of course also of the single complexes $\operatorname{Hom}\left(U_{\bullet}, R\right)$ and $\operatorname{Hom}\left(N, I^{\bullet}\right)$. One checks easily that the isomorphism ∂ of (1.1.5) is equal to the isomorphism $H^{1}\left(\operatorname{Hom}\left(N, I^{\bullet}\right)\right) \xrightarrow{\sim}$ $H^{1}\left(\operatorname{Hom}\left(U_{\bullet}, I_{\bullet}^{\bullet}\right)\right)$ i.e.

$$
\begin{equation*}
\partial: \operatorname{Hom}\left(N, \operatorname{det}\left(U_{\bullet}\right) /(\operatorname{det} \lambda)\right)=\operatorname{Hom}\left(N, I^{0} / \iota(R)\right) \xrightarrow{\sim} H^{1}\left(\operatorname{Hom}\left(U_{\bullet}, I^{\bullet}\right)\right) . \tag{1.1.16}
\end{equation*}
$$

Let $f \in \operatorname{Hom}\left(N, \operatorname{det}\left(U_{\bullet}\right) /(\operatorname{det} \lambda)\right)$; a representative of $\partial(f)$ in the double complex $\operatorname{Hom}\left(U_{\bullet}, I^{\bullet}\right)$ is given by $g^{0,1}:=f \circ \pi \in \operatorname{Hom}\left(U_{0}, I^{1}\right)$. Let $g^{0,0} \in \operatorname{Hom}\left(U_{0}, \operatorname{det}\left(U_{\bullet}\right)\right)$ be a lift of $g^{0,1}$ and $g^{1,0} \in$ $\operatorname{Hom}\left(U_{1}, \operatorname{det}\left(U_{\bullet}\right)\right)$ be defined by $g^{1,0}:=g^{0,0} \circ \lambda$. One checks that $\operatorname{im}\left(g^{1,0}\right) \subset(\operatorname{det} \lambda)$ and hence there exists $g \in \operatorname{Hom}\left(U_{1}, R\right)$ such that $g^{1,0}=\iota \circ g$. By construction g represents a class $[g] \in$
$H^{1}\left(\operatorname{Hom}\left(U_{\bullet}, R\right)\right)=U_{1}^{\vee} / \lambda^{t}\left(U_{0}^{\vee}\right)$ and $[g]=\nu \circ \partial(f)$. An explicit computation shows that $[g]=\theta^{-1}(f)$. This proves (1.1.15). Now we prove Equation (1.1.8). By (1.1.15) we have

$$
\begin{equation*}
m_{\beta}\left(\pi\left(a_{i}\right), \pi\left(a_{j}\right)\right)=\left(\partial^{-1} \beta \pi\left(a_{i}\right)\right)\left(\pi\left(a_{j}\right)\right)=\left(\theta \nu \beta \pi\left(a_{i}\right)\right)\left(\pi\left(a_{j}\right)\right) . \tag{1.1.17}
\end{equation*}
$$

Unwinding the definition of θ one gets that the right-hand side of the above equation equals the right-hand side of (1.1.8).

Let m_{β} be given by (1.1.6): we define a product on $R /\left(\operatorname{det} M_{\lambda}\right) \oplus N$ as follows. Let $(r, n),\left(r^{\prime}, n^{\prime}\right) \in$ $R /\left(\operatorname{det} M_{\lambda}\right) \oplus N$: we set

$$
\begin{equation*}
(r, n) \cdot\left(r^{\prime}, n^{\prime}\right):=\left(r r^{\prime}+m_{\beta}\left(n, n^{\prime}\right), r n^{\prime}+r^{\prime} n\right) \tag{1.1.18}
\end{equation*}
$$

In general the above product is neither associative nor commutative. We will give an example in which the product is both associative and commutative. Suppose that we have

$$
\begin{equation*}
0 \longrightarrow U^{\vee} \xrightarrow{\gamma} U \xrightarrow{\pi} N \longrightarrow 0, \quad \gamma^{t}=\gamma \tag{1.1.19}
\end{equation*}
$$

with U a free R-module of rank $d>0$ and the sequence is supposed to be exact. We get a commutative diagram (1.1.7) by letting

$$
U_{0}:=U, \quad U_{1}:=U^{\vee}, \quad \lambda=\gamma, \quad \alpha=\operatorname{Id}_{U \vee}, \quad \mu^{t}=\operatorname{Id}_{U}
$$

and $\beta=\beta(\gamma): N \rightarrow \operatorname{Ext}^{1}(N, R)$ the map induced by Id_{U}. Abusing notation we let $m_{\gamma}: N \times N \rightarrow$ $R /\left(\operatorname{det} M_{\gamma}\right)$ be the map defined by $m_{\beta(\gamma)}$.

Proposition 1.2. Suppose that we have Exact Sequence (1.1.19). The product on $R /\left(\operatorname{det} M_{\gamma}\right) \oplus N$ defined by m_{γ} is associative and commutative.
Proof. Let $d:=\operatorname{rk} U>0$. Let $\left\{a_{1}, \ldots, a_{d}\right\}$ be a basis of U and $\left\{a_{1}^{\vee}, \ldots, a_{d}^{\vee}\right\}$ be the dual basis of U^{\vee}. Let $M=M_{\gamma}$ i.e. the matrix associated to γ by our choice of bases. By (1.1.8) we have

$$
\begin{equation*}
m_{\gamma}\left(\pi\left(a_{i}\right), \pi\left(a_{j}\right)\right) \equiv M_{j i}^{c} \quad \bmod (\operatorname{det} M) \tag{1.1.20}
\end{equation*}
$$

Since γ is a symmetric map M is a symmetric matrix. Thus M^{c} is a symmetric matrix. By (1.1.20) we get that m_{γ} is symmetric. It remains to prove that m_{γ} is associative. For $1 \leq i<k \leq d$ and $1 \leq h \neq j \leq d$ let $M_{h, j}^{i, k}$ be the $(d-2) \times(d-2)$-matrix obtained by deleting from M rows i, k and columns h, j. Let $X_{i j k}=\left(X_{i j k}^{h}\right) \in R^{d}$ be defined by

$$
X_{i j k}^{h}:= \begin{cases}(-1)^{i+k+j+h} \operatorname{det} M_{j, h}^{i, k} & \text { if } h<j, \tag{1.1.21}\\ 0 & \text { if } h=j . \\ (-1)^{i+k+j+h-1} \operatorname{det} M_{j, h}^{i, k} & \text { if } j<h .\end{cases}
$$

A tedious but straightforward computation gives that

$$
\begin{equation*}
M_{i j}^{c} a_{k}-M_{j k}^{c} a_{i}=\gamma\left(\sum_{h=1}^{d} X_{i j k}^{h} a_{h}^{\vee}\right) . \tag{1.1.22}
\end{equation*}
$$

The above equation proves associativity of m_{γ}.
Keep hypotheses as in Proposition 1.2. We let

$$
\begin{equation*}
X_{\gamma}:=\operatorname{Spec}\left(R /\left(\operatorname{det} M_{\lambda}\right) \oplus N\right), \quad Y_{\gamma}:=\operatorname{Spec}\left(R /\left(\operatorname{det} M_{\lambda}\right)\right) . \tag{1.1.23}
\end{equation*}
$$

Let $f_{\gamma}: X_{\gamma} \rightarrow Y_{\gamma}$ be the structure map. We realize X_{γ} as a subscheme of $\operatorname{Spec}\left(R\left[\xi_{1}, \ldots, \xi_{d}\right]\right)$ as follows. Since the ring $R /\left(\operatorname{det} M_{\gamma}\right) \oplus N$ is associative and commutative there is a well-defined surjective morphism of R-algebras

$$
\begin{equation*}
R\left[\xi_{1}, \ldots, \xi_{d}\right] \longrightarrow R /\left(\operatorname{det} M_{\gamma}\right) \oplus N \tag{1.1.24}
\end{equation*}
$$

mapping ξ_{i} to a_{i}. Thus we have an inclusion

$$
\begin{equation*}
X_{\gamma} \hookrightarrow \operatorname{Spec}\left(R\left[\xi_{1}, \ldots, \xi_{d}\right]\right) . \tag{1.1.25}
\end{equation*}
$$

Claim 1.3. Referring to Inclusion (1.1.25) the ideal of X_{γ} is generated by the entries of the matrices

$$
\begin{equation*}
M_{\gamma} \cdot \xi, \quad \xi \cdot \xi^{t}-M_{\gamma}^{c} \tag{1.1.26}
\end{equation*}
$$

(We view ξ as a column matrix.)
Proof. By (1.1.20) the ideal of X_{γ} is generated by $\operatorname{det} M_{\gamma}$ and the entries of the matrices in (1.1.26). By Cramer's formula det M_{γ} belongs to the ideal generated by the entries of the two matrices. This proves that the ideal of X_{γ} is as claimed.

Now we suppose in addition that R is a finitely generated \mathbb{C}-algebra. Let $p \in \operatorname{Spec} R$ be a closed point: we are interested in the localization of X_{γ} at points in $f_{\gamma}^{-1}(p)$. Let $J \subset U^{\vee}(p)$ be a subspace complementary to $\operatorname{ker} \gamma(p)$. Let $\mathbf{J} \subset U^{\vee}$ be a free submodule whose fiber over p is equal to J. Let $\mathbf{K} \subset U^{\vee}$ be the submodule orthogonal to \mathbf{J} i.e.

$$
\begin{equation*}
\mathbf{K}:=\left\{u \in U^{\vee} \mid \gamma(a)(u)=0 \quad \forall a \in \mathbf{J}\right\} . \tag{1.1.27}
\end{equation*}
$$

The localization of \mathbf{K} at p is free. Let $K:=\mathbf{K}(p)$ be the fiber of \mathbf{K} at p; clearly $K=\operatorname{ker} \gamma(p)$. Localizing at p we have

$$
\begin{equation*}
U_{p}^{\vee}=\mathbf{K}_{p} \oplus \mathbf{J}_{p} \tag{1.1.28}
\end{equation*}
$$

Corresponding to (1.1.28) we may write $\gamma_{p}=\gamma_{\mathbf{K}} \oplus_{\perp} \gamma_{\mathbf{J}}$ where $\gamma_{\mathbf{K}}: \mathbf{K}_{p} \rightarrow \mathbf{K}_{p}^{\vee}$ and $\gamma_{J}: \mathbf{J}_{p} \rightarrow \mathbf{J}_{p}^{\vee}$ are symmetric maps. Notice that we have an equality of germs

$$
\begin{equation*}
\left(Y_{\gamma}, p\right)=\left(Y_{\gamma_{\mathbf{K}}}, p\right) \tag{1.1.29}
\end{equation*}
$$

We claim that there is a compatible isomorphism of germs $\left(X_{\gamma_{\mathbf{K}}}, f_{\gamma_{\mathbf{K}}}^{-1}(p)\right) \cong\left(X_{\gamma}, f_{\gamma}^{-1}(p)\right)$. In fact let $k:=\operatorname{dim} K$ and $d:=\mathrm{rk} U$. Choose bases of \mathbf{K}_{p} and \mathbf{J}_{p}; by (1.1.28) we get a basis of U_{p}^{\vee}. The dual bases of $\mathbf{K}_{p}^{\vee}, \mathbf{J}_{p}^{\vee}$ and U_{p}^{\vee} are compatible with respect to the decomposition dual to (1.1.28). Corresponding to the chosen bases we have embeddings $X_{\gamma_{K}} \hookrightarrow Y_{\gamma_{K}} \times \mathbb{C}^{k}$ and $X_{\gamma} \hookrightarrow Y_{\gamma} \times \mathbb{C}^{d}$. The decomposition dual to (1.1.28) gives an embedding $j: Y_{\gamma_{K}} \times \mathbb{C}^{k} \hookrightarrow Y_{\gamma} \times \mathbb{C}^{d}$.

Claim 1.4. Keep notation as above. The composition

$$
\begin{equation*}
X_{\gamma_{K}} \hookrightarrow\left(Y_{\gamma_{K}} \times \mathbb{C}^{k}\right) \xrightarrow{j}\left(Y_{\gamma} \times \mathbb{C}^{d}\right) \tag{1.1.30}
\end{equation*}
$$

defines an isomorphism of germs in the analytic topology

$$
\begin{equation*}
\left(X_{\gamma_{\mathbf{K}}}, f_{\gamma_{\mathbf{K}}}^{-1}(p)\right) \xrightarrow{\sim}\left(X_{\gamma}, f_{\gamma}^{-1}(p)\right) \tag{1.1.31}
\end{equation*}
$$

which commutes with the maps $f_{\gamma_{\mathrm{K}}}$ and f_{γ}.
Proof. This follows by writing $\gamma_{p}=\gamma_{\mathbf{K}} \oplus_{\perp} \gamma_{\mathbf{J}}$ and by recalling (1.1.20). We pass to the analytic topology in order to be able to extract the square root of a regular non-zero function.

Proposition 1.5. Assume that R is a finitely generated \mathbb{C}-algebra. Suppose that we have Exact Sequence (1.1.19). Then the following hold:
(1) $f_{\gamma}^{-1} Y_{\gamma}(1) \rightarrow Y_{\gamma}(1)$ is a topological covering of degree 2.
(2) Let $p \in\left(Y_{\gamma} \backslash Y_{\gamma}(1)\right)$ be a closed point. The fiber $f_{\gamma}^{-1}(p)$ consists of a single point q. Let ξ_{i} be the coordinates on X_{γ} associated to Embedding (1.1.25); then $\xi_{i}(q)=0$ for $i=1, \ldots, d$.

Proof. (1): Localizing at $p \in Y_{\gamma}(1)$ and applying Claim 1.4 we get Item (1). (2): Since cork $M_{\gamma}(p) \geq$ 2 we have $M_{\gamma}^{c}(p)=0$. Thus Item (2) follows from Claim 1.3.

We may associate a double cover $f_{\gamma}: X_{\gamma} \rightarrow Y_{\gamma}$ to a map β which is symmetric in the derived category.

Hypothesis 1.6. We have (1.1.7) with α an isomorphism and in addition $\alpha=\mu$.

Proposition 1.7. Assume that Hypothesis 1.6 holds. Then $R /\left(\operatorname{det} M_{\lambda}\right) \oplus N$ equipped with the product given by (1.1.18) is a commutative (associative) ring.

Proof. Let $\gamma:=\lambda \circ \mu^{-1}$ and $U:=U_{0}$. Then (1.1.19) holds and the product defined by m_{β} is equal to the product defined by m_{γ}. By Proposition 1.2 we get that $R /\left(\operatorname{det} M_{\lambda}\right) \oplus N$ is a commutative associative ring.

Definition 1.8. Suppose that Hypothesis $\mathbf{1 . 6}$ holds: the symmetrization of (1.1.7) is Exact Sequence (1.1.19) with γ and U as in the proof of Proposition 1.7.

1.2 Structure sheaf of double EPW-sextics

Let $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ and suppose that $Y_{A} \neq \mathbb{P}(V)$. We will define the associated double cover $X_{A} \rightarrow Y_{A}$ by applying the results of Subsection 1.1. Since A is Lagrangian the symplectic form defines a canonical isomorphism $\bigwedge^{3} V / A \cong A^{\vee}$; thus (0.0.3) defines a map of vector-bundles $\lambda_{A}: F \rightarrow A^{\vee} \otimes \mathcal{O}_{\mathbb{P}(V)}$. Let $i: Y_{A} \hookrightarrow \mathbb{P}(V)$ be the inclusion map: since a local generator of $\operatorname{det} \lambda_{A}$ annihilates $\operatorname{coker}\left(\lambda_{A}\right)$ there is a unique sheaf ζ_{A} on Y_{A} such that we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow F \xrightarrow{\lambda_{A}} A^{\vee} \otimes \mathcal{O}_{\mathbb{P}(V)} \longrightarrow i_{*} \zeta_{A} \longrightarrow 0 \tag{1.2.1}
\end{equation*}
$$

Choose $B \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ transversal to A. Thus we have a direct-sum decomposition $\bigwedge^{3} V=A \oplus B$ and hence a projection map $\bigwedge^{3} V \rightarrow A$ inducing a map $\mu_{A, B}: F \rightarrow A \otimes \mathcal{O}_{\mathbb{P}(V)}$. We claim that there is a commutative diagram with exact rows

$$
\begin{array}{cccccccc}
0 & \rightarrow & F & \xrightarrow{\lambda_{A}} & A^{\vee} \otimes \mathcal{O}_{\mathbb{P}(V)} & \longrightarrow & i_{*} \zeta_{A} & \rightarrow \tag{1.2.2}\\
& & \downarrow_{A, B} & & & \mu_{A, B}^{t} & & \\
& & & \beta_{\beta_{A}} & & \\
0 & \rightarrow & A \otimes \mathcal{O}_{\mathbb{P}(V)} & \xrightarrow{\lambda_{A}^{t}} & F^{\vee} & & \longrightarrow & E x t^{1}\left(i_{*} \zeta_{A}, \mathcal{O}_{\mathbb{P}(V)}\right)
\end{array} \gg 0 .
$$

In fact the second row is obtained by applying the $\operatorname{Hom}\left(\cdot, \mathcal{O}_{\mathbb{P}(V)}\right)$-functor to (1.2.1) and the equality $\mu_{A, B}^{t} \circ \lambda_{A}=\lambda_{A}^{t} \circ \mu_{A, B}$ holds because F is a Lagrangian sub-bundle of $\Lambda^{3} V \otimes \mathcal{O}_{\mathbb{P}(V)}$. Lastly β_{A} is defined to be the unique map making the diagram commutative; it exists because the rows are exact. Notice that the $\operatorname{map} \beta_{A}$ is independent of the choice of B as suggested by the notation. Next by applying the $\operatorname{Hom}\left(i_{*} \zeta_{A}, \cdot\right)$-functor to the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{\mathbb{P}(V)} \longrightarrow \mathcal{O}_{\mathbb{P}(V)}(6) \longrightarrow \mathcal{O}_{Y_{A}}(6) \longrightarrow 0 \tag{1.2.3}
\end{equation*}
$$

we get the exact sequence

$$
\begin{equation*}
0 \longrightarrow i_{*} \operatorname{Hom}\left(\zeta_{A}, \mathcal{O}_{Y_{A}}(6)\right) \xrightarrow{\partial} \operatorname{Ext}^{1}\left(i_{*} \zeta_{A}, \mathcal{O}_{\mathbb{P}(V)}\right) \xrightarrow{n} \operatorname{Ext}^{1}\left(i_{*} \zeta_{A}, \mathcal{O}_{\mathbb{P}(V)}(6)\right) \tag{1.2.4}
\end{equation*}
$$

where n is locally equal to multiplication by $\operatorname{det} \lambda_{A}$. Since the second row of (1.2.2) is exact a local generator of $\operatorname{det} \lambda_{A}$ annihilates $\operatorname{Ext}^{1}\left(i_{*} \zeta_{A}, \mathcal{O}_{\mathbb{P}(V)}\right)$; thus $n=0$ and hence we get a canonical isomorphism

$$
\begin{equation*}
\partial^{-1}: \operatorname{Ext}^{1}\left(i_{*} \zeta_{A}, \mathcal{O}_{\mathbb{P}(V)}\right) \xrightarrow{\sim} i_{*} \operatorname{Hom}\left(\zeta_{A}, \mathcal{O}_{Y_{A}}(6)\right) . \tag{1.2.5}
\end{equation*}
$$

We define \widetilde{m}_{A} by setting

$$
\begin{array}{ccc}
\zeta_{A} \times \zeta_{A} & \xrightarrow{\widetilde{m}_{A}} & \mathcal{O}_{Y_{A}}(6) \tag{1.2.6}\\
\left(\sigma_{1}, \sigma_{2}\right) & \mapsto & \left(\partial^{-1} \circ \beta_{A}\left(\sigma_{1}\right)\right)\left(\sigma_{2}\right) .
\end{array}
$$

Let $\xi_{A}:=\zeta_{A}(-3)$. Tensorizing both sides of (1.2.6) by $\mathcal{O}_{Y_{A}}(-6)$ we get a multiplication map

$$
\begin{equation*}
\xi_{A} \times \xi_{A} \xrightarrow{m_{A}} \mathcal{O}_{Y_{A}} . \tag{1.2.7}
\end{equation*}
$$

Thus we have defined a multiplication map on $\mathcal{O}_{Y_{A}} \oplus \xi_{A}$. The following result is well-known to experts.

Proposition 1.9. Let $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ and suppose that $Y_{A} \neq \mathbb{P}(V)$. Let notation be as above. Then:
(1) β_{A} is an isomorphism.
(2) The multiplication map m_{A} is associative and commutative.

Proof. Let $\left[v_{0}\right] \in \mathbb{P}(V)$. Choose $B \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ transversal to $F_{v_{0}}$ (and to A of course). Then $\mu_{A, B}$ is an isomorphism in an open neighborhood U of $\left[v_{0}\right]$. It follows that β_{A} is an isomorphism in a neighborhood of $\left[v_{0}\right]$. This proves Item (1). Let's prove Item (2). Let $B \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ and U be as above; we may assume that U is affine. Let $N:=H^{0}\left(\left.i_{*} \zeta_{A}\right|_{U}\right)$ and $\beta:=H^{0}\left(\left.\beta_{A}\right|_{U}\right)$. Thus $\beta: N \rightarrow \operatorname{Ext}^{1}(N, \mathbb{C}[U])$. By Commutativity of Diagram (1.2.2) and by Proposition 1.7 we get that the multiplication map m_{β} is associative and commutative. On the other hand m_{β} is the multiplication induced by m_{A} on N; since $\left[v_{0}\right]$ is an arbitrary point of $\mathbb{P}(V)$ it follows that m_{A} is associative and commutative.

We let $X_{A}:=\operatorname{Spec}\left(\mathcal{O}_{Y_{A}} \oplus \xi_{A}\right)$ and we let $f_{A}: X_{A} \rightarrow Y_{A}$ be the structure morphism. Then X_{A} is the double $E P W$-sextic associated to A and f_{A} is its structure map. The covering involution of X_{A} is the automorphism $\phi_{A}: X_{A} \rightarrow X_{A}$ corresponding to the involution of $\mathcal{O}_{Y_{A}} \oplus \xi_{A}$ with (-1)-eigensheaf equal to ξ_{A}.

1.3 Local models of double covers

In the present subsection we assume that R is a finitely generated \mathbb{C}-algebra. Let \mathcal{W} be a finitedimensional complex vector-space. We will suppose that we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow R \otimes \mathcal{W}^{\vee} \xrightarrow{\gamma} R \otimes \mathcal{W} \longrightarrow N \longrightarrow 0, \quad \gamma=\gamma^{t} \tag{1.3.1}
\end{equation*}
$$

Thus we have a double cover $f_{\gamma}: X_{\gamma} \rightarrow Y_{\gamma}$. Let $p \in Y_{\gamma}$ be a closed point. We will examine X_{γ} in a neighborhood of $f_{\gamma}^{-1}(p)$ when the corank of $\gamma(p)$ is small. We may view γ as a regular map Spec $R \rightarrow \operatorname{Sym}^{2} \mathcal{W}$; thus it makes sense to consider the differential

$$
\begin{equation*}
d \gamma(p): T_{p} \operatorname{Spec} R \rightarrow \operatorname{Sym}^{2} \mathcal{W} \tag{1.3.2}
\end{equation*}
$$

Let $K(p):=\operatorname{ker} \gamma(p) \subset \mathcal{W}^{\vee}$; we will consider the linear map

$$
\begin{array}{clc}
T_{p} \operatorname{Spec} R & \xrightarrow{\delta_{\gamma}(p)} & \operatorname{Sym}^{2} K(p)^{\vee} \tag{1.3.3}\\
\tau & \mapsto & \left.d \gamma(p)(\tau)\right|_{K(p)} .
\end{array}
$$

Let $d:=\operatorname{dim} \mathcal{W}$; choosing a basis of \mathcal{W} we realize X_{γ} as a subscheme of $\operatorname{Spec} R \times \mathbb{C}^{d}$ with ideal given by Claim 1.3. Since cork $\gamma(p) \geq 2$ Proposition 1.5 gives that $f_{\gamma}^{-1}(p)$ consists of a single point q - in fact the ξ_{i}-coordinates of q are all zero. Throughout this subsection we let

$$
\begin{equation*}
f_{\gamma}^{-1}(p)=\{q\} . \tag{1.3.4}
\end{equation*}
$$

Claim 1.10. Keep notation as above. Suppose that $d=\operatorname{dim} \mathcal{W}=2$ and that $\gamma(p)=0$. Then $I\left(X_{\gamma}\right)$ is generated by the entries of $\xi \cdot \xi^{t}-M_{\gamma}^{c}$.

Proof. Claim 1.3 together with a straightforward computation.
Example 1.11. Let $R=\mathbb{C}[x, y, z], \mathcal{W}=\mathbb{C}^{2}$. Suppose that the matrix associated to γ is

$$
M_{\gamma}=\left(\begin{array}{ll}
x & y \tag{1.3.5}\\
y & z
\end{array}\right)
$$

Then $f_{\gamma}: X_{\gamma} \rightarrow Y_{\gamma}$ is identified with

$$
\begin{array}{ccc}
\mathbb{C}^{2} & \longrightarrow & V\left(x z-y^{2}\right) \\
\left(\xi_{1}, \xi_{2}\right) & \mapsto & \left(\xi_{2}^{2},-\xi_{1} \xi_{2}, \xi_{1}^{2}\right) \tag{1.3.6}
\end{array}
$$

i.e. the quotient map for the action of $\langle-1\rangle$ on \mathbb{C}^{2}.

Proposition 1.12. Keep notation as above. Suppose that the following hold:
(a) $\operatorname{cork} \gamma(p)=2$,
(b) the localization R_{p} is regular.

Then X_{γ} is smooth at q if and only if $\delta_{\gamma}(p)$ is surjective.
Proof. Applying Claim 1.4 we get that we may assume that $d=2$. Let

$$
M_{\gamma}=\left(\begin{array}{ll}
a & b \tag{1.3.7}\\
b & c
\end{array}\right)
$$

By Claim 1.10 the ideal of X_{γ} in $\operatorname{Spec} R \times \mathbb{C}^{2}$ is generated by the entries of $\xi \cdot \xi^{t}-M_{\gamma}^{c}$ i.e.

$$
\begin{equation*}
I\left(X_{\gamma}\right)=\left(\xi_{1}^{2}-c, \xi_{1} \xi_{2}+b, \xi_{2}^{2}-a\right) \tag{1.3.8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\operatorname{cod}\left(T_{q} X_{\gamma}, T_{q}\left(\operatorname{Spec} R \times \mathbb{C}^{2}\right)\right)=\operatorname{dim}\langle d a(p), d b(p), d c(p)\rangle \tag{1.3.9}
\end{equation*}
$$

On the other hand $\operatorname{cod}_{q}\left(X_{\gamma}, \operatorname{Spec} R \times \mathbb{C}^{2}\right)=3$ and hence we get that X_{γ} is smooth at q if and only if $\delta_{\gamma}(p)$ is surjective.

Claim 1.13. Keep notation and hypotheses as above. Suppose that $\operatorname{cork} \gamma(p) \geq 3$. Then X_{γ} is singular at q.

Proof. Let I be the ideal of X_{γ} in $\operatorname{Spec} R\left[\xi_{1}, \ldots, \xi_{d}\right]$. By Claim 1.3 we get that I is non-trivial but the differential at q of an arbitrary $g \in I$ is zero.

Next we will discuss in greater detail those X_{γ} whose corank at $f_{\gamma}^{-1}(p)$ is equal to 3 . First we will identify the "universal" example (the universal example for corank 2 is Example 1.11). Let \mathcal{V} be a 3 -dimensional complex vector space. We view $\operatorname{Sym}^{2} \mathcal{V}$ as an affine (6-dimensional) space and we let $R:=\mathbb{C}\left[\operatorname{Sym}^{2} \mathcal{V}\right]$ be its ring of regular functions. We identify $R \otimes_{\mathbb{C}} \mathcal{V}$ and $R \otimes_{\mathbb{C}} \mathcal{V}^{\vee}$ with the space of \mathcal{V}-valued, respectively \mathcal{V}^{\vee}-valued, regular maps on $\operatorname{Sym}^{2} \mathcal{V}$. Let

$$
\begin{equation*}
R \otimes_{\mathbb{C}} \mathcal{V}^{\vee} \xrightarrow{\gamma} R \otimes_{\mathbb{C}} \mathcal{V} \tag{1.3.10}
\end{equation*}
$$

be the map induced on the spaces of global sections by the tautological map of vector-bundles Spec $R \times \mathcal{V}^{\vee} \longrightarrow \operatorname{Spec} R \times \mathcal{V}$. The map γ is symmetric. Let N be the cokernel of γ : thus

$$
\begin{equation*}
0 \longrightarrow R \otimes_{\mathbb{C}} \mathcal{V}^{\vee} \xrightarrow{\gamma} R \otimes_{\mathbb{C}} \mathcal{V} \longrightarrow N \longrightarrow 0 \tag{1.3.11}
\end{equation*}
$$

is an exact sequence. Since γ is symmetric it defines a double cover $f: X(\mathcal{V}) \rightarrow Y(\mathcal{V})$ where

$$
\begin{equation*}
Y(\mathcal{V}):=\left\{\alpha \in \operatorname{Sym}^{2} \mathcal{V} \mid \text { rk } \alpha<3\right\} \tag{1.3.12}
\end{equation*}
$$

is the variety of degenerate quadratic forms. We let

$$
\begin{equation*}
\phi: X(\mathcal{V}) \rightarrow X(\mathcal{V}) \tag{1.3.13}
\end{equation*}
$$

be the covering involution of f. One describes explicitly $X(\mathcal{V})$ as follows. Let

$$
\begin{equation*}
(\mathcal{V} \otimes \mathcal{V})_{1}:=\{\mu \in(\mathcal{V} \otimes \mathcal{V}) \mid \text { rk } \mu \leq 1\} \tag{1.3.14}
\end{equation*}
$$

Thus $(\mathcal{V} \otimes \mathcal{V})_{1}$ is the cone over the Segre variety $\mathbb{P}(\mathcal{V}) \times \mathbb{P}(\mathcal{V})$. We have a finite degree- 2 map

$$
\begin{array}{clc}
(\mathcal{V} \otimes \mathcal{V})_{1} & \xrightarrow{\sigma} & Y(\mathcal{V}) \\
\mu & \mapsto & \mu+\mu^{t} . \tag{1.3.15}
\end{array}
$$

Proposition 1.14. Keep notation as above. There exists a commutative diagram

where τ is an isomorphism. Let ϕ be Involution (1.3.13): then

$$
\begin{equation*}
\phi \circ \tau(\mu)=\tau\left(\mu^{t}\right), \quad \forall \mu \in(\mathcal{V} \otimes \mathcal{V})_{1} \tag{1.3.17}
\end{equation*}
$$

Proof. In order to define τ we will give a coordinate-free version of Inclusion (1.1.25) in the case of $X(\mathcal{V})$. Let

$$
\begin{array}{ccc}
\operatorname{Sym}^{2} \mathcal{V} \times\left(\mathcal{V}^{\vee} \otimes \Lambda^{3} \mathcal{V}\right) & \xrightarrow{\Psi} & \left(\mathcal{V} \otimes \Lambda^{3} \mathcal{V}\right) \times\left(\mathcal{V}^{\vee} \otimes \mathcal{V}^{\vee} \otimes \Lambda^{3} \mathcal{V} \otimes \Lambda^{3} \mathcal{V}\right) \tag{1.3.18}\\
(\alpha, \xi) & \mapsto & \left(\alpha \circ \xi, \xi^{t} \circ \xi-\Lambda^{2} \alpha\right)
\end{array}
$$

A few words of explanation. In the definition of the first component of $\Psi(\alpha, \xi)$ we view ξ as belonging to $\operatorname{Hom}\left(\bigwedge^{3} \mathcal{V}^{\vee}, \mathcal{V}^{\vee}\right)$, in the definition of the second component of $\Psi(\alpha, \xi)$ we view ξ as belonging to $\operatorname{Hom}\left(\mathcal{V} \otimes \bigwedge^{3} \mathcal{V}^{\vee}, \mathbb{C}\right)$. Moreover we make the obvious choice of isomorhpism $\mathbb{C} \cong \mathbb{C}^{\vee}$. Secondly

$$
\begin{equation*}
\bigwedge^{2} \alpha \in \operatorname{Hom}\left(\bigwedge^{2} \mathcal{V}^{\vee}, \bigwedge^{2} \mathcal{V}\right)=\operatorname{Hom}\left(\mathcal{V} \otimes \bigwedge^{3} \mathcal{V}^{\vee}, \mathcal{V}^{\vee} \otimes \bigwedge^{3} \mathcal{V}\right)=\mathcal{V}^{\vee} \otimes \mathcal{V}^{\vee} \otimes \Lambda \bigwedge^{3} \mathcal{V} \otimes \mathcal{V} \tag{1.3.19}
\end{equation*}
$$

Choosing a basis of \mathcal{V} we get an embedding $X(\mathcal{V}) \subset \operatorname{Sym}^{2} \mathcal{V} \times \mathbb{C}^{3}$, see (1.1.25). Claim 1.3 gives equality of pairs

$$
\begin{equation*}
\left(\operatorname{Sym}^{2} \mathcal{V} \times\left(\mathcal{V}^{\vee} \otimes \bigwedge^{3} \mathcal{V}\right), \Psi^{-1}(0)\right)=\left(\operatorname{Sym}^{2} \mathcal{V} \times \mathbb{C}^{3}, X(\mathcal{V})\right) \tag{1.3.20}
\end{equation*}
$$

where $\Psi^{-1}(0)$ is the scheme-theoretic fiber of Ψ. Now notice that we have an isomorphism

$$
\begin{array}{ccc}
\mathcal{V} \otimes \mathcal{V} & \xrightarrow{\stackrel{T}{\longrightarrow}} & \operatorname{Sym}^{2} \mathcal{V} \times\left(\mathcal{V}^{\vee} \otimes \bigwedge^{3} \mathcal{V}\right) \tag{1.3.21}\\
\epsilon & \mapsto & \left(\epsilon+\epsilon^{t}, \epsilon-\epsilon^{t}\right)
\end{array}
$$

Let $\tau:=\left.T\right|_{(\mathcal{V} \otimes \mathcal{V})_{1}}:$ thus we have an embedding

$$
\begin{equation*}
\tau:(\mathcal{V} \otimes \mathcal{V})_{1} \hookrightarrow \operatorname{Sym}^{2} \mathcal{V} \times\left(\mathcal{V}^{\vee} \otimes \bigwedge^{3} \mathcal{V}\right) \tag{1.3.22}
\end{equation*}
$$

We will show that we have equality of schemes

$$
\begin{equation*}
\operatorname{im}(\tau)=\Psi^{-1}(0)(=X(\mathcal{V})) \tag{1.3.23}
\end{equation*}
$$

First let

$$
\begin{array}{lll}
\mathcal{V} \oplus \mathcal{V} & \xrightarrow{\rho} & (\mathcal{V} \otimes \mathcal{V})_{1} \\
(\eta, \beta) & \mapsto & \eta^{t} \circ \beta . \tag{1.3.24}
\end{array}
$$

Notice that ρ is the quotient map for the \mathbb{C}^{\times}-action on $\mathcal{V} \oplus \mathcal{V}$ defined by $t(\eta, \beta):=\left(t \eta, t^{-1} \beta\right)$. We have

$$
\begin{equation*}
\tau \circ \pi=\left(\eta^{t} \circ \beta+\beta^{t} \circ \eta, \eta \wedge \beta\right) . \tag{1.3.25}
\end{equation*}
$$

Let's prove that

$$
\begin{equation*}
\Psi^{-1}(0) \supset \operatorname{im}(\tau) \tag{1.3.26}
\end{equation*}
$$

Notice that $\operatorname{Gl}(\mathcal{V})$ acts on $(\mathcal{V} \otimes \mathcal{V})_{1}$ with a unique dense orbit namely $\left\{\eta^{t} \circ \beta \mid \eta \wedge \beta \neq 0\right\}$. An easy computation shows that $\tau\left(\eta^{t} \circ \beta\right) \in \Psi^{-1}(0)$ for a conveniently chosen $\eta^{t} \circ \beta$ in the dense orbit of $(\mathcal{V} \otimes \mathcal{V})_{1}$; it follows that (1.3.26) holds. On the other hand T defines an isomorphism of pairs

$$
\begin{equation*}
\left(\mathcal{V} \otimes \mathcal{V},(\mathcal{V} \otimes \mathcal{V})_{1}\right) \cong\left(\operatorname{Sym}^{2} \mathcal{V}^{\vee} \times\left(\mathcal{V}^{\vee} \otimes \bigwedge^{3} \mathcal{V}\right), \operatorname{im}(\tau)\right) \tag{1.3.27}
\end{equation*}
$$

Since the ideal of $(\mathcal{V} \otimes \mathcal{V})_{1}$ in $\mathcal{V} \otimes \mathcal{V}$ is generated by 9 linearly independent quadrics we get that the ideal of $\operatorname{im}(\tau)$ in $\operatorname{Sym}^{2} \mathcal{V}^{\vee} \times\left(\mathcal{V}^{\vee} \otimes \bigwedge^{3} \mathcal{V}\right)$ is generated by 9 linearly independent quadrics. The ideal of $\Psi^{-1}(0)$ in $\operatorname{Sym}^{2} \mathcal{V} \times\left(\mathcal{V}^{\vee} \otimes \bigwedge^{3} \mathcal{V}\right)$ is likewise generated by 9 linearly independent quadrics - see (1.3.18). Since $\Psi^{-1}(0) \supset \operatorname{im}(\tau)$ we get that the ideals of $\Psi^{-1}(0)$ and of $\operatorname{im}(\tau)$ are the same and hence (1.3.23) holds. This proves that τ is an isomorphism between $(\mathcal{V} \otimes \mathcal{V})_{1}$ and $X(\mathcal{V})$. Diagram (1.3.16) is commutative by construction. Equation (1.3.17) is equivalent to the equality

$$
\begin{equation*}
\phi(\tau \circ \rho(\beta, \eta))=\tau \circ \rho(\eta, \beta)) \tag{1.3.28}
\end{equation*}
$$

The above equality holds because $\beta \wedge \eta=-\eta \wedge \beta$.
The following result is an immediate consequence of Proposition 1.14.
Corollary 1.15. $\operatorname{sing} X(\mathcal{V})=\tau(0)=f^{-1}(0)$.

2 The divisor Δ

2.1 Parameter counts

Let $\Delta_{+} \subset \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ and $\widetilde{\Delta}_{+}, \widetilde{\Delta}_{+}(0) \subset \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \times \mathbb{P}(V)^{2}$ be

$$
\begin{array}{rlrl}
\Delta_{+} & := & \left\{A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)\left|\left|Y_{A}[3]\right|>1\right\},\right. \\
\widetilde{\Delta}_{+} & := & \left\{\left(A,\left[v_{1}\right],\left[v_{2}\right]\right) \mid\left[v_{1}\right] \neq\left[v_{2}\right],\right. & \left.\operatorname{dim}\left(A \cap F_{v_{i}}\right) \geq 3\right\} \\
\widetilde{\Delta}_{+}(0) & := & \left\{\left(A,\left[v_{1}\right],\left[v_{2}\right]\right) \mid\left[v_{1}\right] \neq\left[v_{2}\right],\right. & \left.\operatorname{dim}\left(A \cap F_{v_{i}}\right)=3\right\} . \tag{2.1.3}
\end{array}
$$

Notice that $\widetilde{\Delta}_{+}$and $\widetilde{\Delta}_{+}(0)$ are locally closed.
Lemma 2.1. Keep notation as above. The following hold:
(1) $\widetilde{\Delta}_{+}$is irreducible of dimension 53.
(2) Δ_{+}is constructible and $\operatorname{cod}\left(\Delta_{+}, \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)\right) \geq 2$.

Proof. (1): Let's prove that $\widetilde{\Delta}_{+}(0)$ is irreducible of dimension 53 . Consider the map

$$
\begin{array}{ccc}
\widetilde{\Delta}_{+}(0) & \xrightarrow{\eta} & \operatorname{Gr}\left(3, \bigwedge^{3} V\right)^{2} \times \mathbb{P}(V)^{2} \\
\left(A,\left[v_{1}\right],\left[v_{2}\right]\right) & \mapsto & \left(A \cap F_{v_{1}}, A \cap F_{v_{2}},\left[v_{1}\right],\left[v_{2}\right]\right) . \tag{2.1.4}
\end{array}
$$

We have

$$
\begin{equation*}
\operatorname{im} \eta=\left\{\left(K_{1}, K_{2},\left[v_{1}\right],\left[v_{2}\right]\right) \mid K_{i} \in \operatorname{Gr}\left(3, F_{v_{i}}\right), \quad K_{1} \perp K_{2}, \quad\left[v_{1}\right] \neq\left[v_{2}\right]\right\} \tag{2.1.5}
\end{equation*}
$$

We stratify $\operatorname{im} \eta$ according to $i:=\operatorname{dim}\left(K_{1} \cap F_{v_{2}}\right)$ and to $j:=\operatorname{dim}\left(K_{1} \cap K_{2}\right)$; of course $j \leq i$. Let $(\operatorname{im} \eta)_{i, j} \subset \operatorname{im} \eta$ be the stratum corresponding to i, j. A straightforward computation gives that

$$
\left.\begin{array}{rl}
\operatorname{dim} \eta^{-1}(\operatorname{im} \eta)_{i, j}=10+7(3-i)+j(i-j)+(3-j)(4+i)+\frac{1}{2} & (j+5)(j+4)
\end{array}\right)
$$

Since $0 \leq i, j$ one gets that the maximum is achieved for $i=j=0$ and that it equals 53 . It follows that $\widetilde{\Delta}_{+}(0)$ is irreducible of dimension 53 . On the other hand $\widetilde{\Delta}_{+}(0)$ is dense in $\widetilde{\Delta}_{+}$ (easy) and hence we get that Item (1) holds. (2): Let $\pi_{+}: \widetilde{\Delta}_{+} \rightarrow \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ be the forgetful map: $\pi_{+}\left(\left[v_{1}\right],\left[v_{2}\right], A\right)=A$. Then $\pi_{+}\left(\widetilde{\Delta}_{+}\right)=\Delta_{+}$. By Item (1) we get that dim $\Delta_{+} \leq 53$: since $\operatorname{dim} \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)=55$ we get that Item (2) holds.

Proposition 2.2. The following hold:
(1) Δ is closed irreducible of codimension 1 in $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ and not equal to Σ.
(2) If $A \in \Delta$ is generic then $Y_{A}[3]=Y_{A}(3)$ and it consists of a single point.

Proof. (1): Let

$$
\begin{equation*}
\widetilde{\Delta}:=\left\{(A,[v]) \mid \operatorname{dim}\left(F_{v} \cap A\right) \geq 3\right\}, \quad \widetilde{\Delta}(0):=\left\{(A,[v]) \mid \operatorname{dim}\left(F_{v} \cap A\right)=3\right\} \tag{2.1.7}
\end{equation*}
$$

Then $\widetilde{\Delta}$ is a closed subset of $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \times \mathbb{P}(V)$ and $\widetilde{\Delta}(0)$ is an open subset of $\widetilde{\Delta}$. Let $\pi: \widetilde{\Delta} \rightarrow$ $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ be the forgetful map. Thus $\pi(\widetilde{\Delta})=\Delta$: since π is projective it follows that Δ is closed. Projecting $\widetilde{\Delta}(0)$ to $\mathbb{P}(V)$ we get that $\widetilde{\Delta}(0)$ is smooth irreducible of dimension 54. A standard dimension count shows that $\widetilde{\Delta}(0)$ is open dense in $\widetilde{\Delta}$; thus $\widetilde{\Delta}$ is irreducible of dimension 54 . It follows that Δ is irreducible. By Lemma 2.1 we know that $\operatorname{dim} \widetilde{\Delta}_{+} \leq 53$. It follows that the generic fiber of $\widetilde{\Delta} \rightarrow \Delta$ is a single point, in particular $\operatorname{dim} \Delta=54$ and hence $\operatorname{cod}\left(\Delta, \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)\right)=1$ because $\operatorname{dim} \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)=55$. A dimension count shows that $\operatorname{dim}(\Delta \cap \Sigma)<54$ and hence $\Delta \neq \Sigma$. This finishes the proof of Item (1). (2): Let $A \in \Delta$ be generic: we already noticed that there exists a unique $[v] \in \mathbb{P}(V)$ such that $([v], A) \in \widetilde{\Delta}$, i.e. $Y_{A}[3]$ consists of a single point. Since $\widetilde{\Delta}(0)$ is dense in $\widetilde{\Delta}$ and $\operatorname{dim} \widetilde{\Delta}=\operatorname{dim} \Delta$ we get that $([v], A) \in \widetilde{\Delta}(0)$, i.e. $Y_{A}[3]=Y_{A}(3)$. This finishes the proof of Item (2).

2.2 First order computations

Let $\left(A,\left[v_{0}\right]\right) \in \widetilde{\Delta}(0)$. We will study the differential of $\pi: \widetilde{\Delta} \rightarrow \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ at $\left(A,\left[v_{0}\right]\right)$. First we will give a local description of $\widetilde{\Delta}$ as degeneracy locus. Let

$$
\begin{equation*}
\mathbb{N}(V):=\left\{A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \mid Y_{A}=\mathbb{P}(V)\right\} \tag{2.2.1}
\end{equation*}
$$

Notice that $\mathbb{N}(V)$ is closed. Let \mathcal{Y} be the tautological family of EPW-sextics i.e.

$$
\begin{equation*}
\mathcal{Y}:=\left\{(A,[v]) \in\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \mathbb{N}(V)\right) \times \mathbb{P}(V) \mid \operatorname{dim}\left(A \cap F_{v}\right)>0\right\} \tag{2.2.2}
\end{equation*}
$$

Of course \mathcal{Y} has a description as a determinantal variety and hence it has a natural scheme structure. For $\mathcal{U} \subset\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \mathbb{N}(V)\right)$ open we let $\mathcal{Y}:=\mathcal{Y} \cap(\mathcal{U} \times \mathbb{P}(V))$. Given $B \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ let

$$
\begin{equation*}
U_{B}:=\left\{A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \mid A \pitchfork B\right\} \backslash \mathbb{N}(V) \tag{2.2.3}
\end{equation*}
$$

(Here $A \pitchfork B$ means that A intersects transversely B i.e. $A \cap B=\{0\}$.) Let $i_{U_{B}}: \mathcal{Y}_{U_{B}} \hookrightarrow U_{B} \times \mathbb{P}(V)$ be the inclusion and let \mathcal{A} be the tautological rank-10 vector-bundle on $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ (the fiber of \mathcal{A} over A is A itself). Going through the argument that produced Commutative Diagram (1.2.2) we get that there exists a commutative diagram

$$
\begin{array}{cccccccc}
0 & \rightarrow & \mathcal{O}_{U_{B}} \boxtimes F & \xrightarrow{\lambda_{U_{B}}} & \left(\left.\mathcal{A}^{\vee}\right|_{U_{B}}\right) \boxtimes \mathcal{O}_{\mathbb{P}(V)} & \longrightarrow & i_{U_{B}, *} \zeta_{U_{B}} & \rightarrow \beta^{\beta_{U_{B}}} \\
& & \mu_{U_{B}} & & \mu_{U_{B}}^{t} & & 0 \tag{2.2.4}\\
0 & \rightarrow & \left(\left.\mathcal{A}\right|_{U_{B}}\right) \boxtimes \mathcal{O}_{\mathbb{P}(V)} & \xrightarrow{\lambda_{U_{B}}^{t}} & \mathcal{O}_{U_{B}} \boxtimes F^{\vee} & \longrightarrow & \operatorname{Ext}^{1}\left(i_{U_{B}, *} \zeta_{U_{B}}, \mathcal{O}_{U_{B} \times \mathbb{P}(V)}\right) & \rightarrow
\end{array}
$$

Now let $\left(A,\left[v_{0}\right]\right) \in \mathcal{Y}$. Choose $B \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ such that $B \pitchfork A$ and $B \pitchfork F_{v_{0}}$. Let $\mathcal{N} \subset \mathbb{P}(V)$ be an open neighborhood of $\left[v_{0}\right]$ such that $B \pitchfork F_{w}$ for all $w \in \mathcal{N}$. The restriction to U_{B} of \mathcal{A} is trivial and the restriction to \mathcal{N} of F is likewise trivial. Moreover the restriction of $\mu_{U_{B}}$ to $U_{B} \times \mathcal{N}$ is an isomorphism. Let

$$
\begin{equation*}
\gamma:=\left(\left.\lambda_{U_{B}}\right|_{U_{B} \times \mathcal{N}}\right) \circ\left(\left.\mu_{U_{B}}\right|_{U_{B} \times \mathcal{N}}\right)^{-1} . \tag{2.2.5}
\end{equation*}
$$

We have an exact sequence

$$
\begin{equation*}
\left.0 \longrightarrow\left(\left.\mathcal{A}\right|_{U_{B}}\right) \boxtimes \mathcal{O}_{\mathcal{N}} \xrightarrow{\gamma}\left(\left.\mathcal{A}^{\vee}\right|_{U_{B}}\right) \boxtimes \mathcal{O}_{\mathcal{N}} \longrightarrow i_{U_{B}, *} \zeta_{U_{B}}\right|_{U_{B} \times \mathcal{N}} \longrightarrow 0 \tag{2.2.6}
\end{equation*}
$$

The map γ is symmetric, in fact it is the symmetrization of the restriction of (2.2.4) to $U_{B} \times \mathcal{N}$ see Definition 1.8. Then $\widetilde{\Delta} \cap\left(U_{B} \times \mathcal{N}\right)$ is the symmetric degeneration locus

$$
\begin{equation*}
\widetilde{\Delta} \cap\left(U_{B} \times \mathcal{N}\right)=\left\{\left(A^{\prime},[v]\right) \in\left(U_{B} \times \mathcal{N}\right) \mid \operatorname{cork} \gamma\left(A^{\prime},[v]\right) \geq 3\right\} \tag{2.2.7}
\end{equation*}
$$

and hence it inherits a natural structure of closed subscheme of $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \times \mathbb{P}(V)$. In order to study the differential of the forgetful map $\widetilde{\Delta} \rightarrow \mathbb{P}(V)$ we will introduce some notation. Given $v \in V$ we define a quadratic form $\phi_{v}^{v_{0}}$ on $F_{v_{0}}$ as follows. Let $\alpha \in F_{v_{0}}$; then $\alpha=v_{0} \wedge \beta$ for some $\beta \in \Lambda^{2} V$. We set

$$
\begin{equation*}
\phi_{v}^{v_{0}}(\alpha):=\operatorname{vol}\left(v_{0} \wedge v \wedge \beta \wedge \beta\right) \tag{2.2.8}
\end{equation*}
$$

The above equation gives a well-defined quadratic form on $F_{v_{0}}$ because β is determined up to addition by an element of $F_{v_{0}}$. Of course $\phi_{v}^{v_{0}}$ depends only on the class of v in $V /\left[v_{0}\right]$. Choose a direct-sum decomposition

$$
\begin{equation*}
V=\left[v_{0}\right] \oplus V_{0} . \tag{2.2.9}
\end{equation*}
$$

We have the isomorphism

$$
\begin{array}{llc}
\lambda_{V_{0}}^{v_{0}}: \Lambda_{\beta}^{2} V_{0} & \xrightarrow{\sim} & F_{v_{0}} \tag{2.2.10}\\
v_{0} \wedge \beta .
\end{array}
$$

Under the above identification the Plücker quadratic forms on $\bigwedge^{2} V_{0}$ correspond to the quadratic forms $\phi_{v}^{v_{0}}$ for v varying in V_{0}. Let $K:=A \cap F_{v_{0}}$ and

$$
\begin{array}{cccccc}
V_{0} & \xrightarrow{\tau_{K}^{v_{0}}} & \operatorname{Sym}^{2} K^{\vee} & \operatorname{Sym}^{2} A^{\vee} & \xrightarrow{\theta_{K}^{A}} & \operatorname{Sym}^{2} K^{\vee} \tag{2.2.11}\\
v & \mapsto & \left.\phi_{v}^{v_{0}}\right|_{K} & q & \mapsto & \left.q\right|_{K} .
\end{array}
$$

The isomorphism

$$
\begin{array}{ccc}
V_{0} & \xrightarrow{\sim} & \mathbb{P}(V) \backslash \mathbb{P}\left(V_{0}\right) \\
v & \mapsto & {\left[v_{0}+v\right]}
\end{array}
$$

defines an isomorphism $V_{0} \cong T_{\left[v_{0}\right]} \mathbb{P}(V)$. Recall that the tangent space to $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ at A is canonically identified with $\operatorname{Sym}^{2} A^{\vee}$.

Proposition 2.3. Keep notation as above - in particular choose (2.2.9). Then

$$
\begin{equation*}
T_{\left(A,\left[v_{0}\right]\right)} \widetilde{\Delta} \subset T_{\left(A,\left[v_{0}\right]\right)}\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \times \mathbb{P}(V)\right)=\operatorname{Sym}^{2} A^{\vee} \oplus V_{0} \tag{2.2.12}
\end{equation*}
$$

is given by

$$
\begin{equation*}
T_{\left(\left[v_{0}\right], A\right)} \widetilde{\Delta}=\left\{(q, v) \mid \theta_{K}^{A}(q)-\tau_{K}^{v_{0}}(v)=0\right\} \tag{2.2.13}
\end{equation*}
$$

Proof. By the (local) degeneracy description (2.2.7) we get that $(q, v) \in T_{\left[\left[v_{0}\right], A\right)} \widetilde{\Delta}$ if and only if

$$
0=\left.d \gamma\left(A,\left[v_{0}\right]\right)(q, v)\right|_{K}=\left.d \gamma\left(A,\left[v_{0}\right]\right)(q, 0)\right|_{K}+\left.d \gamma\left(A,\left[v_{0}\right]\right)(0, v)\right|_{K}
$$

It is clear that $\left.d \gamma\left(A,\left[v_{0}\right]\right)(q, 0)\right|_{K}=\theta_{K}^{A}(q)$. On the other hand Equation (2.26) of [12] gives that

$$
\begin{equation*}
\left.d \gamma\left(A,\left[v_{0}\right]\right)(0, v)\right|_{K}=-\tau_{K}^{v_{0}}(v) . \tag{2.2.14}
\end{equation*}
$$

The proposition follows.
Corollary 2.4. $\widetilde{\Delta}(0)$ is smooth (of codimension 6 in $\left.\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \times \mathbb{P}(V)\right)$. Let $\left(A,\left[v_{0}\right]\right) \in \widetilde{\Delta}(0)$ and $K:=A \cap F_{v_{0}}$. The differential $d \pi\left(A,\left[v_{0}\right]\right)$ is injective if and only if $\tau_{K}^{v_{0}}$ is injective.

Proof. Let $\left(A,\left[v_{0}\right]\right) \in \widetilde{\Delta}(0)$ and $K:=A \cap F_{v_{0}}$. The map θ_{K}^{A} is surjective: by Proposition 2.3 we get that $T_{\left(A,\left[v_{0}\right]\right)} \widetilde{\Delta}(0)$ has codimension 6 in $T_{\left(A,\left[v_{0}\right]\right)}\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \times \mathbb{P}(V)\right)$. On the other hand the description of $\widetilde{\Delta}(0)$ as a symmetric degeneration locus - see $(2.2 .7)$ - gives that $\widetilde{\Delta}(0)$ has codimension at most 6 in $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \times \mathbb{P}(V)$: it follows that $\widetilde{\Delta}(0)$ is smooth of codimension 6 in $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \times \mathbb{P}(V)$. The statement about injectivity of $d \pi\left(A,\left[v_{0}\right]\right)$ follows at once form Proposition 2.3.

A comment regarding Corollary 2.4. The statement about smoothness of $\widetilde{\Delta}(0)$ is not contained in the proof of Proposition 2.2 because in that proof we consider $\widetilde{\Delta}(0)$ with its reduced structure. Before stating the next result we give the following definition: given $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ we let

$$
\begin{equation*}
\Theta_{A}:=\left\{W \in \operatorname{Gr}(3, V) \mid \bigwedge^{3} W \subset A\right\} \tag{2.2.15}
\end{equation*}
$$

Proposition 2.5. Let $\left(A,\left[v_{0}\right]\right) \in \widetilde{\Delta}(0)$ and let $K:=A \cap F_{v_{0}}$. Then $\tau_{K}^{v_{0}}$ is injective if and only if
(1) no $W \in \Theta_{A}$ contains v_{0}, or
(2) there is exactly one $W \in \Theta_{A}$ containing v_{0} and moreover

$$
\begin{equation*}
A \cap F_{v_{0}} \cap\left(\bigwedge^{2} W \wedge V\right)=\bigwedge^{3} W \tag{2.2.16}
\end{equation*}
$$

If Item (1) holds then $\operatorname{im} \tau_{K}^{v_{0}}$ belongs to the unique open $\operatorname{PGL}(K)$-orbit of $\operatorname{Gr}\left(5, \operatorname{Sym}^{2} K^{\vee}\right)$, if Item (2) holds then $\operatorname{im} \tau_{K}^{v_{0}}$ belongs to the unique closed $\operatorname{PGL}(K)$-orbit of $\operatorname{Gr}\left(5, \operatorname{Sym}^{2} K^{\vee}\right)$.
Proof. Let $V_{0} \subset V$ be a codimension- 1 subspace transversal to [v_{0}]. Let

$$
\begin{equation*}
\rho_{V_{0}}^{v_{0}}: F_{v_{0}} \xrightarrow{\sim} \bigwedge^{2} V_{0} \tag{2.2.17}
\end{equation*}
$$

be the inverse of Isomorphism (2.2.10). Let $\mathbf{K}:=\mathbb{P}\left(\rho_{V_{0}}^{v_{0}}(K)\right) \subset \mathbb{P}\left(\bigwedge^{2} V_{0}\right)$; then \mathbf{K} is a projective plane. Isomorphism $\rho_{V_{0}}^{v_{0}}$ identifies the space of quadratic forms $\phi_{v}^{v_{0}}$, for $v \in V_{0}$, with the space of Plücker quadratic forms on $\bigwedge^{2} V_{0}$. Since the ideal of $\operatorname{Gr}\left(2, V_{0}\right) \subset \mathbb{P}\left(\bigwedge^{2} V_{0}\right)$ is generated by the Pl'ucker quadratic forms we get that $\tau_{K}^{v_{0}}$ is identified with the natural restriction map

$$
\begin{equation*}
V_{0}=H^{0}\left(\mathcal{I}_{\operatorname{Gr}\left(2, V_{0}\right)}(2)\right) \xrightarrow{\tau_{K}^{v_{0}}} H^{0}\left(\mathcal{O}_{\mathbf{K}}(2)\right)=\operatorname{Sym}^{2} K^{\vee} \tag{2.2.18}
\end{equation*}
$$

It follows that if the scheme-theoretic intersection $\mathbf{K} \cap \operatorname{Gr}\left(2, V_{0}\right)$ is not empty nor a single reduced point then $\tau_{K}^{v_{0}}$ is not injective. Now suppose that $\mathbf{K} \cap \operatorname{Gr}\left(2, V_{0}\right)$ is
(1^{\prime}) empty i.e. Item (1) holds, or
$\left(2^{\prime}\right)$ a single reduced point, i.e. Item (2) holds.
Let

$$
\begin{equation*}
\mathbb{P}\left(\bigwedge^{2} V_{0}\right) \xrightarrow{\Phi}\left|H^{0}\left(\mathcal{I}_{\operatorname{Gr}\left(2, V_{0}\right)}(2)\right)\right|^{\vee}=\mathbb{P}\left(V_{0}^{\vee}\right) \tag{2.2.19}
\end{equation*}
$$

be the natural map: it associates to $[\alpha] \notin \operatorname{Gr}\left(2, V_{0}\right)$ the projectivization of $\operatorname{supp} \alpha$. We have a tautological identification

$$
\mathbf{K} \xrightarrow[-\rightarrow]{\left.\Phi\right|_{\mathbf{K}}} \mathbb{P}\left(\operatorname{im} \tau_{K}^{v_{0}}\right)^{\vee}
$$

and of course $\left.\Phi\right|_{\mathbf{K}}$ is the Veronese embedding $\mathbf{K} \rightarrow\left|\mathcal{O}_{\mathbf{K}}(2)\right|^{\vee}$ followed by the projection with center $\mathbb{P}\left(\operatorname{Ann}\left(\operatorname{im} \tau_{K}^{v_{0}}\right)\right)$. Notice that $\tau_{K}^{v_{0}}$ is not injective if and only if $\operatorname{dim} \mathbb{P}\left(\operatorname{Ann}\left(\operatorname{im} \tau_{K}^{v_{0}}\right)\right) \geq 1$. Now suppose that $\left(1^{\prime}\right)$ holds. Then $\left.\Phi\right|_{\mathbf{K}}$ is regular and in fact it is an isomorphism onto its image - see Lemma 2.7 of [15]. Since the chordal variety of the Veronese surface in $\left|\mathcal{O}_{\mathbf{K}}(2)\right|^{\vee}$ is a hypersurface it follows that $\operatorname{dim} \mathbb{P}\left(\operatorname{Ann}\left(\operatorname{im} \tau_{K}^{v_{0}}\right)\right)<1$ and hence $\tau_{K}^{v_{0}}$ is injective. We also get that $\operatorname{Ann}\left(\operatorname{im} \tau_{K}^{v_{0}}\right)$ is a point in $\left|\mathcal{O}_{\mathbf{K}}(2)\right|^{\vee}$ which does not belong to the chordal variety of the Veronese surface and hence it belongs to unique open $\operatorname{PGL}(K)$-orbit. Now suppose that (2^{\prime}) holds. Assume that $\tau_{K}^{v_{0}}$ is not injective. Then $\operatorname{dim} \mathbb{P}\left(\operatorname{Ann}\left(\operatorname{im} \tau_{K}^{v_{0}}\right)\right) \geq 1$. It follows that there exist $[x] \neq[y] \in \mathbf{K}$ in the regular locus of $\left.\Phi\right|_{\mathbf{K}}$ (i.e. neither x nor y is decomposable) such that $\Phi([x])=\Phi([y])$. By the description of Φ given above in terms of supports we get that $\operatorname{supp}(x)=\operatorname{supp}(y)=U$ where $\operatorname{dim} U=4$; since $\operatorname{Gr}(2, U)$ is a hypersurface in $\mathbb{P}\left(\bigwedge^{2} U\right)$ we get that the line $\langle[x],[y]\rangle \subset \mathbb{P}\left(\bigwedge^{2} V_{0}\right)$ intersects $\operatorname{Gr}(2, U)$ in a subscheme of length 2 . Since $\langle[x],[y]\rangle \subset \mathbf{K}$ it follows that $\mathbf{K} \cap \operatorname{Gr}\left(2, V_{0}\right)$ contains a scheme of length 2, that contradicts Item (2^{\prime}). This proves that if $\left(2^{\prime}\right)$ holds then $\tau_{K}^{v_{0}}$ is injective. It also follows that $\operatorname{Ann}\left(\tau_{K}^{v_{0}}\right)$ belongs to the Veronese surface in $\left|\mathcal{O}_{\mathbf{K}}(2)\right|^{\vee}$ i.e. $\operatorname{im}\left(\tau_{K}^{v_{0}}\right)$ belongs to the unique closed PGL(K)-orbit.

3 Simultaneous resolution

In the first subsection we will analyze families of double EPW-sextics and their singular locus. The second subsection shows how to construct the simultaneous desingularization described in Item (3) of Section 0 (the relation with the Hilbert square of a $K 3$ will be given in Section 4).

3.1 Families of double EPW-sextics

Let $\mathcal{U} \subset\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \mathbb{N}(V)\right)$ (see (2.2.1)) be open. Suppose that there exist a scheme $\mathcal{X}_{\mathcal{U}}$ and a finite $f_{\mathcal{U}}: \mathcal{X}_{\mathcal{U}} \rightarrow \mathcal{Y}_{\mathcal{U}}$ such that for every $A \in \mathcal{U}$ the induced map $f^{-1} Y_{A} \rightarrow Y_{A}$ is identified with $f_{A}: X_{A} \rightarrow Y_{A}$: then we say that a tautological family of double EPW-sextics parametrized by \mathcal{U} exists - often we simply state that $f_{\mathcal{U}}: \mathcal{X}_{\mathcal{U}} \rightarrow \mathcal{Y}_{\mathcal{U}}$ exists. Composing $f_{\mathcal{U}}$ with the natural map $\mathcal{Y}_{\mathcal{U}} \rightarrow \mathcal{U}$ we get a map $\rho_{\mathcal{U}}: \mathcal{X}_{\mathcal{U}} \rightarrow \mathcal{U}$ such that $\rho_{\mathcal{U}}^{-1}(A) \cong X_{A}$.

Proposition 3.1. Let $B \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. A tautological family of double $E P W$-sextics parametrized by U_{B} exists (U_{B} is given by (2.2.3)).

Proof. Let $\nu: \mathcal{Y}_{U_{B}} \rightarrow \mathbb{P}(V)$ be projection. Let $\xi_{U_{B}}:=\zeta_{U_{B}} \otimes \nu^{*} \mathcal{O}_{\mathbb{P}(V)}(-3)$ where $\zeta_{U_{B}}$ is the sheaf on $\mathcal{Y}_{U_{B}}$ fitting in (2.2.4). Look at Commutative Diagram (2.2.4): proceeding as in the definition of the multiplication on $\mathcal{O}_{Y_{A}} \oplus \xi_{A}$ we get that $\beta_{U_{B}}$ defines a multiplication on $\mathcal{O}_{\mathcal{Y}_{U_{B}}} \oplus \xi_{U_{B}}$. By Proposition 1.7 we get that $\mathcal{O}_{\mathcal{Y}_{U_{B}}} \oplus \xi_{U_{B}}$ is an associative commutative ring. Let $\mathcal{X}_{U_{B}}:=\operatorname{Spec}\left(\mathcal{O}_{\mathcal{Y}_{U_{B}}} \oplus \xi_{U_{B}}\right)$ and $f_{U_{B}}: \mathcal{X}_{U_{B}} \rightarrow \mathcal{Y}_{U_{B}}$ be the structure map.

Let $\mathcal{U} \subset\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \mathbb{N}(V)\right)$ be open and such that $f_{\mathcal{U}}: \mathcal{X}_{\mathcal{U}} \rightarrow \mathcal{Y}_{\mathcal{U}}$ exists. We will determine the singular locus of $\mathcal{X}_{\mathcal{U}}$. Let

$$
\begin{align*}
\mathcal{Y}[d] & :=\left\{(A,[v]) \in\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \mathbb{N}(V)\right) \times \mathbb{P}(V) \mid \operatorname{dim}\left(A \cap F_{v}\right) \geq d\right\} \tag{3.1.1}\\
\mathcal{Y}(d) & :=\left\{(A,[v]) \in\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \mathbb{N}(V)\right) \times \mathbb{P}(V) \mid \operatorname{dim}\left(A \cap F_{v}\right)=d\right\} . \tag{3.1.2}
\end{align*}
$$

Then $\mathcal{Y}[d]$ has a natural structure of closed subscheme of $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \times \mathbb{P}(V)$ given by its local description as a symmetric determinantal variety - see Subsection 2.2 of [15]. Let $\mathcal{U} \in\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash\right.$ $\mathbb{N}(V)$) be open. We let $\mathcal{Y}_{\mathcal{U}}[d]:=\mathcal{Y}[d] \cap \mathcal{Y}_{\mathcal{U}}$ and similarly for $\mathcal{Y}_{\mathcal{U}}(d)$. Suppose that $f_{\mathcal{U}}: \mathcal{X}_{\mathcal{U}} \rightarrow \mathcal{Y}_{\mathcal{U}}$ is defined; we let

$$
\begin{equation*}
\mathcal{W}_{\mathcal{U}}:=f_{\mathcal{U}}^{-1} \mathcal{Y}[3] . \tag{3.1.3}
\end{equation*}
$$

Notice that the restriction of $f_{\mathcal{U}}$ to $\mathcal{W}_{\mathcal{U}}$ defines an isomorphism $\mathcal{W}_{\mathcal{U}} \xrightarrow{\sim} \mathcal{Y}_{\mathcal{U}}[3]$. We will prove the following result.
Proposition 3.2. Let $\mathcal{U} \subset\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \mathbb{N}(V)\right)$ be open and suppose that $f_{\mathcal{U}}: \mathcal{X}_{\mathcal{U}} \rightarrow \mathcal{Y}_{\mathcal{U}}$ exists. Then $\operatorname{sing} \mathcal{X}_{\mathcal{U}}=\mathcal{W}_{\mathcal{U}}$.

Proof. We may assume that $\mathcal{U}=U_{B} \times \mathcal{N}$ where $B \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ and $\mathcal{N} \subset \mathbb{P}(V)$ is an open subset such that $B \pitchfork F_{w}$ for all $w \in \mathcal{N}$. Then (see the proof of Proposition 3.1)

$$
\begin{equation*}
f_{U_{B}}^{-1}(\mathcal{U})=X_{\gamma} \text { where } \gamma \text { is given by (2.2.5). } \tag{3.1.4}
\end{equation*}
$$

Thus it suffices to examine X_{γ}. Let $(A,[v]) \in \mathcal{U}$ and

$$
\begin{equation*}
\delta_{\gamma}(A,[v]): T_{(A,[v])} \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \times \mathbb{P}(V) \longrightarrow \operatorname{Sym}^{2}\left(A \cap F_{v}\right)^{\vee} \tag{3.1.5}
\end{equation*}
$$

be as in (1.3.3). The restriction of $\delta_{\gamma}(A,[v])$ to the tangent space to $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ at A is surjective; thus

$$
\begin{equation*}
\delta_{\gamma}(A,[v]) \text { is surjective. } \tag{3.1.6}
\end{equation*}
$$

Let $q \in \mathcal{X}_{\gamma}$ and $f_{\mathcal{U}}(q)=(A,[v])$. Suppose that $q \notin \mathcal{W}_{\mathcal{U}}$ i.e. that $\operatorname{cork} \gamma(p) \leq 2$. If $\operatorname{cork} \gamma(p)=1$ then $Y_{\mathcal{U}}=Y_{\gamma}$ is smooth because the differential $\delta_{\gamma}(A,[v])$ is surjective: by Proposition 1.5 we get that $\mathcal{X}_{\mathcal{U}}$ is smooth at q. If $\operatorname{cork} \gamma(p)=2$ then $\mathcal{X}_{\mathcal{U}}$ is smooth at q by Proposition 1.12 - recall that the differential $\delta_{\gamma}(A,[v])$ is surjective. This proves that $\operatorname{sing} \mathcal{X}_{\mathcal{U}} \subset \mathcal{W}_{\mathcal{U}}$. On the other hand $\mathcal{W}_{\mathcal{U}} \subset \operatorname{sing} \mathcal{X}_{\mathcal{U}}$ by Claim 1.13.

We will close the present subsection by proving a few results about the individual X_{A} 's.
Lemma 3.3. Let $A \in\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \mathbb{N}(V)\right)$ and $[v] \in Y_{A}$. Suppose that $\operatorname{dim}\left(A \cap F_{v}\right) \leq 2$ and that there is no $W \in \Theta_{A}$ (see (2.2.15)) containing v. Then X_{A} is smooth at $f_{A}^{-1}([v])$.
Proof. Let $q \in f_{A}^{-1}([v])$. Suppose that $\operatorname{dim}\left(A \cap F_{v}\right)=1$. By Corollary 2.5 of [15] we get that Y_{A} is smooth at $[v]$, thus X_{A} is smooth at q by Proposition 1.5. Suppose that $\operatorname{dim}\left(A \cap F_{v}\right)=2$. Locally around q the double cover $X_{A} \rightarrow Y_{A}$ is isomorphic to $X_{\bar{\gamma}} \rightarrow Y_{\bar{\gamma}}$ where $\bar{\gamma}$ is the symmetrization of the restriction of β_{A} to an affine neighoborhood Spec R of $[v]$. Thus we may consider the differential $\delta_{\bar{\gamma}}([v])$ - see (1.3.3). The differential is surjective by Proposition 2.9 of [15], thus X_{A} is smooth at q by Proposition 1.12.
Proposition 3.4. Let $A \in\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \mathbb{N}(V)\right)$. Then X_{A} is smooth if and only if $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$.
Proof. If $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$ then X_{A} is smooth by [12]. Suppose that X_{A} is smooth. Then $A \notin \Delta$ by Claim 1.13. Assume that $A \in \Sigma$; we will reach a contradiction. Let $W \in \Theta_{A}$ and $[v] \in \mathbb{P}(W)$ - notice that $\mathbb{P}(W) \subset Y_{A}$. Let $q \in f_{A}^{-1}([v])$. Since $A \notin \Delta$ we have $1 \leq \operatorname{dim}\left(A \cap F_{v}\right) \leq 2$. Suppose that $\operatorname{dim}\left(A \cap F_{v}\right)=1$. Then Y_{A} is singular at $[v]$ by Corollary 2.5 of [15], thus X_{A} is singular at q by Proposition 1.5. Suppose that $\operatorname{dim}\left(A \cap F_{v}\right)=2$. Let $\bar{\gamma}$ be as in the proof of Lemma 3.3. Then $\delta_{\bar{\gamma}}([v])$ is not surjective - see Proposition 2.3 of [15] - and hence X_{A} is singular at q by Proposition 1.12.

3.2 The desingularization

Definition 3.5. Let $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*} \subset \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ be the set of A such that the following hold:
(1) $A \notin \mathbb{N}(V)$.
(2) $Y_{A}[3]$ is finite.
(3) $Y_{A}[3]=Y_{A}(3)$.

Remark 3.6. $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$ is an open subset of $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$.
Claim 3.7. $\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \Sigma\right) \subset \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$.
Proof. Item (1) of Definition 3.5 holds by Claim 2.11 of [15]. Let's prove that Item (2) of Definition 3.5 holds. Suppose that $Y_{A}[3] \neq Y_{A}(3)$ i.e. there exists $\left[v_{0}\right] \in \mathbb{P}(V)$ such that $\operatorname{dim}\left(A \cap F_{v_{0}}\right) \geq 4$. Let $V_{0} \subset V$ be a codimension-1 subspace transversal to $\left[v_{0}\right]$ and let $\rho_{V_{0}}^{v_{0}}$ be as in (2.2.17). Let $\mathbf{K}:=\mathbb{P}\left(\rho_{V_{0}}^{v_{0}}\left(A \cap F_{v_{0}}\right)\right)$. Then $\operatorname{dim} \mathbf{K} \geq 3$; since $\operatorname{Gr}\left(2, V_{0}\right)$ has codimension 3 in $\mathbb{P}\left(\bigwedge^{2} V_{0}\right)$ it follows that there exists $[\alpha] \in \mathbf{K} \cap \operatorname{Gr}\left(2, V_{0}\right)$. Let $\widetilde{\alpha} \in\left(A \cap F_{v_{0}}\right)$ such that $\rho_{V_{0}}^{v_{0}}(\widetilde{\alpha})=\alpha$. Then $\widetilde{\alpha}$ is non-zero and decomposable, that is a contradiction because $A \notin \Sigma$. Lastly let's prove that Item (3) of Definition 3.5 holds. Let $\left[v_{0}\right] \in Y_{A}[3]=Y_{A}(3)$. Then $\left(A,\left[v_{0}\right]\right) \in \widetilde{\Delta}(0)$. Let $K:=A \cap F_{v_{0}}$ and $\tau_{K}^{v_{0}}$ be as in (2.2.11). We have

$$
T_{\left[v_{0}\right]} Y_{A}[3]=T_{\left[v_{0}\right]} Y_{A}(3)=\operatorname{ker} \tau_{K}^{v_{0}}
$$

By Proposition 2.5 the $\operatorname{map} \tau_{K}^{v_{0}}$ is injective. Thus $\left[v_{0}\right]$ is an isolated point of $Y_{A}[3]$.
Let $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$. Let $\mathcal{U} \subset \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$ be a small open (either in the Zariski or in the classical topology) subset containing A. In particular $\rho_{\mathcal{U}}: \mathcal{X}_{\mathcal{U}} \rightarrow \mathcal{Y}_{\mathcal{U}}$ exists. Let $\pi_{\mathcal{U}}: \widetilde{\mathcal{X}}_{\mathcal{U}} \rightarrow \mathcal{X}_{\mathcal{U}}$ be the blow-up of $\mathcal{W}_{\mathcal{U}}$ and $E_{\mathcal{U}}$ be the exceptional set of $\pi_{\mathcal{U}}$.
Claim 3.8. Keep notation as above. Then $\widetilde{\mathcal{X}}_{\mathcal{U}}$ is smooth. If \mathcal{U} is open and sufficiently small in the classical topology then we have a locally-trivial fibration

$$
\begin{equation*}
E_{\mathcal{U}} \longrightarrow Y_{\mathcal{U}}[3] \tag{3.2.1}
\end{equation*}
$$

Let $(A,[v]) \in Y_{\mathcal{U}}[3]$. The fiber of (3.2.1) over $(A,[v])$ is isomorphic to $\mathbb{P}\left(A \cap F_{v}\right)^{\vee} \times \mathbb{P}\left(A \cap F_{v}\right)^{\vee}$ and the restriction of $N_{E_{\mathcal{U}} / \widetilde{\mathcal{X}}_{\mathcal{U}}}$ to the fiber is isomorphic to $\mathcal{O}_{\mathbb{P}\left(A \cap F_{v}\right) \vee}(-1) \boxtimes \mathcal{O}_{\mathbb{P}\left(A \cap F_{v}\right) \vee}(-1)$.

Proof. By Proposition 3.2 we know that $\widetilde{\mathcal{X}}_{\mathcal{U}}$ is smooth outside $E_{\mathcal{U}}$. It remains to examine $\widetilde{\mathcal{X}}_{\mathcal{U}}$ over $\mathcal{W}_{\mathcal{U}} \cong \mathcal{Y}_{\mathcal{U}}[3]$. We may assume that $\mathcal{U}=U_{B} \times \mathcal{N}$ is as in the proof of Proposition 3.2. We will adopt the notation of that proof. Let $q \in \mathcal{X}_{\gamma}$ and $f_{\mathcal{U}}(q)=(A,[v])=p$. A neighborhood of q in $X_{\mathcal{U}}$ is isomorphic to X_{γ} where γ is given by (2.2.5) - see (3.1.4). We are assuming that $q \in \mathcal{W}_{\mathcal{U}}$ and hence $\operatorname{cork} \gamma(p)=3$. Let $f: X(\mathcal{V}) \rightarrow Y(\mathcal{V})$ be as in Subsection 1.3 i.e. f is the universal double covering of corank 3 at the origin. We claim that there exists a map $\nu: X_{\gamma} \rightarrow X(\mathcal{V})$ such that the following diagram commutes

and X_{γ} is identified with the fibered product $Y_{\gamma} \times_{Y(\mathcal{V})} X(\mathcal{V})$. In fact it suffices to apply the reduction procedure of Subsection 1.1 that leads to Claim 1.4. Let \mathbf{K} be as in Claim 1.4: by (1.1.29) we have $\left(Y_{\gamma_{\mathbf{K}}}, p\right)=\left(Y_{\gamma}, p\right)$ and by Claim 1.4 we have a natural isomorphism $\left(X_{\gamma_{\mathbf{K}}}, f_{\gamma_{\mathbf{K}}}^{-1}(p)\right) \xrightarrow{\sim}$ $\left(X_{\gamma}, f_{\gamma}^{-1}(p)\right)$ commuting with $f_{\gamma_{\mathrm{K}}}$ and f_{γ}. Let $\mathcal{U}=\operatorname{Spec} R$: we are free to replace \mathcal{U} by any affine open subset containing $(A,[v])$. Thus we may assume that \mathbf{K} is a trivial R-module i.e. $\mathbf{K}=\mathcal{V} \otimes R$ where \mathcal{V} is a complex 3-dimensional vector-space. Hence we may view $\gamma_{\mathbf{K}}$ as a map $\gamma_{\mathbf{K}}: \operatorname{Spec} R \rightarrow$ $\operatorname{Sym}^{2} \mathcal{V}^{\vee}$. Notice that we have equality of schemes $Y_{\gamma}=\gamma_{\mathbf{K}}^{-1} Y(\mathcal{V})$; thus the restriction of $\gamma_{\mathbf{K}}$ to Y_{γ} defines a map $\mu: Y_{\gamma} \rightarrow Y(\mathcal{V})$. The claim follows. By surjectivity of $\delta_{\gamma}(A,[v])$ - see (3.1.6) - we get that the germ $\left(X_{\gamma}, f_{\gamma}^{-1}(p)\right)$ is the product of a smooth germ (of dimension 54) and the germ $\left(X(\mathcal{V}), f^{-1}(0)\right)$. Looking at the explicit description of $X(\mathcal{V})$ given by Proposition 1.14 we get right away that $\widetilde{\mathcal{X}}_{\mathcal{U}}$ is smooth over q and the remaining statements as well. We need to assume that \mathcal{U} is a small open subset in the classical topology in order to ensure that Map (3.2.1) is a locally-trvial fibration.
Remark 3.9. Let $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$ and let $Y_{A}[3]=\left\{\left[v_{1}\right], \ldots,\left[v_{s}\right]\right\}$. Let $\mathcal{U} \subset \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$ be a small open (in the classical topology) subset containing A. For each $1 \leq i \leq s$ choose a projection

$$
\begin{equation*}
E_{\mathcal{U}}\left(\left[v_{i}\right]\right) \longrightarrow \mathbb{P}\left(A \cap F_{v}\right)^{\vee} . \tag{3.2.3}
\end{equation*}
$$

There exists a unique \mathbb{P}^{2}-fibration

$$
\begin{equation*}
\epsilon: E_{\mathcal{U}} \longrightarrow \star \tag{3.2.4}
\end{equation*}
$$

where \star is itself a fibration over $Y_{\mathcal{U}}[3]$ with fiber $\mathbb{P}\left(A \cap F_{v}\right)^{\vee}$ over $(A,[v])$. We say that (3.2.3) is a choice of \mathbb{P}^{2}-fibration ϵ for X_{A}.

Let $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$ and choose a \mathbb{P}^{2}-fibration ϵ for X_{A}. Let $\mathcal{U} \subset \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$ be a small open (in the classical topology) subset containing A. By Claim 3.8 the normal bundle of $E_{\mathcal{U}}$ along the fibers of (3.2.4) is $\mathcal{O}_{\mathbb{P}^{2}}(-1)$. Thus there exists a contraction $c_{\mathcal{U}, \epsilon}: \widetilde{\mathcal{X}}_{\mathcal{U}} \rightarrow \mathcal{X}_{\mathcal{U}}^{\epsilon}$ in the category of complex manifolds fitting into a commutative diagram

Let $f_{\mathcal{U}}^{\epsilon}=f_{\mathcal{U}} \circ g_{\mathcal{U}}^{\epsilon}: \mathcal{X}_{\mathcal{U}}^{\epsilon} \rightarrow \mathcal{Y}_{\mathcal{U}}$ and $\rho_{\mathcal{U}}^{\epsilon}: \mathcal{X}_{\mathcal{U}}^{\epsilon} \rightarrow \mathcal{U}$ be the map $f_{\mathcal{U}}^{\epsilon}$ followed by $\mathcal{Y}_{\mathcal{U}} \rightarrow \mathcal{U}$. Let

$$
X_{A}^{\epsilon}:=\left(\rho_{\mathcal{U}}^{\epsilon}\right)^{-1}(A), \quad g_{A}^{\epsilon}:=\left.g_{\mathcal{U}}^{\epsilon}\right|_{X_{A}^{\epsilon}}, \quad f_{A}^{\epsilon}:=\left.f_{\mathcal{U}}^{\epsilon}\right|_{X_{A}^{\epsilon}}, \quad \mathcal{O}_{X_{A}^{\epsilon}}(1):=\left(f_{A}^{\epsilon}\right)^{*} \mathcal{O}_{Y_{A}}(1), \quad H_{A}^{\epsilon} \in\left|\mathcal{O}_{X_{A}^{\epsilon}}(1)\right|
$$

Our notation does not make any reference to \mathcal{U} because the isomorphism class of the polarized couple $\left(X_{A}^{\epsilon}, \mathcal{O}_{X_{A}^{\epsilon}}(1)\right)$ does not depend on the open set \mathcal{U} containing A. Notice that if $A \in \Delta$ then $\mathcal{O}_{X_{A}^{\epsilon}}(1)$ is not ample, in fact it is trivial on s copies of \mathbb{P}^{2} where $s=\left|Y_{A}[3]\right|$. Of course

$$
\begin{equation*}
\left(X_{A}^{\epsilon}, \mathcal{O}_{X_{A}^{\epsilon}}(1)\right) \cong\left(X_{A}, \mathcal{O}_{X_{A}}(1)\right) \text { if } A \in\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \Delta\right) \tag{3.2.6}
\end{equation*}
$$

Proposition 3.10. Let $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$ and let ϵ be a choice of \mathbb{P}^{2}-fibration for X_{A}.
(1) X_{A}^{ϵ} is smooth away from $\left(f_{A}^{\epsilon}\right)^{-1}\left(\bigcup_{W \in \Theta_{A}} \mathbb{P}(W)\right)$.
(2) If $\left[v_{i}\right] \in Y_{A}[3]$ then $\left(f_{A}^{\epsilon}\right)^{-1}\left[v_{i}\right] \cong \mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee}$.
(3) If ϵ^{\prime} is another choice of \mathbb{P}^{2}-fibration for X_{A} there exists a commutative diagram

where the birational map is the flop of a collection of $\left(f_{A}^{\epsilon}\right)^{-1}\left[v_{i}\right]^{\text {'s. Conversely every flop of a }}$ collection of $\left(f_{A}^{\epsilon}\right)^{-1}\left[v_{i}\right]^{\prime}$'s is isomorphic to one $X_{A}^{\epsilon^{\prime}}$.

Proof. Let's prove Item (1). X_{A}^{ϵ} is smooth away from $\left(f_{A}^{\epsilon}\right)^{-1}\left(Y_{A}[3] \cup \bigcup_{W \in \Theta_{A}} \mathbb{P}(W)\right)$ by Lemma 3.3. It remains to prove that X_{A}^{ϵ} is smooth at every point of $\left(f_{A}^{\epsilon}\right)^{-1}\left\{\left[v_{1}\right], \ldots,\left[v_{s}\right]\right\}$ where

$$
\begin{equation*}
\left\{\left[v_{1}\right], \ldots,\left[v_{s}\right]\right\}=Y_{A}[3] \backslash \bigcup_{W \in \Theta_{A}} \mathbb{P}(W) \tag{3.2.8}
\end{equation*}
$$

Let $\mathcal{U} \subset \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$ be a small open (in the classical topology) subset containing A. Let $\widetilde{\rho}_{\mathcal{U}}:=$ $\rho_{\mathcal{U}} \circ \pi_{\mathcal{U}}$; thus $\widetilde{\rho}_{\mathcal{U}}: \widetilde{X}_{\mathcal{U}} \rightarrow \mathcal{U}$. For $1 \leq i \leq s$ the fiber over $\left(A,\left[v_{i}\right]\right)$ of Fibration (3.2.1) is canonically isomorphic to $\mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee} \times \mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee}$. Let $\widehat{X}_{A} \subset \widetilde{X}_{\mathcal{U}}$ be the strict transform of X_{A}. Abusing notation we write

$$
\begin{equation*}
\widetilde{\rho}_{\mathcal{U}}^{-1}(A)=\widehat{X}_{A} \cup \bigcup_{i=1}^{s} \mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee} \times \mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee} . \tag{3.2.9}
\end{equation*}
$$

(Of course $\mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee} \times \mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee}$ denotes the fiber over $\left(A,\left[v_{i}\right]\right)$ of Fibration (3.2.1).) The components $\mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee} \times \mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee}$ are pairwise disjoint. We claim that for $i=1, \ldots, s$ the intersection

$$
\begin{equation*}
E_{A, i}:=\widehat{X}_{A} \cap\left(\mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee} \times \mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee}\right) \tag{3.2.10}
\end{equation*}
$$

is a smooth symmetric divisor in the linear system $\left.\mid \mathcal{O}_{\mathbb{P}\left(A \cap F_{v_{i}}\right)}\right)(1) \boxtimes \mathcal{O}_{\mathbb{P}\left(A \cap F_{v_{i}}\right)} \vee(1) \mid$. In order to prove this we go back to $\operatorname{Map}(1.3 .15)$ - recall that \mathcal{V} is a 3-dimensional complex vector space. Pull-back by σ defines an isomorphism

$$
\begin{equation*}
\operatorname{Sym}^{2} \mathcal{V}^{\vee} \xrightarrow{\sigma^{*}}\left(\mathcal{V}^{\vee} \otimes \mathcal{V}^{\vee}\right)^{\mathbb{Z} /(2)}=: \operatorname{Sym}_{2} \mathcal{V}^{\vee} \tag{3.2.11}
\end{equation*}
$$

which is $\operatorname{Gl}(\mathcal{V})$-equivariant. Isomorphism σ^{*} induces a $\operatorname{PGL}(\mathcal{V})$-equivariant isomorphism of projective spaces $\mathbf{p}: \mathbb{P}\left(\operatorname{Sym}^{2} \mathcal{V}^{\vee}\right) \xrightarrow{\sim} \mathbb{P}\left(\operatorname{Sym}_{2} \mathcal{V}^{\vee}\right)$. Of course \mathbf{p} maps a point in the unique open $\operatorname{PGL}(\mathcal{V})$-orbit of $\mathbb{P}\left(\operatorname{Sym}^{2} \mathcal{V}^{\vee}\right)$ to a point in the unique open $\operatorname{PGL}(\mathcal{V})$-orbit of $\mathbb{P}\left(\operatorname{Sym}_{2} \mathcal{V} \vee\right)^{\vee}$. Now let $\mathcal{V}=\left(A \cap F_{v_{i}}\right)^{\vee}$. Let $K_{i}:=\left(A \cap F_{v_{i}}\right)$ and $\tau_{K_{i}}^{v_{i}}$ be as in (2.2.11). By Proposition 2.5 we have that $\operatorname{im}\left(\tau_{K_{i}}^{v_{i}}\right)$ belongs to the unique open $\operatorname{PGL}\left(K_{i}\right)$-orbit of $\mathbb{P}\left(\operatorname{Sym}^{2}\left(A \cap F_{v_{i}}\right)\right)$. Commutative $\operatorname{Diagram}(1.3 .16)$ gives that $E_{A, i}$ is a symmetric smooth divisor in $\left.\mid \mathcal{O}_{\mathbb{P}\left(A \cap F_{v_{i}}\right)} \vee(1) \boxtimes \mathcal{O}_{\mathbb{P}\left(A \cap F_{v_{i}}\right)}\right)(1) \mid$. Thus we have described $\widetilde{\rho}_{\mathcal{U}}^{-1}(A)$. Since $X_{\mathcal{U}}^{\epsilon}$ is obtained from $\widetilde{X}_{\mathcal{U}}$ by contracting $E_{\mathcal{U}}$ along the \mathbb{P}^{2}-fibration ϵ it follows that X_{A}^{ϵ} is smooth at every point of $\left(f_{A}^{\epsilon}\right)^{-1}\left\{\left[v_{1}\right], \ldots,\left[v_{s}\right]\right\}$. This proves Item (1). Since X_{A}^{ϵ} is obtained from \widehat{X}_{A} by contracting each of the divisors $E_{A, i}$ along the fibration $\mathbb{P}^{1} \rightarrow E_{A, i} \rightarrow \mathbb{P}\left(A \cap F_{v_{i}}\right)^{\vee}$ determined by ϵ (and similarly for ϵ^{\prime}) we also get Items (2) and (3).

Corollary 3.11. Let $A \in\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \Sigma\right)$. Then $g_{A}^{\epsilon}: X_{A}^{\epsilon} \rightarrow X_{A}$ is a desingularization for every choice of \mathbb{P}^{2}-fibration ϵ for X_{A}.

Proof. By Claim 3.7 we know that $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{*}$: thus Proposition 3.10 applies to X_{A}^{ϵ}. Since $A \notin \Sigma$ we get that X_{A}^{ϵ} is smooth by Item (1) of Proposition 3.10.

Corollary 3.12. Let $A, A^{\prime} \in\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \Sigma\right)$ and $\epsilon, \epsilon^{\prime}$ be choices of \mathbb{P}^{2}-fibration for X_{A}. The quasi-polarized 4-folds $\left(X_{A}^{\epsilon}, H_{A}^{\epsilon}\right)$ and $\left(X_{A^{\prime}}^{\epsilon}, H_{A^{\prime}}^{\epsilon}\right)$ are deformation equivalent.

4 Double EPW-sextics parametrized by Δ

Let $A \in \Delta$ and $\left[v_{0}\right] \in Y_{A}(3)$. In the first subsection we will associate to ($A,\left[v_{0}\right]$) (under some hypotheses which are certainly satisfied if $A \notin \Sigma)$ a $K 3$ surface $S_{A}\left(v_{0}\right)$ of genus 6 , meaning that it comes equipped with a big and nef divisor class $D_{A}\left(v_{0}\right)$ of square 10 . We will also prove a converse: given a generic such pseudo-polarized $K 3$ surface S there exist $A \in \Delta$ and $\left[v_{0}\right] \in Y_{A}(3)$ such that the pseudo-polarized surfaces S and $S_{A}\left(v_{0}\right)$ are isomorphic. In the second subsection we will assume that $A \in(\Delta \backslash \Sigma)$ - with this hypothesis $D_{A}\left(v_{0}\right)$ is very ample. We will prove that there exists a bimeromorphic map $\psi: S_{A}^{[2]}\left(v_{0}\right) \rightarrow X_{A}^{\epsilon}$ where ϵ is an arbitrary choice of \mathbb{P}^{2}-fibration for X_{A}. That such a map exists for generic $A \in \Delta$ could be proved by invoking the results of [14]. Here we will present a direct proof (we will not appeal to [14] nor to [12]). Moreover we will prove that if $S_{A}\left(v_{0}\right)$ contains no lines (this will be the case for generic A) then there exists a choice of ϵ for which ψ is regular - in particular X_{A}^{ϵ} is projective for such ϵ. Lastly we will notice that the above results show that a smooth double cover of an EPW-sextic is a deformation of the Hilbert square of a K3 (and that the family of double EPW-sextics is a locally versal family of projective Hyperkähler manifolds): the proof is more direct than the proof of [12].

4.1 EPW-sextics and $K 3$ surfaces

Assumption 4.1. $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right),\left[v_{0}\right] \in Y_{A}(3)$ and the following hold:
(a) There exists a codimension- 1 subspace $V_{0} \subset V$ such that $\bigwedge^{3} V_{0} \pitchfork A$ i.e. $\bigwedge^{3} V_{0} \cap A=\{0\}$.
(b) There exists at most one $W \in \Theta_{A}$ containing v_{0}.
(c) If $W \in \Theta_{A}$ contains v_{0} then $A \cap\left(\bigwedge^{2} W \wedge V\right)=\bigwedge^{3} W$.

Remark 4.2. Let $A \in(\Delta \backslash \Sigma)$. Let $\left[v_{0}\right] \in Y_{A}(3)\left(=Y_{A}[3]\right.$ by Claim 3.7). Then Assumption 4.1 holds. In fact Items (b) and (c) hold trivially while Item (a) holds by Claim 2.11 and Equation (2.81) of [15].

Let $\left(A,\left[v_{0}\right]\right)$ be as in Assumption 4.1: we will define a surface $S_{A}\left(v_{0}\right)$ of genus 6. The condition that $\bigwedge^{3} V_{0}$ is transverse to A is open: thus we may assume that we have a direct-sum decomposition

$$
\begin{equation*}
V=\left[v_{0}\right] \oplus V_{0} . \tag{4.1.1}
\end{equation*}
$$

We will denote by \mathcal{D} be the direct-sum decomposition of V appearing in (4.1.1). Let

$$
\begin{equation*}
K_{A}^{\mathcal{D}}:=\rho_{V_{0}}^{v_{0}}\left(A \cap F_{v_{0}}\right) . \tag{4.1.2}
\end{equation*}
$$

where $\rho_{V_{0}}^{v_{0}}$ is given by (2.2.17). Choose a volume-form on V_{0}. Wedge-product followed by the volume-form defines an isomorphism $\bigwedge^{3} V_{0} \cong \bigwedge^{2} V_{0}^{\vee}$ and hence it makes sense to let

$$
\begin{equation*}
F_{A}^{\mathcal{D}}:=\mathbb{P}\left(\operatorname{Ann} K_{A}^{\mathcal{D}}\right) \cap \operatorname{Gr}\left(3, V_{0}\right) . \tag{4.1.3}
\end{equation*}
$$

By Proposition 5.2 and Proposition 5.3 (see the Appendix) we know that $F_{A}^{\mathcal{D}}$ is a Fano 3-fold with at most one singular point. Next we will define a quadratic form on Ann $K_{A}^{\mathcal{D}}$. By Item (a) of Assumption 4.1 the subspace A is the graph of a map $\widetilde{q}_{A}^{\mathcal{D}}: \bigwedge^{2} V_{0} \rightarrow \bigwedge^{3} V_{0}$: explicitly

$$
\begin{equation*}
\widetilde{q}_{A}^{\mathcal{D}}(\alpha)=\beta \Longleftrightarrow\left(v_{0} \wedge \alpha+\beta\right) \in A \tag{4.1.4}
\end{equation*}
$$

The map $\widetilde{q}_{A}^{\mathcal{D}}$ is symmetric because $A, \bigwedge^{2} V_{0}$ and $\bigwedge^{3} V_{0}$ are lagrangian subspaces of $\Lambda^{3} V$. Clearly $\operatorname{ker} \widetilde{q}_{A}^{\mathcal{D}}=K_{A}^{\mathcal{D}}$: it follows that $\widetilde{q}_{A}^{\mathcal{D}}$ induces an isomorphism

$$
\begin{equation*}
\tilde{r}_{A}^{\mathcal{D}}: \bigwedge^{2} V_{0} / K_{A}^{\mathcal{D}} \xrightarrow{\sim} \operatorname{Ann} K_{A}^{\mathcal{D}} \subset \bigwedge^{3} V_{0} \tag{4.1.5}
\end{equation*}
$$

The inverse $\left(\widetilde{r}_{A}^{\mathcal{D}}\right)^{-1}$ defines a non-degenerate quadratic form $\left(r_{A}^{\mathcal{D}}\right)^{\vee}$ on $\operatorname{Ann} K_{A}^{\mathcal{D}}$. For future reference we unwind the definition of $\left(\widetilde{r}_{A}^{\mathcal{D}}\right)^{-1}$ and $\left(r_{A}^{\mathcal{D}}\right)^{\vee}$. Let $\beta \in \operatorname{Ann} K_{A}^{\mathcal{D}}$ i.e.

$$
\begin{equation*}
v_{0} \wedge \alpha+\beta \in A, \quad \alpha \in \bigwedge^{2} V_{0} \tag{4.1.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\widetilde{r}_{A}^{\mathcal{D}}\right)^{-1}(\beta) \equiv \alpha \quad\left(\bmod K_{A}^{\mathcal{D}}\right), \quad\left(r_{A}^{\mathcal{D}}\right)^{\vee}(\beta)=\operatorname{vol}\left(v_{0} \wedge \alpha \wedge \beta\right) \tag{4.1.7}
\end{equation*}
$$

Let $V\left(\left(r_{A}^{\mathcal{D}}\right)^{\vee}\right) \subset \mathbb{P}\left(\right.$ Ann $\left.K_{A}^{\mathcal{D}}\right)$ be the zero-scheme of $\left(r_{A}^{\mathcal{D}}\right)^{\vee}$: a smooth 5 -dimensional quadric. Let

$$
\begin{equation*}
S_{A}^{\mathcal{D}}:=V\left(\left(r_{A}^{\mathcal{D}}\right)^{\vee}\right) \cap F_{A}^{\mathcal{D}} . \tag{4.1.8}
\end{equation*}
$$

Our first goal is to show that $S_{A}^{\mathcal{D}}$ does not depend on the choice of the subspace $V_{0} \subset V$ complementary to $\left[v_{0}\right]$ i.e. it depends only on A and $\left[v_{0}\right]$. First we notice that $F_{A}^{\mathcal{D}}$ is independent of V_{0}. In fact $\Lambda^{3} V_{0}$ is transversal to $F_{v_{0}}$; since both $\bigwedge^{3} V_{0}$ and $F_{v_{0}}$ are Lagrangians the volume vol induces an isomorphism

$$
\begin{equation*}
g_{V_{0}}: \bigwedge^{3} V_{0} \xrightarrow{\sim} F_{v_{0}}^{\vee} \tag{4.1.9}
\end{equation*}
$$

Thus $g_{V_{0}}$ defines an inclusion

$$
\begin{equation*}
F_{A}^{\mathcal{D}} \hookrightarrow \mathbb{P}\left(\operatorname{Ann} K_{A}\right) \tag{4.1.10}
\end{equation*}
$$

Remark 4.3. The image of Map (4.1.10) does not depend on V_{0} i.e. it depends exclusively on A and $\left[v_{0}\right] \in Y_{A}(3)$; we will denote it by $Z_{A}\left(v_{0}\right)$.

Similarly $g_{V_{0}}$ defines an inclusion

$$
\begin{equation*}
\mathbf{g}_{V_{0}}: S_{A}^{\mathcal{D}} \hookrightarrow \mathbb{P}\left(\operatorname{Ann} K_{A}\right) \tag{4.1.11}
\end{equation*}
$$

Lemma 4.4. Keep notation and assumptions as above. Then $\mathbf{g}_{V_{0}}\left(S_{A}^{\mathcal{D}}\right)$ is independent of V_{0}, in other words it depends exclusively on A and $\left[v_{0}\right] \in Y_{A}(3)$.
Proof. Let $V_{0}^{\prime} \subset V$ be a codimension-1 subspace complementary to $\left[v_{0}\right]$ and transverse to A. Let \mathcal{D}^{\prime} denote the corresponding direct-sum decomposition of V; we must show that

$$
\begin{equation*}
\mathbf{g}_{V_{0}}\left(S_{A}^{\mathcal{D}}\right)=\mathbf{g}_{V_{0}^{\prime}}\left(S_{A}^{\mathcal{D}^{\prime}}\right) \tag{4.1.12}
\end{equation*}
$$

The subspace V_{0}^{\prime} is the graph of a linear function

$$
\begin{array}{ccc}
V_{0} & \longrightarrow & {\left[v_{0}\right]} \tag{4.1.13}\\
v & \mapsto & f(v) v_{0}
\end{array}
$$

and hence we have an isomorphism

$$
\begin{array}{ccc}
V_{0} & \xrightarrow{\psi} & V_{0}^{\prime} \tag{4.1.14}\\
v & \mapsto & v+f(v) v_{0} .
\end{array}
$$

We notice that

$$
\begin{equation*}
\left.\bigwedge^{3} \psi(\beta)=\beta+v_{0} \wedge(f\lrcorner \beta\right) \tag{4.1.15}
\end{equation*}
$$

where \lrcorner denotes contraction. In particular $g_{V_{0}^{\prime}} \circ \bigwedge^{3} \psi=g_{V_{0}}$. Moreover $\phi:=\left.\bigwedge^{3} \psi\right|_{\text {Ann } K_{A}^{\mathcal{D}}}$ is an isomorphism between $\operatorname{Ann} K_{A}^{\mathcal{D}} \subset \Lambda^{3} V_{0}$ and $\operatorname{Ann} K_{A^{\prime}}^{\mathcal{D}^{\prime}} \subset \Lambda^{3} V_{0}^{\prime}$. Thus it suffices to prove that

$$
\begin{equation*}
\phi\left(S_{A}^{\mathcal{D}}\right)=S_{A}^{\mathcal{D}^{\prime}} \tag{4.1.16}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\phi^{*}\left(r_{A}^{\mathcal{D}^{\prime}}\right)^{\vee}-\left(r_{A}^{\mathcal{D}}\right)^{\vee} \in H^{0}\left(\mathcal{I}_{F_{A}^{\mathcal{D}}}(2)\right) . \tag{4.1.17}
\end{equation*}
$$

In fact let $\beta \in \operatorname{Ann} K_{A}^{\mathcal{D}} \subset \bigwedge^{3} V_{0}$; then (4.1.6) holds. By (4.1.15) we get that

$$
\begin{equation*}
\left.v_{0} \wedge(\alpha-(f\lrcorner \beta)\right)+\phi(\beta)=v_{0} \wedge \alpha+\beta \in A \tag{4.1.18}
\end{equation*}
$$

By (4.1.15) we get that

$$
\begin{align*}
& \left.\phi^{*}\left(r_{A}^{\mathcal{D}^{\prime}}\right)^{\vee}(\beta)=\operatorname{vol}\left(v_{0} \wedge(\alpha-(f\lrcorner \beta)\right) \wedge \phi(\beta)\right)= \\
& \left.\quad \operatorname{vol}\left(v_{0} \wedge \alpha \wedge \phi(\beta)\right)-\operatorname{vol}\left(v_{0} \wedge(f\lrcorner \beta\right) \wedge \phi(\beta)\right)= \\
& \left.\quad \operatorname{vol}\left(v_{0} \wedge \alpha \wedge \beta\right)-\operatorname{vol}\left(v_{0} \wedge(f\lrcorner \beta\right) \wedge \beta\right)= \\
& \tag{4.1.19}\\
& \left.\quad\left(r_{A}^{\mathcal{D}}\right)^{\vee}(\beta)-\operatorname{vol}\left(v_{0} \wedge(f\lrcorner \beta\right) \wedge \beta\right) .
\end{align*}
$$

The second term in the last expression is the restriction to $\mathbb{P}\left(A n n K_{A}^{\mathcal{D}}\right)$ of a Plücker quadratic form and hence it vanishes on $F_{A}^{\mathcal{D}}$. This proves (4.1.17) and hence (4.1.16) holds.

By the above lemma we may give the following definition.
Definition 4.5. Let $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. Suppose that $\left[v_{0}\right] \in Y_{A}(3)$ and that Assumption 4.1 holds. Let \mathcal{D} be the direct-sum decomposition (4.1.1). We set

$$
\begin{equation*}
S_{A}\left(v_{0}\right):=\mathbf{g}_{V_{0}}\left(S_{A}^{\mathcal{D}}\right) \tag{4.1.20}
\end{equation*}
$$

Keep assumptions and notation as above. We single out special points of $S_{A}\left(v_{0}\right)$ as follows. Suppose that $W \in \Theta_{A}$ (see (2.2.15) for the definition of Θ_{A}) and assume that $v_{0} \notin W$. Let γ be a generator of $\bigwedge^{3} W$ i.e. γ is decomposable with $\operatorname{supp}(\gamma)=W$. By hypothesis $\bigwedge^{3} V_{0} \cap A=\{0\}$ and hence $W \not \subset V_{0}$; thus

$$
\begin{equation*}
\gamma=\left(v_{0}+u_{1}\right) \wedge u_{2} \wedge u_{3}, \quad u_{i} \in V_{0} \tag{4.1.21}
\end{equation*}
$$

Since $v_{0} \notin W$ we have $u_{1} \wedge u_{2} \wedge u_{3} \neq 0$; thus $\left[u_{1} \wedge u_{2} \wedge u_{3}\right] \in F_{A}^{\mathcal{D}}$. Moreover $\left[u_{1} \wedge u_{2} \wedge u_{3}\right] \in V\left(\left(r_{A}^{\mathcal{D}}\right)^{\vee}\right)$ by (4.1.7) and hence $\left[u_{1} \wedge u_{2} \wedge u_{3}\right] \in S_{A}^{\mathcal{D}}$. We let

$$
\begin{array}{ccc}
\Theta_{A} \backslash\left\{W \mid v_{0} \in W\right\} & \xrightarrow{\theta_{A}^{\mathcal{D}}} & S_{A}^{\mathcal{D}} \tag{4.1.22}\\
W & \mapsto & {\left[u_{1} \wedge u_{2} \wedge u_{3}\right] .}
\end{array}
$$

The map

$$
\begin{equation*}
\theta_{A}\left(v_{0}\right):=\mathbf{g}_{V_{0}} \circ \theta_{A}^{\mathcal{D}}:\left(\Theta_{A} \backslash\left\{W \mid v_{0} \in W\right\}\right) \rightarrow S_{A}\left(v_{0}\right) \tag{4.1.23}
\end{equation*}
$$

is independent of \mathcal{D}, i.e. it depends exclusively on A and $\left[v_{0}\right]$. Notice that $\theta_{A}\left(v_{0}\right)$ is injective.
Proposition 4.6. Let $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. Suppose that $\left[v_{0}\right] \in Y_{A}(3)$ and that Assumption 4.1 holds. Let \mathcal{D} be the direct-sum decomposition (4.1.1). The set of points at which the intersection $V\left(\left(r_{A}^{\mathcal{D}}\right)^{\vee}\right) \cap F_{A}^{\mathcal{D}}$ is not transverse is equal to

$$
\begin{equation*}
\operatorname{im} \theta_{A}^{\mathcal{D}} \coprod\left(S_{A}^{\mathcal{D}} \cap \operatorname{sing} F_{A}^{\mathcal{D}}\right) \tag{4.1.24}
\end{equation*}
$$

Proof. Let $[\beta] \in S_{A}^{\mathcal{D}}$. In particular β is non-zero decomposable; let $U:=\operatorname{supp} \beta$. Moreover since $[\beta] \in F_{A}^{\mathcal{D}}$ we have that (4.1.6) holds; let $\alpha \in \bigwedge^{2} V_{0}$ be as in (4.1.6). We claim that

$$
\begin{equation*}
V\left(\left(r_{A}^{\mathcal{D}}\right)^{\vee}\right) \pitchfork F_{A}^{\mathcal{D}} \text { at }[\beta] \text { unless }\left\langle\alpha, K_{A}^{\mathcal{D}}\right\rangle \cap \bigwedge^{2} U \neq \emptyset \tag{4.1.25}
\end{equation*}
$$

In fact the projective tangent space to $\operatorname{Gr}\left(3, V_{0}\right)$ at $[\beta]$ is given by

$$
\begin{equation*}
\mathbf{T}_{[\beta]} \operatorname{Gr}\left(3, V_{0}\right)=\mathbb{P}\left(\operatorname{Ann}\left(\bigwedge^{2} U\right)\right) \tag{4.1.26}
\end{equation*}
$$

On the other hand (4.1.7) gives that

$$
\begin{equation*}
\mathbf{T}_{[\beta]} V\left(\left(r_{A}^{\mathcal{D}}\right)^{\vee}\right)=\mathbb{P}(\operatorname{Ann} \alpha) \cap \mathbb{P}\left(\operatorname{Ann} K_{A}^{\mathcal{D}}\right) \tag{4.1.27}
\end{equation*}
$$

Statement (4.1.25) follows at once from (4.1.26) and (4.1.27). Next we prove that

$$
\begin{equation*}
\left\langle\alpha, K_{A}^{\mathcal{D}}\right\rangle \cap \bigwedge^{2} U \neq \emptyset \text { if and only if }[\beta] \in \operatorname{sing} F_{A}^{\mathcal{D}} \text { or }[\beta] \in \operatorname{im} \theta_{A}^{\mathcal{D}} \tag{4.1.28}
\end{equation*}
$$

Suppose that $[\beta] \in \operatorname{sing} F_{A}^{\mathcal{D}}$; then Item (1) of Proposition 5.3 gives that $K_{A}^{\mathcal{D}} \cap \bigwedge^{2} U \neq \emptyset$. Next suppose that $[\beta] \in \operatorname{im} \theta_{A}^{\mathcal{D}}$; then $\alpha \in \bigwedge^{2} U$ by (4.1.21). This proves the "if"implication of (4.1.28). Let us prove the "only if" implication. First assume that $K_{A}^{\mathcal{D}} \cap \bigwedge^{2} U \neq\{0\}$. Let $0 \neq \kappa_{0} \in K_{A}^{\mathcal{D}} \cap \bigwedge^{2} U$. Then κ_{0} is decomposable because $\operatorname{dim} U=3$ and hence $\left[\kappa_{0}\right.$] is the unique point belonging to $\mathbb{P}\left(K_{A}^{\mathcal{D}}\right) \cap \operatorname{Gr}\left(2, V_{0}\right)$. We get that $[\beta]$ is the unique singular point of $F_{A}^{\mathcal{D}}$ by (5.0.8). Lastly assume that $K_{A}^{\mathcal{D}} \cap \bigwedge^{2} U=\{0\}$. Then there exists $\kappa \in K_{A}^{\mathcal{D}}$ such that $(\alpha+\kappa) \in \bigwedge^{2} U$. Since $\kappa \in K_{A}^{\mathcal{D}}$ we have $\left(v_{0} \wedge(\alpha+\kappa)+\beta\right) \in A$. The tensor $\left(v_{0} \wedge(\alpha+\kappa)+\beta\right) \in A$ is decomposable, let W be its support. Then $v_{0} \notin W$ because $\beta \neq 0$ and hence $[\beta]=\theta_{A}^{\mathcal{D}}(W)$. This finishes the proof of (4.1.28) and of the proposition.

Corollary 4.7. Let $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. Suppose that $\left[v_{0}\right] \in Y_{A}(3)$ and that Assumption 4.1 holds. Asssume in addition that Θ_{A} is finite. Then $S_{A}\left(v_{0}\right)$ is a reduced and irreducible surface with

$$
\begin{equation*}
\operatorname{sing} S_{A}\left(v_{0}\right)=\operatorname{im} \theta_{A}\left(v_{0}\right) \coprod\left(S_{A}\left(v_{0}\right) \cap \operatorname{sing} Z_{A}\left(v_{0}\right)\right) . \tag{4.1.29}
\end{equation*}
$$

(See Remark 4.3 for the definition of $Z_{A}\left(v_{0}\right)$.)
Proof. By Proposition 4.6 we know that $S_{A}^{\mathcal{D}}$ is a smooth surface outside the right-hand side of (4.1.29). By hypothesis Θ_{A} is finite and hence the right-hand side of (4.1.29) is finite. On the other hand by Proposition 5.3 we know that $Z_{A}\left(v_{0}\right)$ is a 3 -fold with at most one singular point, necessarily an ordinary quadratic singularity, and $S_{A}^{\mathcal{D}}$ is the complete intersection of $Z_{A}\left(v_{0}\right)$ and a quadric hypersurface. It follows that $S_{A}^{\mathcal{D}}$ is reduced and irreducible with singular set as claimed.

Corollary 4.8. Let hypotheses be as in Corollary 4.7. Suppose in addition that $S_{A}\left(v_{0}\right)$ has Du Val singularities. Let $\widehat{S}_{A}\left(v_{0}\right) \rightarrow S_{A}\left(v_{0}\right)$ be the minimal desingularization. Then $\widehat{S}_{A}\left(v_{0}\right)$ is a $K 3$ surface.

Proof. Let $\mathcal{O}_{Z_{A}\left(v_{0}\right)}(1)$ be the pull-back by Map (4.1.10) of the hyperplane line-bundle on $\mathbb{P}\left(\operatorname{Ann}\left(F_{v_{0}} \cap\right.\right.$ $A)$). Then $S_{A}\left(v_{0}\right) \in\left|\mathcal{O}_{Z_{A}\left(v_{0}\right)}(2)\right|$. By Proposition 5.2 and Proposition 5.3 there exist smooth divisors in $\left|\mathcal{O}_{Z_{A}\left(v_{0}\right)}(2)\right|$ and they are $K 3$ surfaces; by simultaneous resolution of Du Val singularities we get that $\widehat{S}_{A}\left(v_{0}\right)$ is a $K 3$ surface.

Corollary 4.9. Let $A \in(\Delta \backslash \Sigma)$. Let $\left[v_{0}\right] \in Y_{A}(3)$ (and hence Assumption 4.1 holds by Remark 4.2). Then $S_{A}\left(v_{0}\right)$ is a (smooth) K3.

Proof. Immediate consequence of Corollary 4.8.
Under the hypotheses of Corollary 4.8 let $\mathcal{O}_{S_{A}\left(v_{0}\right)}(1)$ be the restriction to $S_{A}\left(v_{0}\right)$ of $\mathcal{O}_{Z_{A}\left(v_{0}\right)}(1)$. Let $\mathcal{O}_{\widehat{S}_{A}\left(v_{0}\right)}(1)$ be the pull-back of $\mathcal{O}_{S_{A}\left(v_{0}\right)}(1)$ to $\widehat{S}_{A}\left(v_{0}\right)$. We set

$$
\begin{equation*}
D_{A}\left(v_{0}\right) \in\left|\mathcal{O}_{S_{A}\left(v_{0}\right)}(1)\right| \quad \widehat{D}_{A}\left(v_{0}\right) \in\left|\mathcal{O}_{\widehat{S}_{A}\left(v_{0}\right)}(1)\right| \tag{4.1.30}
\end{equation*}
$$

Remark 4.10. Let hypotheses be as in Corollary 4.8. Then $\left(\widehat{S}_{A}\left(v_{0}\right), \widehat{D}_{A}\left(v_{0}\right)\right)$ is a quasi-polarized $K 3$ surface of genus 6 . Moreover the composition

$$
\begin{equation*}
\widehat{S}_{A}\left(v_{0}\right) \longrightarrow S_{A}\left(v_{0}\right) \longrightarrow \mathbb{P}\left(\operatorname{Ann}\left(F_{v_{0}} \cap A\right)\right) \tag{4.1.31}
\end{equation*}
$$

is identified (up to projectivities) with the map associated to the complete linear system $\left|\widehat{D}_{A}\left(v_{0}\right)\right|$.
Remark 4.10 has a converse; in order to formulate it we identify $F_{v_{0}} \cong \bigwedge^{2}\left(V /\left[v_{0}\right]\right)$ (the identification is well-defined up to homothety).

Assumption 4.11. $K \in \operatorname{Gr}\left(3, F_{v_{0}}\right)$ and
(1) $\mathbb{P}(K) \cap \operatorname{Gr}\left(2, V /\left[v_{0}\right]\right)=\emptyset$, or
(2) the scheme-theoretic intersection $\mathbb{P}(K) \cap \operatorname{Gr}\left(2, V /\left[v_{0}\right]\right)$ is a single reduced point.

Let

$$
\begin{equation*}
W_{K}:=\mathbb{P}(\operatorname{Ann} K) \cap \operatorname{Gr}\left(3, V /\left[v_{0}\right]\right) . \tag{4.1.32}
\end{equation*}
$$

(This makes sense because we have an isomorphism $\bigwedge^{2}\left(V /\left[v_{0}\right]\right) \xrightarrow{\sim} \bigwedge^{3}\left(V /\left[v_{0}\right]\right)^{\vee}$ well-defined up to homothety). Let

$$
\begin{equation*}
S:=W_{K} \cap Q, \quad Q \subset \mathbb{P}(\text { Ann } K) \text { a quadric. } \tag{4.1.33}
\end{equation*}
$$

If Q is generic then S is a linearly normal $K 3$ surface of genus 6 , see Corollary 4.8. In fact the family of such $K 3$ surfaces is locally versal. More generally suppose that Assumption 4.11 holds, that S is given by (4.1.33) and that S has DuVal singularities. Let $\widehat{S} \rightarrow S$ be the minimal desingularization - thus \widehat{S} is a $K 3$ surface. Let $D \in\left|\mathcal{O}_{S}(1)\right|$ and \widehat{D} be the pull-back of D to \widehat{S}. Consider the family $\mathcal{S} \rightarrow B$ of deformations of (S, D) obtained by deforming slightly K and Q; by

Brieskorn and Tjurina there is a suitable base change $\widehat{B} \rightarrow B$ such that the pull-back of \mathcal{S} to \widehat{B} admits a simultaneous resolution of singularities $\widehat{S} \rightarrow \widehat{B}$ with fiber \widehat{S} over the point corresponding to S. Of course there is a divisor class $\widehat{\mathcal{D}}$ on $\widehat{\mathcal{S}}$ whose restriction to \widehat{S} is \widehat{D} - thus $\widehat{\mathcal{S}} \rightarrow \widehat{B}$ is a family of quasi-polarized $K 3$ surfaces. The following result is well-known - we omit the (standard) proof.

Proposition 4.12. Keep notation and hypotheses as above. The family $\widehat{\mathcal{S}} \rightarrow \widehat{B}$ is a versal family of quasi-polarized $K 3$ surfaces.

Lemma 4.13. Suppose that Assumption 4.11 holds. Let S be as in (4.1.33) and assume that Q is transversal to W_{K} outside a finite set - thus S is a surface with finite singular set. There exists a smooth quadric $Q^{\prime} \subset \mathbb{P}(\operatorname{Ann} K)$ such that $S=W_{K} \cap Q^{\prime}$.

Proof. Since W_{K} is cut out by quadrics Bertini's Theorem gives that the generic quadric in $\mathbb{P}($ Ann $K)$ containing S is smooth outside $\operatorname{sing} S$; let $Q_{0}=V\left(P_{0}\right)$ be such a quadric. Let $p \in \operatorname{sing} S$. The generic quadric $Q^{\prime}=V\left(P^{\prime}\right) \in\left|\mathcal{I}_{W_{K}}(2)\right|$ is smooth at p and hence $V\left(P_{0}+P^{\prime}\right)$ is smooth at p. Since $\operatorname{sing} S$ is finite we get that the generic quadric Q containing S is smooth at all points of $\operatorname{sing} S$. It follows that the generic quadric Q containing S is smooth.

The following corollary provides an inverse of the process which produces $S_{A}\left(v_{0}\right)$ out of $\left(A,\left[v_{0}\right]\right) \in$ $\widetilde{\Delta}(0)$ (with the extra hypotheses in Assumption 4.1).

Proposition 4.14. Suppose that Assumption 4.11 holds. Let S be as in (4.1.33) and assume that Q is smooth and transversal to W_{K} outside a finite set. There exist $A \in \Delta,\left[v_{0}\right] \in \mathbb{P}(V)$ and a codimension-1 subspace $V_{0} \subset V$ transversal to $\left[v_{0}\right]$ such that the following hold:
(1) $\bigwedge^{3} V_{0} \cap A=\{0\}$,
(2) Items (c) and (d) of Assumption 4.1 hold,
(3) the natural isomorphism $\mathbb{P}\left(\bigwedge^{3}\left(V /\left[v_{0}\right]\right)\right) \xrightarrow{\sim} \mathbb{P}\left(\bigwedge^{3} V_{0}\right)$ maps S to $S_{A}^{\mathcal{D}}$ where \mathcal{D} is the direct-sum decomposition of V appearing in (4.1.1).

If we replace the quadric Q by a smooth quadric $Q^{\prime} \subset \mathbb{P}(\operatorname{Ann} K)$ such that $S=W_{K} \cap Q^{\prime}$ and let $A^{\prime} \in \Delta$ be the corresponding point, there exists a projectivity of $\mathbb{P}(V)$ fixing $\left[v_{0}\right]$ which takes A to A^{\prime}.

Proof. Let $Q=V(P)$. The dual of Ann K is $\bigwedge^{2}\left(V /\left[v_{0}\right]\right) / K$; thus the polarization of P defines a non-degenerate symmetric map

$$
\begin{equation*}
\operatorname{Ann} K \xrightarrow{\sim} \bigwedge^{2}\left(V /\left[v_{0}\right]\right) / K \tag{4.1.34}
\end{equation*}
$$

The inverse of the above map is non-degenerate symmetric map

$$
\begin{equation*}
\bigwedge^{2}\left(V /\left[v_{0}\right]\right) / K \xrightarrow{\sim} \operatorname{Ann} K \tag{4.1.35}
\end{equation*}
$$

Composing on the right with $\bigwedge^{2}\left(V /\left[v_{0}\right]\right) \xrightarrow{\sim} \bigwedge^{2}\left(V /\left[v_{0}\right]\right)$ and the quotient map $\bigwedge^{2}\left(V /\left[v_{0}\right]\right) \rightarrow$ $\bigwedge^{2}\left(V /\left[v_{0}\right]\right) / K$ and on the left with Ann $K \hookrightarrow \bigwedge^{3}\left(V /\left[v_{0}\right]\right)$ and $\bigwedge^{3}\left(V /\left[v_{0}\right]\right) \xrightarrow{\sim} \bigwedge^{3}\left(V /\left[v_{0}\right]\right)$ we get a symmetric map

$$
\begin{equation*}
\bigwedge^{2} V_{0} \longrightarrow \bigwedge^{3} V_{0} \tag{4.1.36}
\end{equation*}
$$

with 3 -dimensional kernel corresponding to K. The graph of the above map is a Lagrangian $A \in$ $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$. One checks easily that (1), (2) and (3) hold. One gets that the projective equivalence of A does not depend on Q by going through the proof of Lemma 4.4.

$4.2 \quad X_{A}^{\epsilon}$ for $A \in(\Delta \backslash \Sigma)$

Let S be a $K 3$. Let $\Delta_{S}^{[2]} \subset S^{[2]}$ be the irreducible codimension 1 subset parametrizing non-reduced subschemes. There exists a square root of the line bundle $\mathcal{O}_{S^{[2]}}\left(\Delta_{S}^{[2]}\right)$: we denote by ξ its first Chern class. There is a natural morphism of integral Hodge structures $\mu: H^{2}(S) \rightarrow H^{2}\left(S^{[2]}\right)$ such that $H^{2}\left(S^{[2]} ; \mathbb{Z}\right)=\mu\left(H^{2}(S ; \mathbb{Z})\right) \oplus \mathbb{Z} \xi$, see [1]. Let (\cdot, \cdot) be the Beauville-Bogomolov bilinear symmetric form on $H^{2}\left(S^{[2]}\right)$. It is known [1] that

$$
\begin{equation*}
(\mu(\eta), \mu(\eta))=\int_{S} c_{1}(\eta)^{2}, \quad \mu\left(H^{2}(S ; \mathbb{Z})\right) \perp \mathbb{Z} \xi, \quad(\xi, \xi)=-2 . \tag{4.2.1}
\end{equation*}
$$

Since S and $S^{[2]}$ are regular varieties we may identify their Picard groups with $H_{\mathbb{Z}}^{1,1}(S)$ and $H_{\mathbb{Z}}^{1,1}\left(S^{[2]}\right)$ respectively. Let $C \in \operatorname{Pic}(S)$; abusing notation we will denote by $\mu(C)$ the class in $\operatorname{Pic}\left(S^{[2]}\right)$ corresponding to $\mu\left(\mathcal{O}_{S}(C)\right) \in H_{\mathbb{Z}}^{1,1}(S)$: if C is an integral curve it is represented by subschemes whose support intersects C. The following is the main result of the present subsection.

Theorem 4.15. Let $A \in(\Delta \backslash \Sigma)$ and $\left[v_{0}\right] \in Y_{A}[3]\left(=Y_{A}(3)\right.$ by Claim 3.11 of [15]) - thus $S_{A}\left(v_{0}\right)$ is a K3 surface by Corollary 4.9. Then the following hold:
(1) If $S_{A}\left(v_{0}\right)$ does not contain lines (true for generic A by Proposition 4.12) then there exist a choice ϵ of \mathbb{P}^{2}-fibration for X_{A} and an isomorphism.

$$
\begin{equation*}
\psi: S_{A}\left(v_{0}\right)^{[2]} \longrightarrow X_{A}^{\epsilon} \tag{4.2.2}
\end{equation*}
$$

such that

$$
\begin{equation*}
\psi^{*} H_{A}^{\epsilon} \sim \mu\left(D_{A}\left(v_{0}\right)\right)-\Delta_{S_{A}\left(v_{0}\right)}^{[2]} . \tag{4.2.3}
\end{equation*}
$$

(2) Let A and ϵ be arbitrary. There exists a bimeromorphic map

$$
\begin{equation*}
\psi: S_{A}\left(v_{0}\right)^{[2]} \longrightarrow X_{A}^{\epsilon} \tag{4.2.4}
\end{equation*}
$$

such that (4.2.3) holds.
Remark 4.16. Suppose that $S_{A}\left(v_{0}\right)$ contains a line L. The restriction of the right-hand side of (4.2.3) to $L^{(2)}$ (embedded in $S_{A}\left(v_{0}{ }^{[2]}\right)$ is $\mathcal{O}_{L^{(2)}}(-1)$. Since H_{A}^{ϵ} is nef we get that in this case Map (4.2.4) cannot be regular.

The proof of Theorem 4.15 will be given after a series of auxiliary results. Let $S \subset \mathbb{P}^{6}$ be a linearly normal $K 3$ surface of genus 6 such that $\mathcal{I}_{S / \mathbb{P}^{6}(2)}$ is globally generated; then S is projectively normal and hence Riemann-Roch gives that $\operatorname{dim}\left|\mathcal{I}_{S}(2)\right|=5$. One defines a rational map $S^{[2]} \rightarrow\left|\mathcal{I}_{S}(2)\right|^{\vee}$ as follows. Given $[Z] \in S^{[2]}$ we let $\langle Z\rangle \subset \mathbb{P}^{5}$ be the line spanned by Z. We let

$$
\begin{array}{clc}
\left.{ }^{\left(S^{[2]} \backslash\right.} \bigcup_{L \subset S \text { line }} L^{(2)}\right) & \xrightarrow{g} & \left|\mathcal{I}_{S}(2)\right|^{\vee} \cong \mathbb{P}^{5} \tag{4.2.5}\\
{[Z]} & \mapsto & \left\{Q \in\left|\mathcal{I}_{S}(2)\right| \mid \text { s.t. } Q \supset\langle Z\rangle\right\} .
\end{array}
$$

Let D be a hyperplane divisor on S; one shows (see Claim (5.16) of [11]) that

$$
\begin{equation*}
g^{*} \mathcal{O}_{\mathbb{P}^{5}}(1) \cong \mu(D)-\Delta_{S}^{[2]} . \tag{4.2.6}
\end{equation*}
$$

(Notice that the set of lines on S is finite and hence $\bigcup_{L \subset S \text { line }} L^{(2)}$ has codimension 2 in $S^{[2]}$.) In fact g can be identified with the map associated to the complete linear system $\left|\left(\mu(D)-\Delta_{S}^{[2]}\right)\right|$. We will analyze g under the assumption that S is generic (in a precise sense).

Assumption 4.17. Item (1) of Assumption 4.11 holds.

$$
\begin{equation*}
S:=W_{K} \cap Q \tag{4.2.7}
\end{equation*}
$$

where $Q \subset \mathbb{P}($ Ann $K)$ is a quadric intersecting transversely W_{K}.

Let $S \subset \mathbb{P}($ Ann $K)$ be as in Assumption 4.17. Then S is a linearly normal $K 3$ surface of genus 6 and $\mathcal{I}_{S}(2)$ is globally generated. Thus the map g of (4.2.5) is defined. Let $F\left(W_{K}\right)$ be the variety parametrizing lines in W_{K}. Since the set of lines in S is finite (empty for generic S by Proposition 4.12) we have a map

$$
\begin{array}{ccc}
\left(F\left(W_{K}\right) \backslash\{L \mid L \subset S\}\right) & \longrightarrow & S^{[2]} \tag{4.2.8}\\
L & \mapsto & L \cap Q .
\end{array}
$$

Definition 4.18. Let $P_{S}^{0} \subset S^{[2]}$ be the image of Map (4.2.8) and P_{S} be its closure in $S^{[2]}$.
We recall that $F\left(W_{K}\right) \cong \mathbb{P}^{2}$ by Iskovskih's Proposition 5.2.
Claim 4.19. Let $S \subset \mathbb{P}(\operatorname{Ann} K)$ be as in Assumption 4.17. Suppose moreover that S contains no lines. Let $C_{1}, C_{2}, \ldots, C_{s}$ be the (smooth) conics contained in S (of course the generic S contains no conics). Then $P_{S}, C_{1}^{(2)}, \ldots, C_{s}^{[2]}$ are pairwise disjoint subset of $S^{[2]}$. Moreover there exists a biregular morphism

$$
\begin{equation*}
c: S^{[2]} \longrightarrow N(S) . \tag{4.2.9}
\end{equation*}
$$

contracting each of $P_{S}, C_{1}^{(2)}, \ldots, C_{s}^{[2]}$. Thus $N(S)$ is a compact complex normal space with

$$
\begin{equation*}
\operatorname{sing} N(S)=\left\{c\left(P_{S}\right), \ldots, c\left(C^{(2)}\right), \ldots \mid C \subset S \text { a conic }\right\} \tag{4.2.10}
\end{equation*}
$$

and c is an isomorphism of the complement of $P_{S} \cup C_{1}^{(2)} \cup \ldots \cup C_{s}^{[2]}$ onto the smooth locus of $N(S)$. The map g (regular on all of $S^{[2]}$ because S contains no lines) descends to a regular map

$$
\begin{equation*}
\bar{g}: N(S) \rightarrow\left|\mathcal{I}_{S}(2)\right|^{\vee}, \quad \bar{g} \circ c=g . \tag{4.2.11}
\end{equation*}
$$

Proof. P_{S} is isomorphic to \mathbb{P}^{2} by Iskovskih's Proposition 5.2 and each $C_{i}^{(2)}$ is isomorphic to \mathbb{P}^{2} because C_{i} is a conic. Thus each of P_{S}, C_{i} can be contracted individually. Let's show that $P_{S}, C_{1}^{(2)}, \ldots, C_{s}^{[2]}$ are pairwise disjoint. Suppose that $[Z] \in P_{S} \cap C_{i}^{(2)}$. Let Λ be the plane containing C_{i}. Then $\Lambda \cap W_{K}$ contains the line $\langle Z\rangle$ and the smooth conic C_{i}. Since W_{K} is cut out by quadrics it follows that $\Lambda \subset W_{K}$, that is absurd because W_{K} contains no planes. This proves that $P_{S} \cap C_{i}^{(2)}=\emptyset$. On the other hand there does not exist $[Z] \in C_{i}^{(2)} \cap C_{j}^{(2)}$ by Corollary 5.5. that $P_{S}, C_{1}^{(2)}, \ldots, C_{s}^{[2]}$ are pairwise disjoint. Thus the contraction (4.2.9) exists. It remains to prove that g is constant on each of $P_{S}, C_{1}^{(2)}, \ldots, C_{s}^{[2]}$. In fact if $[Z] \in P_{S}$ then $g([Z])=\left|\mathcal{I}_{W_{K}}(2)\right|$, if $[Z] \in C_{i}^{(2)}$ then

$$
g([Z])=\left\{Q \in\left|\mathcal{I}_{S}(2)\right| \mid Q \supset\left\langle C_{i}\right\rangle\right\}
$$

Now we go back to the "general"case: we suppose that Assumption 4.17 holds however S may very well contain lines. Let

$$
\begin{equation*}
S_{\star}^{[2]}:=S^{[2]} \backslash P_{S} \backslash \bigcup_{R \subset S} \bigcup_{\text {line or conic }} \operatorname{Hilb}^{2} R \tag{4.2.12}
\end{equation*}
$$

(Notice that if $R \subset S$ is a conic which is not smooth then we delete all $[Z] \in S^{[2]}$ such that Z is contained in the scheme R.) The following result is essentially Lemma 3.7 of [14].

Proposition 4.20. Suppose that Assumption 4.17 holds.
(1) The fibers of $\left.g\right|_{S_{*}^{[2]}}$ are finite of cardinality at most 2 and the generic fiber has cardinality 2 .
(2) There exist an open dense subset $\mathcal{A} \subset S_{\star}^{[2]}$ and an anti-symplectic (and hence non-trivial) involution $\phi: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\begin{equation*}
\left(\left.g\right|_{\mathcal{A}}\right) \circ \phi=\left.g\right|_{\mathcal{A}} \tag{4.2.13}
\end{equation*}
$$

The induced map

$$
\begin{equation*}
\mathcal{A} /\langle\phi\rangle \longrightarrow g(\mathcal{A}) \tag{4.2.14}
\end{equation*}
$$

is a bijection.
(3) If in addition S does not contain lines ϕ descends to a regular involution $\bar{\phi}: N(S) \rightarrow N(S)$ such that $\bar{g} \circ \bar{\phi}=\bar{g}$ and the induced map

$$
\begin{equation*}
j: N(S) /\langle\bar{\phi}\rangle \longrightarrow g\left(S^{[2]}\right) \tag{4.2.15}
\end{equation*}
$$

is a bijection. Moreover

$$
\begin{equation*}
\operatorname{cod}(\operatorname{Fix}(\bar{\phi}), N(S)) \geq 2 \tag{4.2.16}
\end{equation*}
$$

where $\operatorname{Fix}(\bar{\phi})$ is the fixed-locus of $\bar{\phi}$.
Let A and $\left[v_{0}\right]$ be as in the statement of Theorem 4.15: we will perform the key computation one needs to prove that theorem. Let $V_{0} \subset V$ be a codimension-1 subspace transversal to $\left[v_{0}\right]$ and such that $\bigwedge^{3} V_{0} \cap A=\{0\}$. Let \mathcal{D} be Decomposition $V=\left[v_{0}\right] \oplus V_{0}$ and $S_{A}^{\mathcal{D}}$ be given by (4.1.8) thus $S_{A}^{\mathcal{D}}$ sits in $\mathbb{P}\left(\operatorname{Ann} K_{A}^{\mathcal{D}}\right) \cap \operatorname{Gr}\left(3, V_{0}\right)$ and is isomorphic to $S_{A}\left(v_{0}\right)$. Let $f \in V_{0}^{\vee}$; we let q_{f} be the quadratic form on $\bigwedge^{3} V_{0}$ defined by setting

$$
\begin{equation*}
\left.q_{f}(\omega):=\operatorname{vol}_{0}((f\lrcorner \omega) \wedge \omega\right) \tag{4.2.17}
\end{equation*}
$$

where vol_{0} is a volume-form on V_{0}. Then q_{f} is a Plücker quadric, in fact we have an isomorphism

$$
\begin{array}{ccc}
V_{0}^{\vee} & \xrightarrow{\sim} & H^{0}\left(\mathcal{I}_{\operatorname{Gr}\left(3, V_{0}\right)}(2)\right) \tag{4.2.18}\\
f & \mapsto & q_{f} .
\end{array}
$$

Let $V^{\vee}=\left[v_{0}^{\vee}\right] \oplus V_{0}^{\vee}$ be the dual decomposition of \mathcal{D}; thus $v_{0}^{\vee} \in \operatorname{Ann} V_{0}$ and $v_{0}^{\vee}\left(v_{0}\right)=1$. We have an isomorphism

$$
\begin{array}{rlr}
{\left[v_{0}^{\vee}\right] \oplus V_{0}^{\vee}} & \xrightarrow{\sim} & H^{0}\left(\mathcal{I}_{S_{A}^{\vee}}(2)\right) \tag{4.2.19}\\
x v_{0}^{\vee}+f & \mapsto & x\left(r_{A}^{\mathcal{D}}\right)^{\vee}+q_{f} .
\end{array}
$$

We let

$$
\begin{equation*}
\iota:\left|\mathcal{I}_{S_{A}^{D}}(2)\right|^{\vee} \xrightarrow{\sim} \mathbb{P}(V) \tag{4.2.20}
\end{equation*}
$$

be the projectivization of the transpose of (4.2.19).
Proposition 4.21. Let A and $\left[v_{0}\right]$ be as in the statement of Theorem 4.15 and keep notation as above. Let g be Map (4.2.5) for $S_{A}^{\mathcal{D}}$ - this makes sense by Corollary 4.9. Then $\iota(\operatorname{im} g) \subset Y_{A}$.

Proof. Let

$$
\begin{equation*}
[Z] \in\left(\left(S_{A}^{\mathcal{D}}\right)_{\star}^{[2]} \backslash \Delta_{S_{A}^{D}}^{[2]} \backslash P_{S_{A}^{\mathcal{D}}}\right) . \tag{4.2.21}
\end{equation*}
$$

We will prove that

$$
\begin{equation*}
\iota\left(g([Z]) \in Y_{A} .\right. \tag{4.2.22}
\end{equation*}
$$

This will suffice to prove the lemma because the right-hand side of (4.2.21) is dense in $\left(S_{A}^{\mathcal{D}}\right)_{\star}^{[2]}$ and Y_{A} is closed. By hypothesis Z is reduced; thus $Z=\left\{[\beta],\left[\beta^{\prime}\right]\right\}$ where $\beta, \beta^{\prime} \in \Lambda^{3} V_{0}$ are decomposable. The line $\left.\left\langle[\beta], \beta^{\prime}\right]\right\rangle$ spanned by $[\beta]$ and $\left[\beta^{\prime}\right]$ is not contained in $F_{A}^{\mathcal{D}}$ because $[Z] \notin P_{S_{A}^{D}}$. Thus $\left.\left\langle[\beta], \beta^{\prime}\right]\right\rangle$ is not contained in $\operatorname{Gr}\left(3, V_{0}\right)$ and it follows that the vector sub-spaces of V_{0} supporting the decomposable vectors β and β^{\prime} intersect in a 1-dimensional subspace. Thus there exists a basis $\left\{v_{1}, \ldots, v_{5}\right\}$ of V_{0} such that

$$
\begin{equation*}
\beta=v_{1} \wedge v_{2} \wedge v_{3}, \quad \beta^{\prime}=v_{1} \wedge v_{4} \wedge v_{5} \tag{4.2.23}
\end{equation*}
$$

We may assume moreover that $\operatorname{vol}_{0}\left(v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4} \wedge v_{5}\right)=1$. By (4.1.6) and (4.1.7) there exist $\alpha, \alpha^{\prime} \in \bigwedge^{2} V_{0}$ such that

$$
\begin{equation*}
v_{0} \wedge \alpha+\beta, v_{0} \wedge \alpha^{\prime}+\beta^{\prime} \in A, \quad \alpha \wedge \beta=\alpha^{\prime} \wedge \beta^{\prime}=0 . \tag{4.2.24}
\end{equation*}
$$

Since A is Lagrangian we get that

$$
\begin{equation*}
\operatorname{vol}_{0}\left(\alpha \wedge \beta^{\prime}\right)=\operatorname{vol}_{0}\left(\alpha^{\prime} \wedge \beta\right)=: c . \tag{4.2.25}
\end{equation*}
$$

Let $t_{0}, \ldots, t_{5} \in \mathbb{C}$; a straightforward computation gives that

$$
\begin{equation*}
\left(t_{0}\left(r_{A}^{\mathcal{D}}\right)^{\vee}+\sum_{i=1}^{5} t_{i} q_{v_{i}^{\vee}}\right)\left(\beta+\beta^{\prime}\right)=2 c t_{0}+2 t_{1} . \tag{4.2.26}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\iota(g([Z]))=\left[c v_{0}+v_{1}\right] \tag{4.2.27}
\end{equation*}
$$

It remains to prove that

$$
\begin{equation*}
\left[c v_{0}+v_{1}\right] \in Y_{A} \tag{4.2.28}
\end{equation*}
$$

Let $K_{A}^{\mathcal{D}}$ be as in (4.1.2); we claim that it suffices to prove that there exist $\left(x, x^{\prime}\right) \in\left(\mathbb{C}^{2} \backslash\{(0,0)\}\right)$ and $\kappa \in K_{A}^{\mathcal{D}}$ such that

$$
\begin{equation*}
\left(c v_{0}+v_{1}\right) \wedge\left(x\left(v_{0} \wedge \alpha+\beta\right)+x^{\prime}\left(v_{0} \wedge \alpha^{\prime}+\beta^{\prime}\right)+v_{0} \wedge \kappa\right)=0 . \tag{4.2.29}
\end{equation*}
$$

In fact assume that (4.2.29) holds. Then

$$
\begin{equation*}
0 \neq\left(x\left(v_{0} \wedge \alpha+\beta\right)+x^{\prime}\left(v_{0} \wedge \alpha^{\prime}+\beta^{\prime}\right)+v_{0} \wedge \kappa\right) \in A \cap F_{c v_{0}+v_{1}} \tag{4.2.30}
\end{equation*}
$$

(The inequality holds because β, β^{\prime} are linearly independent.) A straightforward computation gives that (4.2.29) is equivalent to

$$
\begin{equation*}
x\left(c \beta-v_{1} \wedge \alpha\right)+x^{\prime}\left(c \beta^{\prime}-v_{1} \wedge \alpha^{\prime}\right)=v_{1} \wedge \kappa \tag{4.2.31}
\end{equation*}
$$

As is easily checked we have

$$
\begin{equation*}
\left(c \beta-v_{1} \wedge \alpha\right),\left(c \beta^{\prime}-v_{1} \wedge \alpha^{\prime}\right) \in\left(\left[v_{1}\right] \wedge\left(\bigwedge^{2}\left\langle v_{2}, v_{3}, v_{4}, v_{5}\right\rangle\right)\right) \cap\left\{v_{2} \wedge v_{3}, v_{4} \wedge v_{5}\right\}^{\perp} \tag{4.2.32}
\end{equation*}
$$

where perpendicularity is with respect to wedge-product followed by vol $_{0}$. Multiplication by v_{1} gives an injection $K_{A}^{\mathcal{D}} \hookrightarrow\left(\left[v_{1}\right] \wedge\left(\bigwedge^{2}\left\langle v_{2}, v_{3}, v_{4}, v_{5}\right\rangle\right)\right)$; in fact no non-zero element of $K_{A}^{\mathcal{D}}$ is decomposable because $A \notin \Sigma$. Since the right-hand side of (4.2.32) has dimension 4 and $\operatorname{dim} K_{A}^{\mathcal{D}}=3$ we get that there exists $\left(x, x^{\prime}\right) \in\left(\mathbb{C}^{2} \backslash\{(0,0)\}\right)$ such that (4.2.31) holds.

Lemma 4.22. Let $A \in\left(\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right) \backslash \Sigma\right)$. Then $Y_{A}(1)$ is not empty, the topological double cover $f_{A}^{-1} Y_{A}(1) \rightarrow Y_{A}(1)$ is not trivial and Y_{A} is integral.

Proof. By Claim 3.7 we know that $Y_{A}[3]$ is finite. On the other hand $\left(Y_{A}[2] \backslash Y_{A}[3]\right)$ is a smooth surface - see Proposition 2.8 of [12]. Since $\operatorname{sing} Y_{A} \subset Y_{A}[2]$ it follows that Y_{A} is integral and $Y_{A}(1)$ is connected. Let $\left[v_{0}\right] \in\left(Y_{A}[2] \backslash Y_{A}[3]\right)$. By Proposition 1.5 we know that $f_{A}^{-1}\left(\left[v_{0}\right]\right)$ is a singleton $\{q\}$. Moreover X_{A} is smooth at q by Lemma 3.3. Thus there exists an open neighborhood U of [v_{0}] in Y_{A} such that $f_{A}^{-1} U$ is smooth. Moreover $\left(f_{A}^{-1} Y_{A}[2]\right) \cap f_{A}^{-1} U$ is nowhere dense in $f_{A}^{-1} U$. Since $f_{A}^{-1} U$ is smooth the complement $f_{A}^{-1}\left(Y_{A}(1) \cap U\right)$ is connected. Since $Y_{A}(1)$ is connected it follows that $f_{A}^{-1} Y_{A}(1)$ is connected.

Proposition 4.23. Keep hypotheses and notation as in Proposition 4.21. Then $\iota(\overline{\mathrm{im} g})=Y_{A}$.
Proof. By Item (1) of Proposition 4.20 the map g has finite generic fiber and hence $\operatorname{dim} \overline{\operatorname{im} g}=4$. By Proposition 4.21 we get that $\iota(\overline{\mathrm{img}})$ is an irreducible component of Y_{A}. On the other hand Y_{A} is irreducible by Lemma 4.22; it follows that $\iota(\overline{\mathrm{img} g})=Y_{A}$.

Remark 4.24. Keep notation as in Proposition 4.21; then

$$
\begin{equation*}
\iota \circ g\left(P_{S_{A}^{\mathcal{D}}}^{0}\right)=\iota\left(H^{0}\left(\mathcal{I}_{F_{A}^{\mathcal{D}}}(2)\right)\right)=\left[v_{0}\right] . \tag{4.2.33}
\end{equation*}
$$

Proof of Theorem 4.15. Let's prove that Item (1) holds. Let A and $\left[v_{0}\right]$ be as in the statement of Theorem 4.15. Let $V_{0} \subset V$ be a codimension-1 subspace transversal to $\left[v_{0}\right]$ and such that $\bigwedge^{3} V_{0} \cap A=\{0\}$. Let \mathcal{D} be Decomposition $V=\left[v_{0}\right] \oplus V_{0}$. In order to simplify notation we set $S=S_{A}^{\mathcal{D}}$; thus $S \cong S_{A}\left(v_{0}\right)$ and by hypothesis S does not contain lines. Let j be the map of (4.2.15); by Proposition 4.21 the composition $\iota \circ j$ is a map

$$
\begin{equation*}
\iota \circ j: N(S) /\langle\bar{\phi}\rangle \longrightarrow Y_{A} . \tag{4.2.34}
\end{equation*}
$$

We claim that $\iota \circ j$ is an isomorphism: in fact it has finite fibers and is birational by Proposition 4.20, since $\operatorname{dim} \operatorname{sing} Y_{A}=2$ (because $A \notin \Sigma$) the hypersurface Y_{A} is normal and hence $\iota \circ j$ is an isomorphism. Let $\pi: N(S) \rightarrow N(S) /\langle\bar{\phi}\rangle$ be the quotient map. By (4.2.16) the singular locus of $N(S) /\langle\bar{\phi}\rangle$ is the image of $\operatorname{Fix}(\bar{\phi})$ (and thus isomorphic to $\operatorname{Fix}(\bar{\phi})$); since (4.2.34) is an isomorphism we get that

$$
\begin{array}{ccc}
N(S) \backslash \operatorname{Fix}(\bar{\phi}) & \longrightarrow & Y_{A}^{s m} \\
x & \mapsto & \iota \circ j \circ \pi(x) \tag{4.2.35}
\end{array}
$$

is a topological covering of degree 2 . We claim that

$$
\begin{equation*}
\pi_{1}\left(Y_{A}^{s m}\right) \cong \mathbb{Z} /(2) . \tag{4.2.36}
\end{equation*}
$$

In fact $(N(S) \backslash \operatorname{Fix}(\bar{\phi})) \cong\left(S^{[2]} \backslash\left(P_{S} \cup \operatorname{Fix}\left(\left.\phi\right|_{S^{[2]} \backslash P_{S}}\right)\right)\right.$. Since $\left(P_{S} \cup \operatorname{Fix}\left(\left.\phi\right|_{S^{[2]} \backslash P_{S}}\right)\right)$ is of codimension 2 in the simply connected manifold $S^{[2]}$ we get that $(N(S) \backslash \operatorname{Fix}(\bar{\phi}))$ is simply connected. Thus (4.2.35) is the universal covering of $Y_{A}^{s m}$ and we get (4.2.36). On the other hand $Y_{A}^{s m} \subset Y_{A}(1)$ by Corollary 1.5 of [15] and thus by Lemma 4.22 we get that $f_{A}^{-1} Y_{A}^{s m} \rightarrow Y_{A}^{s m}$ is the universal covering of $Y_{A}^{s m}$ as well. Hence both X_{A} and $N(S)$ are normal completions of the universal cover of $Y_{A}^{s m}$ such that the extended maps to Y_{A} are finite; it follows that they are isomorphic (over Y_{A}). The singular locus of $N(S)$ is given by (4.2.10). On the other hand $\operatorname{sing} X_{A}=Y_{A}[3]$. By Remark 4.24 we can order the set of (smooth) conics on S, say C_{1}, \ldots, C_{s} and the set of points in $Y_{A}[3]$ different from $\left[v_{0}\right]$, say $\left[v_{1}\right], \ldots,\left[v_{s}\right]$ so that

$$
\begin{equation*}
\bar{\psi}\left(c\left(P_{S}\right)\right)=\left[v_{0}\right], \quad \bar{\psi}\left(c\left(C_{i}^{(2)}\right)\right)=\left[v_{i}\right], \quad 1 \leq i \leq s . \tag{4.2.37}
\end{equation*}
$$

(Recall Remark 4.24.) Let ϵ_{0} be a choice of \mathbb{P}^{2}-fibration for X_{A}; then $\bar{\psi}$ defines a birational map $\psi_{0}: S^{[2]} \longrightarrow X_{A}^{\epsilon_{0}}$ such that

$$
\begin{equation*}
\psi_{0}^{*} H_{A}^{\epsilon_{0}} \cong \mu(D)-\Delta_{S}^{[2]} \tag{4.2.38}
\end{equation*}
$$

where D is the hyperplane class of S (thus (S, D) is isomorphic to $\left(S_{A}\left(v_{0}\right), D_{A}\left(v_{0}\right)\right)$). The birational map ψ_{0} is an isomorphism away from

$$
\begin{equation*}
P_{S} \cup C_{1}^{(2)} \cup \ldots \cup C_{s}^{(2)} \tag{4.2.39}
\end{equation*}
$$

It follows that ψ_{0} is the flop of a collection of irreducible components of (4.2.39). By Proposition 3.10 we get that there exists a choice of \mathbb{P}^{2}-fibration for X_{A}, call it ϵ, such that the corresponding birational map $\psi: S^{[2]} \rightarrow X_{A}^{\epsilon}$ is biregular. Equation (4.2.3) follows from (4.2.38). This finishes the proof that Item (1) holds. Item (2) follows from Item (1) and a specialization argument - we leave the details to the reader.

We close the present subsection by reproving a result of ours. Let $h_{A}:=c_{1}\left(\mathcal{O}_{X_{A}}\left(H_{A}\right)\right)$.
Theorem 4.25 (O'Grady [12]). Let $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$. Then X_{A} is a deformation of (K3) ${ }^{[2]}$ and $\left(h_{A}, h_{A}\right)_{X_{A}}=2$. Any small deformation of $\left(X_{A}, H_{A}\right)$ (i.e. a small deformation of X_{A} keeping h_{A} of type $(1,1))$ is isomorphic to $\left(X_{B}, H_{B}\right)$ for some $B \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$.

Proof. Let $A_{0} \in(\Delta \backslash \Sigma)$ and $\left[v_{0}\right] \in Y_{A_{0}}[3]$. Suppose moreover that $S_{A_{0}}\left(v_{0}\right)$ does not contain lines. By Theorem 4.15 there exists a choice ϵ of \mathbb{P}^{2}-fibration for $X_{A_{0}}$ such that we have an isomorphism

$$
\begin{equation*}
\psi: S^{[2]} \xrightarrow{\sim} X_{A_{0}}^{\epsilon}, \quad \psi^{*} H_{A_{0}}^{\epsilon} \sim \mu\left(D_{A}\left(v_{0}\right)\right)-\Delta_{S_{A_{0}}\left(v_{0}\right)}^{[2]} . \tag{4.2.40}
\end{equation*}
$$

On the other hand $\left(X_{A}, H_{A}\right)$ is a deformation of $\left(X_{A_{0}}^{\epsilon}, H_{A_{0}}^{\epsilon}\right)$ by Corollary 3.12. This proves that $\left(X_{A}, H_{A}\right)$ is a deformation of $\left(S^{[2]},\left(\mu\left(D_{A}\left(v_{0}\right)\right)-\Delta_{S_{A_{0}}\left(v_{0}\right)}^{[2]}\right)\right)$. By (4.2.1) we get that $\left(h_{A}, h_{A}\right)_{X_{A}}=2$. Lastly we prove that an arbitrary small deformation of $\left(X_{A}, H_{A}\right)$ is isomorphic to $\left(X_{A^{\prime}}, H_{A^{\prime}}\right)$ for some $A^{\prime} \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$. The deformation space of $\left(X_{A}, H_{A}\right)$ has dimension given by

$$
\begin{equation*}
\operatorname{dim} \operatorname{Def}\left(X_{A}, H_{A}\right)=h^{1,1}\left(X_{A}\right)-1=20 \tag{4.2.41}
\end{equation*}
$$

On the other hand $\mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$ is contained in the locus of points in $\mathbb{L} \mathbb{G}$ which are stable for the natural (linearized) $P L(V)$-action - this is proved in [12]. Thus by varying $A \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)$ we get

$$
\begin{equation*}
\operatorname{dim} \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)-\operatorname{dim} S L(V)=55-35=20 \tag{4.2.42}
\end{equation*}
$$

moduli of double EPW-sextics. Since (4.2.41) and (4.2.42) are equal we conclude that an arbitrary small deformation of $\left(X_{A}, H_{A}\right)$ is isomorphic to $\left(X_{B}, H_{B}\right)$ for some $B \in \mathbb{L} \mathbb{G}\left(\bigwedge^{3} V\right)^{0}$.

5 Appendix: Three-dimensional sections of $\operatorname{Gr}\left(3, \mathbb{C}^{5}\right)$

In the present section V_{0} is a complex vector-space of dimension 5 . Choose a volume form vol_{0} on V_{0}; it defines an isomorphism

$$
\begin{array}{cll}
\Lambda^{2} V_{0} & \xrightarrow{\sim} & \bigwedge^{3} V_{0}^{\vee} \tag{5.0.1}\\
\alpha & \mapsto & \omega \mapsto \operatorname{vol}_{0}(\alpha \wedge \omega)
\end{array}
$$

Let $K \subset \bigwedge^{2} V_{0}$ be a 3-dimensional subspace such that either

$$
\begin{equation*}
\mathbb{P}(K) \cap \operatorname{Gr}\left(2, V_{0}\right)=\emptyset \tag{5.0.2}
\end{equation*}
$$

or else

$$
\begin{equation*}
\mathbb{P}(K) \cap \operatorname{Gr}\left(2, V_{0}\right)=\left\{\left[\kappa_{0}\right]\right\}=\mathbb{P}(K) \cap T_{\left[\kappa_{0}\right]} \operatorname{Gr}\left(2, V_{0}\right) . \tag{5.0.3}
\end{equation*}
$$

In other words either $\mathbb{P}(K)$ does not intersects $\operatorname{Gr}\left(2, V_{0}\right)$ or else the scheme-theoretic intersection is a single reduced point. We will describe

$$
\begin{equation*}
W_{K}:=\mathbb{P}(\operatorname{Ann} K) \cap \operatorname{Gr}\left(3, V_{0}\right) \tag{5.0.4}
\end{equation*}
$$

First we recall that the dual of $\operatorname{Gr}\left(3, V_{0}\right)$ is $\operatorname{Gr}\left(2, V_{0}\right)$. More precisely let $[\alpha] \in \mathbb{P}\left(\bigwedge^{2} V_{0}\right)$: then

$$
\begin{equation*}
\operatorname{sing}\left(\mathbb{P}(\operatorname{Ann} \alpha) \cap \operatorname{Gr}\left(3, V_{0}\right)\right)=\left\{U \in \operatorname{Gr}\left(3, V_{0}\right) \mid U \supset \operatorname{supp} \alpha\right\} \tag{5.0.5}
\end{equation*}
$$

In particular $\mathbb{P}(\operatorname{Ann} \alpha)$ is tangent to $\operatorname{Gr}\left(3, V_{0}\right)$ if and only if $[\alpha] \in \operatorname{Gr}\left(2, V_{0}\right)$ (and if that is the case it is tangent along a \mathbb{P}^{2}). Secondly we record the following observation (the proof is an easy exercise).

Lemma 5.1. Let $U \subset V_{0}$ be a codimension-1 subspace. Let $\alpha \in \bigwedge^{2} V_{0}$. Then

$$
\begin{equation*}
\alpha \wedge\left(\bigwedge^{3} U\right)=0 \tag{5.0.6}
\end{equation*}
$$

if and only if $\operatorname{supp} \alpha \subset U$.
We recall the following result of Iskovskih.
Proposition 5.2 (Iskovskih [10]). Keep notation as above. Let $K \subset \bigwedge^{2} V_{0}$ be a 3-dimensional subspace such that (5.0.2) holds. Then
(1) W_{K} is a smooth Fano 3 -fold of degree 5 with $\omega_{W_{K}} \cong \mathcal{O}_{W_{K}}(-2)$,
(2) the Fano variety $F\left(W_{K}\right)$ parametrizing lines on W_{K} (reduced structure) is isomorphic to \mathbb{P}^{2},
(3) the projective equivalence class of W_{K} does not depend on K.

Proposition 5.3. Keep notation as above. Let $K \subset \bigwedge^{2} V_{0}$ be a sub vector-space of dimension 3 such that (5.0.3) holds. Then W_{K} is a singular Fano 3-fold of degree 5 with $\omega_{W_{K}} \cong \mathcal{O}_{W_{K}}(-2)$ and one singular point which is ordinary quadratic and belongs to

$$
\begin{equation*}
\left\{U \in \operatorname{Gr}\left(3, V_{0}\right) \mid U \supset \operatorname{supp} \kappa_{0}\right\} \tag{5.0.7}
\end{equation*}
$$

Proof. If $\kappa \in\left(K \backslash\left[\kappa_{0}\right]\right)$ then κ is not decomposable and hence $\mathbb{P}(\operatorname{Ann} \kappa)$ is transverse to $\operatorname{Gr}\left(3, V_{0}\right)$; by (5.0.5) we get that

$$
\begin{equation*}
\operatorname{sing} W_{K}=\left\{U \in \operatorname{Gr}\left(3, V_{0}\right) \mid U \supset \operatorname{supp} \kappa_{0}\right\} \cap \mathbb{P}(\operatorname{Ann} K) \tag{5.0.8}
\end{equation*}
$$

We claim that the above intersection consists of one point. First notice that we have a natural identification

$$
\begin{equation*}
\left\{U \in \operatorname{Gr}\left(3, V_{0}\right) \mid U \supset \operatorname{supp} \kappa_{0}\right\} \cong \mathbb{P}\left(V_{0} / \operatorname{supp} \kappa_{0}\right) \tag{5.0.9}
\end{equation*}
$$

and a linear map

$$
\begin{array}{ccc}
K & \xrightarrow{\nu} & \left(V_{0} / \operatorname{supp} \kappa_{0}\right)^{\vee} \tag{5.0.10}\\
\kappa & \mapsto & \left(\bar{v} \mapsto \operatorname{vol}_{0}\left(v \wedge \kappa_{0} \wedge \kappa\right)\right)
\end{array}
$$

where $v \in V_{0}$ and \bar{v} is its class in $V_{0} / \operatorname{supp} \kappa_{0}$. Given (5.0.8) and Identification (5.0.9) we get that

$$
\begin{equation*}
\operatorname{sing} W_{K}=\mathbb{P}(\operatorname{Annim} \nu) \tag{5.0.11}
\end{equation*}
$$

Of course $\kappa_{0} \in \operatorname{ker} \nu$ and hence in order to prove that $\operatorname{sing} W_{K}$ is a singleton it suffices to prove that $\operatorname{ker} \nu=\left[\kappa_{0}\right]$. If $\kappa \in\left(K \backslash\left[\kappa_{0}\right]\right)$ then $\kappa_{0} \wedge \kappa \neq 0$; in fact this follows from (5.0.3) together with the equality

$$
\begin{equation*}
\mathbb{P}\left\{\kappa \in \bigwedge^{2} V_{0} \mid \kappa_{0} \wedge \kappa=0\right\}=T_{\left[\kappa_{0}\right]} \operatorname{Gr}\left(2, V_{0}\right) \tag{5.0.12}
\end{equation*}
$$

Since $\kappa_{0} \wedge \kappa \neq 0$ we have $\nu(\kappa) \neq 0$. This proves that $\operatorname{sing} W_{K}$ consists of a single point. The formula for the dualizing sheaf of W_{K} follows at once from adjunction. It remains to prove that W_{K} has a single singular point and that it is an ordinary quadratic point. Let $\widetilde{W}_{K} \subset \mathbb{P}\left(\operatorname{supp} \kappa_{0}\right) \times$ $\mathbb{P}\left(V_{0} / \operatorname{supp} \kappa_{0}\right) \times W_{K}$ be the closed subset defined by

$$
\begin{equation*}
\widetilde{W}_{K}:=\{([v], U, W) \mid v \in W \subset U\} \tag{5.0.13}
\end{equation*}
$$

The projection $\widetilde{W}_{K} \rightarrow \mathbb{P}\left(V_{0} / \operatorname{supp} \kappa_{0}\right)$ is a \mathbb{P}^{1}-fibration and hence \widetilde{W}_{K} is smooth. One shows that the projection $\pi: \widetilde{W}_{K} \rightarrow W_{K}$ is the blow-up of $\operatorname{sing} W_{K}$. Moreover $\pi^{-1}\left(\operatorname{sing} W_{K}\right) \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and one gets that the singularity of W_{K} is ordinary quadratic.

Our last result is about the base-locus of 3-dimensional linear systems of quadrics containing W_{K} for $K \subset \bigwedge^{2} V_{0}$ a 3-dimensional subspace such that (5.0.2) holds. First we consider the analogous question for the Grassmannian $\operatorname{Gr}\left(3, \bigwedge^{3} V_{0}\right)$. Let's consider the rational map

$$
\begin{equation*}
\mathbb{P}\left(\bigwedge^{3} V_{0}\right) \xrightarrow{\Phi}\left|\mathcal{I}_{\operatorname{Gr}\left(3, V_{0}\right)}(2)\right|^{\vee} \cong \mathbb{P}\left(V_{0}\right) \tag{5.0.14}
\end{equation*}
$$

where the last isomorphism is given by (4.2.18). Let $Z \subset \mathbb{P}\left(\bigwedge^{3} V_{0}\right) \times \mathbb{P}\left(V_{0}\right)$ be the incidence subvariety defined by

$$
\begin{equation*}
Z:=\{([\omega],[v]) \mid v \wedge \omega=0\} \tag{5.0.15}
\end{equation*}
$$

Then we have a commutative triangle

where Ψ and $\widetilde{\Phi}$ are the restrictions to Z of the two projections of $\mathbb{P}\left(\bigwedge^{3} V_{0}\right) \times \mathbb{P}\left(V_{0}\right)$. Moreover Ψ is the blow-up of $\operatorname{Gr}\left(3, V_{0}\right)$. In particular the following holds: if $\omega \in \bigwedge^{3} V_{0}$ is not decomposable then
there exists a unique $[v] \in \mathbb{P}\left(V_{0}\right)$ such that $v \wedge \omega=0$ and moreover $\Phi([\omega])=[v]$. Let $[v] \in \mathbb{P}\left(V_{0}\right)$; by (4.2.18) we may view $\operatorname{Ann}(v) \subset V_{0}^{\vee}$ as a hyperplane in $\left|\mathcal{I}_{\operatorname{Gr}\left(3, V_{0}\right)}(2)\right|$; by commutativity of (5.0.16) we have

$$
\begin{equation*}
\bigcap_{f \in \operatorname{Ann}(v)} V\left(q_{f}\right)=\operatorname{Gr}\left(3, V_{0}\right) \cup\left\{[\omega] \in \mathbb{P}\left(\bigwedge^{3} V_{0}\right) \mid v \wedge \omega=0\right\} \tag{5.0.17}
\end{equation*}
$$

Proposition 5.4. Let $K \subset \bigwedge^{2} V_{0}$ be a 3-dimensional subspace such that (5.0.2) holds. Let $L \subset$ $\left|\mathcal{I}_{W_{K}}(2)\right|$ be a hyperplane (here $\mathcal{I}_{W_{K}}$ is the ideal sheaf of W_{K} in $\mathbb{P}(\operatorname{Ann} K)$). Then

$$
\begin{equation*}
\bigcap_{t \in L} Q_{t}=W_{K} \cup R_{L} \tag{5.0.18}
\end{equation*}
$$

where R_{L} is a plane. Moreover $W_{K} \cap R_{L}$ is a conic.
Proof. Restriction to $\mathbb{P}(\operatorname{Ann} K)$ defines an isomorphism

$$
\begin{equation*}
\left|\mathcal{I}_{\operatorname{Gr}\left(3, V_{0}\right)}(2)\right| \xrightarrow{\sim}\left|\mathcal{I}_{W_{K}}(2)\right| . \tag{5.0.19}
\end{equation*}
$$

By (4.2.18) we get that we may identify L with $\mathbb{P}(\operatorname{Ann}(v))$ for a well-defined $[v] \in \mathbb{P}\left(V_{0}\right)$ and each quadric Q_{t} for $t \in L$ with $\mathbb{P}(\operatorname{Ann} K) \cap V\left(q_{f}\right)$ for a suitable $[f] \in \mathbb{P}(\operatorname{Ann}(v))$. By (5.0.17) we have

$$
\begin{equation*}
\bigcap_{f \in \operatorname{Ann}(v)}\left(\mathbb{P}(\operatorname{Ann} K) \cap V\left(q_{f}\right)\right)=W_{K} \cup R_{L} \tag{5.0.20}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{L}:=\mathbb{P}(\operatorname{Ann} K) \cap\left\{[\omega] \in \mathbb{P}\left(\bigwedge^{3} V_{0}\right) \mid v \wedge \omega=0\right\} \tag{5.0.21}
\end{equation*}
$$

Thus R_{L} is a linear space of dimension at least 2. Now notice that we have an isomorphism

$$
\begin{array}{ccc}
\bigwedge^{2}\left(V_{0} /[v]\right) & \xrightarrow{\sim} & \left\{[\omega] \in \mathbb{P}\left(\bigwedge^{3} V_{0}\right) \mid v \wedge \omega=0\right\} \tag{5.0.22}\\
\bar{\alpha} & \mapsto & v \wedge \alpha
\end{array}
$$

where $\alpha \in \bigwedge^{2} V_{0}$ is an element mapped to $\bar{\alpha}$ by the quotient map $\Lambda^{2} V_{0} \rightarrow \bigwedge^{2}\left(V_{0} /[v]\right)$. Since $\operatorname{dim}\left(V_{0} /[v]\right)=4$ the Grassmannian $\operatorname{Gr}\left(2, V_{0} /[v]\right)$ is a quadric hypersurface in $\mathbb{P}\left(\bigwedge^{2}\left(V_{0} /[v]\right)\right)$; it follows that either $R_{L} \subset W_{K}$ or $R_{L} \cap W_{K}$ is a quadric hypersurface in R_{L}. By Lefschetz $\operatorname{Pic}\left(W_{K}\right)$ is generated by the hyperplane class; it follows that W_{K} contains no planes and no quadric surfaces. Thus necessarily $\operatorname{dim} R_{L}=2$, moreover $R_{L} \not \subset W_{K}$ and the intersection $R_{L} \cap W_{K}$ is a conic.

Corollary 5.5. Let $K \subset \bigwedge^{2} V_{0}$ be a 3 -dimensional subspace such that (5.0.2) holds and $\mathcal{C}\left(W_{K}\right)$ be the variety parametrizing conics on W_{K} (reduced structure). Then we have an isomorphism

$$
\begin{array}{rlr}
\left|\mathcal{I}_{W_{K}}(2)\right|^{\vee} & \xrightarrow{\sim} & \mathcal{C}\left(W_{K}\right) \\
L & \mapsto & R_{L} \cap W_{K} \tag{5.0.23}
\end{array}
$$

where R_{L} is as in Proposition 5.4. Moreover given $Z \in W_{K}^{[2]}$ there exists a unique conic containing Z namely $R_{L} \cap W_{K}$ where $L \in\left|\mathcal{I}_{W_{K}}(2)\right|^{\vee}$ is the hypeprlane of quadrics containing $\langle Z\rangle$.

References

[1] A. Beauville, Variétes Kähleriennes dont la premiére classe de Chern est nulle, J. Differential geometry 18, 1983, pp. 755-782.
[2] A. Beauville - R. Donagi, La variétés des droites d'une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301, 1985, pp. 703-706.
[3] O. Debarre - C. Voisin, Hyper-Kähler fourfolds and Grassmann geometry, J. Reine Angew. Math. 649, 2010, pp. 63-87.
[4] F. Catanese, Homological algebra and algebraic surfaces, Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math. 62, 1997, pp. 3-56.
[5] D. Eisenbud - S. Popescu - C. Walter, Lagrangian subbundles and codimension 3 subcanonical subschemes, Duke Math. J. 107, 2001, pp. 427-467.
[6] D. Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135, 1999, pp. 63-113. Erratum, Invent. Math. 152, 2003, pp. 209-212.
[7] A. Iliev, L. Manivel, Fano manifolds of degree ten and EPW sextics, Ann. Sci. Éc. Norm. Supér. (4) 44, 2011, pp. 393-426.
[8] A. Iliev - K. Ranestad, K3 surfaces of genus 8 and varieties of sums of powers of cubic fourfolds, Trans. Amer. Math. Soc. 353, 2001, pp. 1455-1468.
[9] A. Iliev - K. Ranestad, Addendum to "K3 surfaces of genus 8 and varieties of sums of powers of cubic fourfolds", C. R. Acad. Bulgare Sci. 60, 2007, pp. 1265-1270.
[10] V. A. Iskovskih, Fano 3-folds, I, Math. USSR Izvestija, Vol. 11, 1977, pp. 485-527.
[11] K. O'Grady, Involutions and linear systems on holomorphic symplectic manifolds, GAFA 15, 2005, pp. 1223-1274.
[12] K. O'Grady, Irreducible symplectic 4-folds and Eisenbud-Popescu-Walter sextics, Duke Math. J. 34, 2006, pp. 99-137.
[13] K. O'Grady. Irreducible symplectic 4-folds numerically equivalent to (K3) ${ }^{[2]}$, Commun. Contemp. Math. 10, 2008, pp. 553-608.
[14] K. O'Grady, Dual double EPW-sextics and their periods, Pure Appl. Math. Q. 4, 2008, no. 2, 427-468.
[15] K. O'Grady, EPW-sextics: taxonomy, Manuscripta Math. 138, 2012, pp. 221-272.

[^0]: *Supported by PRIN 2007

