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0 Introduction

EPW-sextics are defined as follows. Let V be a 6-dimensional complex vector space. Choose a

volume-form vol :
∧6

V
∼−→ C and equip

∧3
V with the symplectic form

(α, β)V := vol(α ∧ β). (0.0.1)

Let LG(
∧3

V ) be the symplectic Grassmannian parametrizing Lagrangian subspaces of
∧3

V - of

course LG(
∧3

V ) does not depend on the choice of volume-form. Let F ⊂
∧3

V ⊗OP(V ) be the sub

vector-bundle with fiber

Fv := {α ∈
3∧
V | v ∧ α = 0} (0.0.2)

over [v] ∈ P(V ). Notice that (, )V is zero on Fv and 2 dim(Fv) = 20 = dim
∧3

V ; thus F is a

Lagrangian sub vector-bundle of the trivial symplectic vector-bundle on P(V ) with fiber
∧3

V .

Next choose A ∈ LG(
∧3

V ). Let

F
λA−→ (

3∧
V/A)⊗OP(V ) (0.0.3)
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be the composition of the inclusion F ⊂
∧3

V ⊗ OP(V ) followed by the quotient map. Since

rkF = dim(V/A) the determinat of λA makes sense. Let

YA := V (detλA).

A straightforward computation gives that detF ∼= OP(V )(−6) and hence detλA ∈ H0(OP(V )(6)).

It follows that if detλA 6= 0 then YA is a sextic hypersurface. As is easily checked detλA 6= 0 for

generic A ∈ LG(
∧3

V ) (notice that there exist “pathological”A’s such that λA = 0 e.g. A = Fv0).

An EPW-sextic (after Eisenbud, Popescu and Walter [5]) is a sextic hypersurface in P5 which is

projectively equivalent to YA for some A ∈ LG(
∧3

V ). Let YA be an EPW-sextic. One constructs a

coherent sheaf ξA on YA and a multiplication map ξA×ξA → OYA which gives OYA⊕ξA a structure

of OYA -algebra - this is known to experts, see [4] - we will give the construction in Subsection 1.2.

The double EPW-sextic associated to A is XA := Spec(OYA ⊕ ξA); we let fA : XA → YA be the

structure morphism. In [12] we considered XA for generic A and we proved that it is a Hyperkähler

deformation of (K3)[2] (the blow-up of the diagonal in the symmetric square of a K3 surface). In

the present paper we will analyze XA for A varying in a codimension-1 subset of LG(
∧3

V ). In

order to state our main results we will introduce some notation. Given A ∈ LG(
∧3

V ) we let

YA(k) = {[v] ∈ P(V ) | dim(A ∩ Fv) = k}, (0.0.4)

YA[k] = {[v] ∈ P(V ) | dim(A ∩ Fv) ≥ k}. (0.0.5)

Thus YA(0) = (P(V ) \YA) and YA = YA[1]. Double EPW-sextics come with a natural polarization;

we let

OXA(n) := f∗AOYA(n), HA ∈ |OXA(1)|. (0.0.6)

The following closed subsets of LG(
∧3

V ) play a key rôle in the present paper:

Σ := {A ∈ LG(
∧3

V ) | ∃W ∈ Gr(3, V ) s. t.
∧3

W ⊂ A}, (0.0.7)

∆ := {A ∈ LG(
∧3

V ) | YA[3] 6= ∅}. (0.0.8)

A straightforward computation, see [15], gives that Σ is irreducible of codimension 1. A similar

computation, see Proposition 2.2, gives that ∆ is irreducible of codimension 1 and distinct from

Σ. Let

LG(

3∧
V )0 := LG(

3∧
V ) \ Σ \∆ . (0.0.9)

Thus LG(
∧3

V )0 is open dense in LG(
∧3

V ). In [12] we proved that if A ∈ LG(
∧3

V )0 then XA is a

hyperkähler (HK) 4-fold which can be deformed to (K3)[2]. Moreover we showed that the family of

polarized HK 4-folds (XA, HA) for A varying inLG(
∧3

V )0 is locally complete. Three other explicit

locally complete families of projective HK’s of dimension greater than 2 are known - see [2, 3, 8, 9].

In all of the examples the HK manifolds are deformations of the Hilbert square of a K3: they are

distinguished by the value of the Beauville-Bogomolov form on the polarization class (it equals 2 in

the case of double EPW-sextics and 6, 22 and 38 in the other cases). In the present paper we will

analyze XA for A ∈ ∆, mainly under the hypothesis that A 6∈ Σ. Let A ∈ (∆ \ Σ). We will prove

the following results

(1) YA[3] is a finite set and it equals YA(3). If A is generic in (∆ \ Σ) then YA(3) is a singleton.

(2) One may associate to [v0] ∈ YA(3) a K3 surface SA(v0) ⊂ P6 of genus 6, well-defined up to

projectivities. Conversely the generic K3 of genus 6 is projectively equivalent to SA(v0) for

some A ∈ (∆ \ Σ) and [v0] ∈ YA(3).

(3) The singular set of XA is equal to f−1
A YA(3). There is a single pi ∈ XA mapping to [vi] ∈ YA(3)

and the cone of XA at pi is isomorphic to the cone over the set of incident couples (x, r) ∈
P2× (P2)∨ (i.e. P(ΩP2)). Thus we have two standard small resolutions of a neighborhood of pi
in XA, one with fiber P2 over pi, the other with fiber (P2)∨. Making a choice ε of local small

resolution at each pi we get a resolution Xε
A → XA with the following properties: There is
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a birational map Xε
A 99K SA(vi)

[2] such that the pull-back of a holomorphic symplectic form

on SA(vi)
[2] is a symplectic form on Xε

A. If SA(vi) contains no lines (true for generic A by

Item (2)) then there exists a choice of ε such that Xε
A is isomorphic to SA(vi)

[2].

(4) Given a sufficiently small open (classical topology) U ⊂ (LG(
∧3

V ) \ Σ) containing A the

family of double EPW-sextics parametrized by U has a simultaneous resolution of singularities

(no base change) with fiber Xε
A over A (for an arbitrary choice of ε).

A remark: if YA(3) has more than one point we do not expect all the small resolutions to be

projective (i.e. Kähler). Items (1)-(4) should be compared with known results on cubic 4-folds -

recall that if Z ⊂ P5 is a smooth cubic hypersurface the variety F (Z) parametrizing lines in Z is a

HK 4-fold which can be deformed to (K3)[2] and moreover the primitive weight-4 Hodge structure

of Z is isomorphic (after a Tate twist) to the primitive weight-2 Hodge structure of F (Z), see [2].

Let D ⊂ |OP5(3)| be the prime divisor parametrizing singular cubics. Let Z ∈ D be generic: the

following results are well-known.

(1’) singZ is a finite set.

(2’) Given p ∈ singZ the set SZ(p) ⊂ F (Z) of lines containing p is a K3 surface of genus 4 and

viceversa the generic such K3 is isomorphic to SZ(p) for some Z and p ∈ singZ.

(3’) F (Z) is birational to SZ(p)[2].

(4’) After a local base-change of order 2 ramified along D the period map extends across Z.

Thus Items (1’)-(2’)-(3’) are analogous to Items (1), (2) and (3) above, Item (4’) is analogous to (4)

but there is an important difference namely the need for a base-change of order 2. (Actually the

paper [13] contains results showing that there is a statement valid for cubic hypersurfaces which

is even closer to our result for double EPW-sextics, the rôle of Σ being played by the divisor

parametrizing cubics containing a plane.) We explain the relevance of Items (1)-(4). Items (3)

and (4) prove the theorem of ours mentioned above i.e. that if A ∈ LG(
∧3

V )0 then XA is a

HK deformation of (K3)[2] (the family of polarized double EPW-sextics is locally complete by a

straightforward parameter count). The proof in this paper is independent of the proof in [12].

Beyond giving a new proof of an “old”theorem the above results show that away from Σ the period

map is regular, it lifts (locally) to the relevant classifying space and the value at A ∈ (∆ \ Σ) may

be identified with the period point of the Hilbert square SA(v0)[2]. We remark that in [14] we had

proved that the period map is as well-behaved as possible at the generic A ∈ (∆\Σ), however we did

not have the exact statement about Xε
A and we had no statement about an arbitrary A ∈ (∆ \Σ).

The paper is organized as follows. In Section 1 we will give formulae that describe double

EPW-sextics locally. The formulae are known to experts, see [4], we will go through the proofs

because we could not find a suitable reference. We will also perform the local computations needed

to prove Item (4) above. In Section 2 we will go through some standard computations involving ∆.

In Section 3 we will prove Items (1), (4) and the statements of Item (3) which do not involve the

K3 surface SA(v0). In Section 4 we will prove Item (2) and the remaining statement of Item (3).

Section 5 contains auxiliary results on 3-dimensional linear sections of Gr(3,C5).

Notation and conventions: Throughout the paper V is a 6-dimensional complex vector space.

Let W be a finite-dimensional complex vector-space. The span of a subset S ⊂ W is denoted by

〈S〉. Let S ⊂
∧q

W . The support of S is the smallest subspace U ⊂W such that S ⊂ im(
∧q

U −→∧q
W ): we denote it by supp(S), if S = {α} is a singleton we let supp(α) = supp({α}) (thus if

q = 1 we have supp(α) = 〈α〉). We define the support of a set of symmetric tensors analogously. If

α ∈
∧q

W or α ∈ SymdW the rank of α is the dimension of supp(α). An element of Sym2W∨ may

be viewed either as a symmetric map or as a quadratic form: we will denote the former by q̃, r̃, . . .

and the latter by q, r, . . . respectively.

Let M = (Mij) be a d × d matrix with entries in a commutative ring R. We let M c = (M ij) be

the matrix of cofactors of M , i.e. M i,j is (−1)i+j times the determinant of the matrix obtained
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from M by deleting its j-th row and i-th column. We recall the following interpretation of M c.

Suppose that f : A→ B is a linear map between free R-modules of rank d and that M is the matrix

associated to f by the choice of bases {a1, . . . , ad} and {b1, . . . , bd} of A and B respectively. Then∧d−1
f may be viewed as a map

d−1∧
f : A∨ ⊗

d∧
A ∼=

d−1∧
A −→

d−1∧
B ∼= B∨ ⊗

d∧
B. (0.0.10)

(Here A∨ := Hom(A,R) and similarly for B∨.) The matrix associated to
∧d−1

f by the choice of

bases {a∨1 ⊗ (a1 ∧ . . .∧ad), . . . , a∨d ⊗ (a1 ∧ . . .∧ad)} and {b∨1 ⊗ (b1 ∧ . . .∧ bd), . . . , b∨d ⊗ (b1 ∧ . . .∧ bd)}
is equal to M c.

Let W be a finite-dimensional complex vector-space. We will adhere to pre-Grothendieck conven-

tions: P(W ) is the set of 1-dimensional vector subspaces of W . Given a non-zero w ∈ W we will

denote the span of w by [w] rather than 〈w〉; this agrees with standard notation. Suppose that

T ⊂ P(W ). Then 〈T 〉 ⊂ P(W ) is the projective span of T i.e. the intersection of all linear subspaces

of P(W ) containing T .

Schemes are defined over C, the topology is the Zariski topology unless we state the contrary. Let

W be finite-dimensional complex vector-space: OP(W )(1) is the line-bundle on P(W ) with fiber

L∨ on the point L ∈ P(W ). Let F ∈ SymdW∨: we let V (F ) ⊂ P(W ) be the subscheme defined

by vanishing of F . If E → X is a vector-bundle we denote by P(E) the projective fiber-bundle

with fiber P(E(x)) over x and we define OP(W )(1) accordingly. If Y is a subscheme of X we let

BlYX −→ X be the blow-up of Y .

1 Symmetric resolutions and double covers

In Subsection 1.1 we will describe a method (well-known to experts) for constructing double cov-

ers. In Subsection 1.2 we will show how to implement the construction in order to construct double

EPW-sextics. Subsection 1.3 contains the main ingredients needed to construct the simultaneous

desingularization described in Item (3) of Section 0.

1.1 Product formula and double covers

Let R be an integral Noetherian ring. Let N be an R-module with a free resolution

0 −→ U1
λ−→ U0

π−→ N −→ 0, rk U1 = rk U0 = d > 0. (1.1.1)

Let {a1, . . . , ad} and {b1, . . . , bd} be bases of U0 and U1 respectively. LetMλ be the matrix associated

to λ by our choice of bases - notice that detMλ annihilates N . Given a homomorphism

β : N → Ext1(N,R) (1.1.2)

one defines a product mβ : N × N → R/(detMλ) as follows. Applying the Hom( · , R)-functor

to (1.1.1) we get the exact sequence

0 −→ U∨0
λt−→ U∨1

ρ−→ Ext1(N,R) −→ 0. (1.1.3)

In particular detMλ kills Ext1(N,R). Now apply the functor Hom(N, · ) to the exact sequence

0 −→ R
detMλ−→ R −→ R/(detMλ) −→ 0. (1.1.4)

Since Ext1(N,R)→ Ext1(N,R) is multiplication by detMλ we get a coboundary isomorphism

∂ : Hom(N,R/(detMλ))
∼−→ Ext1(N,R). (1.1.5)

We let
N ×N mβ−→ R/(detMλ)

(n, n′) 7→ (∂−1β(n))(n′).
(1.1.6)
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We will give an explicit formula for mβ . Let π : U0 → N be as in (1.1.1). Then β ◦ π lifts to a

homomorphism µt : U0 → U∨1 (the map is written as a transpose in order to conform to the notation

for double EPW-sextics - see Subsection 1.2). It follows that there exists α : U1 → U∨0 such that

0 → U1
λ−→ U0

π−→ N → 0yα yµt yβ
0 → U∨0

λt−→ U∨1
ρ−→ Ext1(N,R) → 0

(1.1.7)

is a commutative diagram. Let {a∨1 , . . . , a∨d } and {b∨1 , . . . , b∨d } be the bases of U∨0 and U∨1 which

are dual to the chosen bases of U0 and U1. Let Mµt be the matrix associated to µt by our choice

of bases.

Proposition 1.1. Keeping notation as above we have

mβ(π(ai), π(aj)) ≡ (M c
λ ·Mµt)ji mod (detMλ) (1.1.8)

where M c
λ is the matrix of cofactors of Mλ.

Proof. Equation (1.1.3) gives an isomorphism

ν : Ext1(N,R)
∼→ U∨1 /λ

t(U∨0 ). (1.1.9)

Let det(U•) :=
∧d

U∨1 ⊗
∧d

U0. We will define an isomorphism

θ : U∨1 /λ
t(U∨0 )

∼−→ Hom (N, det(U•)/(detλ)) . (1.1.10)

First let

U∨1 =
∧d−1

U1 ⊗
∧d

U∨1
θ̂−→

∧d−1
U0 ⊗

∧d
U∨1 = Hom(U0,det(U•))

ζ ⊗ ξ 7→
∧d−1

(λ)(ζ)⊗ ξ .
(1.1.11)

We claim that

im(θ̂) = {φ ∈ Hom(U0,det(U•)) | φ ◦ λ(U1) ⊂ (detλ)}. (1.1.12)

In fact by Cramer’s formula

M c
λ ·M t

λ = M t
λ ·M c

λ = detMλ · 1 (1.1.13)

and Equation (1.1.12) follows. Thus θ̂ induces a surjective homomorphism

θ̃ : U∨1 −→ Hom (N, det(U•)/(detλ)) . (1.1.14)

One checks easily that λt(U∨0 ) = ker θ̃ - use Cramer again. We define θ to be the homomorphism

induced by θ̃; we have proved that it is an isomorphism. We claim that

θ ◦ ν = ∂−1, ∂ as in (1.1.5). (1.1.15)

In fact let K be the fraction field of R and 0 → R
ι→ I0 → I1 → . . . be an injective resolution of

R with I0 = det(U•)⊗K and ι(1) = detλ⊗ 1. Then Ext•(N,R) is the cohomology of the double

complex Hom(U•, I
•) and of course also of the single complexes Hom(U•, R) and Hom(N, I•). One

checks easily that the isomorphism ∂ of (1.1.5) is equal to the isomorphism H1(Hom(N, I•))
∼→

H1(Hom(U•, I
•)) i.e.

∂ : Hom(N, det(U•)/(detλ)) = Hom(N, I0/ι(R))
∼−→ H1(Hom(U•, I

•)). (1.1.16)

Let f ∈ Hom(N, det(U•)/(detλ)); a representative of ∂(f) in the double complex Hom(U•, I
•) is

given by g0,1 := f ◦ π ∈ Hom(U0, I
1). Let g0,0 ∈ Hom(U0,det(U•)) be a lift of g0,1 and g1,0 ∈

Hom(U1,det(U•)) be defined by g1,0 := g0,0 ◦ λ. One checks that im(g1,0) ⊂ (detλ) and hence

there exists g ∈ Hom(U1, R) such that g1,0 = ι ◦ g. By construction g represents a class [g] ∈
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H1(Hom(U•, R)) = U∨1 /λ
t(U∨0 ) and [g] = ν◦∂(f). An explicit computation shows that [g] = θ−1(f).

This proves (1.1.15). Now we prove Equation (1.1.8). By (1.1.15) we have

mβ(π(ai), π(aj)) = (∂−1βπ(ai))(π(aj)) = (θνβπ(ai))(π(aj)). (1.1.17)

Unwinding the definition of θ one gets that the right-hand side of the above equation equals the

right-hand side of (1.1.8).

Letmβ be given by (1.1.6): we define a product onR/(detMλ)⊕N as follows. Let (r, n), (r′, n′) ∈
R/(detMλ)⊕N : we set

(r, n) · (r′, n′) := (rr′ +mβ(n, n′), rn′ + r′n). (1.1.18)

In general the above product is neither associative nor commutative. We will give an example in

which the product is both associative and commutative. Suppose that we have

0 −→ U∨
γ−→ U

π−→ N −→ 0, γt = γ (1.1.19)

with U a free R-module of rank d > 0 and the sequence is supposed to be exact. We get a

commutative diagram (1.1.7) by letting

U0 := U, U1 := U∨, λ = γ, α = IdU∨ , µt = IdU ,

and β = β(γ) : N → Ext1(N,R) the map induced by IdU . Abusing notation we let mγ : N ×N →
R/(detMγ) be the map defined by mβ(γ).

Proposition 1.2. Suppose that we have Exact Sequence (1.1.19). The product on R/(detMγ)⊕N
defined by mγ is associative and commutative.

Proof. Let d := rk U > 0. Let {a1, . . . , ad} be a basis of U and {a∨1 , . . . , a∨d } be the dual basis of

U∨. Let M = Mγ i.e. the matrix associated to γ by our choice of bases. By (1.1.8) we have

mγ(π(ai), π(aj)) ≡M c
ji mod (detM). (1.1.20)

Since γ is a symmetric map M is a symmetric matrix. Thus M c is a symmetric matrix. By (1.1.20)

we get that mγ is symmetric. It remains to prove that mγ is associative. For 1 ≤ i < k ≤ d and

1 ≤ h 6= j ≤ d let M i,k
h,j be the (d− 2)× (d− 2)-matrix obtained by deleting from M rows i, k and

columns h, j. Let Xijk = (Xh
ijk) ∈ Rd be defined by

Xh
ijk :=


(−1)i+k+j+h detM i,k

j,h if h < j,

0 if h = j.

(−1)i+k+j+h−1 detM i,k
j,h if j < h.

(1.1.21)

A tedious but straightforward computation gives that

M c
ijak −M c

jkai = γ(

d∑
h=1

Xh
ijka

∨
h ). (1.1.22)

The above equation proves associativity of mγ .

Keep hypotheses as in Proposition 1.2. We let

Xγ := Spec(R/(detMλ)⊕N), Yγ := Spec(R/(detMλ)). (1.1.23)

Let fγ : Xγ → Yγ be the structure map. We realize Xγ as a subscheme of Spec(R[ξ1, . . . , ξd]) as

follows. Since the ring R/(detMγ) ⊕ N is associative and commutative there is a well-defined

surjective morphism of R-algebras

R[ξ1, . . . , ξd] −→ R/(detMγ)⊕N (1.1.24)

mapping ξi to ai. Thus we have an inclusion

Xγ ↪→ Spec(R[ξ1, . . . , ξd]). (1.1.25)
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Claim 1.3. Referring to Inclusion (1.1.25) the ideal of Xγ is generated by the entries of the matrices

Mγ · ξ, ξ · ξt −M c
γ . (1.1.26)

(We view ξ as a column matrix.)

Proof. By (1.1.20) the ideal of Xγ is generated by detMγ and the entries of the matrices in (1.1.26).

By Cramer’s formula detMγ belongs to the ideal generated by the entries of the two matrices. This

proves that the ideal of Xγ is as claimed.

Now we suppose in addition that R is a finitely generated C-algebra. Let p ∈ SpecR be a closed

point: we are interested in the localization of Xγ at points in f−1
γ (p). Let J ⊂ U∨(p) be a subspace

complementary to ker γ(p). Let J ⊂ U∨ be a free submodule whose fiber over p is equal to J . Let

K ⊂ U∨ be the submodule orthogonal to J i.e.

K := {u ∈ U∨ | γ(a)(u) = 0 ∀a ∈ J} . (1.1.27)

The localization of K at p is free. Let K := K(p) be the fiber of K at p; clearly K = ker γ(p).

Localizing at p we have

U∨p = Kp ⊕ Jp . (1.1.28)

Corresponding to (1.1.28) we may write γp = γK⊕⊥ γJ where γK : Kp → K∨p and γJ : Jp → J∨p are

symmetric maps. Notice that we have an equality of germs

(Yγ , p) = (YγK , p). (1.1.29)

We claim that there is a compatible isomorphism of germs (XγK , f
−1
γK (p)) ∼= (Xγ , f

−1
γ (p)). In fact

let k := dimK and d := rk U . Choose bases of Kp and Jp; by (1.1.28) we get a basis of U∨p . The

dual bases of K∨p , J∨p and U∨p are compatible with respect to the decomposition dual to (1.1.28).

Corresponding to the chosen bases we have embeddings XγK ↪→ YγK ×Ck and Xγ ↪→ Yγ ×Cd. The

decomposition dual to (1.1.28) gives an embedding j : YγK × Ck ↪→ Yγ × Cd.

Claim 1.4. Keep notation as above. The composition

XγK ↪→ (YγK × Ck)
j−→ (Yγ × Cd) (1.1.30)

defines an isomorphism of germs in the analytic topology

(XγK , f
−1
γK (p))

∼−→ (Xγ , f
−1
γ (p)) (1.1.31)

which commutes with the maps fγK and fγ .

Proof. This follows by writing γp = γK ⊕⊥ γJ and by recalling (1.1.20). We pass to the analytic

topology in order to be able to extract the square root of a regular non-zero function.

Proposition 1.5. Assume that R is a finitely generated C-algebra. Suppose that we have Exact

Sequence (1.1.19). Then the following hold:

(1) f−1
γ Yγ(1)→ Yγ(1) is a topological covering of degree 2.

(2) Let p ∈ (Yγ \ Yγ(1)) be a closed point. The fiber f−1
γ (p) consists of a single point q. Let ξi be

the coordinates on Xγ associated to Embedding (1.1.25); then ξi(q) = 0 for i = 1, . . . , d.

Proof. (1): Localizing at p ∈ Yγ(1) and applying Claim 1.4 we get Item (1). (2): Since corkMγ(p) ≥
2 we have M c

γ(p) = 0. Thus Item (2) follows from Claim 1.3.

We may associate a double cover fγ : Xγ → Yγ to a map β which is symmetric in the derived

category.

Hypothesis 1.6. We have (1.1.7) with α an isomorphism and in addition α = µ.
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Proposition 1.7. Assume that Hypothesis 1.6 holds. Then R/(detMλ) ⊕N equipped with the

product given by (1.1.18) is a commutative (associative) ring.

Proof. Let γ := λ ◦ µ−1 and U := U0. Then (1.1.19) holds and the product defined by mβ is equal

to the product defined by mγ . By Proposition 1.2 we get that R/(detMλ)⊕N is a commutative

associative ring.

Definition 1.8. Suppose that Hypothesis 1.6 holds: the symmetrization of (1.1.7) is Exact

Sequence (1.1.19) with γ and U as in the proof of Proposition 1.7.

1.2 Structure sheaf of double EPW-sextics

Let A ∈ LG(
∧3

V ) and suppose that YA 6= P(V ). We will define the associated double cover

XA → YA by applying the results of Subsection 1.1. Since A is Lagrangian the symplectic

form defines a canonical isomorphism
∧3

V/A ∼= A∨; thus (0.0.3) defines a map of vector-bundles

λA : F → A∨ ⊗ OP(V ). Let i : YA ↪→ P(V ) be the inclusion map: since a local generator of detλA
annihilates coker(λA) there is a unique sheaf ζA on YA such that we have an exact sequence

0 −→ F
λA−→ A∨ ⊗OP(V ) −→ i∗ζA −→ 0. (1.2.1)

Choose B ∈ LG(
∧3

V ) transversal to A. Thus we have a direct-sum decomposition
∧3

V = A⊕B
and hence a projection map

∧3
V → A inducing a map µA,B : F → A⊗OP(V ). We claim that there

is a commutative diagram with exact rows

0 → F
λA−→ A∨ ⊗OP(V ) −→ i∗ζA → 0yµA,B yµtA,B yβA

0 → A⊗OP(V )
λtA−→ F∨ −→ Ext1(i∗ζA,OP(V )) → 0 .

(1.2.2)

In fact the second row is obtained by applying the Hom( · ,OP(V ))-functor to (1.2.1) and the equality

µtA,B ◦ λA = λtA ◦ µA,B holds because F is a Lagrangian sub-bundle of
∧3

V ⊗ OP(V ). Lastly βA
is defined to be the unique map making the diagram commutative; it exists because the rows are

exact. Notice that the map βA is independent of the choice of B as suggested by the notation. Next

by applying the Hom(i∗ζA, · )-functor to the exact sequence

0 −→ OP(V ) −→ OP(V )(6) −→ OYA(6) −→ 0 (1.2.3)

we get the exact sequence

0 −→ i∗Hom(ζA,OYA(6))
∂−→ Ext1(i∗ζA,OP(V ))

n−→ Ext1(i∗ζA,OP(V )(6)) (1.2.4)

where n is locally equal to multiplication by detλA. Since the second row of (1.2.2) is exact a

local generator of detλA annihilates Ext1(i∗ζA,OP(V )); thus n = 0 and hence we get a canonical

isomorphism

∂−1 : Ext1(i∗ζA,OP(V ))
∼−→ i∗Hom(ζA,OYA(6)). (1.2.5)

We define m̃A by setting

ζA × ζA
m̃A−→ OYA(6)

(σ1, σ2) 7→ (∂−1 ◦ βA(σ1))(σ2).
(1.2.6)

Let ξA := ζA(−3). Tensorizing both sides of (1.2.6) by OYA(−6) we get a multiplication map

ξA × ξA
mA−→ OYA . (1.2.7)

Thus we have defined a multiplication map on OYA ⊕ ξA. The following result is well-known to

experts.

Proposition 1.9. Let A ∈ LG(
∧3

V ) and suppose that YA 6= P(V ). Let notation be as above.

Then:
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(1) βA is an isomorphism.

(2) The multiplication map mA is associative and commutative.

Proof. Let [v0] ∈ P(V ). Choose B ∈ LG(
∧3

V ) transversal to Fv0 (and to A of course). Then

µA,B is an isomorphism in an open neighborhood U of [v0]. It follows that βA is an isomorphism

in a neighborhood of [v0]. This proves Item (1). Let’s prove Item (2). Let B ∈ LG(
∧3

V ) and U

be as above; we may assume that U is affine. Let N := H0(i∗ζA|U ) and β := H0(βA|U ). Thus

β : N → Ext1(N,C[U ]). By Commutativity of Diagram (1.2.2) and by Proposition 1.7 we get

that the multiplication map mβ is associative and commutative. On the other hand mβ is the

multiplication induced by mA on N ; since [v0] is an arbitrary point of P(V ) it follows that mA is

associative and commutative.

We let XA := Spec(OYA ⊕ ξA) and we let fA : XA → YA be the structure morphism. Then

XA is the double EPW-sextic associated to A and fA is its structure map. The covering involution

of XA is the automorphism φA : XA → XA corresponding to the involution of OYA ⊕ ξA with

(−1)-eigensheaf equal to ξA.

1.3 Local models of double covers

In the present subsection we assume that R is a finitely generated C-algebra. Let W be a finite-

dimensional complex vector-space. We will suppose that we have an exact sequence

0 −→ R⊗W∨ γ−→ R⊗W −→ N −→ 0, γ = γt. (1.3.1)

Thus we have a double cover fγ : Xγ → Yγ . Let p ∈ Yγ be a closed point. We will examine Xγ

in a neighborhood of f−1
γ (p) when the corank of γ(p) is small. We may view γ as a regular map

SpecR→ Sym2W; thus it makes sense to consider the differential

dγ(p) : Tp SpecR→ Sym2W. (1.3.2)

Let K(p) := ker γ(p) ⊂ W∨; we will consider the linear map

Tp SpecR
δγ(p)−→ Sym2K(p)∨

τ 7→ dγ(p)(τ)|K(p) .
(1.3.3)

Let d := dimW; choosing a basis of W we realize Xγ as a subscheme of SpecR × Cd with ideal

given by Claim 1.3. Since cork γ(p) ≥ 2 Proposition 1.5 gives that f−1
γ (p) consists of a single

point q - in fact the ξi-coordinates of q are all zero. Throughout this subsection we let

f−1
γ (p) = {q} . (1.3.4)

Claim 1.10. Keep notation as above. Suppose that d = dimW = 2 and that γ(p) = 0. Then I(Xγ)

is generated by the entries of ξ · ξt −M c
γ .

Proof. Claim 1.3 together with a straightforward computation.

Example 1.11. Let R = C[x, y, z], W = C2. Suppose that the matrix associated to γ is

Mγ =

(
x y

y z

)
. (1.3.5)

Then fγ : Xγ → Yγ is identified with

C2 −→ V (xz − y2)

(ξ1, ξ2) 7→ (ξ2
2 , −ξ1ξ2, ξ2

1)
(1.3.6)

i.e. the quotient map for the action of 〈−1〉 on C2.
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Proposition 1.12. Keep notation as above. Suppose that the following hold:

(a) cork γ(p) = 2,

(b) the localization Rp is regular.

Then Xγ is smooth at q if and only if δγ(p) is surjective.

Proof. Applying Claim 1.4 we get that we may assume that d = 2. Let

Mγ =

(
a b

b c

)
. (1.3.7)

By Claim 1.10 the ideal of Xγ in SpecR× C2 is generated by the entries of ξ · ξt −M c
γ i.e.

I(Xγ) = (ξ2
1 − c, ξ1ξ2 + b, ξ2

2 − a) . (1.3.8)

Thus

cod(TqXγ , Tq(SpecR× C2)) = dim〈da(p) , db(p) , dc(p)〉 . (1.3.9)

On the other hand codq(Xγ ,SpecR×C2) = 3 and hence we get that Xγ is smooth at q if and only

if δγ(p) is surjective.

Claim 1.13. Keep notation and hypotheses as above. Suppose that cork γ(p) ≥ 3. Then Xγ is

singular at q.

Proof. Let I be the ideal of Xγ in SpecR[ξ1, . . . , ξd]. By Claim 1.3 we get that I is non-trivial

but the differential at q of an arbitrary g ∈ I is zero.

Next we will discuss in greater detail those Xγ whose corank at f−1
γ (p) is equal to 3. First we

will identify the “universal”example (the universal example for corank 2 is Example 1.11). Let V
be a 3-dimensional complex vector space. We view Sym2 V as an affine (6-dimensional) space and

we let R := C[Sym2 V] be its ring of regular functions. We identify R ⊗C V and R ⊗C V∨ with the

space of V-valued, respectively V∨-valued, regular maps on Sym2 V. Let

R⊗C V∨
γ−→ R⊗C V (1.3.10)

be the map induced on the spaces of global sections by the tautological map of vector-bundles

SpecR× V∨ −→ SpecR× V. The map γ is symmetric. Let N be the cokernel of γ: thus

0 −→ R⊗C V∨
γ−→ R⊗C V −→ N −→ 0 (1.3.11)

is an exact sequence. Since γ is symmetric it defines a double cover f : X(V)→ Y (V) where

Y (V) := {α ∈ Sym2 V | rk α < 3} (1.3.12)

is the variety of degenerate quadratic forms. We let

φ : X(V)→ X(V) (1.3.13)

be the covering involution of f . One describes explicitly X(V) as follows. Let

(V ⊗ V)1 := {µ ∈ (V ⊗ V) | rk µ ≤ 1}. (1.3.14)

Thus (V ⊗ V)1 is the cone over the Segre variety P(V)× P(V). We have a finite degree-2 map

(V ⊗ V)1
σ−→ Y (V)

µ 7→ µ+ µt .
(1.3.15)
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Proposition 1.14. Keep notation as above. There exists a commutative diagram

(V ⊗ V)1

σ

$$

τ // X(V)

f

{{
Y (V)

(1.3.16)

where τ is an isomorphism. Let φ be Involution (1.3.13): then

φ ◦ τ(µ) = τ(µt), ∀µ ∈ (V ⊗ V)1. (1.3.17)

Proof. In order to define τ we will give a coordinate-free version of Inclusion (1.1.25) in the case of

X(V). Let

Sym2 V × (V∨ ⊗
∧3 V)

Ψ−→ (V ⊗
∧3 V)× (V∨ ⊗ V∨ ⊗

∧3 V ⊗
∧3 V)

(α, ξ) 7→ (α ◦ ξ, ξt ◦ ξ −
∧2

α) .
(1.3.18)

A few words of explanation. In the definition of the first component of Ψ(α, ξ) we view ξ as

belonging to Hom(
∧3 V∨,V∨), in the definition of the second component of Ψ(α, ξ) we view ξ as

belonging to Hom(V ⊗
∧3 V∨,C). Moreover we make the obvious choice of isomorhpism C ∼= C∨.

Secondly

2∧
α ∈ Hom(

2∧
V∨,

2∧
V) = Hom(V ⊗

3∧
V∨, V∨ ⊗

3∧
V) = V∨ ⊗ V∨ ⊗

3∧
V ⊗ V . (1.3.19)

Choosing a basis of V we get an embedding X(V) ⊂ Sym2 V × C3, see (1.1.25). Claim 1.3 gives

equality of pairs

(Sym2 V × (V∨ ⊗
3∧
V), Ψ−1(0)) = (Sym2 V × C3, X(V)) , (1.3.20)

where Ψ−1(0) is the scheme-theoretic fiber of Ψ. Now notice that we have an isomorphism

V ⊗ V
T∼−→ Sym2 V × (V∨ ⊗

∧3 V)

ε 7→ (ε+ εt, ε− εt) .
(1.3.21)

Let τ := T |(V⊗V)1 : thus we have an embedding

τ : (V ⊗ V)1 ↪→ Sym2 V × (V∨ ⊗
3∧
V). (1.3.22)

We will show that we have equality of schemes

im(τ) = Ψ−1(0)(= X(V)). (1.3.23)

First let
V ⊕ V ρ−→ (V ⊗ V)1

(η, β) 7→ ηt ◦ β.
(1.3.24)

Notice that ρ is the quotient map for the C×-action on V ⊕ V defined by t(η, β) := (tη, t−1β). We

have

τ ◦ π = (ηt ◦ β + βt ◦ η, η ∧ β). (1.3.25)

Let’s prove that

Ψ−1(0) ⊃ im(τ) . (1.3.26)
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Notice that Gl(V) acts on (V ⊗V)1 with a unique dense orbit namely {ηt ◦ β | η ∧ β 6= 0}. An easy

computation shows that τ(ηt ◦ β) ∈ Ψ−1(0) for a conveniently chosen ηt ◦ β in the dense orbit of

(V ⊗ V)1; it follows that (1.3.26) holds. On the other hand T defines an isomorphism of pairs

(V ⊗ V, (V ⊗ V)1) ∼= (Sym2 V∨ × (V∨ ⊗
3∧
V), im(τ)) . (1.3.27)

Since the ideal of (V ⊗ V)1 in V ⊗ V is generated by 9 linearly independent quadrics we get that

the ideal of im(τ) in Sym2 V∨ × (V∨ ⊗
∧3 V) is generated by 9 linearly independent quadrics. The

ideal of Ψ−1(0) in Sym2 V × (V∨ ⊗
∧3 V) is likewise generated by 9 linearly independent quadrics

- see (1.3.18). Since Ψ−1(0) ⊃ im(τ) we get that the ideals of Ψ−1(0) and of im(τ) are the same

and hence (1.3.23) holds. This proves that τ is an isomorphism between (V ⊗ V)1 and X(V).

Diagram (1.3.16) is commutative by construction. Equation (1.3.17) is equivalent to the equality

φ(τ ◦ ρ(β, η)) = τ ◦ ρ(η, β)). (1.3.28)

The above equality holds because β ∧ η = −η ∧ β.

The following result is an immediate consequence of Proposition 1.14.

Corollary 1.15. singX(V) = τ(0) = f−1(0).

2 The divisor ∆

2.1 Parameter counts

Let ∆+ ⊂ LG(
∧3

V ) and ∆̃+, ∆̃+(0) ⊂ LG(
∧3

V )× P(V )2 be

∆+ := {A ∈ LG(
∧3

V ) | |YA[3]| > 1} , (2.1.1)

∆̃+ := {(A, [v1], [v2]) | [v1] 6= [v2], dim(A ∩ Fvi) ≥ 3} , (2.1.2)

∆̃+(0) := {(A, [v1], [v2]) | [v1] 6= [v2], dim(A ∩ Fvi) = 3} . (2.1.3)

Notice that ∆̃+ and ∆̃+(0) are locally closed.

Lemma 2.1. Keep notation as above. The following hold:

(1) ∆̃+ is irreducible of dimension 53.

(2) ∆+ is constructible and cod(∆+,LG(
∧3

V )) ≥ 2.

Proof. (1): Let’s prove that ∆̃+(0) is irreducible of dimension 53. Consider the map

∆̃+(0)
η−→ Gr(3,

∧3
V )2 × P(V )2

(A, [v1], [v2]) 7→ (A ∩ Fv1 , A ∩ Fv2 , [v1], [v2]) .
(2.1.4)

We have

im η = {(K1,K2, [v1], [v2]) | Ki ∈ Gr(3, Fvi), K1⊥K2, [v1] 6= [v2]} . (2.1.5)

We stratify im η according to i := dim(K1 ∩ Fv2) and to j := dim(K1 ∩K2); of course j ≤ i. Let

(im η)i,j ⊂ im η be the stratum corresponding to i, j. A straightforward computation gives that

dim η−1(im η)i,j = 10 + 7(3− i) + j(i− j) + (3− j)(4 + i) +
1

2
(j + 5)(j + 4) =

= 53− 4i− 1

2
j(j − 1) . (2.1.6)

Since 0 ≤ i, j one gets that the maximum is achieved for i = j = 0 and that it equals 53. It

follows that ∆̃+(0) is irreducible of dimension 53. On the other hand ∆̃+(0) is dense in ∆̃+

(easy) and hence we get that Item (1) holds. (2): Let π+ : ∆̃+ → LG(
∧3

V ) be the forgetful

map: π+([v1], [v2], A) = A. Then π+(∆̃+) = ∆+. By Item (1) we get that dim ∆+ ≤ 53: since

dimLG(
∧3

V ) = 55 we get that Item (2) holds.
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Proposition 2.2. The following hold:

(1) ∆ is closed irreducible of codimension 1 in LG(
∧3

V ) and not equal to Σ.

(2) If A ∈ ∆ is generic then YA[3] = YA(3) and it consists of a single point.

Proof. (1): Let

∆̃ := {(A, [v]) | dim(Fv ∩A) ≥ 3}, ∆̃(0) := {(A, [v]) | dim(Fv ∩A) = 3}. (2.1.7)

Then ∆̃ is a closed subset of LG(
∧3

V ) × P(V ) and ∆̃(0) is an open subset of ∆̃. Let π : ∆̃ →
LG(

∧3
V ) be the forgetful map. Thus π(∆̃) = ∆: since π is projective it follows that ∆ is closed.

Projecting ∆̃(0) to P(V ) we get that ∆̃(0) is smooth irreducible of dimension 54. A standard

dimension count shows that ∆̃(0) is open dense in ∆̃; thus ∆̃ is irreducible of dimension 54. It

follows that ∆ is irreducible. By Lemma 2.1 we know that dim ∆̃+ ≤ 53. It follows that the

generic fiber of ∆̃→ ∆ is a single point, in particular dim ∆ = 54 and hence cod(∆,LG(
∧3

V )) = 1

because dimLG(
∧3

V ) = 55. A dimension count shows that dim(∆ ∩ Σ) < 54 and hence ∆ 6= Σ.

This finishes the proof of Item (1). (2): Let A ∈ ∆ be generic: we already noticed that there exists

a unique [v] ∈ P(V ) such that ([v], A) ∈ ∆̃, i.e. YA[3] consists of a single point. Since ∆̃(0) is dense

in ∆̃ and dim ∆̃ = dim ∆ we get that ([v], A) ∈ ∆̃(0), i.e. YA[3] = YA(3). This finishes the proof of

Item (2).

2.2 First order computations

Let (A, [v0]) ∈ ∆̃(0). We will study the differential of π : ∆̃→ LG(
∧3

V ) at (A, [v0]). First we will

give a local description of ∆̃ as degeneracy locus. Let

N(V ) := {A ∈ LG(

3∧
V ) | YA = P(V )}. (2.2.1)

Notice that N(V ) is closed. Let Y be the tautological family of EPW-sextics i.e.

Y := {(A, [v]) ∈ (LG(

3∧
V ) \ N(V ))× P(V ) | dim(A ∩ Fv) > 0} . (2.2.2)

Of course Y has a description as a determinantal variety and hence it has a natural scheme structure.

For U ⊂ (LG(
∧3

V ) \ N(V )) open we let YU := Y ∩ (U × P(V )). Given B ∈ LG(
∧3

V ) let

UB := {A ∈ LG(

3∧
V ) | A t B} \ N(V ). (2.2.3)

(Here A t B means that A intersects transversely B i.e. A∩B = {0}.) Let iUB : YUB ↪→ UB×P(V )

be the inclusion and let A be the tautological rank-10 vector-bundle on LG(
∧3

V ) (the fiber of A
over A is A itself). Going through the argument that produced Commutative Diagram (1.2.2) we

get that there exists a commutative diagram

0 → OUB � F
λUB−→ (A∨|UB )�OP(V ) −→ iUB ,∗ζUB → 0yµUB yµtUB yβUB

0 → (A|UB )�OP(V )

λtUB−→ OUB � F∨ −→ Ext1(iUB ,∗ζUB ,OUB×P(V )) → 0
(2.2.4)

Now let (A, [v0]) ∈ Y. Choose B ∈ LG(
∧3

V ) such that B t A and B t Fv0 . Let N ⊂ P(V ) be an

open neighborhood of [v0] such that B t Fw for all w ∈ N . The restriction to UB of A is trivial

and the restriction to N of F is likewise trivial. Moreover the restriction of µUB to UB ×N is an

isomorphism. Let

γ := (λUB |UB×N ) ◦ (µUB |UB×N )−1. (2.2.5)

We have an exact sequence

0 −→ (A|UB )�ON
γ−→ (A∨|UB )�ON −→ iUB ,∗ζUB |UB×N −→ 0 (2.2.6)

13



The map γ is symmetric, in fact it is the symmetrization of the restriction of (2.2.4) to UB ×N -

see Definition 1.8. Then ∆̃ ∩ (UB ×N ) is the symmetric degeneration locus

∆̃ ∩ (UB ×N ) = {(A′, [v]) ∈ (UB ×N ) | cork γ(A′, [v]) ≥ 3} (2.2.7)

and hence it inherits a natural structure of closed subscheme of LG(
∧3

V ) × P(V ). In order to

study the differential of the forgetful map ∆̃→ P(V ) we will introduce some notation. Given v ∈ V
we define a quadratic form φv0v on Fv0 as follows. Let α ∈ Fv0 ; then α = v0 ∧ β for some β ∈

∧2
V .

We set

φv0v (α) := vol(v0 ∧ v ∧ β ∧ β). (2.2.8)

The above equation gives a well-defined quadratic form on Fv0 because β is determined up to

addition by an element of Fv0 . Of course φv0v depends only on the class of v in V/[v0]. Choose a

direct-sum decomposition

V = [v0]⊕ V0. (2.2.9)

We have the isomorphism
λv0V0

:
∧2

V0
∼−→ Fv0

β 7→ v0 ∧ β .
(2.2.10)

Under the above identification the Plücker quadratic forms on
∧2

V0 correspond to the quadratic

forms φv0v for v varying in V0. Let K := A ∩ Fv0 and

V0
τ
v0
K−→ Sym2K∨

v 7→ φv0v |K
Sym2A∨

θAK−→ Sym2K∨

q 7→ q|K .
(2.2.11)

The isomorphism
V0

∼−→ P(V ) \ P(V0)

v 7→ [v0 + v]

defines an isomorphism V0
∼= T[v0]P(V ). Recall that the tangent space to LG(

∧3
V ) at A is canon-

ically identified with Sym2A∨.

Proposition 2.3. Keep notation as above - in particular choose (2.2.9). Then

T(A,[v0])∆̃ ⊂ T(A,[v0])

(
LG(

3∧
V )× P(V )

)
= Sym2A∨ ⊕ V0 (2.2.12)

is given by

T([v0],A)∆̃ = {(q, v) | θAK(q)− τv0K (v) = 0}. (2.2.13)

Proof. By the (local) degeneracy description (2.2.7) we get that (q, v) ∈ T([v0],A)∆̃ if and only if

0 = dγ(A, [v0])(q, v)|K = dγ(A, [v0])(q, 0)|K + dγ(A, [v0])(0, v)|K .

It is clear that dγ(A, [v0])(q, 0)|K = θAK(q). On the other hand Equation (2.26) of [12] gives that

dγ(A, [v0])(0, v)|K = −τv0K (v). (2.2.14)

The proposition follows.

Corollary 2.4. ∆̃(0) is smooth (of codimension 6 in LG(
∧3

V )× P(V )). Let (A, [v0]) ∈ ∆̃(0) and

K := A ∩ Fv0 . The differential dπ(A, [v0]) is injective if and only if τv0K is injective.

Proof. Let (A, [v0]) ∈ ∆̃(0) and K := A ∩ Fv0 . The map θAK is surjective: by Proposition 2.3

we get that T(A,[v0])∆̃(0) has codimension 6 in T(A,[v0])(LG(
∧3

V )× P(V )). On the other hand the

description of ∆̃(0) as a symmetric degeneration locus - see (2.2.7) - gives that ∆̃(0) has codimension

at most 6 in LG(
∧3

V )×P(V ): it follows that ∆̃(0) is smooth of codimension 6 in LG(
∧3

V )×P(V ).

The statement about injectivity of dπ(A, [v0]) follows at once form Proposition 2.3.
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A comment regarding Corollary 2.4. The statement about smoothness of ∆̃(0) is not contained

in the proof of Proposition 2.2 because in that proof we consider ∆̃(0) with its reduced structure.

Before stating the next result we give the following definition: given A ∈ LG(
∧3

V ) we let

ΘA := {W ∈ Gr(3, V ) |
3∧
W ⊂ A}. (2.2.15)

Proposition 2.5. Let (A, [v0]) ∈ ∆̃(0) and let K := A ∩ Fv0 . Then τv0K is injective if and only if

(1) no W ∈ ΘA contains v0, or

(2) there is exactly one W ∈ ΘA containing v0 and moreover

A ∩ Fv0 ∩ (

2∧
W ∧ V ) =

3∧
W. (2.2.16)

If Item (1) holds then im τv0K belongs to the unique open PGL(K)-orbit of Gr(5,Sym2K∨), if

Item (2) holds then im τv0K belongs to the unique closed PGL(K)-orbit of Gr(5,Sym2K∨).

Proof. Let V0 ⊂ V be a codimension-1 subspace transversal to [v0]. Let

ρv0V0
: Fv0

∼−→
2∧
V0 (2.2.17)

be the inverse of Isomorphism (2.2.10). Let K := P(ρv0V0
(K)) ⊂ P(

∧2
V0); then K is a projective

plane. Isomorphism ρv0V0
identifies the space of quadratic forms φv0v , for v ∈ V0, with the space

of Plücker quadratic forms on
∧2

V0. Since the ideal of Gr(2, V0) ⊂ P(
∧2

V0) is generated by the

Pl’ucker quadratic forms we get that τv0K is identified with the natural restriction map

V0 = H0(IGr(2,V0)(2))
τ
v0
K−→ H0(OK(2)) = Sym2K∨. (2.2.18)

It follows that if the scheme-theoretic intersection K ∩Gr(2, V0) is not empty nor a single reduced

point then τv0K is not injective. Now suppose that K ∩Gr(2, V0) is

(1′) empty i.e. Item (1) holds, or

(2′) a single reduced point, i.e. Item (2) holds.

Let

P(

2∧
V0)

Φ
99K |H0(IGr(2,V0)(2))|∨ = P(V ∨0 ) (2.2.19)

be the natural map: it associates to [α] /∈ Gr(2, V0) the projectivization of suppα. We have a

tautological identification

K
Φ|K
99K P(im τv0K )∨

and of course Φ|K is the Veronese embedding K→ |OK(2)|∨ followed by the projection with center

P(Ann(im τv0K )). Notice that τv0K is not injective if and only if dimP(Ann(im τv0K )) ≥ 1. Now

suppose that (1′) holds. Then Φ|K is regular and in fact it is an isomorphism onto its image - see

Lemma 2.7 of [15]. Since the chordal variety of the Veronese surface in |OK(2)|∨ is a hypersurface

it follows that dimP(Ann(im τv0K )) < 1 and hence τv0K is injective.We also get that Ann(im τv0K ) is a

point in |OK(2)|∨ which does not belong to the chordal variety of the Veronese surface and hence

it belongs to unique open PGL(K)-orbit. Now suppose that (2′) holds. Assume that τv0K is not

injective. Then dimP(Ann(im τv0K )) ≥ 1. It follows that there exist [x] 6= [y] ∈ K in the regular

locus of Φ|K (i.e. neither x nor y is decomposable) such that Φ([x]) = Φ([y]). By the description

of Φ given above in terms of supports we get that supp(x) = supp(y) = U where dimU = 4; since

Gr(2, U) is a hypersurface in P(
∧2

U) we get that the line 〈[x], [y]〉 ⊂ P(
∧2

V0) intersects Gr(2, U)

in a subscheme of length 2. Since 〈[x], [y]〉 ⊂ K it follows that K ∩ Gr(2, V0) contains a scheme

of length 2, that contradicts Item (2′). This proves that if (2′) holds then τv0K is injective. It also

follows that Ann(τv0K ) belongs to the Veronese surface in |OK(2)|∨ i.e. im(τv0K ) belongs to the unique

closed PGL(K)-orbit.
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3 Simultaneous resolution

In the first subsection we will analyze families of double EPW-sextics and their singular locus. The

second subsection shows how to construct the simultaneous desingularization described in Item (3)

of Section 0 (the relation with the Hilbert square of a K3 will be given in Section 4).

3.1 Families of double EPW-sextics

Let U ⊂ (LG(
∧3

V ) \ N(V )) (see (2.2.1)) be open. Suppose that there exist a scheme XU and a

finite fU : XU → YU such that for every A ∈ U the induced map f−1YA → YA is identified with

fA : XA → YA: then we say that a tautological family of double EPW-sextics parametrized by U
exists - often we simply state that fU : XU → YU exists. Composing fU with the natural map

YU → U we get a map ρU : XU → U such that ρ−1
U (A) ∼= XA.

Proposition 3.1. Let B ∈ LG(
∧3

V ). A tautological family of double EPW-sextics parametrized

by UB exists (UB is given by (2.2.3)).

Proof. Let ν : YUB → P(V ) be projection. Let ξUB := ζUB ⊗ν∗OP(V )(−3) where ζUB is the sheaf on

YUB fitting in (2.2.4). Look at Commutative Diagram (2.2.4): proceeding as in the definition of the

multiplication onOYA⊕ξA we get that βUB defines a multiplication onOYUB⊕ξUB . By Proposition

1.7 we get that OYUB ⊕ ξUB is an associative commutative ring. Let XUB := Spec(OYUB ⊕ ξUB )

and fUB : XUB → YUB be the structure map.

Let U ⊂ (LG(
∧3

V ) \N(V )) be open and such that fU : XU → YU exists. We will determine the

singular locus of XU . Let

Y[d] := {(A, [v]) ∈ (LG(
∧3

V ) \ N(V ))× P(V ) | dim(A ∩ Fv) ≥ d}, (3.1.1)

Y(d) := {(A, [v]) ∈ (LG(
∧3

V ) \ N(V ))× P(V ) | dim(A ∩ Fv) = d}. (3.1.2)

Then Y[d] has a natural structure of closed subscheme of LG(
∧3

V ) × P(V ) given by its local

description as a symmetric determinantal variety - see Subsection 2.2 of [15]. Let U ∈ (LG(
∧3

V )\
N(V )) be open. We let YU [d] := Y[d] ∩ YU and similarly for YU (d). Suppose that fU : XU → YU is

defined; we let

WU := f−1
U Y[3]. (3.1.3)

Notice that the restriction of fU to WU defines an isomorphism WU
∼−→ YU [3]. We will prove the

following result.

Proposition 3.2. Let U ⊂ (LG(
∧3

V ) \ N(V )) be open and suppose that fU : XU → YU exists.

Then singXU =WU .

Proof. We may assume that U = UB ×N where B ∈ LG(
∧3

V ) and N ⊂ P(V ) is an open subset

such that B t Fw for all w ∈ N . Then (see the proof of Proposition 3.1)

f−1
UB

(U) = Xγ where γ is given by (2.2.5). (3.1.4)

Thus it suffices to examine Xγ . Let (A, [v]) ∈ U and

δγ(A, [v]) : T(A,[v])LG(

3∧
V )× P(V ) −→ Sym2(A ∩ Fv)∨ (3.1.5)

be as in (1.3.3). The restriction of δγ(A, [v]) to the tangent space to LG(
∧3

V ) at A is surjective;

thus

δγ(A, [v]) is surjective. (3.1.6)

Let q ∈ Xγ and fU (q) = (A, [v]). Suppose that q /∈ WU i.e. that cork γ(p) ≤ 2. If cork γ(p) = 1

then YU = Yγ is smooth because the differential δγ(A, [v]) is surjective: by Proposition 1.5 we

get that XU is smooth at q. If cork γ(p) = 2 then XU is smooth at q by Proposition 1.12 - recall

that the differential δγ(A, [v]) is surjective. This proves that singXU ⊂ WU . On the other hand

WU ⊂ singXU by Claim 1.13.
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We will close the present subsection by proving a few results about the individual XA’s.

Lemma 3.3. Let A ∈ (LG(
∧3

V ) \ N(V )) and [v] ∈ YA. Suppose that dim(A ∩ Fv) ≤ 2 and that

there is no W ∈ ΘA (see (2.2.15)) containing v. Then XA is smooth at f−1
A ([v]).

Proof. Let q ∈ f−1
A ([v]). Suppose that dim(A ∩ Fv) = 1. By Corollary 2.5 of [15] we get that YA is

smooth at [v], thus XA is smooth at q by Proposition 1.5. Suppose that dim(A∩Fv) = 2. Locally

around q the double cover XA → YA is isomorphic to Xγ → Yγ where γ is the symmetrization of

the restriction of βA to an affine neighoborhood SpecR of [v]. Thus we may consider the differential

δγ([v]) - see (1.3.3). The differential is surjective by Proposition 2.9 of [15], thus XA is smooth at

q by Proposition 1.12.

Proposition 3.4. Let A ∈ (LG(
∧3

V )\N(V )). Then XA is smooth if and only if A ∈ LG(
∧3

V )0.

Proof. If A ∈ LG(
∧3

V )0 then XA is smooth by [12]. Suppose that XA is smooth. Then A /∈ ∆

by Claim 1.13. Assume that A ∈ Σ; we will reach a contradiction. Let W ∈ ΘA and [v] ∈ P(W )

- notice that P(W ) ⊂ YA. Let q ∈ f−1
A ([v]). Since A /∈ ∆ we have 1 ≤ dim(A ∩ Fv) ≤ 2. Suppose

that dim(A ∩ Fv) = 1. Then YA is singular at [v] by Corollary 2.5 of [15], thus XA is singular

at q by Proposition 1.5. Suppose that dim(A ∩ Fv) = 2. Let γ be as in the proof of Lemma

3.3. Then δγ([v]) is not surjective - see Proposition 2.3 of [15] - and hence XA is singular at q

by Proposition 1.12.

3.2 The desingularization

Definition 3.5. Let LG(
∧3

V )∗ ⊂ LG(
∧3

V ) be the set of A such that the following hold:

(1) A /∈ N(V ).

(2) YA[3] is finite.

(3) YA[3] = YA(3).

Remark 3.6. LG(
∧3

V )∗ is an open subset of LG(
∧3

V ).

Claim 3.7. (LG(
∧3

V ) \ Σ) ⊂ LG(
∧3

V )∗.

Proof. Item (1) of Definition 3.5 holds by Claim 2.11 of [15]. Let’s prove that Item (2) of Defini-

tion 3.5 holds. Suppose that YA[3] 6= YA(3) i.e. there exists [v0] ∈ P(V ) such that dim(A∩Fv0) ≥ 4.

Let V0 ⊂ V be a codimension-1 subspace transversal to [v0] and let ρv0V0
be as in (2.2.17). Let

K := P(ρv0V0
(A ∩ Fv0)). Then dim K ≥ 3; since Gr(2, V0) has codimension 3 in P(

∧2
V0) it follows

that there exists [α] ∈ K ∩Gr(2, V0). Let α̃ ∈ (A ∩ Fv0) such that ρv0V0
(α̃) = α. Then α̃ is non-zero

and decomposable, that is a contradiction because A /∈ Σ. Lastly let’s prove that Item (3) of Def-

inition 3.5 holds. Let [v0] ∈ YA[3] = YA(3). Then (A, [v0]) ∈ ∆̃(0). Let K := A ∩ Fv0 and τv0K be

as in (2.2.11). We have

T[v0]YA[3] = T[v0]YA(3) = ker τv0K .

By Proposition 2.5 the map τv0K is injective. Thus [v0] is an isolated point of YA[3].

Let A ∈ LG(
∧3

V )∗. Let U ⊂ LG(
∧3

V )∗ be a small open (either in the Zariski or in the

classical topology) subset containing A. In particular ρU : XU → YU exists. Let πU : X̃U → XU be

the blow-up of WU and EU be the exceptional set of πU .

Claim 3.8. Keep notation as above. Then X̃U is smooth. If U is open and sufficiently small in the

classical topology then we have a locally-trivial fibration

EU −→ YU [3]. (3.2.1)

Let (A, [v]) ∈ YU [3]. The fiber of (3.2.1) over (A, [v]) is isomorphic to P(A ∩ Fv)∨ × P(A ∩ Fv)∨
and the restriction of NEU/X̃U to the fiber is isomorphic to OP(A∩Fv)∨(−1)�OP(A∩Fv)∨(−1).
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Proof. By Proposition 3.2 we know that X̃U is smooth outside EU . It remains to examine X̃U
over WU ∼= YU [3]. We may assume that U = UB ×N is as in the proof of Proposition 3.2. We

will adopt the notation of that proof. Let q ∈ Xγ and fU (q) = (A, [v]) = p. A neighborhood of q in

XU is isomorphic to Xγ where γ is given by (2.2.5) - see (3.1.4). We are assuming that q ∈ WU and

hence cork γ(p) = 3. Let f : X(V) → Y (V) be as in Subsection 1.3 i.e. f is the universal double

covering of corank 3 at the origin. We claim that there exists a map ν : Xγ → X(V) such that the

following diagram commutes

Xγ

fγ

��

ν // X(V)

f

��
Yγ

µ // Y (V)

(3.2.2)

and Xγ is identified with the fibered product Yγ×Y (V)X(V). In fact it suffices to apply the reduction

procedure of Subsection 1.1 that leads to Claim 1.4. Let K be as in Claim 1.4: by (1.1.29)

we have (YγK , p) = (Yγ , p) and by Claim 1.4 we have a natural isomorphism (XγK , f
−1
γK (p))

∼→
(Xγ , f

−1
γ (p)) commuting with fγK and fγ . Let U = SpecR: we are free to replace U by any affine

open subset containing (A, [v]). Thus we may assume that K is a trivial R-module i.e. K = V ⊗R
where V is a complex 3-dimensional vector-space. Hence we may view γK as a map γK : SpecR→
Sym2 V∨. Notice that we have equality of schemes Yγ = γ−1

K Y (V); thus the restriction of γK to

Yγ defines a map µ : Yγ → Y (V). The claim follows. By surjectivity of δγ(A, [v]) - see (3.1.6) - we

get that the germ (Xγ , f
−1
γ (p)) is the product of a smooth germ (of dimension 54) and the germ

(X(V), f−1(0)). Looking at the explicit description of X(V) given by Proposition 1.14 we get

right away that X̃U is smooth over q and the remaining statements as well. We need to assume

that U is a small open subset in the classical topology in order to ensure that Map (3.2.1) is a

locally-trvial fibration.

Remark 3.9. Let A ∈ LG(
∧3

V )∗ and let YA[3] = {[v1], . . . , [vs]}. Let U ⊂ LG(
∧3

V )∗ be a small

open (in the classical topology) subset containing A. For each 1 ≤ i ≤ s choose a projection

EU ([vi]) −→ P(A ∩ Fv)∨. (3.2.3)

There exists a unique P2-fibration

ε : EU −→ ? (3.2.4)

where ? is itself a fibration over YU [3] with fiber P(A ∩ Fv)∨ over (A, [v]). We say that (3.2.3) is a

choice of P2-fibration ε for XA.

Let A ∈ LG(
∧3

V )∗ and choose a P2-fibration ε for XA. Let U ⊂ LG(
∧3

V )∗ be a small open

(in the classical topology) subset containing A. By Claim 3.8 the normal bundle of EU along

the fibers of (3.2.4) is OP2(−1). Thus there exists a contraction cU,ε : X̃U → X εU in the category of

complex manifolds fitting into a commutative diagram

X̃U

πεU   

cU,ε // X εU

gεU~~
XU

(3.2.5)

Let f εU = fU ◦ gεU : X εU → YU and ρεU : X εU → U be the map f εU followed by YU → U . Let

Xε
A := (ρεU )−1(A), gεA := gεU |XεA , f εA := f εU |XεA , OXεA(1) := (f εA)∗OYA(1), Hε

A ∈ |OXεA(1)|.

Our notation does not make any reference to U because the isomorphism class of the polarized

couple (Xε
A,OXεA(1)) does not depend on the open set U containing A. Notice that if A ∈ ∆ then

OXεA(1) is not ample, in fact it is trivial on s copies of P2 where s = |YA[3]|. Of course

(Xε
A,OXεA(1)) ∼= (XA,OXA(1)) if A ∈ (LG(

3∧
V ) \∆). (3.2.6)
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Proposition 3.10. Let A ∈ LG(
∧3

V )∗ and let ε be a choice of P2-fibration for XA.

(1) Xε
A is smooth away from (f εA)−1(

⋃
W∈ΘA

P(W )).

(2) If [vi] ∈ YA[3] then (f εA)−1[vi] ∼= P(A ∩ Fvi)∨.

(3) If ε′ is another choice of P2-fibration for XA there exists a commutative diagram

Xε
A

fεA !!

99K Xε′

A

fε
′
A}}

YA

(3.2.7)

where the birational map is the flop of a collection of (f εA)−1[vi]’s. Conversely every flop of a

collection of (f εA)−1[vi]’s is isomorphic to one Xε′

A .

Proof. Let’s prove Item (1). Xε
A is smooth away from (f εA)−1(YA[3] ∪

⋃
W∈ΘA

P(W )) by Lemma

3.3. It remains to prove that Xε
A is smooth at every point of (f εA)−1{[v1], . . . , [vs]} where

{[v1], . . . , [vs]} = YA[3] \
⋃

W∈ΘA

P(W ). (3.2.8)

Let U ⊂ LG(
∧3

V )∗ be a small open (in the classical topology) subset containing A. Let ρ̃U :=

ρU ◦ πU ; thus ρ̃U : X̃U → U . For 1 ≤ i ≤ s the fiber over (A, [vi]) of Fibration (3.2.1) is canonically

isomorphic to P(A ∩ Fvi)∨ × P(A ∩ Fvi)∨. Let X̂A ⊂ X̃U be the strict transform of XA. Abusing

notation we write

ρ̃−1
U (A) = X̂A ∪

s⋃
i=1

P(A ∩ Fvi)∨ × P(A ∩ Fvi)∨ . (3.2.9)

(Of course P(A ∩ Fvi)∨ × P(A ∩ Fvi)∨ denotes the fiber over (A, [vi]) of Fibration (3.2.1).) The

components P(A ∩ Fvi)∨ × P(A ∩ Fvi)∨ are pairwise disjoint. We claim that for i = 1, . . . , s the

intersection

EA,i := X̂A ∩ (P(A ∩ Fvi)∨ × P(A ∩ Fvi)∨) (3.2.10)

is a smooth symmetric divisor in the linear system |OP(A∩Fvi )∨(1) � OP(A∩Fvi )∨(1)|. In order to

prove this we go back to Map (1.3.15) - recall that V is a 3-dimensional complex vector space.

Pull-back by σ defines an isomorphism

Sym2 V∨ σ∗−→ (V∨ ⊗ V∨)Z/(2) =: Sym2 V∨ (3.2.11)

which is Gl(V)-equivariant. Isomorphism σ∗ induces a PGL(V)-equivariant isomorphism of pro-

jective spaces p : P(Sym2 V∨)
∼−→ P(Sym2 V∨). Of course p maps a point in the unique open

PGL(V)-orbit of P(Sym2 V∨) to a point in the unique open PGL(V)-orbit of P(Sym2 V∨). Now

let V = (A ∩ Fvi)∨. Let Ki := (A ∩ Fvi) and τviKi be as in (2.2.11). By Proposition 2.5 we

have that im(τviKi) belongs to the unique open PGL(Ki)-orbit of P(Sym2(A ∩ Fvi)). Commutative

Diagram (1.3.16) gives that EA,i is a symmetric smooth divisor in |OP(A∩Fvi )∨(1)�OP(A∩Fvi )∨(1)|.
Thus we have described ρ̃−1

U (A). Since Xε
U is obtained from X̃U by contracting EU along the

P2-fibration ε it follows that Xε
A is smooth at every point of (f εA)−1{[v1], . . . , [vs]}. This proves

Item (1). Since Xε
A is obtained from X̂A by contracting each of the divisors EA,i along the fibration

P1 → EA,i → P(A ∩ Fvi)∨ determined by ε (and similarly for ε′) we also get Items (2) and (3).

Corollary 3.11. Let A ∈ (LG(
∧3

V ) \ Σ). Then gεA : Xε
A → XA is a desingularization for every

choice of P2-fibration ε for XA.

Proof. By Claim 3.7 we know that A ∈ LG(
∧3

V )∗: thus Proposition 3.10 applies to Xε
A. Since

A /∈ Σ we get that Xε
A is smooth by Item (1) of Proposition 3.10.

Corollary 3.12. Let A,A′ ∈ (LG(
∧3

V ) \ Σ) and ε, ε′ be choices of P2-fibration for XA. The

quasi-polarized 4-folds (Xε
A, H

ε
A) and (Xε

A′ , H
ε
A′) are deformation equivalent.
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4 Double EPW-sextics parametrized by ∆

Let A ∈ ∆ and [v0] ∈ YA(3). In the first subsection we will associate to (A, [v0]) (under some

hypotheses which are certainly satisfied if A /∈ Σ) a K3 surface SA(v0) of genus 6, meaning that it

comes equipped with a big and nef divisor class DA(v0) of square 10. We will also prove a converse:

given a generic such pseudo-polarized K3 surface S there exist A ∈ ∆ and [v0] ∈ YA(3) such that

the pseudo-polarized surfaces S and SA(v0) are isomorphic. In the second subsection we will assume

that A ∈ (∆ \ Σ) - with this hypothesis DA(v0) is very ample. We will prove that there exists a

bimeromorphic map ψ : S
[2]
A (v0) 99K Xε

A where ε is an arbitrary choice of P2-fibration for XA. That

such a map exists for generic A ∈ ∆ could be proved by invoking the results of [14]. Here we will

present a direct proof (we will not appeal to [14] nor to [12]). Moreover we will prove that if SA(v0)

contains no lines (this will be the case for generic A) then there exists a choice of ε for which ψ

is regular - in particular Xε
A is projective for such ε. Lastly we will notice that the above results

show that a smooth double cover of an EPW-sextic is a deformation of the Hilbert square of a

K3 (and that the family of double EPW-sextics is a locally versal family of projective Hyperkähler

manifolds): the proof is more direct than the proof of [12].

4.1 EPW-sextics and K3 surfaces

Assumption 4.1. A ∈ LG(
∧3

V ), [v0] ∈ YA(3) and the following hold:

(a) There exists a codimension-1 subspace V0 ⊂ V such that
∧3

V0 t A i.e.
∧3

V0 ∩A = {0}.

(b) There exists at most one W ∈ ΘA containing v0.

(c) If W ∈ ΘA contains v0 then A ∩ (
∧2

W ∧ V ) =
∧3

W .

Remark 4.2. Let A ∈ (∆ \ Σ). Let [v0] ∈ YA(3) (= YA[3] by Claim 3.7). Then Assumption 4.1

holds. In fact Items (b) and (c) hold trivially while Item (a) holds by Claim 2.11 and Equation (2.81)

of [15].

Let (A, [v0]) be as in Assumption 4.1: we will define a surface SA(v0) of genus 6. The condition

that
∧3

V0 is transverse to A is open: thus we may assume that we have a direct-sum decomposition

V = [v0]⊕ V0. (4.1.1)

We will denote by D be the direct-sum decomposition of V appearing in (4.1.1). Let

KDA := ρv0V0
(A ∩ Fv0). (4.1.2)

where ρv0V0
is given by (2.2.17). Choose a volume-form on V0. Wedge-product followed by the

volume-form defines an isomorphism
∧3

V0
∼=
∧2

V ∨0 and hence it makes sense to let

FDA := P(AnnKDA ) ∩Gr(3, V0). (4.1.3)

By Proposition 5.2 and Proposition 5.3 (see the Appendix) we know that FDA is a Fano 3-fold

with at most one singular point. Next we will define a quadratic form on AnnKDA . By Item (a)

of Assumption 4.1 the subspace A is the graph of a map q̃DA :
∧2

V0 →
∧3

V0: explicitly

q̃DA (α) = β ⇐⇒ (v0 ∧ α+ β) ∈ A. (4.1.4)

The map q̃DA is symmetric because A,
∧2

V0 and
∧3

V0 are lagrangian subspaces of
∧3

V . Clearly

ker q̃DA = KDA : it follows that q̃DA induces an isomorphism

r̃DA :

2∧
V0/K

D
A
∼−→ AnnKDA ⊂

3∧
V0. (4.1.5)

The inverse (r̃DA )−1 defines a non-degenerate quadratic form (rDA )∨ on AnnKDA . For future reference

we unwind the definition of (r̃DA )−1 and (rDA )∨. Let β ∈ AnnKDA i.e.

v0 ∧ α+ β ∈ A, α ∈
2∧
V0. (4.1.6)
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Then

(r̃DA )−1(β) ≡ α (mod KDA ), (rDA )∨(β) = vol(v0 ∧ α ∧ β). (4.1.7)

Let V ((rDA )∨) ⊂ P(AnnKDA ) be the zero-scheme of (rDA )∨: a smooth 5-dimensional quadric. Let

SDA := V ((rDA )∨) ∩ FDA . (4.1.8)

Our first goal is to show that SDA does not depend on the choice of the subspace V0 ⊂ V comple-

mentary to [v0] i.e. it depends only on A and [v0]. First we notice that FDA is independent of V0. In

fact
∧3

V0 is transversal to Fv0 ; since both
∧3

V0 and Fv0 are Lagrangians the volume vol induces

an isomorphism

gV0
:

3∧
V0

∼−→ F∨v0 . (4.1.9)

Thus gV0 defines an inclusion

FDA ↪→ P(AnnKA) . (4.1.10)

Remark 4.3. The image of Map (4.1.10) does not depend on V0 i.e. it depends exclusively on A and

[v0] ∈ YA(3); we will denote it by ZA(v0).

Similarly gV0 defines an inclusion

gV0
: SDA ↪→ P(AnnKA) . (4.1.11)

Lemma 4.4. Keep notation and assumptions as above. Then gV0
(SDA ) is independent of V0, in

other words it depends exclusively on A and [v0] ∈ YA(3).

Proof. Let V ′0 ⊂ V be a codimension-1 subspace complementary to [v0] and transverse to A. Let

D′ denote the corresponding direct-sum decomposition of V ; we must show that

gV0
(SDA ) = gV ′0 (SD

′

A ) . (4.1.12)

The subspace V ′0 is the graph of a linear function

V0 −→ [v0]

v 7→ f(v)v0
(4.1.13)

and hence we have an isomorphism

V0
ψ−→ V ′0

v 7→ v + f(v)v0 .
(4.1.14)

We notice that
3∧
ψ(β) = β + v0 ∧ (f yβ) (4.1.15)

where y denotes contraction. In particular gV ′0 ◦
∧3

ψ = gV0
. Moreover φ :=

∧3
ψ|AnnKDA

is an

isomorphism between AnnKDA ⊂
∧3

V0 and AnnKD
′

A′ ⊂
∧3

V ′0 . Thus it suffices to prove that

φ(SDA ) = SD
′

A . (4.1.16)

We claim that

φ∗(rD
′

A )∨ − (rDA )∨ ∈ H0(IFDA (2)) . (4.1.17)

In fact let β ∈ AnnKDA ⊂
∧3

V0; then (4.1.6) holds. By (4.1.15) we get that

v0 ∧ (α− (f yβ)) + φ(β) = v0 ∧ α+ β ∈ A . (4.1.18)

By (4.1.15) we get that

φ∗(rD
′

A )∨(β) = vol(v0 ∧ (α− (f yβ)) ∧ φ(β)) =

vol(v0 ∧ α ∧ φ(β))− vol(v0 ∧ (f yβ) ∧ φ(β)) =

vol(v0 ∧ α ∧ β)− vol(v0 ∧ (f yβ) ∧ β) =

(rDA )∨(β)− vol(v0 ∧ (f yβ) ∧ β) . (4.1.19)

The second term in the last expression is the restriction to P(AnnKDA ) of a Plücker quadratic form

and hence it vanishes on FDA . This proves (4.1.17) and hence (4.1.16) holds.
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By the above lemma we may give the following definition.

Definition 4.5. Let A ∈ LG(
∧3

V ). Suppose that [v0] ∈ YA(3) and that Assumption 4.1 holds.

Let D be the direct-sum decomposition (4.1.1). We set

SA(v0) := gV0
(SDA ). (4.1.20)

Keep assumptions and notation as above. We single out special points of SA(v0) as follows.

Suppose that W ∈ ΘA (see (2.2.15) for the definition of ΘA) and assume that v0 /∈ W . Let γ be a

generator of
∧3

W i.e. γ is decomposable with supp(γ) = W . By hypothesis
∧3

V0 ∩ A = {0} and

hence W 6⊂ V0; thus

γ = (v0 + u1) ∧ u2 ∧ u3, ui ∈ V0 . (4.1.21)

Since v0 /∈W we have u1∧u2∧u3 6= 0; thus [u1∧u2∧u3] ∈ FDA . Moreover [u1∧u2∧u3] ∈ V ((rDA )∨)

by (4.1.7) and hence [u1 ∧ u2 ∧ u3] ∈ SDA . We let

ΘA \ {W | v0 ∈W}
θDA−→ SDA

W 7→ [u1 ∧ u2 ∧ u3] .
(4.1.22)

The map

θA(v0) := gV0 ◦ θDA : (ΘA \ {W | v0 ∈W})→ SA(v0) (4.1.23)

is independent of D, i.e. it depends exclusively on A and [v0]. Notice that θA(v0) is injective.

Proposition 4.6. Let A ∈ LG(
∧3

V ). Suppose that [v0] ∈ YA(3) and that Assumption 4.1

holds. Let D be the direct-sum decomposition (4.1.1). The set of points at which the intersection

V ((rDA )∨) ∩ FDA is not transverse is equal to

im θDA
∐

(SDA ∩ singFDA ). (4.1.24)

Proof. Let [β] ∈ SDA . In particular β is non-zero decomposable; let U := suppβ. Moreover since

[β] ∈ FDA we have that (4.1.6) holds; let α ∈
∧2

V0 be as in (4.1.6). We claim that

V ((rDA )∨) t FDA at [β] unless 〈α, KDA 〉 ∩
2∧
U 6= ∅. (4.1.25)

In fact the projective tangent space to Gr(3, V0) at [β] is given by

T[β]Gr(3, V0) = P(Ann(

2∧
U)) . (4.1.26)

On the other hand (4.1.7) gives that

T[β]V ((rDA )∨) = P(Annα) ∩ P(AnnKDA ) . (4.1.27)

Statement (4.1.25) follows at once from (4.1.26) and (4.1.27). Next we prove that

〈α, KDA 〉 ∩
2∧
U 6= ∅ if and only if [β] ∈ singFDA or [β] ∈ im θDA . (4.1.28)

Suppose that [β] ∈ singFDA ; then Item (1) of Proposition 5.3 gives that KDA ∩
∧2

U 6= ∅. Next

suppose that [β] ∈ im θDA ; then α ∈
∧2

U by (4.1.21). This proves the “if”implication of (4.1.28). Let

us prove the “only if”implication. First assume that KDA ∩
∧2

U 6= {0}. Let 0 6= κ0 ∈ KDA ∩
∧2

U .

Then κ0 is decomposable because dimU = 3 and hence [κ0] is the unique point belonging to

P(KDA ) ∩ Gr(2, V0). We get that [β] is the unique singular point of FDA by (5.0.8). Lastly assume

that KDA ∩
∧2

U = {0}. Then there exists κ ∈ KDA such that (α + κ) ∈
∧2

U . Since κ ∈ KDA we

have (v0 ∧ (α + κ) + β) ∈ A. The tensor (v0 ∧ (α + κ) + β) ∈ A is decomposable, let W be its

support. Then v0 /∈ W because β 6= 0 and hence [β] = θDA (W ). This finishes the proof of (4.1.28)

and of the proposition.
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Corollary 4.7. Let A ∈ LG(
∧3

V ). Suppose that [v0] ∈ YA(3) and that Assumption 4.1 holds.

Asssume in addition that ΘA is finite. Then SA(v0) is a reduced and irreducible surface with

singSA(v0) = im θA(v0)
∐

(SA(v0) ∩ singZA(v0)) . (4.1.29)

(See Remark 4.3 for the definition of ZA(v0).)

Proof. By Proposition 4.6 we know that SDA is a smooth surface outside the right-hand side

of (4.1.29). By hypothesis ΘA is finite and hence the right-hand side of (4.1.29) is finite. On the

other hand by Proposition 5.3 we know that ZA(v0) is a 3-fold with at most one singular point,

necessarily an ordinary quadratic singularity, and SDA is the complete intersection of ZA(v0) and a

quadric hypersurface. It follows that SDA is reduced and irreducible with singular set as claimed.

Corollary 4.8. Let hypotheses be as in Corollary 4.7. Suppose in addition that SA(v0) has Du

Val singularities. Let ŜA(v0) → SA(v0) be the minimal desingularization. Then ŜA(v0) is a K3

surface.

Proof. LetOZA(v0)(1) be the pull-back by Map (4.1.10) of the hyperplane line-bundle on P(Ann(Fv0∩
A)). Then SA(v0) ∈ |OZA(v0)(2)|. By Proposition 5.2 and Proposition 5.3 there exist smooth

divisors in |OZA(v0)(2)| and they are K3 surfaces; by simultaneous resolution of Du Val singularities

we get that ŜA(v0) is a K3 surface.

Corollary 4.9. Let A ∈ (∆\Σ). Let [v0] ∈ YA(3) (and hence Assumption 4.1 holds by Remark

4.2). Then SA(v0) is a (smooth) K3.

Proof. Immediate consequence of Corollary 4.8.

Under the hypotheses of Corollary 4.8 let OSA(v0)(1) be the restriction to SA(v0) of OZA(v0)(1).

Let OŜA(v0)(1) be the pull-back of OSA(v0)(1) to ŜA(v0). We set

DA(v0) ∈ |OSA(v0)(1)| D̂A(v0) ∈ |OŜA(v0)(1)|. (4.1.30)

Remark 4.10. Let hypotheses be as in Corollary 4.8. Then (ŜA(v0), D̂A(v0)) is a quasi-polarized

K3 surface of genus 6. Moreover the composition

ŜA(v0) −→ SA(v0) −→ P(Ann(Fv0 ∩A)) (4.1.31)

is identified (up to projectivities) with the map associated to the complete linear system |D̂A(v0)|.

Remark 4.10 has a converse; in order to formulate it we identify Fv0
∼=
∧2

(V/[v0]) (the

identification is well-defined up to homothety).

Assumption 4.11. K ∈ Gr(3, Fv0) and

(1) P(K) ∩Gr(2, V/[v0]) = ∅, or

(2) the scheme-theoretic intersection P(K) ∩Gr(2, V/[v0]) is a single reduced point.

Let

WK := P(AnnK) ∩Gr(3, V/[v0]). (4.1.32)

(This makes sense because we have an isomorphism
∧2

(V/[v0])
∼−→
∧3

(V/[v0])∨ well-defined up to

homothety). Let

S := WK ∩Q, Q ⊂ P(AnnK) a quadric. (4.1.33)

If Q is generic then S is a linearly normal K3 surface of genus 6, see Corollary 4.8. In fact

the family of such K3 surfaces is locally versal. More generally suppose that Assumption 4.11

holds, that S is given by (4.1.33) and that S has DuVal singularities. Let Ŝ → S be the minimal

desingularization - thus Ŝ is a K3 surface. Let D ∈ |OS(1)| and D̂ be the pull-back of D to Ŝ.

Consider the family S → B of deformations of (S,D) obtained by deforming slightly K and Q; by
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Brieskorn and Tjurina there is a suitable base change B̂ → B such that the pull-back of S to B̂

admits a simultaneous resolution of singularities Ŝ → B̂ with fiber Ŝ over the point corresponding

to S. Of course there is a divisor class D̂ on Ŝ whose restriction to Ŝ is D̂ - thus Ŝ → B̂ is a family

of quasi-polarized K3 surfaces. The following result is well-known - we omit the (standard) proof.

Proposition 4.12. Keep notation and hypotheses as above. The family Ŝ → B̂ is a versal family

of quasi-polarized K3 surfaces.

Lemma 4.13. Suppose that Assumption 4.11 holds. Let S be as in (4.1.33) and assume that Q

is transversal to WK outside a finite set - thus S is a surface with finite singular set. There exists

a smooth quadric Q′ ⊂ P(AnnK) such that S = WK ∩Q′.

Proof. Since WK is cut out by quadrics Bertini’s Theorem gives that the generic quadric in

P(AnnK) containing S is smooth outside singS; let Q0 = V (P0) be such a quadric. Let p ∈ singS.

The generic quadric Q′ = V (P ′) ∈ |IWK
(2)| is smooth at p and hence V (P0 + P ′) is smooth at

p. Since singS is finite we get that the generic quadric Q containing S is smooth at all points of

singS. It follows that the generic quadric Q containing S is smooth.

The following corollary provides an inverse of the process which produces SA(v0) out of (A, [v0]) ∈
∆̃(0) (with the extra hypotheses in Assumption 4.1).

Proposition 4.14. Suppose that Assumption 4.11 holds. Let S be as in (4.1.33) and assume

that Q is smooth and transversal to WK outside a finite set. There exist A ∈ ∆, [v0] ∈ P(V ) and a

codimension-1 subspace V0 ⊂ V transversal to [v0] such that the following hold:

(1)
∧3

V0 ∩A = {0},

(2) Items (c) and (d) of Assumption 4.1 hold,

(3) the natural isomorphism P(
∧3

(V/[v0]))
∼−→ P(

∧3
V0) maps S to SDA where D is the direct-sum

decomposition of V appearing in (4.1.1).

If we replace the quadric Q by a smooth quadric Q′ ⊂ P(AnnK) such that S = WK ∩ Q′ and let

A′ ∈ ∆ be the corresponding point, there exists a projectivity of P(V ) fixing [v0] which takes A to

A′.

Proof. Let Q = V (P ). The dual of AnnK is
∧2

(V/[v0])/K; thus the polarization of P defines a

non-degenerate symmetric map

AnnK
∼−→

2∧
(V/[v0])/K. (4.1.34)

The inverse of the above map is non-degenerate symmetric map

2∧
(V/[v0])/K

∼−→ AnnK. (4.1.35)

Composing on the right with
∧2

(V/[v0])
∼−→

∧2
(V/[v0]) and the quotient map

∧2
(V/[v0]) →∧2

(V/[v0])/K and on the left with AnnK ↪→
∧3

(V/[v0]) and
∧3

(V/[v0])
∼−→
∧3

(V/[v0]) we get a

symmetric map
2∧
V0 −→

3∧
V0 (4.1.36)

with 3-dimensional kernel corresponding to K. The graph of the above map is a Lagrangian A ∈
LG(

∧3
V ). One checks easily that (1), (2) and (3) hold. One gets that the projective equivalence

of A does not depend on Q by going through the proof of Lemma 4.4.
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4.2 Xε
A for A ∈ (∆ \ Σ)

Let S be a K3. Let ∆
[2]
S ⊂ S[2] be the irreducible codimension 1 subset parametrizing non-reduced

subschemes. There exists a square root of the line bundle OS[2](∆
[2]
S ): we denote by ξ its first Chern

class. There is a natural morphism of integral Hodge structures µ : H2(S) → H2(S[2]) such that

H2(S[2];Z) = µ(H2(S;Z)) ⊕ Zξ, see [1]. Let (·, ·) be the Beauville-Bogomolov bilinear symmetric

form on H2(S[2]). It is known [1] that

(µ(η), µ(η)) =

∫
S

c1(η)2, µ(H2(S;Z))⊥Zξ, (ξ, ξ) = −2. (4.2.1)

Since S and S[2] are regular varieties we may identify their Picard groups with H1,1
Z (S) and

H1,1
Z (S[2]) respectively. Let C ∈ Pic(S); abusing notation we will denote by µ(C) the class in

Pic(S[2]) corresponding to µ(OS(C)) ∈ H1,1
Z (S): if C is an integral curve it is represented by

subschemes whose support intersects C. The following is the main result of the present subsection.

Theorem 4.15. Let A ∈ (∆ \ Σ) and [v0] ∈ YA[3] (= YA(3) by Claim 3.11 of [15]) - thus SA(v0)

is a K3 surface by Corollary 4.9. Then the following hold:

(1) If SA(v0) does not contain lines (true for generic A by Proposition 4.12) then there exist a

choice ε of P2-fibration for XA and an isomorphism.

ψ : SA(v0)[2] 99K Xε
A (4.2.2)

such that

ψ∗Hε
A ∼ µ(DA(v0))−∆

[2]
SA(v0). (4.2.3)

(2) Let A and ε be arbitrary. There exists a bimeromorphic map

ψ : SA(v0)[2] 99K Xε
A (4.2.4)

such that (4.2.3) holds.

Remark 4.16. Suppose that SA(v0) contains a line L. The restriction of the right-hand side of (4.2.3)

to L(2) (embedded in SA(v0)[2]) is OL(2)(−1). Since Hε
A is nef we get that in this case Map (4.2.4)

cannot be regular.

The proof of Theorem 4.15 will be given after a series of auxiliary results. Let S ⊂ P6

be a linearly normal K3 surface of genus 6 such that IS/P6(2) is globally generated; then S is

projectively normal and hence Riemann-Roch gives that dim |IS(2)| = 5. One defines a rational

map S[2] 99K |IS(2)|∨ as follows. Given [Z] ∈ S[2] we let 〈Z〉 ⊂ P5 be the line spanned by Z. We

let
(S[2] \

⋃
L ⊂ S line

L(2))
g−→ |IS(2)|∨ ∼= P5

[Z] 7→ {Q ∈ |IS(2)| | s.t. Q ⊃ 〈Z〉} .

(4.2.5)

Let D be a hyperplane divisor on S; one shows (see Claim (5.16) of [11]) that

g∗OP5(1) ∼= µ(D)−∆
[2]
S . (4.2.6)

(Notice that the set of lines on S is finite and hence
⋃
L⊂Sline L

(2) has codimension 2 in S[2].) In

fact g can be identified with the map associated to the complete linear system |(µ(D)−∆
[2]
S )|. We

will analyze g under the assumption that S is generic (in a precise sense).

Assumption 4.17. Item (1) of Assumption 4.11 holds.

S := WK ∩Q (4.2.7)

where Q ⊂ P(AnnK) is a quadric intersecting transversely WK .

25



Let S ⊂ P(AnnK) be as in Assumption 4.17. Then S is a linearly normal K3 surface of genus

6 and IS(2) is globally generated. Thus the map g of (4.2.5) is defined. Let F (WK) be the variety

parametrizing lines in WK . Since the set of lines in S is finite (empty for generic S by Proposition

4.12) we have a map

(F (WK) \ {L | L ⊂ S}) −→ S[2]

L 7→ L ∩Q . (4.2.8)

Definition 4.18. Let P 0
S ⊂ S[2] be the image of Map (4.2.8) and PS be its closure in S[2].

We recall that F (WK) ∼= P2 by Iskovskih’s Proposition 5.2.

Claim 4.19. Let S ⊂ P(AnnK) be as in Assumption 4.17. Suppose moreover that S contains

no lines. Let C1, C2, . . . , Cs be the (smooth) conics contained in S (of course the generic S contains

no conics). Then PS , C
(2)
1 , . . . , C

[2]
s are pairwise disjoint subset of S[2]. Moreover there exists a

biregular morphism

c : S[2] −→ N(S). (4.2.9)

contracting each of PS , C
(2)
1 , . . . , C

[2]
s . Thus N(S) is a compact complex normal space with

singN(S) = {c(PS), . . . , c(C(2)), . . . | C ⊂ S a conic} (4.2.10)

and c is an isomorphism of the complement of PS ∪C(2)
1 ∪ . . .∪C

[2]
s onto the smooth locus of N(S).

The map g (regular on all of S[2] because S contains no lines) descends to a regular map

g : N(S)→ |IS(2)|∨, g ◦ c = g . (4.2.11)

Proof. PS is isomorphic to P2 by Iskovskih’s Proposition 5.2 and each C
(2)
i is isomorphic to

P2 because Ci is a conic. Thus each of PS , Ci can be contracted individually. Let’s show that

PS , C
(2)
1 , . . . , C

[2]
s are pairwise disjoint. Suppose that [Z] ∈ PS∩C(2)

i . Let Λ be the plane containing

Ci. Then Λ∩WK contains the line 〈Z〉 and the smooth conic Ci. Since WK is cut out by quadrics it

follows that Λ ⊂WK , that is absurd because WK contains no planes. This proves that PS∩C(2)
i = ∅.

On the other hand there does not exist [Z] ∈ C(2)
i ∩C

(2)
j by Corollary 5.5. that PS , C

(2)
1 , . . . , C

[2]
s

are pairwise disjoint. Thus the contraction (4.2.9) exists. It remains to prove that g is constant on

each of PS , C
(2)
1 , . . . , C

[2]
s . In fact if [Z] ∈ PS then g([Z]) = |IWK

(2)|, if [Z] ∈ C(2)
i then

g([Z]) = {Q ∈ |IS(2)| | Q ⊃ 〈Ci〉}.

Now we go back to the “general”case: we suppose that Assumption 4.17 holds however S

may very well contain lines. Let

S
[2]
? := S[2] \ PS \

⋃
R ⊂ S line or conic

Hilb2R . (4.2.12)

(Notice that if R ⊂ S is a conic which is not smooth then we delete all [Z] ∈ S[2] such that Z is

contained in the scheme R.) The following result is essentially Lemma 3.7 of [14].

Proposition 4.20. Suppose that Assumption 4.17 holds.

(1) The fibers of g|
S

[2]
?

are finite of cardinality at most 2 and the generic fiber has cardinality 2.

(2) There exist an open dense subset A ⊂ S
[2]
? and an anti-symplectic (and hence non-trivial)

involution φ : A → A such that

(g|A) ◦ φ = g|A . (4.2.13)

The induced map

A/〈φ〉 −→ g(A) (4.2.14)

is a bijection.
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(3) If in addition S does not contain lines φ descends to a regular involution φ : N(S) → N(S)

such that g ◦ φ = g and the induced map

j : N(S)/〈φ〉 −→ g(S[2]) (4.2.15)

is a bijection. Moreover

cod(Fix(φ), N(S)) ≥ 2 (4.2.16)

where Fix(φ) is the fixed-locus of φ.

Let A and [v0] be as in the statement of Theorem 4.15: we will perform the key computation

one needs to prove that theorem. Let V0 ⊂ V be a codimension-1 subspace transversal to [v0] and

such that
∧3

V0 ∩ A = {0}. Let D be Decomposition V = [v0] ⊕ V0 and SDA be given by (4.1.8) -

thus SDA sits in P(AnnKDA ) ∩Gr(3, V0) and is isomorphic to SA(v0). Let f ∈ V ∨0 ; we let qf be the

quadratic form on
∧3

V0 defined by setting

qf (ω) := vol0((f yω) ∧ ω) (4.2.17)

where vol0 is a volume-form on V0. Then qf is a Plücker quadric, in fact we have an isomorphism

V ∨0
∼−→ H0(IGr(3,V0)(2))

f 7→ qf .
(4.2.18)

Let V ∨ = [v∨0 ] ⊕ V ∨0 be the dual decomposition of D; thus v∨0 ∈ AnnV0 and v∨0 (v0) = 1. We have

an isomorphism
[v∨0 ]⊕ V ∨0

∼−→ H0(IS∨A(2))

xv∨0 + f 7→ x(rDA )∨ + qf .
(4.2.19)

We let

ι : |ISDA (2)|∨ ∼−→ P(V ) (4.2.20)

be the projectivization of the transpose of (4.2.19).

Proposition 4.21. Let A and [v0] be as in the statement of Theorem 4.15 and keep notation as

above. Let g be Map (4.2.5) for SDA - this makes sense by Corollary 4.9. Then ι(im g) ⊂ YA.

Proof. Let

[Z] ∈ ((SDA )
[2]
? \∆

[2]

SDA
\ PSDA ) . (4.2.21)

We will prove that

ι(g([Z]) ∈ YA . (4.2.22)

This will suffice to prove the lemma because the right-hand side of (4.2.21) is dense in (SDA )
[2]
?

and YA is closed. By hypothesis Z is reduced; thus Z = {[β], [β′]} where β, β′ ∈
∧3

V0 are

decomposable. The line 〈[β], β′]〉 spanned by [β] and [β′] is not contained in FDA because [Z] /∈ PSDA .

Thus 〈[β], β′]〉 is not contained in Gr(3, V0) and it follows that the vector sub-spaces of V0 supporting

the decomposable vectors β and β′ intersect in a 1-dimensional subspace. Thus there exists a basis

{v1, . . . , v5} of V0 such that

β = v1 ∧ v2 ∧ v3, β′ = v1 ∧ v4 ∧ v5 . (4.2.23)

We may assume moreover that vol0(v1 ∧ v2 ∧ v3 ∧ v4 ∧ v5) = 1. By (4.1.6) and (4.1.7) there exist

α, α′ ∈
∧2

V0 such that

v0 ∧ α+ β, v0 ∧ α′ + β′ ∈ A, α ∧ β = α′ ∧ β′ = 0 . (4.2.24)

Since A is Lagrangian we get that

vol0(α ∧ β′) = vol0(α′ ∧ β) =: c . (4.2.25)
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Let t0, . . . , t5 ∈ C; a straightforward computation gives that

(t0(rDA )∨ +

5∑
i=1

tiqv∨i )(β + β′) = 2ct0 + 2t1 . (4.2.26)

Thus

ι(g([Z])) = [cv0 + v1] . (4.2.27)

It remains to prove that

[cv0 + v1] ∈ YA . (4.2.28)

Let KDA be as in (4.1.2); we claim that it suffices to prove that there exist (x, x′) ∈ (C2 \ {(0, 0)})
and κ ∈ KDA such that

(cv0 + v1) ∧ (x(v0 ∧ α+ β) + x′(v0 ∧ α′ + β′) + v0 ∧ κ) = 0 . (4.2.29)

In fact assume that (4.2.29) holds. Then

0 6= (x(v0 ∧ α+ β) + x′(v0 ∧ α′ + β′) + v0 ∧ κ) ∈ A ∩ Fcv0+v1 . (4.2.30)

(The inequality holds because β, β′ are linearly independent.) A straightforward computation gives

that (4.2.29) is equivalent to

x(cβ − v1 ∧ α) + x′(cβ′ − v1 ∧ α′) = v1 ∧ κ . (4.2.31)

As is easily checked we have

(cβ − v1 ∧ α), (cβ′ − v1 ∧ α′) ∈ ([v1] ∧ (

2∧
〈v2, v3, v4, v5〉)) ∩ {v2 ∧ v3, v4 ∧ v5}⊥ (4.2.32)

where perpendicularity is with respect to wedge-product followed by vol0. Multiplication by v1 gives

an injection KDA ↪→ ([v1] ∧ (
∧2〈v2, v3, v4, v5〉)); in fact no non-zero element of KDA is decomposable

because A /∈ Σ. Since the right-hand side of (4.2.32) has dimension 4 and dimKDA = 3 we get that

there exists (x, x′) ∈ (C2 \ {(0, 0)}) such that (4.2.31) holds.

Lemma 4.22. Let A ∈ (LG(
∧3

V ) \ Σ). Then YA(1) is not empty, the topological double cover

f−1
A YA(1)→ YA(1) is not trivial and YA is integral.

Proof. By Claim 3.7 we know that YA[3] is finite. On the other hand (YA[2] \ YA[3]) is a smooth

surface - see Proposition 2.8 of [12]. Since sing YA ⊂ YA[2] it follows that YA is integral and YA(1)

is connected. Let [v0] ∈ (YA[2] \YA[3]). By Proposition 1.5 we know that f−1
A ([v0]) is a singleton

{q}. Moreover XA is smooth at q by Lemma 3.3. Thus there exists an open neighborhood U of

[v0] in YA such that f−1
A U is smooth. Moreover (f−1

A YA[2])∩f−1
A U is nowhere dense in f−1

A U . Since

f−1
A U is smooth the complement f−1

A (YA(1) ∩ U) is connected. Since YA(1) is connected it follows

that f−1
A YA(1) is connected.

Proposition 4.23. Keep hypotheses and notation as in Proposition 4.21. Then ι(im g) = YA.

Proof. By Item (1) of Proposition 4.20 the map g has finite generic fiber and hence dim im g = 4.

By Proposition 4.21 we get that ι(im g) is an irreducible component of YA. On the other hand

YA is irreducible by Lemma 4.22; it follows that ι(im g) = YA.

Remark 4.24. Keep notation as in Proposition 4.21; then

ι ◦ g(P 0
SDA

) = ι(H0(IFDA (2))) = [v0]. (4.2.33)
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Proof of Theorem 4.15. Let’s prove that Item (1) holds. Let A and [v0] be as in the statement

of Theorem 4.15. Let V0 ⊂ V be a codimension-1 subspace transversal to [v0] and such that∧3
V0 ∩ A = {0}. Let D be Decomposition V = [v0] ⊕ V0. In order to simplify notation we set

S = SDA ; thus S ∼= SA(v0) and by hypothesis S does not contain lines. Let j be the map of (4.2.15);

by Proposition 4.21 the composition ι ◦ j is a map

ι ◦ j : N(S)/〈φ〉 −→ YA . (4.2.34)

We claim that ι ◦ j is an isomorphism: in fact it has finite fibers and is birational by Proposition

4.20, since dim sing YA = 2 (because A /∈ Σ) the hypersurface YA is normal and hence ι ◦ j is an

isomorphism. Let π : N(S) → N(S)/〈φ〉 be the quotient map. By (4.2.16) the singular locus of

N(S)/〈φ〉 is the image of Fix(φ) (and thus isomorphic to Fix(φ)); since (4.2.34) is an isomorphism

we get that
N(S) \ Fix(φ) −→ Y smA

x 7→ ι ◦ j ◦ π(x)
(4.2.35)

is a topological covering of degree 2. We claim that

π1(Y smA ) ∼= Z/(2) . (4.2.36)

In fact (N(S)\Fix(φ)) ∼= (S[2]\(PS∪Fix(φ|S[2]\PS )). Since (PS∪Fix(φ|S[2]\PS )) is of codimension 2 in

the simply connected manifold S[2] we get that (N(S)\Fix(φ)) is simply connected. Thus (4.2.35) is

the universal covering of Y smA and we get (4.2.36). On the other hand Y smA ⊂ YA(1) by Corollary 1.5

of [15] and thus by Lemma 4.22 we get that f−1
A Y smA → Y smA is the universal covering of Y smA as

well. Hence both XA and N(S) are normal completions of the universal cover of Y smA such that the

extended maps to YA are finite; it follows that they are isomorphic (over YA). The singular locus

of N(S) is given by (4.2.10). On the other hand singXA = YA[3]. By Remark 4.24 we can order

the set of (smooth) conics on S, say C1, . . . , Cs and the set of points in YA[3] different from [v0],

say [v1], . . . , [vs] so that

ψ(c(PS)) = [v0], ψ(c(C
(2)
i )) = [vi], 1 ≤ i ≤ s. (4.2.37)

(Recall Remark 4.24.) Let ε0 be a choice of P2-fibration for XA; then ψ defines a birational map

ψ0 : S[2] 99K Xε0
A such that

ψ∗0H
ε0
A
∼= µ(D)−∆

[2]
S (4.2.38)

where D is the hyperplane class of S (thus (S,D) is isomorphic to (SA(v0), DA(v0))). The birational

map ψ0 is an isomorphism away from

PS ∪ C(2)
1 ∪ . . . ∪ C(2)

s . (4.2.39)

It follows that ψ0 is the flop of a collection of irreducible components of (4.2.39). By Proposition

3.10 we get that there exists a choice of P2-fibration for XA, call it ε, such that the corresponding

birational map ψ : S[2] 99K Xε
A is biregular. Equation (4.2.3) follows from (4.2.38). This finishes

the proof that Item (1) holds. Item (2) follows from Item (1) and a specialization argument - we

leave the details to the reader.

We close the present subsection by reproving a result of ours. Let hA := c1(OXA(HA)).

Theorem 4.25 (O’Grady [12]). Let A ∈ LG(
∧3

V )0. Then XA is a deformation of (K3)[2] and

(hA, hA)XA = 2. Any small deformation of (XA, HA) (i.e. a small deformation of XA keeping hA
of type (1, 1)) is isomorphic to (XB , HB) for some B ∈ LG(

∧3
V )0.

Proof. Let A0 ∈ (∆ \ Σ) and [v0] ∈ YA0 [3]. Suppose moreover that SA0(v0) does not contain lines.

By Theorem 4.15 there exists a choice ε of P2-fibration for XA0
such that we have an isomorphism

ψ : S[2] ∼−→ Xε
A0
, ψ∗Hε

A0
∼ µ(DA(v0))−∆

[2]
SA0

(v0). (4.2.40)
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On the other hand (XA, HA) is a deformation of (Xε
A0
, Hε

A0
) by Corollary 3.12. This proves that

(XA, HA) is a deformation of (S[2], (µ(DA(v0))−∆
[2]
SA0

(v0))). By (4.2.1) we get that (hA, hA)XA = 2.

Lastly we prove that an arbitrary small deformation of (XA, HA) is isomorphic to (XA′ , HA′) for

some A′ ∈ LG(
∧3

V )0. The deformation space of (XA, HA) has dimension given by

dim Def(XA, HA) = h1,1(XA)− 1 = 20 . (4.2.41)

On the other hand LG(
∧3

V )0 is contained in the locus of points in LG which are stable for the

natural (linearized) PL(V )-action - this is proved in [12]. Thus by varying A ∈ LG(
∧3

V ) we get

dimLG(

3∧
V )− dimSL(V ) = 55− 35 = 20 (4.2.42)

moduli of double EPW-sextics. Since (4.2.41) and (4.2.42) are equal we conclude that an arbitrary

small deformation of (XA, HA) is isomorphic to (XB , HB) for some B ∈ LG(
∧3

V )0.

5 Appendix: Three-dimensional sections of Gr(3,C5)

In the present section V0 is a complex vector-space of dimension 5. Choose a volume form vol0 on

V0; it defines an isomorphism ∧2
V0

∼−→
∧3

V ∨0
α 7→ ω 7→ vol0(α ∧ ω)

(5.0.1)

Let K ⊂
∧2

V0 be a 3-dimensional subspace such that either

P(K) ∩Gr(2, V0) = ∅ (5.0.2)

or else

P(K) ∩Gr(2, V0) = {[κ0]} = P(K) ∩ T[κ0]Gr(2, V0) . (5.0.3)

In other words either P(K) does not intersects Gr(2, V0) or else the scheme-theoretic intersection is

a single reduced point. We will describe

WK := P(AnnK) ∩Gr(3, V0) (5.0.4)

First we recall that the dual of Gr(3, V0) is Gr(2, V0). More precisely let [α] ∈ P(
∧2

V0): then

sing(P(Annα) ∩Gr(3, V0)) = {U ∈ Gr(3, V0) | U ⊃ suppα}. (5.0.5)

In particular P(Annα) is tangent to Gr(3, V0) if and only if [α] ∈ Gr(2, V0) (and if that is the case it

is tangent along a P2). Secondly we record the following observation (the proof is an easy exercise).

Lemma 5.1. Let U ⊂ V0 be a codimension-1 subspace. Let α ∈
∧2

V0. Then

α ∧ (

3∧
U) = 0 (5.0.6)

if and only if suppα ⊂ U .

We recall the following result of Iskovskih.

Proposition 5.2 (Iskovskih [10]). Keep notation as above. Let K ⊂
∧2

V0 be a 3-dimensional

subspace such that (5.0.2) holds. Then

(1) WK is a smooth Fano 3-fold of degree 5 with ωWK
∼= OWK

(−2),

(2) the Fano variety F (WK) parametrizing lines on WK (reduced structure) is isomorphic to P2,

(3) the projective equivalence class of WK does not depend on K.
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Proposition 5.3. Keep notation as above. Let K ⊂
∧2

V0 be a sub vector-space of dimension 3

such that (5.0.3) holds. Then WK is a singular Fano 3-fold of degree 5 with ωWK
∼= OWK

(−2) and

one singular point which is ordinary quadratic and belongs to

{U ∈ Gr(3, V0) | U ⊃ suppκ0}. (5.0.7)

Proof. If κ ∈ (K \ [κ0]) then κ is not decomposable and hence P(Annκ) is transverse to Gr(3, V0);

by (5.0.5) we get that

singWK = {U ∈ Gr(3, V0) | U ⊃ suppκ0} ∩ P(AnnK) . (5.0.8)

We claim that the above intersection consists of one point. First notice that we have a natural

identification

{U ∈ Gr(3, V0) | U ⊃ suppκ0} ∼= P(V0/ suppκ0) (5.0.9)

and a linear map

K
ν−→ (V0/ suppκ0)∨

κ 7→ (v 7→ vol0(v ∧ κ0 ∧ κ))
(5.0.10)

where v ∈ V0 and v is its class in V0/ suppκ0. Given (5.0.8) and Identification (5.0.9) we get that

singWK = P(Ann im ν) . (5.0.11)

Of course κ0 ∈ ker ν and hence in order to prove that singWK is a singleton it suffices to prove

that ker ν = [κ0]. If κ ∈ (K \ [κ0]) then κ0 ∧ κ 6= 0; in fact this follows from (5.0.3) together with

the equality

P{κ ∈
2∧
V0 | κ0 ∧ κ = 0} = T[κ0]Gr(2, V0) . (5.0.12)

Since κ0 ∧ κ 6= 0 we have ν(κ) 6= 0. This proves that singWK consists of a single point. The

formula for the dualizing sheaf of WK follows at once from adjunction. It remains to prove that

WK has a single singular point and that it is an ordinary quadratic point. Let W̃K ⊂ P(suppκ0)×
P(V0/ suppκ0)×WK be the closed subset defined by

W̃K := {([v], U,W ) | v ∈W ⊂ U} . (5.0.13)

The projection W̃K → P(V0/ suppκ0) is a P1-fibration and hence W̃K is smooth. One shows that

the projection π : W̃K → WK is the blow-up of singWK . Moreover π−1(singWK) ∼= P1 × P1 and

one gets that the singularity of WK is ordinary quadratic.

Our last result is about the base-locus of 3-dimensional linear systems of quadrics containing WK

for K ⊂
∧2

V0 a 3-dimensional subspace such that (5.0.2) holds. First we consider the analogous

question for the Grassmannian Gr(3,
∧3

V0). Let’s consider the rational map

P(

3∧
V0)

Φ
99K |IGr(3,V0)(2)|∨ ∼= P(V0) (5.0.14)

where the last isomorphism is given by (4.2.18). Let Z ⊂ P(
∧3

V0) × P(V0) be the incidence

subvariety defined by

Z := {([ω], [v]) | v ∧ ω = 0} . (5.0.15)

Then we have a commutative triangle

Z

Φ̃

""

Ψ

{{
P(
∧3

V0)
Φ
99K P(V0)

(5.0.16)

where Ψ and Φ̃ are the restrictions to Z of the two projections of P(
∧3

V0)× P(V0). Moreover Ψ is

the blow-up of Gr(3, V0). In particular the following holds: if ω ∈
∧3

V0 is not decomposable then
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there exists a unique [v] ∈ P(V0) such that v ∧ ω = 0 and moreover Φ([ω]) = [v]. Let [v] ∈ P(V0);

by (4.2.18) we may view Ann(v) ⊂ V ∨0 as a hyperplane in |IGr(3,V0)(2)|; by commutativity of (5.0.16)

we have ⋂
f∈Ann(v)

V (qf ) = Gr(3, V0) ∪ {[ω] ∈ P(

3∧
V0) | v ∧ ω = 0}. (5.0.17)

Proposition 5.4. Let K ⊂
∧2

V0 be a 3-dimensional subspace such that (5.0.2) holds. Let L ⊂
|IWK

(2)| be a hyperplane (here IWK
is the ideal sheaf of WK in P(AnnK)). Then⋂

t∈L
Qt = WK ∪RL (5.0.18)

where RL is a plane. Moreover WK ∩RL is a conic.

Proof. Restriction to P(AnnK) defines an isomorphism

|IGr(3,V0)(2)| ∼−→ |IWK
(2)| . (5.0.19)

By (4.2.18) we get that we may identify L with P(Ann(v)) for a well-defined [v] ∈ P(V0) and each

quadric Qt for t ∈ L with P(AnnK) ∩ V (qf ) for a suitable [f ] ∈ P(Ann(v)). By (5.0.17) we have⋂
f∈Ann(v)

(P(AnnK) ∩ V (qf )) = WK ∪RL (5.0.20)

where

RL := P(AnnK) ∩ {[ω] ∈ P(

3∧
V0) | v ∧ ω = 0}. (5.0.21)

Thus RL is a linear space of dimension at least 2. Now notice that we have an isomorphism∧2
(V0/[v])

∼−→ {[ω] ∈ P(
∧3

V0) | v ∧ ω = 0}
α 7→ v ∧ α

(5.0.22)

where α ∈
∧2

V0 is an element mapped to α by the quotient map
∧2

V0 →
∧2

(V0/[v]). Since

dim(V0/[v]) = 4 the Grassmannian Gr(2, V0/[v]) is a quadric hypersurface in P(
∧2

(V0/[v])); it

follows that either RL ⊂WK or RL ∩WK is a quadric hypersurface in RL. By Lefschetz Pic(WK)

is generated by the hyperplane class; it follows that WK contains no planes and no quadric surfaces.

Thus necessarily dimRL = 2, moreover RL 6⊂WK and the intersection RL ∩WK is a conic.

Corollary 5.5. Let K ⊂
∧2

V0 be a 3-dimensional subspace such that (5.0.2) holds and C(WK) be

the variety parametrizing conics on WK (reduced structure). Then we have an isomorphism

|IWK
(2)|∨ ∼−→ C(WK)

L 7→ RL ∩WK
(5.0.23)

where RL is as in Proposition 5.4. Moreover given Z ∈W [2]
K there exists a unique conic containing

Z namely RL ∩WK where L ∈ |IWK
(2)|∨ is the hypeprlane of quadrics containing 〈Z〉.
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