Double covers of EPW-sextics

Kieran G. O'Grady*

"Sapienza" Università di Roma

June 8 2011

Contents

0	Introduction	1
1	Symmetric resolutions and double covers	4
	1.1 Product formula and double covers	. 4
	1.2 Structure sheaf of double EPW-sextics	. 8
	1.3 Local models of double covers	. 9
2	The divisor Δ	12
	2.1 Parameter counts	. 12
	2.2 First order computations	. 13
3	Simultaneous resolution	16
	3.1 Families of double EPW-sextics	. 16
	3.2 The desingularization	. 17
4	Double EPW-sextics parametrized by Δ	20
	4.1 EPW-sextics and $K3$ surfaces	. 20
	4.2 X_A^{ϵ} for $A \in (\Delta \setminus \Sigma)$. 25
5	Appendix: Three-dimensional sections of $Gr(3, \mathbb{C}^5)$	30

0 Introduction

EPW-sextics are defined as follows. Let V be a 6-dimensional complex vector space. Choose a volume-form vol: $\bigwedge^6 V \xrightarrow{\sim} \mathbb{C}$ and equip $\bigwedge^3 V$ with the symplectic form

$$(\alpha, \beta)_V := \operatorname{vol}(\alpha \wedge \beta). \tag{0.0.1}$$

Let $\mathbb{LG}(\bigwedge^3 V)$ be the symplectic Grassmannian parametrizing Lagrangian subspaces of $\bigwedge^3 V$ - of course $\mathbb{LG}(\bigwedge^3 V)$ does not depend on the choice of volume-form. Let $F \subset \bigwedge^3 V \otimes \mathcal{O}_{\mathbb{P}(V)}$ be the sub vector-bundle with fiber

$$F_v := \{ \alpha \in \bigwedge^3 V \mid v \land \alpha = 0 \}$$

$$(0.0.2)$$

over $[v] \in \mathbb{P}(V)$. Notice that $(,)_V$ is zero on F_v and $2\dim(F_v) = 20 = \dim \bigwedge^3 V$; thus F is a Lagrangian sub vector-bundle of the trivial symplectic vector-bundle on $\mathbb{P}(V)$ with fiber $\bigwedge^3 V$. Next choose $A \in \mathbb{LG}(\bigwedge^3 V)$. Let

$$F \xrightarrow{\lambda_A} (\bigwedge^3 V/A) \otimes \mathcal{O}_{\mathbb{P}(V)}$$
(0.0.3)

^{*}Supported by PRIN 2007

be the composition of the inclusion $F \subset \bigwedge^3 V \otimes \mathcal{O}_{\mathbb{P}(V)}$ followed by the quotient map. Since $\operatorname{rk} F = \dim(V/A)$ the determinat of λ_A makes sense. Let

$$Y_A := V(\det \lambda_A).$$

A straightforward computation gives that det $F \cong \mathcal{O}_{\mathbb{P}(V)}(-6)$ and hence det $\lambda_A \in H^0(\mathcal{O}_{\mathbb{P}(V)}(6))$. It follows that if det $\lambda_A \neq 0$ then Y_A is a sextic hypersurface. As is easily checked det $\lambda_A \neq 0$ for generic $A \in \mathbb{LG}(\bigwedge^3 V)$ (notice that there exist "pathological" A's such that $\lambda_A = 0$ e.g. $A = F_{v_0}$). An *EPW-sextic* (after Eisenbud, Popescu and Walter [5]) is a sextic hypersurface in \mathbb{P}^5 which is projectively equivalent to Y_A for some $A \in \mathbb{LG}(\bigwedge^3 V)$. Let Y_A be an EPW-sextic. One constructs a coherent sheaf ξ_A on Y_A and a multiplication map $\xi_A \times \xi_A \to \mathcal{O}_{Y_A}$ which gives $\mathcal{O}_{Y_A} \oplus \xi_A$ a structure of \mathcal{O}_{Y_A} -algebra - this is known to experts, see [4] - we will give the construction in **Subsection 1.2**. The *double EPW-sextic* associated to A is $X_A := \operatorname{Spec}(\mathcal{O}_{Y_A} \oplus \xi_A)$; we let $f_A \colon X_A \to Y_A$ be the structure morphism. In [12] we considered X_A for generic A and we proved that it is a Hyperkähler deformation of $(K3)^{[2]}$ (the blow-up of the diagonal in the symmetric square of a K3 surface). In the present paper we will analyze X_A for A varying in a codimension-1 subset of $\mathbb{LG}(\bigwedge^3 V)$. In order to state our main results we will introduce some notation. Given $A \in \mathbb{LG}(\bigwedge^3 V)$ we let

$$Y_A(k) = \{ [v] \in \mathbb{P}(V) \mid \dim(A \cap F_v) = k \}, \tag{0.0.4}$$

$$Y_A[k] = \{ [v] \in \mathbb{P}(V) \mid \dim(A \cap F_v) \ge k \}.$$
(0.0.5)

Thus $Y_A(0) = (\mathbb{P}(V) \setminus Y_A)$ and $Y_A = Y_A[1]$. Double EPW-sextics come with a natural polarization; we let

$$\mathcal{O}_{X_A}(n) := f_A^* \mathcal{O}_{Y_A}(n), \quad H_A \in |\mathcal{O}_{X_A}(1)|. \tag{0.0.6}$$

The following closed subsets of $\mathbb{LG}(\bigwedge^3 V)$ play a key rôle in the present paper:

$$\Sigma := \{A \in \mathbb{LG}(\bigwedge^3 V) \mid \exists W \in \mathbb{G}r(3, V) \text{ s. t. } \bigwedge^3 W \subset A\},$$
(0.0.7)

$$\Delta := \{A \in \mathbb{LG}(\bigwedge^3 V) \mid Y_A[3] \neq \emptyset\}.$$

$$(0.0.8)$$

A straightforward computation, see [15], gives that Σ is irreducible of codimension 1. A similar computation, see **Proposition 2.2**, gives that Δ is irreducible of codimension 1 and distinct from Σ . Let

$$\mathbb{LG}(\bigwedge^{3} V)^{0} := \mathbb{LG}(\bigwedge^{3} V) \setminus \Sigma \setminus \Delta.$$
(0.0.9)

Thus $\mathbb{LG}(\bigwedge^3 V)^0$ is open dense in $\mathbb{LG}(\bigwedge^3 V)$. In [12] we proved that if $A \in \mathbb{LG}(\bigwedge^3 V)^0$ then X_A is a hyperkähler (HK) 4-fold which can be deformed to $(K3)^{[2]}$. Moreover we showed that the family of polarized HK 4-folds (X_A, H_A) for A varying in $\mathbb{LG}(\bigwedge^3 V)^0$ is locally complete. Three other explicit locally complete families of projective HK's of dimension greater than 2 are known - see [2, 3, 8, 9]. In all of the examples the HK manifolds are deformations of the Hilbert square of a K3: they are distinguished by the value of the Beauville-Bogomolov form on the polarization class (it equals 2 in the case of double EPW-sextics and 6, 22 and 38 in the other cases). In the present paper we will analyze X_A for $A \in \Delta$, mainly under the hypothesis that $A \notin \Sigma$. Let $A \in (\Delta \setminus \Sigma)$. We will prove the following results

- (1) $Y_A[3]$ is a finite set and it equals $Y_A(3)$. If A is generic in $(\Delta \setminus \Sigma)$ then $Y_A(3)$ is a singleton.
- (2) One may associate to $[v_0] \in Y_A(3)$ a K3 surface $S_A(v_0) \subset \mathbb{P}^6$ of genus 6, well-defined up to projectivities. Conversely the generic K3 of genus 6 is projectively equivalent to $S_A(v_0)$ for some $A \in (\Delta \setminus \Sigma)$ and $[v_0] \in Y_A(3)$.
- (3) The singular set of X_A is equal to $f_A^{-1}Y_A(3)$. There is a single $p_i \in X_A$ mapping to $[v_i] \in Y_A(3)$ and the cone of X_A at p_i is isomorphic to the cone over the set of incident couples $(x, r) \in \mathbb{P}^2 \times (\mathbb{P}^2)^{\vee}$ (i.e. $\mathbb{P}(\Omega_{\mathbb{P}^2})$). Thus we have two standard small resolutions of a neighborhood of p_i in X_A , one with fiber \mathbb{P}^2 over p_i , the other with fiber $(\mathbb{P}^2)^{\vee}$. Making a choice ϵ of local small resolution at each p_i we get a resolution $X_A^{\epsilon} \to X_A$ with the following properties: There is

a birational map $X_A^{\epsilon} \dashrightarrow S_A(v_i)^{[2]}$ such that the pull-back of a holomorphic symplectic form on $S_A(v_i)^{[2]}$ is a symplectic form on X_A^{ϵ} . If $S_A(v_i)$ contains no lines (true for generic A by Item (2)) then there exists a choice of ϵ such that X_A^{ϵ} is isomorphic to $S_A(v_i)^{[2]}$.

(4) Given a sufficiently small open (classical topology) $\mathcal{U} \subset (\mathbb{LG}(\bigwedge^3 V) \setminus \Sigma)$ containing A the family of double EPW-sextics parametrized by \mathcal{U} has a simultaneous resolution of singularities (no base change) with fiber X_A^{ϵ} over A (for an arbitrary choice of ϵ).

A remark: if $Y_A(3)$ has more than one point we do not expect all the small resolutions to be projective (i.e. Kähler). Items (1)-(4) should be compared with known results on cubic 4-folds recall that if $Z \subset \mathbb{P}^5$ is a smooth cubic hypersurface the variety F(Z) parametrizing lines in Z is a HK 4-fold which can be deformed to $(K3)^{[2]}$ and moreover the primitive weight-4 Hodge structure of Z is isomorphic (after a Tate twist) to the primitive weight-2 Hodge structure of F(Z), see [2]. Let $D \subset |\mathcal{O}_{\mathbb{P}^5}(3)|$ be the prime divisor parametrizing singular cubics. Let $Z \in D$ be generic: the following results are well-known.

- (1') sing Z is a finite set.
- (2) Given $p \in \operatorname{sing} Z$ the set $S_Z(p) \subset F(Z)$ of lines containing p is a K3 surface of genus 4 and viceversa the generic such K3 is isomorphic to $S_Z(p)$ for some Z and $p \in \operatorname{sing} Z$.
- (3) F(Z) is birational to $S_Z(p)^{[2]}$.
- (4') After a local base-change of order 2 ramified along D the period map extends across Z.

Thus Items (1')-(2')-(3') are analogous to Items (1), (2) and (3) above, Item (4') is analogous to (4) but there is an important difference namely the need for a base-change of order 2. (Actually the paper [13] contains results showing that there is a statement valid for cubic hypersurfaces which is even closer to our result for double EPW-sextics, the rôle of Σ being played by the divisor parametrizing cubics containing a plane.) We explain the relevance of Items (1)-(4). Items (3) and (4) prove the theorem of ours mentioned above i.e. that if $A \in \mathbb{LG}(\bigwedge^3 V)^0$ then X_A is a HK deformation of $(K3)^{[2]}$ (the family of polarized double EPW-sextics is locally complete by a straightforward parameter count). The proof in this paper is independent of the proof in [12]. Beyond giving a new proof of an "old" theorem the above results show that away from Σ the period map is regular, it lifts (locally) to the relevant classifying space and the value at $A \in (\Delta \setminus \Sigma)$ may be identified with the period point of the Hilbert square $S_A(v_0)^{[2]}$. We remark that in [14] we had proved that the period map is as well-behaved as possible at the generic $A \in (\Delta \setminus \Sigma)$, however we did not have the exact statement about X_A^{ϵ} and we had no statement about an arbitrary $A \in (\Delta \setminus \Sigma)$.

The paper is organized as follows. In **Section 1** we will give formulae that describe double EPW-sextics locally. The formulae are known to experts, see [4], we will go through the proofs because we could not find a suitable reference. We will also perform the local computations needed to prove Item (4) above. In **Section 2** we will go through some standard computations involving Δ . In **Section 3** we will prove Items (1), (4) and the statements of Item (3) which do not involve the K3 surface $S_A(v_0)$. In **Section 4** we will prove Item (2) and the remaining statement of Item (3). **Section 5** contains auxiliary results on 3-dimensional linear sections of $Gr(3, \mathbb{C}^5)$.

Notation and conventions: Throughout the paper V is a 6-dimensional complex vector space.

Let W be a finite-dimensional complex vector-space. The span of a subset $S \subset W$ is denoted by $\langle S \rangle$. Let $S \subset \bigwedge^q W$. The support of S is the smallest subspace $U \subset W$ such that $S \subset \operatorname{im}(\bigwedge^q U \longrightarrow \bigwedge^q W)$: we denote it by $\operatorname{supp}(S)$, if $S = \{\alpha\}$ is a singleton we let $\operatorname{supp}(\alpha) = \operatorname{supp}(\{\alpha\})$ (thus if q = 1 we have $\operatorname{supp}(\alpha) = \langle \alpha \rangle$). We define the support of a set of symmetric tensors analogously. If $\alpha \in \bigwedge^q W$ or $\alpha \in \operatorname{Sym}^d W$ the rank of α is the dimension of $\operatorname{supp}(\alpha)$. An element of $\operatorname{Sym}^2 W^{\vee}$ may be viewed either as a symmetric map or as a quadratic form: we will denote the former by $\tilde{q}, \tilde{r}, \ldots$ and the latter by q, r, \ldots respectively.

Let $M = (M_{ij})$ be a $d \times d$ matrix with entries in a commutative ring R. We let $M^c = (M^{ij})$ be the matrix of cofactors of M, i.e. $M^{i,j}$ is $(-1)^{i+j}$ times the determinant of the matrix obtained from M by deleting its j-th row and i-th column. We recall the following interpretation of M^c . Suppose that $f: A \to B$ is a linear map between free R-modules of rank d and that M is the matrix associated to f by the choice of bases $\{a_1, \ldots, a_d\}$ and $\{b_1, \ldots, b_d\}$ of A and B respectively. Then $\bigwedge^{d-1} f$ may be viewed as a map

$$\bigwedge^{d-1} f \colon A^{\vee} \otimes \bigwedge^{d} A \cong \bigwedge^{d-1} A \longrightarrow \bigwedge^{d-1} B \cong B^{\vee} \otimes \bigwedge^{d} B.$$
(0.0.10)

(Here $A^{\vee} := \text{Hom}(A, R)$ and similarly for B^{\vee} .) The matrix associated to $\bigwedge^{d-1} f$ by the choice of bases $\{a_1^{\vee} \otimes (a_1 \wedge \ldots \wedge a_d), \ldots, a_d^{\vee} \otimes (a_1 \wedge \ldots \wedge a_d)\}$ and $\{b_1^{\vee} \otimes (b_1 \wedge \ldots \wedge b_d), \ldots, b_d^{\vee} \otimes (b_1 \wedge \ldots \wedge b_d)\}$ is equal to M^c .

Let W be a finite-dimensional complex vector-space. We will adhere to pre-Grothendieck conventions: $\mathbb{P}(W)$ is the set of 1-dimensional vector subspaces of W. Given a non-zero $w \in W$ we will denote the span of w by [w] rather than $\langle w \rangle$; this agrees with standard notation. Suppose that $T \subset \mathbb{P}(W)$. Then $\langle T \rangle \subset \mathbb{P}(W)$ is the *projective span of* T i.e. the intersection of all linear subspaces of $\mathbb{P}(W)$ containing T.

Schemes are defined over \mathbb{C} , the topology is the Zariski topology unless we state the contrary. Let W be finite-dimensional complex vector-space: $\mathcal{O}_{\mathbb{P}(W)}(1)$ is the line-bundle on $\mathbb{P}(W)$ with fiber L^{\vee} on the point $L \in \mathbb{P}(W)$. Let $F \in \text{Sym}^d W^{\vee}$: we let $V(F) \subset \mathbb{P}(W)$ be the subscheme defined by vanishing of F. If $E \to X$ is a vector-bundle we denote by $\mathbb{P}(E)$ the projective fiber-bundle with fiber $\mathbb{P}(E(x))$ over x and we define $\mathcal{O}_{\mathbb{P}(W)}(1)$ accordingly. If Y is a subscheme of X we let $Bl_Y X \longrightarrow X$ be the blow-up of Y.

1 Symmetric resolutions and double covers

In **Subsection 1.1** we will describe a method (well-known to experts) for constructing double covers. In **Subsection 1.2** we will show how to implement the construction in order to construct double EPW-sextics. **Subsection 1.3** contains the main ingredients needed to construct the simultaneous desingularization described in Item (3) of **Section 0**.

1.1 Product formula and double covers

Let R be an integral Noetherian ring. Let N be an R-module with a free resolution

$$0 \longrightarrow U_1 \xrightarrow{\lambda} U_0 \xrightarrow{\pi} N \longrightarrow 0, \qquad \text{rk } U_1 = \text{rk } U_0 = d > 0.$$
(1.1.1)

Let $\{a_1, \ldots, a_d\}$ and $\{b_1, \ldots, b_d\}$ be bases of U_0 and U_1 respectively. Let M_λ be the matrix associated to λ by our choice of bases - notice that det M_λ annihilates N. Given a homomorphism

$$\beta \colon N \to \operatorname{Ext}^1(N, R) \tag{1.1.2}$$

one defines a product $m_{\beta} \colon N \times N \to R/(\det M_{\lambda})$ as follows. Applying the Hom (\cdot, R) -functor to (1.1.1) we get the exact sequence

$$0 \longrightarrow U_0^{\vee} \xrightarrow{\lambda^t} U_1^{\vee} \xrightarrow{\rho} \operatorname{Ext}^1(N, R) \longrightarrow 0.$$
(1.1.3)

In particular det M_{λ} kills $\text{Ext}^{1}(N, R)$. Now apply the functor $\text{Hom}(N, \cdot)$ to the exact sequence

$$0 \longrightarrow R \xrightarrow{\det M_{\lambda}} R \longrightarrow R/(\det M_{\lambda}) \longrightarrow 0.$$
(1.1.4)

Since $\operatorname{Ext}^1(N, R) \to \operatorname{Ext}^1(N, R)$ is multiplication by det M_{λ} we get a coboundary isomorphism

$$\partial \colon \operatorname{Hom}(N, R/(\det M_{\lambda})) \xrightarrow{\sim} \operatorname{Ext}^{1}(N, R).$$
 (1.1.5)

We let

$$\begin{array}{cccc} N \times N & \xrightarrow{m_{\beta}} & R/(\det M_{\lambda}) \\ (n,n') & \mapsto & (\partial^{-1}\beta(n))(n'). \end{array}$$

$$(1.1.6)$$

We will give an explicit formula for m_{β} . Let $\pi: U_0 \to N$ be as in (1.1.1). Then $\beta \circ \pi$ lifts to a homomorphism $\mu^t: U_0 \to U_1^{\vee}$ (the map is written as a transpose in order to conform to the notation for double EPW-sextics - see **Subsection 1.2**). It follows that there exists $\alpha: U_1 \to U_0^{\vee}$ such that

is a commutative diagram. Let $\{a_1^{\vee}, \ldots, a_d^{\vee}\}$ and $\{b_1^{\vee}, \ldots, b_d^{\vee}\}$ be the bases of U_0^{\vee} and U_1^{\vee} which are dual to the chosen bases of U_0 and U_1 . Let M_{μ^t} be the matrix associated to μ^t by our choice of bases.

Proposition 1.1. Keeping notation as above we have

$$m_{\beta}(\pi(a_i), \pi(a_j)) \equiv (M_{\lambda}^c \cdot M_{\mu^t})_{ji} \mod (\det M_{\lambda})$$
(1.1.8)

where M_{λ}^{c} is the matrix of cofactors of M_{λ} .

Proof. Equation (1.1.3) gives an isomorphism

$$\nu \colon \operatorname{Ext}^{1}(N, R) \xrightarrow{\sim} U_{1}^{\vee} / \lambda^{t}(U_{0}^{\vee}).$$
(1.1.9)

Let $det(U_{\bullet}) := \bigwedge^{d} U_{1}^{\vee} \otimes \bigwedge^{d} U_{0}$. We will define an isomorphism

$$\theta: U_1^{\vee}/\lambda^t(U_0^{\vee}) \xrightarrow{\sim} \operatorname{Hom}\left(N, \det(U_{\bullet})/(\det\lambda)\right).$$
(1.1.10)

First let

$$U_1^{\vee} = \bigwedge^{d-1} U_1 \otimes \bigwedge^d U_1^{\vee} \xrightarrow{\widehat{\theta}} \bigwedge^{d-1} U_0 \otimes \bigwedge^d U_1^{\vee} = \operatorname{Hom}(U_0, \det(U_{\bullet}))$$

$$\zeta \otimes \xi \qquad \mapsto \qquad \bigwedge^{d-1} (\lambda)(\zeta) \otimes \xi.$$
(1.1.11)

We claim that

$$\operatorname{im}(\widehat{\theta}) = \{ \phi \in \operatorname{Hom}(U_0, \det(U_{\bullet})) \mid \phi \circ \lambda(U_1) \subset (\det \lambda) \}.$$
(1.1.12)

In fact by Cramer's formula

$$M_{\lambda}^{c} \cdot M_{\lambda}^{t} = M_{\lambda}^{t} \cdot M_{\lambda}^{c} = \det M_{\lambda} \cdot 1$$
(1.1.13)

and Equation (1.1.12) follows. Thus $\hat{\theta}$ induces a surjective homomorphism

$$\widetilde{\theta}: U_1^{\vee} \longrightarrow \operatorname{Hom}\left(N, \det(U_{\bullet})/(\det \lambda)\right).$$
(1.1.14)

One checks easily that $\lambda^t(U_0^{\vee}) = \ker \tilde{\theta}$ - use Cramer again. We define θ to be the homomorphism induced by $\tilde{\theta}$; we have proved that it is an isomorphism. We claim that

$$\theta \circ \nu = \partial^{-1}, \qquad \partial \text{ as in (1.1.5)}.$$
 (1.1.15)

In fact let K be the fraction field of R and $0 \to R \xrightarrow{\iota} I^0 \to I^1 \to \ldots$ be an injective resolution of R with $I^0 = \det(U_{\bullet}) \otimes K$ and $\iota(1) = \det \lambda \otimes 1$. Then $\operatorname{Ext}^{\bullet}(N, R)$ is the cohomology of the double complex $\operatorname{Hom}(U_{\bullet}, I^{\bullet})$ and of course also of the single complexes $\operatorname{Hom}(U_{\bullet}, R)$ and $\operatorname{Hom}(N, I^{\bullet})$. One checks easily that the isomorphism ∂ of (1.1.5) is equal to the isomorphism $H^1(\operatorname{Hom}(N, I^{\bullet})) \xrightarrow{\sim} H^1(\operatorname{Hom}(U_{\bullet}, I^{\bullet}))$ i.e.

$$\partial \colon \operatorname{Hom}(N, \det(U_{\bullet})/(\det \lambda)) = \operatorname{Hom}(N, I^{0}/\iota(R)) \xrightarrow{\sim} H^{1}(\operatorname{Hom}(U_{\bullet}, I^{\bullet})).$$
(1.1.16)

Let $f \in \operatorname{Hom}(N, \det(U_{\bullet})/(\det \lambda))$; a representative of $\partial(f)$ in the double complex $\operatorname{Hom}(U_{\bullet}, I^{\bullet})$ is given by $g^{0,1} := f \circ \pi \in \operatorname{Hom}(U_0, I^1)$. Let $g^{0,0} \in \operatorname{Hom}(U_0, \det(U_{\bullet}))$ be a lift of $g^{0,1}$ and $g^{1,0} \in$ $\operatorname{Hom}(U_1, \det(U_{\bullet}))$ be defined by $g^{1,0} := g^{0,0} \circ \lambda$. One checks that $\operatorname{im}(g^{1,0}) \subset (\det \lambda)$ and hence there exists $g \in \operatorname{Hom}(U_1, R)$ such that $g^{1,0} = \iota \circ g$. By construction g represents a class $[g] \in$ $H^1(\text{Hom}(U_{\bullet}, R)) = U_1^{\vee} / \lambda^t(U_0^{\vee})$ and $[g] = \nu \circ \partial(f)$. An explicit computation shows that $[g] = \theta^{-1}(f)$. This proves (1.1.15). Now we prove Equation (1.1.8). By (1.1.15) we have

$$m_{\beta}(\pi(a_i), \pi(a_j)) = (\partial^{-1}\beta\pi(a_i))(\pi(a_j)) = (\theta\nu\beta\pi(a_i))(\pi(a_j)).$$
(1.1.17)

Unwinding the definition of θ one gets that the right-hand side of the above equation equals the right-hand side of (1.1.8).

Let m_{β} be given by (1.1.6): we define a product on $R/(\det M_{\lambda}) \oplus N$ as follows. Let $(r, n), (r', n') \in R/(\det M_{\lambda}) \oplus N$: we set

$$(r,n) \cdot (r',n') := (rr' + m_{\beta}(n,n'), rn' + r'n).$$
(1.1.18)

In general the above product is neither associative nor commutative. We will give an example in which the product is both associative and commutative. Suppose that we have

$$0 \longrightarrow U^{\vee} \xrightarrow{\gamma} U \xrightarrow{\pi} N \longrightarrow 0, \qquad \gamma^t = \gamma \tag{1.1.19}$$

with U a free R-module of rank d > 0 and the sequence is supposed to be exact. We get a commutative diagram (1.1.7) by letting

$$U_0 := U, \quad U_1 := U^{\vee}, \quad \lambda = \gamma, \quad \alpha = \mathrm{Id}_{U^{\vee}}, \quad \mu^t = \mathrm{Id}_{U^{\vee}}$$

and $\beta = \beta(\gamma) \colon N \to \text{Ext}^1(N, R)$ the map induced by Id_U . Abusing notation we let $m_\gamma \colon N \times N \to R/(\det M_\gamma)$ be the map defined by $m_{\beta(\gamma)}$.

Proposition 1.2. Suppose that we have Exact Sequence (1.1.19). The product on $R/(\det M_{\gamma}) \oplus N$ defined by m_{γ} is associative and commutative.

Proof. Let $d := \operatorname{rk} U > 0$. Let $\{a_1, \ldots, a_d\}$ be a basis of U and $\{a_1^{\vee}, \ldots, a_d^{\vee}\}$ be the dual basis of U^{\vee} . Let $M = M_{\gamma}$ i.e. the matrix associated to γ by our choice of bases. By (1.1.8) we have

$$m_{\gamma}(\pi(a_i), \pi(a_j)) \equiv M_{ji}^c \mod (\det M).$$
(1.1.20)

Since γ is a symmetric map M is a symmetric matrix. Thus M^c is a symmetric matrix. By (1.1.20) we get that m_{γ} is symmetric. It remains to prove that m_{γ} is associative. For $1 \leq i < k \leq d$ and $1 \leq h \neq j \leq d$ let $M_{h,j}^{i,k}$ be the $(d-2) \times (d-2)$ -matrix obtained by deleting from M rows i, k and columns h, j. Let $X_{ijk} = (X_{ijk}^h) \in \mathbb{R}^d$ be defined by

$$X_{ijk}^{h} := \begin{cases} (-1)^{i+k+j+h} \det M_{j,h}^{i,k} & \text{if } h < j, \\ 0 & \text{if } h = j. \\ (-1)^{i+k+j+h-1} \det M_{j,h}^{i,k} & \text{if } j < h. \end{cases}$$
(1.1.21)

A tedious but straightforward computation gives that

$$M_{ij}^{c}a_{k} - M_{jk}^{c}a_{i} = \gamma(\sum_{h=1}^{d} X_{ijk}^{h}a_{h}^{\vee}).$$
(1.1.22)

The above equation proves associativity of m_{γ} .

Keep hypotheses as in **Proposition 1.2**. We let

$$X_{\gamma} := \operatorname{Spec}(R/(\det M_{\lambda}) \oplus N), \qquad Y_{\gamma} := \operatorname{Spec}(R/(\det M_{\lambda})). \tag{1.1.23}$$

Let $f_{\gamma}: X_{\gamma} \to Y_{\gamma}$ be the structure map. We realize X_{γ} as a subscheme of $\text{Spec}(R[\xi_1, \ldots, \xi_d])$ as follows. Since the ring $R/(\det M_{\gamma}) \oplus N$ is associative and commutative there is a well-defined surjective morphism of R-algebras

$$R[\xi_1, \dots, \xi_d] \longrightarrow R/(\det M_\gamma) \oplus N \tag{1.1.24}$$

mapping ξ_i to a_i . Thus we have an inclusion

$$X_{\gamma} \hookrightarrow \operatorname{Spec}(R[\xi_1, \dots, \xi_d]).$$
 (1.1.25)

Claim 1.3. Referring to Inclusion (1.1.25) the ideal of X_{γ} is generated by the entries of the matrices

$$M_{\gamma} \cdot \xi, \qquad \xi \cdot \xi^t - M_{\gamma}^c \,. \tag{1.1.26}$$

(We view ξ as a column matrix.)

Proof. By (1.1.20) the ideal of X_{γ} is generated by det M_{γ} and the entries of the matrices in (1.1.26). By Cramer's formula det M_{γ} belongs to the ideal generated by the entries of the two matrices. This proves that the ideal of X_{γ} is as claimed.

Now we suppose in addition that R is a finitely generated \mathbb{C} -algebra. Let $p \in \operatorname{Spec} R$ be a closed point: we are interested in the localization of X_{γ} at points in $f_{\gamma}^{-1}(p)$. Let $J \subset U^{\vee}(p)$ be a subspace complementary to ker $\gamma(p)$. Let $\mathbf{J} \subset U^{\vee}$ be a free submodule whose fiber over p is equal to J. Let $\mathbf{K} \subset U^{\vee}$ be the submodule orthogonal to \mathbf{J} i.e.

$$\mathbf{K} := \left\{ u \in U^{\vee} \mid \gamma(a)(u) = 0 \quad \forall a \in \mathbf{J} \right\}.$$
(1.1.27)

The localization of **K** at p is free. Let $K := \mathbf{K}(p)$ be the fiber of **K** at p; clearly $K = \ker \gamma(p)$. Localizing at p we have

$$U_p^{\vee} = \mathbf{K}_p \oplus \mathbf{J}_p \,. \tag{1.1.28}$$

Corresponding to (1.1.28) we may write $\gamma_p = \gamma_{\mathbf{K}} \oplus_{\perp} \gamma_{\mathbf{J}}$ where $\gamma_{\mathbf{K}} \colon \mathbf{K}_p \to \mathbf{K}_p^{\vee}$ and $\gamma_J \colon \mathbf{J}_p \to \mathbf{J}_p^{\vee}$ are symmetric maps. Notice that we have an equality of germs

$$(Y_{\gamma}, p) = (Y_{\gamma_{\mathbf{K}}}, p).$$
 (1.1.29)

We claim that there is a compatible isomorphism of germs $(X_{\gamma_{\mathbf{K}}}, f_{\gamma_{\mathbf{K}}}^{-1}(p)) \cong (X_{\gamma}, f_{\gamma}^{-1}(p))$. In fact let $k := \dim K$ and $d := \operatorname{rk} U$. Choose bases of \mathbf{K}_p and \mathbf{J}_p ; by (1.1.28) we get a basis of U_p^{\vee} . The dual bases of $\mathbf{K}_p^{\vee}, \mathbf{J}_p^{\vee}$ and U_p^{\vee} are compatible with respect to the decomposition dual to (1.1.28). Corresponding to the chosen bases we have embeddings $X_{\gamma_K} \hookrightarrow Y_{\gamma_K} \times \mathbb{C}^k$ and $X_{\gamma} \hookrightarrow Y_{\gamma} \times \mathbb{C}^d$. The decomposition dual to (1.1.28) gives an embedding $j \colon Y_{\gamma_K} \times \mathbb{C}^k \hookrightarrow Y_{\gamma} \times \mathbb{C}^d$.

Claim 1.4. Keep notation as above. The composition

$$X_{\gamma_K} \hookrightarrow (Y_{\gamma_K} \times \mathbb{C}^k) \xrightarrow{j} (Y_{\gamma} \times \mathbb{C}^d)$$
(1.1.30)

defines an isomorphism of germs in the analytic topology

$$(X_{\gamma_{\mathbf{K}}}, f_{\gamma_{\mathbf{K}}}^{-1}(p)) \xrightarrow{\sim} (X_{\gamma}, f_{\gamma}^{-1}(p))$$
(1.1.31)

which commutes with the maps $f_{\gamma_{\mathbf{K}}}$ and f_{γ} .

Proof. This follows by writing $\gamma_p = \gamma_{\mathbf{K}} \oplus_{\perp} \gamma_{\mathbf{J}}$ and by recalling (1.1.20). We pass to the analytic topology in order to be able to extract the square root of a regular non-zero function.

Proposition 1.5. Assume that R is a finitely generated \mathbb{C} -algebra. Suppose that we have Exact Sequence (1.1.19). Then the following hold:

- (1) $f_{\gamma}^{-1}Y_{\gamma}(1) \to Y_{\gamma}(1)$ is a topological covering of degree 2.
- (2) Let $p \in (Y_{\gamma} \setminus Y_{\gamma}(1))$ be a closed point. The fiber $f_{\gamma}^{-1}(p)$ consists of a single point q. Let ξ_i be the coordinates on X_{γ} associated to Embedding (1.1.25); then $\xi_i(q) = 0$ for $i = 1, \ldots, d$.

Proof. (1): Localizing at $p \in Y_{\gamma}(1)$ and applying **Claim 1.4** we get Item (1). (2): Since cork $M_{\gamma}(p) \ge 2$ we have $M_{\gamma}^{c}(p) = 0$. Thus Item (2) follows from **Claim 1.3**.

We may associate a double cover $f_{\gamma} \colon X_{\gamma} \to Y_{\gamma}$ to a map β which is symmetric in the derived category.

Hypothesis 1.6. We have (1.1.7) with α an isomorphism and in addition $\alpha = \mu$.

Proposition 1.7. Assume that **Hypothesis 1.6** holds. Then $R/(\det M_{\lambda}) \oplus N$ equipped with the product given by (1.1.18) is a commutative (associative) ring.

Proof. Let $\gamma := \lambda \circ \mu^{-1}$ and $U := U_0$. Then (1.1.19) holds and the product defined by m_β is equal to the product defined by m_γ . By **Proposition 1.2** we get that $R/(\det M_\lambda) \oplus N$ is a commutative associative ring.

Definition 1.8. Suppose that **Hypothesis 1.6** holds: the symmetrization of (1.1.7) is Exact Sequence (1.1.19) with γ and U as in the proof of **Proposition 1.7**.

1.2 Structure sheaf of double EPW-sextics

Let $A \in \mathbb{LG}(\bigwedge^3 V)$ and suppose that $Y_A \neq \mathbb{P}(V)$. We will define the associated double cover $X_A \to Y_A$ by applying the results of **Subsection 1.1**. Since A is Lagrangian the symplectic form defines a canonical isomorphism $\bigwedge^3 V/A \cong A^{\vee}$; thus (0.0.3) defines a map of vector-bundles $\lambda_A \colon F \to A^{\vee} \otimes \mathcal{O}_{\mathbb{P}(V)}$. Let $i \colon Y_A \hookrightarrow \mathbb{P}(V)$ be the inclusion map: since a local generator of det λ_A annihilates coker (λ_A) there is a unique sheaf ζ_A on Y_A such that we have an exact sequence

$$0 \longrightarrow F \xrightarrow{\lambda_A} A^{\vee} \otimes \mathcal{O}_{\mathbb{P}(V)} \longrightarrow i_* \zeta_A \longrightarrow 0.$$
(1.2.1)

Choose $B \in \mathbb{LG}(\bigwedge^3 V)$ transversal to A. Thus we have a direct-sum decomposition $\bigwedge^3 V = A \oplus B$ and hence a projection map $\bigwedge^3 V \to A$ inducing a map $\mu_{A,B} \colon F \to A \otimes \mathcal{O}_{\mathbb{P}(V)}$. We claim that there is a commutative diagram with exact rows

In fact the second row is obtained by applying the $Hom(\cdot, \mathcal{O}_{\mathbb{P}(V)})$ -functor to (1.2.1) and the equality $\mu_{A,B}^t \circ \lambda_A = \lambda_A^t \circ \mu_{A,B}$ holds because F is a Lagrangian sub-bundle of $\bigwedge^3 V \otimes \mathcal{O}_{\mathbb{P}(V)}$. Lastly β_A is defined to be the unique map making the diagram commutative; it exists because the rows are exact. Notice that the map β_A is independent of the choice of B as suggested by the notation. Next by applying the $Hom(i_*\zeta_A, \cdot)$ -functor to the exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}(V)} \longrightarrow \mathcal{O}_{\mathbb{P}(V)}(6) \longrightarrow \mathcal{O}_{Y_A}(6) \longrightarrow 0$$
(1.2.3)

we get the exact sequence

$$0 \longrightarrow i_* Hom(\zeta_A, \mathcal{O}_{Y_A}(6)) \xrightarrow{\partial} Ext^1(i_*\zeta_A, \mathcal{O}_{\mathbb{P}(V)}) \xrightarrow{n} Ext^1(i_*\zeta_A, \mathcal{O}_{\mathbb{P}(V)}(6))$$
(1.2.4)

where n is locally equal to multiplication by det λ_A . Since the second row of (1.2.2) is exact a local generator of det λ_A annihilates $Ext^1(i_*\zeta_A, \mathcal{O}_{\mathbb{P}(V)})$; thus n = 0 and hence we get a canonical isomorphism

$$\partial^{-1} \colon Ext^{1}(i_{*}\zeta_{A}, \mathcal{O}_{\mathbb{P}(V)}) \xrightarrow{\sim} i_{*}Hom(\zeta_{A}, \mathcal{O}_{Y_{A}}(6)).$$
(1.2.5)

We define \widetilde{m}_A by setting

$$\begin{array}{cccc} \zeta_A \times \zeta_A & \xrightarrow{\widetilde{m}_A} & \mathcal{O}_{Y_A}(6) \\ (\sigma_1, \sigma_2) & \mapsto & (\partial^{-1} \circ \beta_A(\sigma_1))(\sigma_2). \end{array} \tag{1.2.6}$$

Let $\xi_A := \zeta_A(-3)$. Tensorizing both sides of (1.2.6) by $\mathcal{O}_{Y_A}(-6)$ we get a multiplication map

$$\xi_A \times \xi_A \xrightarrow{m_A} \mathcal{O}_{Y_A}.$$
 (1.2.7)

Thus we have defined a multiplication map on $\mathcal{O}_{Y_A} \oplus \xi_A$. The following result is well-known to experts.

Proposition 1.9. Let $A \in \mathbb{LG}(\bigwedge^3 V)$ and suppose that $Y_A \neq \mathbb{P}(V)$. Let notation be as above. Then:

(1) β_A is an isomorphism.

(2) The multiplication map m_A is associative and commutative.

Proof. Let $[v_0] \in \mathbb{P}(V)$. Choose $B \in \mathbb{LG}(\bigwedge^3 V)$ transversal to F_{v_0} (and to A of course). Then $\mu_{A,B}$ is an isomorphism in an open neighborhood U of $[v_0]$. It follows that β_A is an isomorphism in a neighborhood of $[v_0]$. This proves Item (1). Let's prove Item (2). Let $B \in \mathbb{LG}(\bigwedge^3 V)$ and U be as above; we may assume that U is affine. Let $N := H^0(i_*\zeta_A|_U)$ and $\beta := H^0(\beta_A|_U)$. Thus $\beta \colon N \to \operatorname{Ext}^1(N, \mathbb{C}[U])$. By Commutativity of Diagram (1.2.2) and by **Proposition 1.7** we get that the multiplication map m_β is associative and commutative. On the other hand m_β is the multiplication induced by m_A on N; since $[v_0]$ is an arbitrary point of $\mathbb{P}(V)$ it follows that m_A is associative and commutative. \Box

We let $X_A := \operatorname{Spec}(\mathcal{O}_{Y_A} \oplus \xi_A)$ and we let $f_A \colon X_A \to Y_A$ be the structure morphism. Then X_A is the *double EPW-sextic* associated to A and f_A is its structure map. The *covering involution* of X_A is the automorphism $\phi_A \colon X_A \to X_A$ corresponding to the involution of $\mathcal{O}_{Y_A} \oplus \xi_A$ with (-1)-eigensheaf equal to ξ_A .

1.3 Local models of double covers

In the present subsection we assume that R is a finitely generated \mathbb{C} -algebra. Let \mathcal{W} be a finitedimensional complex vector-space. We will suppose that we have an exact sequence

$$0 \longrightarrow R \otimes \mathcal{W}^{\vee} \xrightarrow{\gamma} R \otimes \mathcal{W} \longrightarrow N \longrightarrow 0, \qquad \gamma = \gamma^{t}.$$
(1.3.1)

Thus we have a double cover $f_{\gamma} \colon X_{\gamma} \to Y_{\gamma}$. Let $p \in Y_{\gamma}$ be a closed point. We will examine X_{γ} in a neighborhood of $f_{\gamma}^{-1}(p)$ when the corank of $\gamma(p)$ is small. We may view γ as a regular map Spec $R \to \text{Sym}^2 \mathcal{W}$; thus it makes sense to consider the differential

$$d\gamma(p): T_p \operatorname{Spec} R \to \operatorname{Sym}^2 \mathcal{W}.$$
 (1.3.2)

Let $K(p) := \ker \gamma(p) \subset \mathcal{W}^{\vee}$; we will consider the linear map

$$\begin{array}{cccc} T_p \operatorname{Spec} R & \stackrel{\delta_{\gamma}(p)}{\longrightarrow} & \operatorname{Sym}^2 K(p)^{\vee} \\ \tau & \mapsto & d\gamma(p)(\tau)|_{K(p)} \,. \end{array} \tag{1.3.3}$$

Let $d := \dim \mathcal{W}$; choosing a basis of \mathcal{W} we realize X_{γ} as a subscheme of Spec $R \times \mathbb{C}^d$ with ideal given by **Claim 1.3**. Since $\operatorname{cork} \gamma(p) \geq 2$ **Proposition 1.5** gives that $f_{\gamma}^{-1}(p)$ consists of a single point q - in fact the ξ_i -coordinates of q are all zero. Throughout this subsection we let

$$f_{\gamma}^{-1}(p) = \{q\}.$$
(1.3.4)

Claim 1.10. Keep notation as above. Suppose that $d = \dim \mathcal{W} = 2$ and that $\gamma(p) = 0$. Then $I(X_{\gamma})$ is generated by the entries of $\xi \cdot \xi^t - M_{\gamma}^c$.

Proof. Claim 1.3 together with a straightforward computation.

Example 1.11. Let $R = \mathbb{C}[x, y, z], W = \mathbb{C}^2$. Suppose that the matrix associated to γ is

$$M_{\gamma} = \begin{pmatrix} x & y \\ y & z \end{pmatrix}. \tag{1.3.5}$$

Then $f_{\gamma} \colon X_{\gamma} \to Y_{\gamma}$ is identified with

$$\begin{array}{cccc} \mathbb{C}^2 & \longrightarrow & V(xz - y^2) \\ (\xi_1, \xi_2) & \mapsto & (\xi_2^2, -\xi_1\xi_2, \xi_1^2) \end{array}$$
(1.3.6)

i.e. the quotient map for the action of $\langle -1 \rangle$ on \mathbb{C}^2 .

Proposition 1.12. Keep notation as above. Suppose that the following hold:

- (a) cork $\gamma(p) = 2$,
- (b) the localization R_p is regular.

Then X_{γ} is smooth at q if and only if $\delta_{\gamma}(p)$ is surjective.

Proof. Applying Claim 1.4 we get that we may assume that d = 2. Let

$$M_{\gamma} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}. \tag{1.3.7}$$

By Claim 1.10 the ideal of X_{γ} in Spec $R \times \mathbb{C}^2$ is generated by the entries of $\xi \cdot \xi^t - M_{\gamma}^c$ i.e.

$$I(X_{\gamma}) = (\xi_1^2 - c, \ \xi_1 \xi_2 + b, \ \xi_2^2 - a).$$
(1.3.8)

Thus

$$\operatorname{cod}(T_q X_\gamma, T_q(\operatorname{Spec} R \times \mathbb{C}^2)) = \dim \langle da(p), db(p), dc(p) \rangle.$$
(1.3.9)

On the other hand $\operatorname{cod}_q(X_\gamma, \operatorname{Spec} R \times \mathbb{C}^2) = 3$ and hence we get that X_γ is smooth at q if and only if $\delta_\gamma(p)$ is surjective.

Claim 1.13. Keep notation and hypotheses as above. Suppose that $\operatorname{cork} \gamma(p) \geq 3$. Then X_{γ} is singular at q.

Proof. Let I be the ideal of X_{γ} in Spec $R[\xi_1, \ldots, \xi_d]$. By **Claim 1.3** we get that I is non-trivial but the differential at q of an arbitrary $g \in I$ is zero.

Next we will discuss in greater detail those X_{γ} whose corank at $f_{\gamma}^{-1}(p)$ is equal to 3. First we will identify the "universal" example (the universal example for corank 2 is **Example 1.11**). Let \mathcal{V} be a 3-dimensional complex vector space. We view $\operatorname{Sym}^2 \mathcal{V}$ as an affine (6-dimensional) space and we let $R := \mathbb{C}[\operatorname{Sym}^2 \mathcal{V}]$ be its ring of regular functions. We identify $R \otimes_{\mathbb{C}} \mathcal{V}$ and $R \otimes_{\mathbb{C}} \mathcal{V}^{\vee}$ with the space of \mathcal{V} -valued, respectively \mathcal{V}^{\vee} -valued, regular maps on $\operatorname{Sym}^2 \mathcal{V}$. Let

$$R \otimes_{\mathbb{C}} \mathcal{V}^{\vee} \xrightarrow{\gamma} R \otimes_{\mathbb{C}} \mathcal{V} \tag{1.3.10}$$

be the map induced on the spaces of global sections by the tautological map of vector-bundles Spec $R \times \mathcal{V}^{\vee} \longrightarrow$ Spec $R \times \mathcal{V}$. The map γ is symmetric. Let N be the cokernel of γ : thus

$$0 \longrightarrow R \otimes_{\mathbb{C}} \mathcal{V}^{\vee} \xrightarrow{\gamma} R \otimes_{\mathbb{C}} \mathcal{V} \longrightarrow N \longrightarrow 0$$
(1.3.11)

is an exact sequence. Since γ is symmetric it defines a double cover $f: X(\mathcal{V}) \to Y(\mathcal{V})$ where

$$Y(\mathcal{V}) := \{ \alpha \in \operatorname{Sym}^2 \mathcal{V} \mid \operatorname{rk} \alpha < 3 \}$$
(1.3.12)

is the variety of degenerate quadratic forms. We let

$$\phi \colon X(\mathcal{V}) \to X(\mathcal{V}) \tag{1.3.13}$$

be the covering involution of f. One describes explicitly $X(\mathcal{V})$ as follows. Let

$$(\mathcal{V} \otimes \mathcal{V})_1 := \{ \mu \in (\mathcal{V} \otimes \mathcal{V}) \mid \mathrm{rk} \ \mu \le 1 \}.$$
(1.3.14)

Thus $(\mathcal{V} \otimes \mathcal{V})_1$ is the cone over the Segre variety $\mathbb{P}(\mathcal{V}) \times \mathbb{P}(\mathcal{V})$. We have a finite degree-2 map

$$\begin{array}{cccc} (\mathcal{V} \otimes \mathcal{V})_1 & \stackrel{\sigma}{\longrightarrow} & Y(\mathcal{V}) \\ \mu & \mapsto & \mu + \mu^t \,. \end{array}$$
(1.3.15)

Proposition 1.14. Keep notation as above. There exists a commutative diagram

(1.3.16)

where τ is an isomorphism. Let ϕ be Involution (1.3.13): then

$$\phi \circ \tau(\mu) = \tau(\mu^t), \qquad \forall \mu \in (\mathcal{V} \otimes \mathcal{V})_1. \tag{1.3.17}$$

Proof. In order to define τ we will give a coordinate-free version of Inclusion (1.1.25) in the case of $X(\mathcal{V})$. Let

A few words of explanation. In the definition of the first component of $\Psi(\alpha,\xi)$ we view ξ as belonging to $\operatorname{Hom}(\bigwedge^{3} \mathcal{V}^{\vee}, \mathcal{V}^{\vee})$, in the definition of the second component of $\Psi(\alpha,\xi)$ we view ξ as belonging to $\operatorname{Hom}(\mathcal{V} \otimes \bigwedge^{3} \mathcal{V}^{\vee}, \mathbb{C})$. Moreover we make the obvious choice of isomorphism $\mathbb{C} \cong \mathbb{C}^{\vee}$. Secondly

$$\bigwedge^{2} \alpha \in \operatorname{Hom}(\bigwedge^{2} \mathcal{V}^{\vee}, \bigwedge^{2} \mathcal{V}) = \operatorname{Hom}(\mathcal{V} \otimes \bigwedge^{3} \mathcal{V}^{\vee}, \mathcal{V}^{\vee} \otimes \bigwedge^{3} \mathcal{V}) = \mathcal{V}^{\vee} \otimes \mathcal{V}^{\vee} \otimes \bigwedge^{3} \mathcal{V} \otimes \mathcal{V}.$$
(1.3.19)

Choosing a basis of \mathcal{V} we get an embedding $X(\mathcal{V}) \subset \operatorname{Sym}^2 \mathcal{V} \times \mathbb{C}^3$, see (1.1.25). Claim 1.3 gives equality of pairs

$$(\operatorname{Sym}^{2} \mathcal{V} \times (\mathcal{V}^{\vee} \otimes \bigwedge^{3} \mathcal{V}), \Psi^{-1}(0)) = (\operatorname{Sym}^{2} \mathcal{V} \times \mathbb{C}^{3}, X(\mathcal{V})), \qquad (1.3.20)$$

where $\Psi^{-1}(0)$ is the scheme-theoretic fiber of Ψ . Now notice that we have an isomorphism

$$\begin{array}{cccc}
\mathcal{V} \otimes \mathcal{V} & \stackrel{T}{\longrightarrow} & \operatorname{Sym}^2 \mathcal{V} \times (\mathcal{V}^{\vee} \otimes \bigwedge^3 \mathcal{V}) \\
\epsilon & \mapsto & (\epsilon + \epsilon^t, \epsilon - \epsilon^t).
\end{array}$$
(1.3.21)

Let $\tau := T|_{(\mathcal{V} \otimes \mathcal{V})_1}$: thus we have an embedding

$$\tau \colon (\mathcal{V} \otimes \mathcal{V})_1 \hookrightarrow \operatorname{Sym}^2 \mathcal{V} \times (\mathcal{V}^{\vee} \otimes \bigwedge^3 \mathcal{V}).$$
(1.3.22)

We will show that we have equality of schemes

$$\operatorname{im}(\tau) = \Psi^{-1}(0) (= X(\mathcal{V})).$$
 (1.3.23)

First let

$$\begin{array}{cccc} \mathcal{V} \oplus \mathcal{V} & \stackrel{\rho}{\longrightarrow} & (\mathcal{V} \otimes \mathcal{V})_1 \\ (\eta, \beta) & \mapsto & \eta^t \circ \beta. \end{array} \tag{1.3.24}$$

Notice that ρ is the quotient map for the \mathbb{C}^{\times} -action on $\mathcal{V} \oplus \mathcal{V}$ defined by $t(\eta, \beta) := (t\eta, t^{-1}\beta)$. We have

$$\tau \circ \pi = (\eta^t \circ \beta + \beta^t \circ \eta, \eta \wedge \beta).$$
(1.3.25)

Let's prove that

$$\Psi^{-1}(0) \supset \operatorname{im}(\tau) \,. \tag{1.3.26}$$

Notice that $\operatorname{Gl}(\mathcal{V})$ acts on $(\mathcal{V} \otimes \mathcal{V})_1$ with a unique dense orbit namely $\{\eta^t \circ \beta \mid \eta \wedge \beta \neq 0\}$. An easy computation shows that $\tau(\eta^t \circ \beta) \in \Psi^{-1}(0)$ for a conveniently chosen $\eta^t \circ \beta$ in the dense orbit of $(\mathcal{V} \otimes \mathcal{V})_1$; it follows that (1.3.26) holds. On the other hand T defines an isomorphism of pairs

$$(\mathcal{V} \otimes \mathcal{V}, (\mathcal{V} \otimes \mathcal{V})_1) \cong (\operatorname{Sym}^2 \mathcal{V}^{\vee} \times (\mathcal{V}^{\vee} \otimes \bigwedge^3 \mathcal{V}), \operatorname{im}(\tau)).$$
 (1.3.27)

Since the ideal of $(\mathcal{V} \otimes \mathcal{V})_1$ in $\mathcal{V} \otimes \mathcal{V}$ is generated by 9 linearly independent quadrics we get that the ideal of $\operatorname{im}(\tau)$ in $\operatorname{Sym}^2 \mathcal{V}^{\vee} \times (\mathcal{V}^{\vee} \otimes \bigwedge^3 \mathcal{V})$ is generated by 9 linearly independent quadrics. The ideal of $\Psi^{-1}(0)$ in $\operatorname{Sym}^2 \mathcal{V} \times (\mathcal{V}^{\vee} \otimes \bigwedge^3 \mathcal{V})$ is likewise generated by 9 linearly independent quadrics - see (1.3.18). Since $\Psi^{-1}(0) \supset \operatorname{im}(\tau)$ we get that the ideals of $\Psi^{-1}(0)$ and of $\operatorname{im}(\tau)$ are the same and hence (1.3.23) holds. This proves that τ is an isomorphism between $(\mathcal{V} \otimes \mathcal{V})_1$ and $X(\mathcal{V})$. Diagram (1.3.16) is commutative by construction. Equation (1.3.17) is equivalent to the equality

$$\phi(\tau \circ \rho(\beta, \eta)) = \tau \circ \rho(\eta, \beta)). \tag{1.3.28}$$

The above equality holds because $\beta \wedge \eta = -\eta \wedge \beta$.

The following result is an immediate consequence of **Proposition 1.14**.

Corollary 1.15. $\operatorname{sing} X(\mathcal{V}) = \tau(0) = f^{-1}(0).$

2 The divisor Δ

2.1 Parameter counts

Let $\Delta_+ \subset \mathbb{LG}(\bigwedge^3 V)$ and $\widetilde{\Delta}_+, \widetilde{\Delta}_+(0) \subset \mathbb{LG}(\bigwedge^3 V) \times \mathbb{P}(V)^2$ be

$$\Delta_{+} := \{A \in \mathbb{LG}(\bigwedge^{3} V) \mid |Y_{A}[3]| > 1\}, \qquad (2.1.1)$$

$$\Delta_{+} := \{ (A, [v_1], [v_2]) \mid [v_1] \neq [v_2], \quad \dim(A \cap F_{v_i}) \ge 3 \}, \qquad (2.1.2)$$

$$\widetilde{\Delta}_{+}(0) := \{ (A, [v_1], [v_2]) \mid [v_1] \neq [v_2], \quad \dim(A \cap F_{v_i}) = 3 \}.$$
(2.1.3)

Notice that $\widetilde{\Delta}_+$ and $\widetilde{\Delta}_+(0)$ are locally closed.

Lemma 2.1. Keep notation as above. The following hold:

- (1) $\widetilde{\Delta}_+$ is irreducible of dimension 53.
- (2) Δ_+ is constructible and $\operatorname{cod}(\Delta_+, \mathbb{LG}(\Lambda^3 V)) \geq 2$.

Proof. (1): Let's prove that $\widetilde{\Delta}_{+}(0)$ is irreducible of dimension 53. Consider the map

$$\widetilde{\Delta}_{+}(0) \xrightarrow{\eta} \operatorname{Gr}(3, \bigwedge^{3} V)^{2} \times \mathbb{P}(V)^{2}$$

$$(A, [v_{1}], [v_{2}]) \xrightarrow{\mapsto} (A \cap F_{v_{1}}, A \cap F_{v_{2}}, [v_{1}], [v_{2}]).$$

$$(2.1.4)$$

We have

$$\operatorname{im} \eta = \{ (K_1, K_2, [v_1], [v_2]) \mid K_i \in \operatorname{Gr}(3, F_{v_i}), \quad K_1 \perp K_2, \quad [v_1] \neq [v_2] \}.$$
(2.1.5)

We stratify im η according to $i := \dim(K_1 \cap F_{v_2})$ and to $j := \dim(K_1 \cap K_2)$; of course $j \leq i$. Let $(\operatorname{im} \eta)_{i,j} \subset \operatorname{im} \eta$ be the stratum corresponding to i, j. A straightforward computation gives that

$$\dim \eta^{-1}(\operatorname{im} \eta)_{i,j} = 10 + 7(3-i) + j(i-j) + (3-j)(4+i) + \frac{1}{2}(j+5)(j+4) = 53 - 4i - \frac{1}{2}j(j-1). \quad (2.1.6)$$

Since $0 \leq i, j$ one gets that the maximum is achieved for i = j = 0 and that it equals 53. It follows that $\widetilde{\Delta}_{+}(0)$ is irreducible of dimension 53. On the other hand $\widetilde{\Delta}_{+}(0)$ is dense in $\widetilde{\Delta}_{+}$ (easy) and hence we get that Item (1) holds. (2): Let $\pi_{+} : \widetilde{\Delta}_{+} \to \mathbb{LG}(\bigwedge^{3} V)$ be the forgetful map: $\pi_{+}([v_{1}], [v_{2}], A) = A$. Then $\pi_{+}(\widetilde{\Delta}_{+}) = \Delta_{+}$. By Item (1) we get that dim $\Delta_{+} \leq 53$: since dim $\mathbb{LG}(\bigwedge^{3} V) = 55$ we get that Item (2) holds.

Proposition 2.2. The following hold:

- (1) Δ is closed irreducible of codimension 1 in $\mathbb{LG}(\Lambda^3 V)$ and not equal to Σ .
- (2) If $A \in \Delta$ is generic then $Y_A[3] = Y_A(3)$ and it consists of a single point.

Proof. (1): Let

$$\widetilde{\Delta} := \{ (A, [v]) \mid \dim(F_v \cap A) \ge 3 \}, \qquad \widetilde{\Delta}(0) := \{ (A, [v]) \mid \dim(F_v \cap A) = 3 \}.$$
(2.1.7)

Then $\widetilde{\Delta}$ is a closed subset of $\mathbb{LG}(\bigwedge^3 V) \times \mathbb{P}(V)$ and $\widetilde{\Delta}(0)$ is an open subset of $\widetilde{\Delta}$. Let $\pi : \widetilde{\Delta} \to \mathbb{LG}(\bigwedge^3 V)$ be the forgetful map. Thus $\pi(\widetilde{\Delta}) = \Delta$: since π is projective it follows that Δ is closed. Projecting $\widetilde{\Delta}(0)$ to $\mathbb{P}(V)$ we get that $\widetilde{\Delta}(0)$ is smooth irreducible of dimension 54. A standard dimension count shows that $\widetilde{\Delta}(0)$ is open dense in $\widetilde{\Delta}$; thus $\widetilde{\Delta}$ is irreducible of dimension 54. It follows that Δ is irreducible. By **Lemma 2.1** we know that dim $\widetilde{\Delta}_+ \leq 53$. It follows that the generic fiber of $\widetilde{\Delta} \to \Delta$ is a single point, in particular dim $\Delta = 54$ and hence $\operatorname{cod}(\Delta, \mathbb{LG}(\bigwedge^3 V)) = 1$ because dim $\mathbb{LG}(\bigwedge^3 V) = 55$. A dimension count shows that dim $(\Delta \cap \Sigma) < 54$ and hence $\Delta \neq \Sigma$. This finishes the proof of Item (1). (2): Let $A \in \Delta$ be generic: we already noticed that there exists a unique $[v] \in \mathbb{P}(V)$ such that $([v], A) \in \widetilde{\Delta}$, i.e. $Y_A[3]$ consists of a single point. Since $\widetilde{\Delta}(0)$ is dense in $\widetilde{\Delta}$ and dim $\widetilde{\Delta} = \dim \Delta$ we get that $([v], A) \in \widetilde{\Delta}(0)$, i.e. $Y_A[3] = Y_A(3)$. This finishes the proof of Item (2).

2.2 First order computations

Let $(A, [v_0]) \in \widetilde{\Delta}(0)$. We will study the differential of $\pi \colon \widetilde{\Delta} \to \mathbb{LG}(\bigwedge^3 V)$ at $(A, [v_0])$. First we will give a local description of $\widetilde{\Delta}$ as degeneracy locus. Let

$$\mathbb{N}(V) := \{ A \in \mathbb{LG}(\bigwedge^{3} V) \mid Y_{A} = \mathbb{P}(V) \}.$$
(2.2.1)

Notice that $\mathbb{N}(V)$ is closed. Let \mathcal{Y} be the tautological family of EPW-sextics i.e.

$$\mathcal{Y} := \{ (A, [v]) \in (\mathbb{LG}(\bigwedge^3 V) \setminus \mathbb{N}(V)) \times \mathbb{P}(V) \mid \dim(A \cap F_v) > 0 \}.$$
(2.2.2)

Of course \mathcal{Y} has a description as a determinantal variety and hence it has a natural scheme structure. For $\mathcal{U} \subset (\mathbb{LG}(\bigwedge^3 V) \setminus \mathbb{N}(V))$ open we let $\mathcal{Y}_{\mathcal{U}} := \mathcal{Y} \cap (\mathcal{U} \times \mathbb{P}(V))$. Given $B \in \mathbb{LG}(\bigwedge^3 V)$ let

$$U_B := \{ A \in \mathbb{LG}(\bigwedge^3 V) \mid A \pitchfork B \} \setminus \mathbb{N}(V).$$
(2.2.3)

(Here $A \pitchfork B$ means that A intersects transversely B i.e. $A \cap B = \{0\}$.) Let $i_{U_B} : \mathcal{Y}_{U_B} \hookrightarrow U_B \times \mathbb{P}(V)$ be the inclusion and let \mathcal{A} be the tautological rank-10 vector-bundle on $\mathbb{LG}(\bigwedge^3 V)$ (the fiber of \mathcal{A} over A is A itself). Going through the argument that produced Commutative Diagram (1.2.2) we get that there exists a commutative diagram

Now let $(A, [v_0]) \in \mathcal{Y}$. Choose $B \in \mathbb{LG}(\bigwedge^3 V)$ such that $B \pitchfork A$ and $B \pitchfork F_{v_0}$. Let $\mathcal{N} \subset \mathbb{P}(V)$ be an open neighborhood of $[v_0]$ such that $B \pitchfork F_w$ for all $w \in \mathcal{N}$. The restriction to U_B of \mathcal{A} is trivial and the restriction to \mathcal{N} of F is likewise trivial. Moreover the restriction of μ_{U_B} to $U_B \times \mathcal{N}$ is an isomorphism. Let

$$\gamma := (\lambda_{U_B}|_{U_B \times \mathcal{N}}) \circ (\mu_{U_B}|_{U_B \times \mathcal{N}})^{-1}.$$
(2.2.5)

We have an exact sequence

$$0 \longrightarrow (\mathcal{A}|_{U_B}) \boxtimes \mathcal{O}_{\mathcal{N}} \xrightarrow{\gamma} (\mathcal{A}^{\vee}|_{U_B}) \boxtimes \mathcal{O}_{\mathcal{N}} \longrightarrow i_{U_B,*} \zeta_{U_B}|_{U_B \times \mathcal{N}} \longrightarrow 0$$
(2.2.6)

The map γ is symmetric, in fact it is the symmetrization of the restriction of (2.2.4) to $U_B \times \mathcal{N}$ see **Definition 1.8**. Then $\widetilde{\Delta} \cap (U_B \times \mathcal{N})$ is the symmetric degeneration locus

$$\widetilde{\Delta} \cap (U_B \times \mathcal{N}) = \{ (A', [v]) \in (U_B \times \mathcal{N}) \mid \operatorname{cork} \gamma(A', [v]) \ge 3 \}$$
(2.2.7)

and hence it inherits a natural structure of closed subscheme of $\mathbb{LG}(\bigwedge^3 V) \times \mathbb{P}(V)$. In order to study the differential of the forgetful map $\widetilde{\Delta} \to \mathbb{P}(V)$ we will introduce some notation. Given $v \in V$ we define a quadratic form $\phi_v^{v_0}$ on F_{v_0} as follows. Let $\alpha \in F_{v_0}$; then $\alpha = v_0 \wedge \beta$ for some $\beta \in \bigwedge^2 V$. We set

$$\phi_v^{v_0}(\alpha) := \operatorname{vol}(v_0 \wedge v \wedge \beta \wedge \beta).$$
(2.2.8)

The above equation gives a well-defined quadratic form on F_{v_0} because β is determined up to addition by an element of F_{v_0} . Of course $\phi_v^{v_0}$ depends only on the class of v in $V/[v_0]$. Choose a direct-sum decomposition

$$V = [v_0] \oplus V_0. (2.2.9)$$

We have the isomorphism

$$\begin{array}{cccc} \lambda_{V_0}^{v_0} \colon \bigwedge^2 V_0 & \xrightarrow{\sim} & F_{v_0} \\ \beta & \mapsto & v_0 \wedge \beta \,. \end{array}$$
(2.2.10)

Under the above identification the Plücker quadratic forms on $\bigwedge^2 V_0$ correspond to the quadratic forms $\phi_v^{v_0}$ for v varying in V_0 . Let $K := A \cap F_{v_0}$ and

The isomorphism

$$\begin{array}{rccc} V_0 & \xrightarrow{\sim} & \mathbb{P}(V) \setminus \mathbb{P}(V_0) \\ v & \mapsto & [v_0 + v] \end{array}$$

defines an isomorphism $V_0 \cong T_{[v_0]} \mathbb{P}(V)$. Recall that the tangent space to $\mathbb{LG}(\bigwedge^3 V)$ at A is canonically identified with $\operatorname{Sym}^2 A^{\vee}$.

Proposition 2.3. Keep notation as above - in particular choose (2.2.9). Then

$$T_{(A,[v_0])}\widetilde{\Delta} \subset T_{(A,[v_0])}\left(\mathbb{LG}(\bigwedge^3 V) \times \mathbb{P}(V)\right) = \operatorname{Sym}^2 A^{\vee} \oplus V_0$$
(2.2.12)

is given by

$$T_{([v_0],A)}\widetilde{\Delta} = \{(q,v) \mid \theta_K^A(q) - \tau_K^{v_0}(v) = 0\}.$$
(2.2.13)

Proof. By the (local) degeneracy description (2.2.7) we get that $(q, v) \in T_{([v_0], A)} \widetilde{\Delta}$ if and only if

$$0 = d\gamma(A, [v_0])(q, v)|_K = d\gamma(A, [v_0])(q, 0)|_K + d\gamma(A, [v_0])(0, v)|_K$$

It is clear that $d\gamma(A, [v_0])(q, 0)|_K = \theta_K^A(q)$. On the other hand Equation (2.26) of [12] gives that

$$d\gamma(A, [v_0])(0, v)|_K = -\tau_K^{v_0}(v).$$
(2.2.14)

The proposition follows.

Corollary 2.4. $\widetilde{\Delta}(0)$ is smooth (of codimension 6 in $\mathbb{LG}(\bigwedge^3 V) \times \mathbb{P}(V)$). Let $(A, [v_0]) \in \widetilde{\Delta}(0)$ and $K := A \cap F_{v_0}$. The differential $d\pi(A, [v_0])$ is injective if and only if $\tau_K^{v_0}$ is injective.

Proof. Let $(A, [v_0]) \in \widetilde{\Delta}(0)$ and $K := A \cap F_{v_0}$. The map θ_K^A is surjective: by **Proposition 2.3** we get that $T_{(A, [v_0])}\widetilde{\Delta}(0)$ has codimension 6 in $T_{(A, [v_0])}(\mathbb{LG}(\bigwedge^3 V) \times \mathbb{P}(V))$. On the other hand the description of $\widetilde{\Delta}(0)$ as a symmetric degeneration locus - see (2.2.7) - gives that $\widetilde{\Delta}(0)$ has codimension at most 6 in $\mathbb{LG}(\bigwedge^3 V) \times \mathbb{P}(V)$: it follows that $\widetilde{\Delta}(0)$ is smooth of codimension 6 in $\mathbb{LG}(\bigwedge^3 V) \times \mathbb{P}(V)$. The statement about injectivity of $d\pi(A, [v_0])$ follows at once form **Proposition 2.3**.

A comment regarding **Corollary 2.4**. The statement about smoothness of $\widetilde{\Delta}(0)$ is *not* contained in the proof of **Proposition 2.2** because in that proof we consider $\widetilde{\Delta}(0)$ with its reduced structure. Before stating the next result we give the following definition: given $A \in \mathbb{LG}(\Lambda^3 V)$ we let

$$\Theta_A := \{ W \in \operatorname{Gr}(3, V) \mid \bigwedge^3 W \subset A \}.$$
(2.2.15)

Proposition 2.5. Let $(A, [v_0]) \in \widetilde{\Delta}(0)$ and let $K := A \cap F_{v_0}$. Then $\tau_K^{v_0}$ is injective if and only if

- (1) no $W \in \Theta_A$ contains v_0 , or
- (2) there is exactly one $W \in \Theta_A$ containing v_0 and moreover

$$A \cap F_{v_0} \cap (\bigwedge^2 W \wedge V) = \bigwedge^3 W.$$
(2.2.16)

If Item (1) holds then $\operatorname{im} \tau_K^{v_0}$ belongs to the unique open $\operatorname{PGL}(K)$ -orbit of $\operatorname{Gr}(5, \operatorname{Sym}^2 K^{\vee})$, if Item (2) holds then $\operatorname{im} \tau_K^{v_0}$ belongs to the unique closed $\operatorname{PGL}(K)$ -orbit of $\operatorname{Gr}(5, \operatorname{Sym}^2 K^{\vee})$.

Proof. Let $V_0 \subset V$ be a codimension-1 subspace transversal to $[v_0]$. Let

$$\rho_{V_0}^{v_0} \colon F_{v_0} \xrightarrow{\sim} \bigwedge^2 V_0 \tag{2.2.17}$$

be the inverse of Isomorphism (2.2.10). Let $\mathbf{K} := \mathbb{P}(\rho_{V_0}^{v_0}(K)) \subset \mathbb{P}(\bigwedge^2 V_0)$; then \mathbf{K} is a projective plane. Isomorphism $\rho_{V_0}^{v_0}$ identifies the space of quadratic forms $\phi_v^{v_0}$, for $v \in V_0$, with the space of Plücker quadratic forms on $\bigwedge^2 V_0$. Since the ideal of $\operatorname{Gr}(2, V_0) \subset \mathbb{P}(\bigwedge^2 V_0)$ is generated by the Pl'ucker quadratic forms we get that $\tau_K^{v_0}$ is identified with the natural restriction map

$$V_0 = H^0(\mathcal{I}_{\mathrm{Gr}(2,V_0)}(2)) \xrightarrow{\tau_K^{v_0}} H^0(\mathcal{O}_{\mathbf{K}}(2)) = \mathrm{Sym}^2 K^{\vee}.$$
 (2.2.18)

It follows that if the scheme-theoretic intersection $\mathbf{K} \cap \operatorname{Gr}(2, V_0)$ is not empty nor a single reduced point then $\tau_K^{v_0}$ is not injective. Now suppose that $\mathbf{K} \cap \operatorname{Gr}(2, V_0)$ is

- (1') empty i.e. Item (1) holds, or
- (2') a single reduced point, i.e. Item (2) holds.

Let

$$\mathbb{P}(\bigwedge^{2} V_{0}) \xrightarrow{\Phi} |H^{0}(\mathcal{I}_{\mathrm{Gr}(2,V_{0})}(2))|^{\vee} = \mathbb{P}(V_{0}^{\vee})$$
(2.2.19)

be the natural map: it associates to $[\alpha] \notin \operatorname{Gr}(2, V_0)$ the projectivization of $\operatorname{supp} \alpha$. We have a tautological identification

$$\mathbf{K} \xrightarrow{\Phi|_{\mathbf{K}}} \mathbb{P}(\operatorname{im} \tau_{K}^{v_{0}})^{\vee}$$

and of course $\Phi|_{\mathbf{K}}$ is the Veronese embedding $\mathbf{K} \to |\mathcal{O}_{\mathbf{K}}(2)|^{\vee}$ followed by the projection with center $\mathbb{P}(\operatorname{Ann}(\operatorname{im} \tau_K^{v_0}))$. Notice that $\tau_K^{v_0}$ is not injective if and only if $\dim \mathbb{P}(\operatorname{Ann}(\operatorname{im} \tau_K^{v_0})) \geq 1$. Now suppose that (1') holds. Then $\Phi|_{\mathbf{K}}$ is regular and in fact it is an isomorphism onto its image - see Lemma 2.7 of [15]. Since the chordal variety of the Veronese surface in $|\mathcal{O}_{\mathbf{K}}(2)|^{\vee}$ is a hypersurface it follows that dim $\mathbb{P}(\operatorname{Ann}(\operatorname{im} \tau_K^{v_0})) < 1$ and hence $\tau_K^{v_0}$ is injective. We also get that $\operatorname{Ann}(\operatorname{im} \tau_K^{v_0})$ is a point in $|\mathcal{O}_{\mathbf{K}}(2)|^{\vee}$ which does not belong to the chordal variety of the Veronese surface and hence it belongs to unique open PGL(K)-orbit. Now suppose that (2') holds. Assume that $\tau_K^{v_0}$ is not injective. Then dim $\mathbb{P}(\operatorname{Ann}(\operatorname{im} \tau_K^{v_0})) \geq 1$. It follows that there exist $[x] \neq [y] \in \mathbf{K}$ in the regular locus of $\Phi|_{\mathbf{K}}$ (i.e. neither x nor y is decomposable) such that $\Phi([x]) = \Phi([y])$. By the description of Φ given above in terms of supports we get that $\operatorname{supp}(x) = \operatorname{supp}(y) = U$ where dim U = 4; since $\operatorname{Gr}(2,U)$ is a hypersurface in $\mathbb{P}(\bigwedge^2 U)$ we get that the line $\langle [x], [y] \rangle \subset \mathbb{P}(\bigwedge^2 V_0)$ intersects $\operatorname{Gr}(2,U)$ in a subscheme of length 2. Since $\langle [x], [y] \rangle \subset \mathbf{K}$ it follows that $\mathbf{K} \cap \operatorname{Gr}(2, V_0)$ contains a scheme of length 2, that contradicts Item (2'). This proves that if (2') holds then $\tau_K^{v_0}$ is injective. It also follows that $\operatorname{Ann}(\tau_K^{v_0})$ belongs to the Veronese surface in $|\mathcal{O}_{\mathbf{K}}(2)|^{\vee}$ i.e. $\operatorname{im}(\tau_K^{v_0})$ belongs to the unique closed PGL(K)-orbit.

3 Simultaneous resolution

In the first subsection we will analyze families of double EPW-sextics and their singular locus. The second subsection shows how to construct the simultaneous desingularization described in Item (3) of **Section 0** (the relation with the Hilbert square of a K3 will be given in **Section 4**).

3.1 Families of double EPW-sextics

Let $\mathcal{U} \subset (\mathbb{LG}(\bigwedge^3 V) \setminus \mathbb{N}(V))$ (see (2.2.1)) be open. Suppose that there exist a scheme $\mathcal{X}_{\mathcal{U}}$ and a finite $f_{\mathcal{U}} \colon \mathcal{X}_{\mathcal{U}} \to \mathcal{Y}_{\mathcal{U}}$ such that for every $A \in \mathcal{U}$ the induced map $f^{-1}Y_A \to Y_A$ is identified with $f_A \colon X_A \to Y_A$: then we say that a *tautological family of double EPW-sextics parametrized by* \mathcal{U} exists - often we simply state that $f_{\mathcal{U}} \colon \mathcal{X}_{\mathcal{U}} \to \mathcal{Y}_{\mathcal{U}}$ exists. Composing $f_{\mathcal{U}}$ with the natural map $\mathcal{Y}_{\mathcal{U}} \to \mathcal{U}$ we get a map $\rho_{\mathcal{U}} \colon \mathcal{X}_{\mathcal{U}} \to \mathcal{U}$ such that $\rho_{\mathcal{U}}^{-1}(A) \cong X_A$.

Proposition 3.1. Let $B \in \mathbb{LG}(\bigwedge^{3} V)$. A tautological family of double EPW-sextics parametrized by U_B exists (U_B is given by (2.2.3)).

Proof. Let $\nu: \mathcal{Y}_{U_B} \to \mathbb{P}(V)$ be projection. Let $\xi_{U_B} := \zeta_{U_B} \otimes \nu^* \mathcal{O}_{\mathbb{P}(V)}(-3)$ where ζ_{U_B} is the sheaf on \mathcal{Y}_{U_B} fitting in (2.2.4). Look at Commutative Diagram (2.2.4): proceeding as in the definition of the multiplication on $\mathcal{O}_{Y_A} \oplus \xi_A$ we get that β_{U_B} defines a multiplication on $\mathcal{O}_{\mathcal{Y}_{U_B}} \oplus \xi_{U_B}$. By **Proposition 1.7** we get that $\mathcal{O}_{\mathcal{Y}_{U_B}} \oplus \xi_{U_B}$ is an associative commutative ring. Let $\mathcal{X}_{U_B} := \text{Spec}(\mathcal{O}_{\mathcal{Y}_{U_B}} \oplus \xi_{U_B})$ and $f_{U_B}: \mathcal{X}_{U_B} \to \mathcal{Y}_{U_B}$ be the structure map. \Box

Let $\mathcal{U} \subset (\mathbb{LG}(\bigwedge^3 V) \setminus \mathbb{N}(V))$ be open and such that $f_{\mathcal{U}} \colon \mathcal{X}_{\mathcal{U}} \to \mathcal{Y}_{\mathcal{U}}$ exists. We will determine the singular locus of $\mathcal{X}_{\mathcal{U}}$. Let

$$\mathcal{Y}[d] := \{ (A, [v]) \in (\mathbb{LG}(\bigwedge^{3} V) \setminus \mathbb{N}(V)) \times \mathbb{P}(V) \mid \dim(A \cap F_{v}) \ge d \},$$
(3.1.1)

$$\mathcal{Y}(d) := \{ (A, [v]) \in (\mathbb{LG}(\bigwedge^{3} V) \setminus \mathbb{N}(V)) \times \mathbb{P}(V) \mid \dim(A \cap F_{v}) = d \}.$$
(3.1.2)

Then $\mathcal{Y}[d]$ has a natural structure of closed subscheme of $\mathbb{LG}(\bigwedge^3 V) \times \mathbb{P}(V)$ given by its local description as a symmetric determinantal variety - see **Subsection 2.2** of [15]. Let $\mathcal{U} \in (\mathbb{LG}(\bigwedge^3 V) \setminus \mathbb{N}(V))$ be open. We let $\mathcal{Y}_{\mathcal{U}}[d] := \mathcal{Y}[d] \cap \mathcal{Y}_{\mathcal{U}}$ and similarly for $\mathcal{Y}_{\mathcal{U}}(d)$. Suppose that $f_{\mathcal{U}} : \mathcal{X}_{\mathcal{U}} \to \mathcal{Y}_{\mathcal{U}}$ is defined; we let

$$\mathcal{W}_{\mathcal{U}} := f_{\mathcal{U}}^{-1} \mathcal{Y}[3]. \tag{3.1.3}$$

Notice that the restriction of $f_{\mathcal{U}}$ to $\mathcal{W}_{\mathcal{U}}$ defines an isomorphism $\mathcal{W}_{\mathcal{U}} \xrightarrow{\sim} \mathcal{Y}_{\mathcal{U}}[3]$. We will prove the following result.

Proposition 3.2. Let $\mathcal{U} \subset (\mathbb{LG}(\bigwedge^3 V) \setminus \mathbb{N}(V))$ be open and suppose that $f_{\mathcal{U}} \colon \mathcal{X}_{\mathcal{U}} \to \mathcal{Y}_{\mathcal{U}}$ exists. Then sing $\mathcal{X}_{\mathcal{U}} = \mathcal{W}_{\mathcal{U}}$.

Proof. We may assume that $\mathcal{U} = U_B \times \mathcal{N}$ where $B \in \mathbb{LG}(\bigwedge^3 V)$ and $\mathcal{N} \subset \mathbb{P}(V)$ is an open subset such that $B \pitchfork F_w$ for all $w \in \mathcal{N}$. Then (see the proof of **Proposition 3.1**)

$$f_{U_B}^{-1}(\mathcal{U}) = X_{\gamma}$$
 where γ is given by (2.2.5). (3.1.4)

Thus it suffices to examine X_{γ} . Let $(A, [v]) \in \mathcal{U}$ and

$$\delta_{\gamma}(A, [v]) \colon T_{(A, [v])} \mathbb{LG}(\bigwedge^{3} V) \times \mathbb{P}(V) \longrightarrow \operatorname{Sym}^{2}(A \cap F_{v})^{\vee}$$
(3.1.5)

be as in (1.3.3). The restriction of $\delta_{\gamma}(A, [v])$ to the tangent space to $\mathbb{LG}(\bigwedge^{3} V)$ at A is surjective; thus

$$\delta_{\gamma}(A, [v])$$
 is surjective. (3.1.6)

Let $q \in \mathcal{X}_{\gamma}$ and $f_{\mathcal{U}}(q) = (A, [v])$. Suppose that $q \notin \mathcal{W}_{\mathcal{U}}$ i.e. that $\operatorname{cork} \gamma(p) \leq 2$. If $\operatorname{cork} \gamma(p) = 1$ then $Y_{\mathcal{U}} = Y_{\gamma}$ is smooth because the differential $\delta_{\gamma}(A, [v])$ is surjective: by **Proposition 1.5** we get that $\mathcal{X}_{\mathcal{U}}$ is smooth at q. If $\operatorname{cork} \gamma(p) = 2$ then $\mathcal{X}_{\mathcal{U}}$ is smooth at q by **Proposition 1.12** - recall that the differential $\delta_{\gamma}(A, [v])$ is surjective. This proves that $\operatorname{sing} \mathcal{X}_{\mathcal{U}} \subset \mathcal{W}_{\mathcal{U}}$. On the other hand $\mathcal{W}_{\mathcal{U}} \subset \operatorname{sing} \mathcal{X}_{\mathcal{U}}$ by **Claim 1.13**.

We will close the present subsection by proving a few results about the individual X_A 's.

Lemma 3.3. Let $A \in (\mathbb{LG}(\bigwedge^3 V) \setminus \mathbb{N}(V))$ and $[v] \in Y_A$. Suppose that $\dim(A \cap F_v) \leq 2$ and that there is no $W \in \Theta_A$ (see (2.2.15)) containing v. Then X_A is smooth at $f_A^{-1}([v])$.

Proof. Let $q \in f_A^{-1}([v])$. Suppose that dim $(A \cap F_v) = 1$. By Corollary 2.5 of [15] we get that Y_A is smooth at [v], thus X_A is smooth at q by **Proposition 1.5**. Suppose that dim $(A \cap F_v) = 2$. Locally around q the double cover $X_A \to Y_A$ is isomorphic to $X_{\overline{\gamma}} \to Y_{\overline{\gamma}}$ where $\overline{\gamma}$ is the symmetrization of the restriction of β_A to an affine neighborhood Spec R of [v]. Thus we may consider the differential $\delta_{\overline{\gamma}}([v])$ - see (1.3.3). The differential is surjective by Proposition 2.9 of [15], thus X_A is smooth at q by **Proposition 1.12**.

Proposition 3.4. Let $A \in (\mathbb{LG}(\bigwedge^{3} V) \setminus \mathbb{N}(V))$. Then X_A is smooth if and only if $A \in \mathbb{LG}(\bigwedge^{3} V)^{0}$.

Proof. If $A \in \mathbb{LG}(\bigwedge^3 V)^0$ then X_A is smooth by [12]. Suppose that X_A is smooth. Then $A \notin \Delta$ by **Claim 1.13**. Assume that $A \in \Sigma$; we will reach a contradiction. Let $W \in \Theta_A$ and $[v] \in \mathbb{P}(W)$ - notice that $\mathbb{P}(W) \subset Y_A$. Let $q \in f_A^{-1}([v])$. Since $A \notin \Delta$ we have $1 \leq \dim(A \cap F_v) \leq 2$. Suppose that $\dim(A \cap F_v) = 1$. Then Y_A is singular at [v] by Corollary 2.5 of [15], thus X_A is singular at q by **Proposition 1.5**. Suppose that $\dim(A \cap F_v) = 2$. Let $\overline{\gamma}$ be as in the proof of **Lemma 3.3**. Then $\delta_{\overline{\gamma}}([v])$ is not surjective - see Proposition 2.3 of [15] - and hence X_A is singular at q by **Proposition 1.12**.

3.2 The desingularization

Definition 3.5. Let $\mathbb{LG}(\bigwedge^3 V)^* \subset \mathbb{LG}(\bigwedge^3 V)$ be the set of A such that the following hold:

- (1) $A \notin \mathbb{N}(V)$.
- (2) $Y_A[3]$ is finite.
- (3) $Y_A[3] = Y_A(3)$.

Remark 3.6. $\mathbb{LG}(\bigwedge^3 V)^*$ is an open subset of $\mathbb{LG}(\bigwedge^3 V)$.

Claim 3.7. $(\mathbb{LG}(\bigwedge^3 V) \setminus \Sigma) \subset \mathbb{LG}(\bigwedge^3 V)^*$.

Proof. Item (1) of **Definition 3.5** holds by Claim 2.11 of [15]. Let's prove that Item (2) of **Defini**tion 3.5 holds. Suppose that $Y_A[3] \neq Y_A(3)$ i.e. there exists $[v_0] \in \mathbb{P}(V)$ such that $\dim(A \cap F_{v_0}) \geq 4$. Let $V_0 \subset V$ be a codimension-1 subspace transversal to $[v_0]$ and let $\rho_{V_0}^{v_0}$ be as in (2.2.17). Let $\mathbf{K} := \mathbb{P}(\rho_{V_0}^{v_0}(A \cap F_{v_0}))$. Then dim $\mathbf{K} \geq 3$; since $\operatorname{Gr}(2, V_0)$ has codimension 3 in $\mathbb{P}(\bigwedge^2 V_0)$ it follows that there exists $[\alpha] \in \mathbf{K} \cap \operatorname{Gr}(2, V_0)$. Let $\widetilde{\alpha} \in (A \cap F_{v_0})$ such that $\rho_{V_0}^{v_0}(\widetilde{\alpha}) = \alpha$. Then $\widetilde{\alpha}$ is non-zero and decomposable, that is a contradiction because $A \notin \Sigma$. Lastly let's prove that Item (3) of **Definition 3.5** holds. Let $[v_0] \in Y_A[3] = Y_A(3)$. Then $(A, [v_0]) \in \widetilde{\Delta}(0)$. Let $K := A \cap F_{v_0}$ and $\tau_K^{v_0}$ be as in (2.2.11). We have

$$T_{[v_0]}Y_A[3] = T_{[v_0]}Y_A(3) = \ker \tau_K^{v_0}$$

By **Proposition 2.5** the map $\tau_K^{v_0}$ is injective. Thus $[v_0]$ is an isolated point of $Y_A[3]$.

Let $A \in \mathbb{LG}(\bigwedge^3 V)^*$. Let $\mathcal{U} \subset \mathbb{LG}(\bigwedge^3 V)^*$ be a small open (either in the Zariski or in the classical topology) subset containing A. In particular $\rho_{\mathcal{U}} \colon \mathcal{X}_{\mathcal{U}} \to \mathcal{Y}_{\mathcal{U}}$ exists. Let $\pi_{\mathcal{U}} \colon \widetilde{\mathcal{X}}_{\mathcal{U}} \to \mathcal{X}_{\mathcal{U}}$ be the blow-up of $\mathcal{W}_{\mathcal{U}}$ and $E_{\mathcal{U}}$ be the exceptional set of $\pi_{\mathcal{U}}$.

Claim 3.8. Keep notation as above. Then $\tilde{\mathcal{X}}_{\mathcal{U}}$ is smooth. If \mathcal{U} is open and sufficiently small in the classical topology then we have a locally-trivial fibration

$$E_{\mathcal{U}} \longrightarrow Y_{\mathcal{U}}[3].$$
 (3.2.1)

Let $(A, [v]) \in Y_{\mathcal{U}}[3]$. The fiber of (3.2.1) over (A, [v]) is isomorphic to $\mathbb{P}(A \cap F_v)^{\vee} \times \mathbb{P}(A \cap F_v)^{\vee}$ and the restriction of $N_{E_{\mathcal{U}}/\widetilde{\mathcal{X}}_{\mathcal{U}}}$ to the fiber is isomorphic to $\mathcal{O}_{\mathbb{P}(A \cap F_v)^{\vee}}(-1) \boxtimes \mathcal{O}_{\mathbb{P}(A \cap F_v)^{\vee}}(-1)$. Proof. By **Proposition 3.2** we know that $\widetilde{\mathcal{X}}_{\mathcal{U}}$ is smooth outside $E_{\mathcal{U}}$. It remains to examine $\widetilde{\mathcal{X}}_{\mathcal{U}}$ over $\mathcal{W}_{\mathcal{U}} \cong \mathcal{Y}_{\mathcal{U}}[3]$. We may assume that $\mathcal{U} = U_B \times \mathcal{N}$ is as in the proof of **Proposition 3.2**. We will adopt the notation of that proof. Let $q \in \mathcal{X}_{\gamma}$ and $f_{\mathcal{U}}(q) = (A, [v]) = p$. A neighborhood of q in $X_{\mathcal{U}}$ is isomorphic to X_{γ} where γ is given by (2.2.5) - see (3.1.4). We are assuming that $q \in \mathcal{W}_{\mathcal{U}}$ and hence $\operatorname{cork} \gamma(p) = 3$. Let $f: X(\mathcal{V}) \to Y(\mathcal{V})$ be as in **Subsection 1.3** i.e. f is the universal double covering of corank 3 at the origin. We claim that there exists a map $\nu: X_{\gamma} \to X(\mathcal{V})$ such that the following diagram commutes

$$\begin{array}{c|c} X_{\gamma} & \stackrel{\nu}{\longrightarrow} X(\mathcal{V}) \\ f_{\gamma} & & \downarrow f \\ Y_{\gamma} & \stackrel{\mu}{\longrightarrow} Y(\mathcal{V}) \end{array} \tag{3.2.2}$$

and X_{γ} is identified with the fibered product $Y_{\gamma} \times_{Y(\mathcal{V})} X(\mathcal{V})$. In fact it suffices to apply the reduction procedure of **Subsection 1.1** that leads to **Claim 1.4**. Let **K** be as in **Claim 1.4**: by (1.1.29) we have $(Y_{\gamma_{\mathbf{K}}}, p) = (Y_{\gamma}, p)$ and by **Claim 1.4** we have a natural isomorphism $(X_{\gamma_{\mathbf{K}}}, f_{\gamma_{\mathbf{K}}}^{-1}(p)) \xrightarrow{\sim} (X_{\gamma}, f_{\gamma}^{-1}(p))$ commuting with $f_{\gamma_{\mathbf{K}}}$ and f_{γ} . Let $\mathcal{U} = \operatorname{Spec} R$: we are free to replace \mathcal{U} by any affine open subset containing (A, [v]). Thus we may assume that **K** is a trivial R-module i.e. $\mathbf{K} = \mathcal{V} \otimes R$ where \mathcal{V} is a complex 3-dimensional vector-space. Hence we may view $\gamma_{\mathbf{K}}$ as a map $\gamma_{\mathbf{K}}$: Spec $R \to$ $\operatorname{Sym}^2 \mathcal{V}^{\vee}$. Notice that we have equality of schemes $Y_{\gamma} = \gamma_{\mathbf{K}}^{-1}Y(\mathcal{V})$; thus the restriction of $\gamma_{\mathbf{K}}$ to Y_{γ} defines a map $\mu \colon Y_{\gamma} \to Y(\mathcal{V})$. The claim follows. By surjectivity of $\delta_{\gamma}(A, [v])$ - see (3.1.6) - we get that the germ $(X_{\gamma}, f_{\gamma}^{-1}(p))$ is the product of a smooth germ (of dimension 54) and the germ $(X(\mathcal{V}), f^{-1}(0))$. Looking at the explicit description of $X(\mathcal{V})$ given by **Proposition 1.14** we get right away that $\widetilde{\mathcal{X}}_{\mathcal{U}}$ is smooth over q and the remaining statements as well. We need to assume that \mathcal{U} is a small open subset in the classical topology in order to ensure that Map (3.2.1) is a locally-trvial fibration. \Box

Remark 3.9. Let $A \in \mathbb{LG}(\Lambda^3 V)^*$ and let $Y_A[3] = \{[v_1], \ldots, [v_s]\}$. Let $\mathcal{U} \subset \mathbb{LG}(\Lambda^3 V)^*$ be a small open (in the *classical* topology) subset containing A. For each $1 \leq i \leq s$ choose a projection

$$E_{\mathcal{U}}([v_i]) \longrightarrow \mathbb{P}(A \cap F_v)^{\vee}. \tag{3.2.3}$$

There exists a unique $\mathbb{P}^2\text{-fibration}$

$$\epsilon \colon E_{\mathcal{U}} \longrightarrow \star \tag{3.2.4}$$

where \star is itself a fibration over $Y_{\mathcal{U}}[3]$ with fiber $\mathbb{P}(A \cap F_v)^{\vee}$ over (A, [v]). We say that (3.2.3) is a *choice of* \mathbb{P}^2 -*fibration* ϵ for X_A .

Let $A \in \mathbb{LG}(\bigwedge^3 V)^*$ and choose a \mathbb{P}^2 -fibration ϵ for X_A . Let $\mathcal{U} \subset \mathbb{LG}(\bigwedge^3 V)^*$ be a small open (in the *classical* topology) subset containing A. By **Claim 3.8** the normal bundle of $E_{\mathcal{U}}$ along the fibers of (3.2.4) is $\mathcal{O}_{\mathbb{P}^2}(-1)$. Thus there exists a contraction $c_{\mathcal{U},\epsilon} \colon \widetilde{\mathcal{X}}_{\mathcal{U}} \to \mathcal{X}_{\mathcal{U}}^{\epsilon}$ in the category of complex manifolds fitting into a commutative diagram

Let $f_{\mathcal{U}}^{\epsilon} = f_{\mathcal{U}} \circ g_{\mathcal{U}}^{\epsilon} \colon \mathcal{X}_{\mathcal{U}}^{\epsilon} \to \mathcal{Y}_{\mathcal{U}} \text{ and } \rho_{\mathcal{U}}^{\epsilon} \colon \mathcal{X}_{\mathcal{U}}^{\epsilon} \to \mathcal{U} \text{ be the map } f_{\mathcal{U}}^{\epsilon} \text{ followed by } \mathcal{Y}_{\mathcal{U}} \to \mathcal{U}.$ Let

$$X_A^{\epsilon} := (\rho_{\mathcal{U}}^{\epsilon})^{-1}(A), \quad g_A^{\epsilon} := g_{\mathcal{U}}^{\epsilon}|_{X_A^{\epsilon}}, \quad f_A^{\epsilon} := f_{\mathcal{U}}^{\epsilon}|_{X_A^{\epsilon}}, \quad \mathcal{O}_{X_A^{\epsilon}}(1) := (f_A^{\epsilon})^* \mathcal{O}_{Y_A}(1), \quad H_A^{\epsilon} \in |\mathcal{O}_{X_A^{\epsilon}}(1)|.$$

Our notation does not make any reference to \mathcal{U} because the isomorphism class of the polarized couple $(X_A^{\epsilon}, \mathcal{O}_{X_A^{\epsilon}}(1))$ does not depend on the open set \mathcal{U} containing A. Notice that if $A \in \Delta$ then $\mathcal{O}_{X_A^{\epsilon}}(1)$ is not ample, in fact it is trivial on s copies of \mathbb{P}^2 where $s = |Y_A[3]|$. Of course

$$(X_A^{\epsilon}, \mathcal{O}_{X_A^{\epsilon}}(1)) \cong (X_A, \mathcal{O}_{X_A}(1)) \text{ if } A \in (\mathbb{LG}(\bigwedge^3 V) \setminus \Delta).$$
(3.2.6)

Proposition 3.10. Let $A \in \mathbb{LG}(\bigwedge^3 V)^*$ and let ϵ be a choice of \mathbb{P}^2 -fibration for X_A .

- (1) X_A^{ϵ} is smooth away from $(f_A^{\epsilon})^{-1}(\bigcup_{W\in\Theta_A} \mathbb{P}(W))$.
- (2) If $[v_i] \in Y_A[3]$ then $(f_A^{\epsilon})^{-1}[v_i] \cong \mathbb{P}(A \cap F_{v_i})^{\vee}$.
- (3) If ϵ' is another choice of \mathbb{P}^2 -fibration for X_A there exists a commutative diagram

where the birational map is the flop of a collection of $(f_A^{\epsilon})^{-1}[v_i]$'s. Conversely every flop of a collection of $(f_A^{\epsilon})^{-1}[v_i]$'s is isomorphic to one $X_A^{\epsilon'}$.

Proof. Let's prove Item (1). X_A^{ϵ} is smooth away from $(f_A^{\epsilon})^{-1}(Y_A[3] \cup \bigcup_{W \in \Theta_A} \mathbb{P}(W))$ by **Lemma 3.3**. It remains to prove that X_A^{ϵ} is smooth at every point of $(f_A^{\epsilon})^{-1}\{[v_1], \ldots, [v_s]\}$ where

$$\{[v_1],\ldots,[v_s]\} = Y_A[3] \setminus \bigcup_{W \in \Theta_A} \mathbb{P}(W).$$
(3.2.8)

Let $\mathcal{U} \subset \mathbb{LG}(\bigwedge^3 V)^*$ be a small open (in the *classical* topology) subset containing A. Let $\tilde{\rho}_{\mathcal{U}} := \rho_{\mathcal{U}} \circ \pi_{\mathcal{U}}$; thus $\tilde{\rho}_{\mathcal{U}} : \widetilde{X}_{\mathcal{U}} \to \mathcal{U}$. For $1 \leq i \leq s$ the fiber over $(A, [v_i])$ of Fibration (3.2.1) is canonically isomorphic to $\mathbb{P}(A \cap F_{v_i})^{\vee} \times \mathbb{P}(A \cap F_{v_i})^{\vee}$. Let $\widehat{X}_A \subset \widetilde{X}_{\mathcal{U}}$ be the strict transform of X_A . Abusing notation we write

$$\widetilde{\rho}_{\mathcal{U}}^{-1}(A) = \widehat{X}_A \cup \bigcup_{i=1}^s \mathbb{P}(A \cap F_{v_i})^{\vee} \times \mathbb{P}(A \cap F_{v_i})^{\vee} .$$
(3.2.9)

(Of course $\mathbb{P}(A \cap F_{v_i})^{\vee} \times \mathbb{P}(A \cap F_{v_i})^{\vee}$ denotes the fiber over $(A, [v_i])$ of Fibration (3.2.1).) The components $\mathbb{P}(A \cap F_{v_i})^{\vee} \times \mathbb{P}(A \cap F_{v_i})^{\vee}$ are pairwise disjoint. We claim that for $i = 1, \ldots, s$ the intersection

$$E_{A,i} := \widehat{X}_A \cap \left(\mathbb{P}(A \cap F_{v_i})^{\vee} \times \mathbb{P}(A \cap F_{v_i})^{\vee} \right)$$
(3.2.10)

is a smooth symmetric divisor in the linear system $|\mathcal{O}_{\mathbb{P}(A \cap F_{v_i})^{\vee}}(1) \boxtimes \mathcal{O}_{\mathbb{P}(A \cap F_{v_i})^{\vee}}(1)|$. In order to prove this we go back to Map (1.3.15) - recall that \mathcal{V} is a 3-dimensional complex vector space. Pull-back by σ defines an isomorphism

$$\operatorname{Sym}^{2} \mathcal{V}^{\vee} \xrightarrow{\sigma^{*}} (\mathcal{V}^{\vee} \otimes \mathcal{V}^{\vee})^{\mathbb{Z}/(2)} =: \operatorname{Sym}_{2} \mathcal{V}^{\vee}$$
(3.2.11)

which is $\operatorname{Gl}(\mathcal{V})$ -equivariant. Isomorphism σ^* induces a $\operatorname{PGL}(\mathcal{V})$ -equivariant isomorphism of projective spaces $\mathbf{p} \colon \mathbb{P}(\operatorname{Sym}^2 \mathcal{V}^{\vee}) \xrightarrow{\sim} \mathbb{P}(\operatorname{Sym}_2 \mathcal{V}^{\vee})$. Of course \mathbf{p} maps a point in the unique open $\operatorname{PGL}(\mathcal{V})$ -orbit of $\mathbb{P}(\operatorname{Sym}^2 \mathcal{V}^{\vee})$ to a point in the unique open $\operatorname{PGL}(\mathcal{V})$ -orbit of $\mathbb{P}(\operatorname{Sym}_2 \mathcal{V}^{\vee})$. Now let $\mathcal{V} = (A \cap F_{v_i})^{\vee}$. Let $K_i := (A \cap F_{v_i})$ and $\tau_{K_i}^{v_i}$ be as in (2.2.11). By **Proposition 2.5** we have that $\operatorname{im}(\tau_{K_i}^{v_i})$ belongs to the unique open $\operatorname{PGL}(K_i)$ -orbit of $\mathbb{P}(\operatorname{Sym}^2(A \cap F_{v_i}))$. Commutative Diagram (1.3.16) gives that $E_{A,i}$ is a symmetric smooth divisor in $|\mathcal{O}_{\mathbb{P}(A \cap F_{v_i})^{\vee}}(1) \boxtimes \mathcal{O}_{\mathbb{P}(A \cap F_{v_i})^{\vee}}(1)|$. Thus we have described $\widetilde{\rho}_{\mathcal{U}}^{-1}(A)$. Since $X_{\mathcal{U}}^{\epsilon}$ is obtained from $\widetilde{X}_{\mathcal{U}}$ by contracting $E_{\mathcal{U}}$ along the \mathbb{P}^2 -fibration ϵ it follows that X_A^{ϵ} is smooth at every point of $(f_A^{\epsilon})^{-1}\{[v_1], \ldots, [v_s]\}$. This proves Item (1). Since X_A^{ϵ} is obtained from \widehat{X}_A by contracting each of the divisors $E_{A,i}$ along the fibration $\mathbb{P}^1 \to E_{A,i} \to \mathbb{P}(A \cap F_{v_i})^{\vee}$ determined by ϵ (and similarly for ϵ') we also get Items (2) and (3). \Box

Corollary 3.11. Let $A \in (\mathbb{LG}(\bigwedge^3 V) \setminus \Sigma)$. Then $g_A^{\epsilon} \colon X_A^{\epsilon} \to X_A$ is a desingularization for every choice of \mathbb{P}^2 -fibration ϵ for X_A .

Proof. By Claim 3.7 we know that $A \in \mathbb{LG}(\bigwedge^3 V)^*$: thus **Proposition 3.10** applies to X_A^{ϵ} . Since $A \notin \Sigma$ we get that X_A^{ϵ} is smooth by Item (1) of **Proposition 3.10**.

Corollary 3.12. Let $A, A' \in (\mathbb{LG}(\bigwedge^3 V) \setminus \Sigma)$ and ϵ, ϵ' be choices of \mathbb{P}^2 -fibration for X_A . The quasi-polarized 4-folds $(X_A^{\epsilon}, H_A^{\epsilon})$ and $(X_{A'}^{\epsilon}, H_{A'}^{\epsilon})$ are deformation equivalent.

4 Double EPW-sextics parametrized by Δ

Let $A \in \Delta$ and $[v_0] \in Y_A(3)$. In the first subsection we will associate to $(A, [v_0])$ (under some hypotheses which are certainly satisfied if $A \notin \Sigma$) a K3 surface $S_A(v_0)$ of genus 6, meaning that it comes equipped with a big and nef divisor class $D_A(v_0)$ of square 10. We will also prove a converse: given a generic such pseudo-polarized K3 surface S there exist $A \in \Delta$ and $[v_0] \in Y_A(3)$ such that the pseudo-polarized surfaces S and $S_A(v_0)$ are isomorphic. In the second subsection we will assume that $A \in (\Delta \setminus \Sigma)$ - with this hypothesis $D_A(v_0)$ is very ample. We will prove that there exists a bimeromorphic map $\psi \colon S_A^{[2]}(v_0) \dashrightarrow X_A^{\epsilon}$ where ϵ is an arbitrary choice of \mathbb{P}^2 -fibration for X_A . That such a map exists for generic $A \in \Delta$ could be proved by invoking the results of [14]. Here we will present a direct proof (we will not appeal to [14] nor to [12]). Moreover we will prove that if $S_A(v_0)$ contains no lines (this will be the case for generic A) then there exists a choice of ϵ for which ψ is regular - in particular X_A^{ϵ} is projective for such ϵ . Lastly we will notice that the above results show that a smooth double cover of an EPW-sextic is a deformation of the Hilbert square of a K3 (and that the family of double EPW-sextics is a locally versal family of projective Hyperkähler manifolds): the proof is more direct than the proof of [12].

4.1 EPW-sextics and K3 surfaces

Assumption 4.1. $A \in \mathbb{LG}(\bigwedge^3 V), [v_0] \in Y_A(3)$ and the following hold:

- (a) There exists a codimension-1 subspace $V_0 \subset V$ such that $\bigwedge^3 V_0 \pitchfork A$ i.e. $\bigwedge^3 V_0 \cap A = \{0\}$.
- (b) There exists at most one $W \in \Theta_A$ containing v_0 .
- (c) If $W \in \Theta_A$ contains v_0 then $A \cap (\bigwedge^2 W \wedge V) = \bigwedge^3 W$.

Remark 4.2. Let $A \in (\Delta \setminus \Sigma)$. Let $[v_0] \in Y_A(3)$ (= $Y_A[3]$ by Claim 3.7). Then Assumption 4.1 holds. In fact Items (b) and (c) hold trivially while Item (a) holds by Claim 2.11 and Equation (2.81) of [15].

Let $(A, [v_0])$ be as in **Assumption 4.1**: we will define a surface $S_A(v_0)$ of genus 6. The condition that $\bigwedge^3 V_0$ is transverse to A is open: thus we may assume that we have a direct-sum decomposition

$$V = [v_0] \oplus V_0. \tag{4.1.1}$$

We will denote by \mathcal{D} be the direct-sum decomposition of V appearing in (4.1.1). Let

$$K_A^{\mathcal{D}} := \rho_{V_0}^{v_0} (A \cap F_{v_0}). \tag{4.1.2}$$

where $\rho_{V_0}^{v_0}$ is given by (2.2.17). Choose a volume-form on V_0 . Wedge-product followed by the volume-form defines an isomorphism $\bigwedge^3 V_0 \cong \bigwedge^2 V_0^{\vee}$ and hence it makes sense to let

$$F_A^{\mathcal{D}} := \mathbb{P}(\operatorname{Ann} K_A^{\mathcal{D}}) \cap \operatorname{Gr}(3, V_0).$$
(4.1.3)

By **Proposition 5.2** and **Proposition 5.3** (see the Appendix) we know that $F_A^{\mathcal{D}}$ is a Fano 3-fold with at most one singular point. Next we will define a quadratic form on Ann $K_A^{\mathcal{D}}$. By Item (a) of **Assumption 4.1** the subspace A is the graph of a map $\tilde{q}_A^{\mathcal{D}} \colon \bigwedge^2 V_0 \to \bigwedge^3 V_0$: explicitly

$$\widetilde{q}_A^{\mathcal{D}}(\alpha) = \beta \iff (v_0 \wedge \alpha + \beta) \in A.$$
 (4.1.4)

The map $\tilde{q}_A^{\mathcal{D}}$ is symmetric because A, $\bigwedge^2 V_0$ and $\bigwedge^3 V_0$ are lagrangian subspaces of $\bigwedge^3 V$. Clearly $\ker \tilde{q}_A^{\mathcal{D}} = K_A^{\mathcal{D}}$: it follows that $\tilde{q}_A^{\mathcal{D}}$ induces an isomorphism

$$\widetilde{r}_{A}^{\mathcal{D}} \colon \bigwedge^{2} V_{0}/K_{A}^{\mathcal{D}} \xrightarrow{\sim} \operatorname{Ann} K_{A}^{\mathcal{D}} \subset \bigwedge^{3} V_{0}.$$
(4.1.5)

The inverse $(\tilde{r}_A^{\mathcal{D}})^{-1}$ defines a non-degenerate quadratic form $(r_A^{\mathcal{D}})^{\vee}$ on Ann $K_A^{\mathcal{D}}$. For future reference we unwind the definition of $(\tilde{r}_A^{\mathcal{D}})^{-1}$ and $(r_A^{\mathcal{D}})^{\vee}$. Let $\beta \in \operatorname{Ann} K_A^{\mathcal{D}}$ i.e.

$$v_0 \wedge \alpha + \beta \in A, \qquad \alpha \in \bigwedge^2 V_0.$$
 (4.1.6)

Then

$$(\widetilde{r}_A^{\mathcal{D}})^{-1}(\beta) \equiv \alpha \pmod{K_A^{\mathcal{D}}}, \qquad (r_A^{\mathcal{D}})^{\vee}(\beta) = \operatorname{vol}(v_0 \wedge \alpha \wedge \beta).$$
 (4.1.7)

Let $V((r_A^{\mathcal{D}})^{\vee}) \subset \mathbb{P}(\operatorname{Ann} K_A^{\mathcal{D}})$ be the zero-scheme of $(r_A^{\mathcal{D}})^{\vee}$: a smooth 5-dimensional quadric. Let

$$S_A^{\mathcal{D}} := V((r_A^{\mathcal{D}})^{\vee}) \cap F_A^{\mathcal{D}}.$$
(4.1.8)

Our first goal is to show that $S_A^{\mathcal{D}}$ does not depend on the choice of the subspace $V_0 \subset V$ complementary to $[v_0]$ i.e. it depends only on A and $[v_0]$. First we notice that $F_A^{\mathcal{D}}$ is independent of V_0 . In fact $\bigwedge^3 V_0$ is transversal to F_{v_0} ; since both $\bigwedge^3 V_0$ and F_{v_0} are Lagrangians the volume vol induces an isomorphism

$$g_{V_0} \colon \bigwedge^3 V_0 \xrightarrow{\sim} F_{v_0}^{\vee} \,. \tag{4.1.9}$$

Thus g_{V_0} defines an inclusion

$$F_A^{\mathcal{D}} \hookrightarrow \mathbb{P}(\operatorname{Ann} K_A).$$
 (4.1.10)

Remark 4.3. The image of Map (4.1.10) does not depend on V_0 i.e. it depends exclusively on A and $[v_0] \in Y_A(3)$; we will denote it by $Z_A(v_0)$.

Similarly g_{V_0} defines an inclusion

$$\mathbf{g}_{V_0} \colon S_A^{\mathcal{D}} \hookrightarrow \mathbb{P}(\operatorname{Ann} K_A) \,. \tag{4.1.11}$$

Lemma 4.4. Keep notation and assumptions as above. Then $\mathbf{g}_{V_0}(S_A^{\mathcal{D}})$ is independent of V_0 , in other words it depends exclusively on A and $[v_0] \in Y_A(3)$.

Proof. Let $V'_0 \subset V$ be a codimension-1 subspace complementary to $[v_0]$ and transverse to A. Let \mathcal{D}' denote the corresponding direct-sum decomposition of V; we must show that

$$\mathbf{g}_{V_0}(S_A^{\mathcal{D}}) = \mathbf{g}_{V_0'}(S_A^{\mathcal{D}'}). \tag{4.1.12}$$

The subspace V'_0 is the graph of a linear function

$$\begin{array}{rcl}
V_0 & \longrightarrow & [v_0] \\
v & \mapsto & f(v)v_0
\end{array} \tag{4.1.13}$$

and hence we have an isomorphism

We notice that

$$\bigwedge^{3} \psi(\beta) = \beta + v_0 \wedge (f \,\lrcorner\, \beta) \tag{4.1.15}$$

where \Box denotes contraction. In particular $g_{V'_0} \circ \bigwedge^3 \psi = g_{V_0}$. Moreover $\phi := \bigwedge^3 \psi|_{\operatorname{Ann} K^{\mathcal{D}}_A}$ is an isomorphism between $\operatorname{Ann} K^{\mathcal{D}}_A \subset \bigwedge^3 V_0$ and $\operatorname{Ann} K^{\mathcal{D}'}_{A'} \subset \bigwedge^3 V'_0$. Thus it suffices to prove that

$$\phi(S_A^{\mathcal{D}}) = S_A^{\mathcal{D}'}. \tag{4.1.16}$$

We claim that

$$\phi^*(r_A^{\mathcal{D}'})^{\vee} - (r_A^{\mathcal{D}})^{\vee} \in H^0(\mathcal{I}_{F_A^{\mathcal{D}}}(2)).$$
(4.1.17)

In fact let $\beta \in \operatorname{Ann} K_A^{\mathcal{D}} \subset \bigwedge^3 V_0$; then (4.1.6) holds. By (4.1.15) we get that

$$v_0 \wedge (\alpha - (f \,\lrcorner\, \beta)) + \phi(\beta) = v_0 \wedge \alpha + \beta \in A.$$

$$(4.1.18)$$

By (4.1.15) we get that

$$\phi^*(r_A^{\mathcal{D}'})^{\vee}(\beta) = \operatorname{vol}(v_0 \wedge (\alpha - (f \,\lrcorner\, \beta)) \wedge \phi(\beta)) = \operatorname{vol}(v_0 \wedge \alpha \wedge \phi(\beta)) - \operatorname{vol}(v_0 \wedge (f \,\lrcorner\, \beta) \wedge \phi(\beta)) = \operatorname{vol}(v_0 \wedge \alpha \wedge \beta) - \operatorname{vol}(v_0 \wedge (f \,\lrcorner\, \beta) \wedge \beta) = (r_A^{\mathcal{D}})^{\vee}(\beta) - \operatorname{vol}(v_0 \wedge (f \,\lrcorner\, \beta) \wedge \beta). \quad (4.1.19)$$

The second term in the last expression is the restriction to $\mathbb{P}(\operatorname{Ann} K_A^{\mathcal{D}})$ of a Plücker quadratic form and hence it vanishes on $F_A^{\mathcal{D}}$. This proves (4.1.17) and hence (4.1.16) holds. By the above lemma we may give the following definition.

Definition 4.5. Let $A \in \mathbb{LG}(\bigwedge^3 V)$. Suppose that $[v_0] \in Y_A(3)$ and that Assumption 4.1 holds. Let \mathcal{D} be the direct-sum decomposition (4.1.1). We set

$$S_A(v_0) := \mathbf{g}_{V_0}(S_A^{\mathcal{D}}). \tag{4.1.20}$$

Keep assumptions and notation as above. We single out special points of $S_A(v_0)$ as follows. Suppose that $W \in \Theta_A$ (see (2.2.15) for the definition of Θ_A) and assume that $v_0 \notin W$. Let γ be a generator of $\bigwedge^3 W$ i.e. γ is decomposable with $\operatorname{supp}(\gamma) = W$. By hypothesis $\bigwedge^3 V_0 \cap A = \{0\}$ and hence $W \notin V_0$; thus

$$\gamma = (v_0 + u_1) \wedge u_2 \wedge u_3, \qquad u_i \in V_0.$$
(4.1.21)

Since $v_0 \notin W$ we have $u_1 \wedge u_2 \wedge u_3 \neq 0$; thus $[u_1 \wedge u_2 \wedge u_3] \in F_A^{\mathcal{D}}$. Moreover $[u_1 \wedge u_2 \wedge u_3] \in V((r_A^{\mathcal{D}})^{\vee})$ by (4.1.7) and hence $[u_1 \wedge u_2 \wedge u_3] \in S_A^{\mathcal{D}}$. We let

$$\begin{array}{cccc}
\Theta_A \setminus \{W \mid v_0 \in W\} & \xrightarrow{\theta_D^D} & S_A^D \\
W & \mapsto & [u_1 \wedge u_2 \wedge u_3].
\end{array}$$
(4.1.22)

The map

 $\theta_A(v_0) := \mathbf{g}_{V_0} \circ \theta_A^{\mathcal{D}} \colon (\Theta_A \setminus \{W \mid v_0 \in W\}) \to S_A(v_0)$ (4.1.23)

is independent of \mathcal{D} , i.e. it depends exclusively on A and $[v_0]$. Notice that $\theta_A(v_0)$ is injective.

Proposition 4.6. Let $A \in \mathbb{LG}(\bigwedge^3 V)$. Suppose that $[v_0] \in Y_A(3)$ and that Assumption 4.1 holds. Let \mathcal{D} be the direct-sum decomposition (4.1.1). The set of points at which the intersection $V((r_A^{\mathcal{D}})^{\vee}) \cap F_A^{\mathcal{D}}$ is not transverse is equal to

$$\operatorname{im} \theta_A^{\mathcal{D}} \coprod (S_A^{\mathcal{D}} \cap \operatorname{sing} F_A^{\mathcal{D}}).$$
(4.1.24)

Proof. Let $[\beta] \in S_A^{\mathcal{D}}$. In particular β is non-zero decomposable; let $U := \operatorname{supp} \beta$. Moreover since $[\beta] \in F_A^{\mathcal{D}}$ we have that (4.1.6) holds; let $\alpha \in \bigwedge^2 V_0$ be as in (4.1.6). We claim that

$$V((r_A^{\mathcal{D}})^{\vee}) \pitchfork F_A^{\mathcal{D}} \text{ at } [\beta] \text{ unless } \langle \alpha, K_A^{\mathcal{D}} \rangle \cap \bigwedge^2 U \neq \emptyset.$$
 (4.1.25)

In fact the projective tangent space to $Gr(3, V_0)$ at $[\beta]$ is given by

$$\mathbf{T}_{[\beta]}\mathrm{Gr}(3, V_0) = \mathbb{P}(\mathrm{Ann}(\bigwedge^2 U)).$$
(4.1.26)

On the other hand (4.1.7) gives that

$$\mathbf{T}_{[\beta]}V((r_A^{\mathcal{D}})^{\vee}) = \mathbb{P}(\operatorname{Ann} \alpha) \cap \mathbb{P}(\operatorname{Ann} K_A^{\mathcal{D}}).$$
(4.1.27)

Statement (4.1.25) follows at once from (4.1.26) and (4.1.27). Next we prove that

$$\langle \alpha, K_A^{\mathcal{D}} \rangle \cap \bigwedge^2 U \neq \emptyset \text{ if and only if } [\beta] \in \operatorname{sing} F_A^{\mathcal{D}} \text{ or } [\beta] \in \operatorname{im} \theta_A^{\mathcal{D}}.$$
 (4.1.28)

Suppose that $[\beta] \in \operatorname{sing} F_A^{\mathcal{D}}$; then Item (1) of **Proposition 5.3** gives that $K_A^{\mathcal{D}} \cap \bigwedge^2 U \neq \emptyset$. Next suppose that $[\beta] \in \operatorname{im} \theta_A^{\mathcal{D}}$; then $\alpha \in \bigwedge^2 U$ by (4.1.21). This proves the "if" implication of (4.1.28). Let us prove the "only if" implication. First assume that $K_A^{\mathcal{D}} \cap \bigwedge^2 U \neq \{0\}$. Let $0 \neq \kappa_0 \in K_A^{\mathcal{D}} \cap \bigwedge^2 U$. Then κ_0 is decomposable because dim U = 3 and hence $[\kappa_0]$ is the unique point belonging to $\mathbb{P}(K_A^{\mathcal{D}}) \cap \operatorname{Gr}(2, V_0)$. We get that $[\beta]$ is the unique singular point of $F_A^{\mathcal{D}}$ by (5.0.8). Lastly assume that $K_A^{\mathcal{D}} \cap \bigwedge^2 U = \{0\}$. Then there exists $\kappa \in K_A^{\mathcal{D}}$ such that $(\alpha + \kappa) \in \bigwedge^2 U$. Since $\kappa \in K_A^{\mathcal{D}}$ we have $(v_0 \wedge (\alpha + \kappa) + \beta) \in A$. The tensor $(v_0 \wedge (\alpha + \kappa) + \beta) \in A$ is decomposable, let W be its support. Then $v_0 \notin W$ because $\beta \neq 0$ and hence $[\beta] = \theta_A^{\mathcal{D}}(W)$. This finishes the proof of (4.1.28) and of the proposition. **Corollary 4.7.** Let $A \in \mathbb{LG}(\bigwedge^3 V)$. Suppose that $[v_0] \in Y_A(3)$ and that Assumption 4.1 holds. Assume in addition that Θ_A is finite. Then $S_A(v_0)$ is a reduced and irreducible surface with

$$\operatorname{sing} S_A(v_0) = \operatorname{im} \theta_A(v_0) \coprod (S_A(v_0) \cap \operatorname{sing} Z_A(v_0)).$$
(4.1.29)

(See **Remark 4.3** for the definition of $Z_A(v_0)$.)

Proof. By **Proposition 4.6** we know that $S_A^{\mathcal{D}}$ is a smooth surface outside the right-hand side of (4.1.29). By hypothesis Θ_A is finite and hence the right-hand side of (4.1.29) is finite. On the other hand by **Proposition 5.3** we know that $Z_A(v_0)$ is a 3-fold with at most one singular point, necessarily an ordinary quadratic singularity, and $S_A^{\mathcal{D}}$ is the complete intersection of $Z_A(v_0)$ and a quadric hypersurface. It follows that $S_A^{\mathcal{D}}$ is reduced and irreducible with singular set as claimed. \Box

Corollary 4.8. Let hypotheses be as in **Corollary 4.7**. Suppose in addition that $S_A(v_0)$ has Du Val singularities. Let $\hat{S}_A(v_0) \to S_A(v_0)$ be the minimal desingularization. Then $\hat{S}_A(v_0)$ is a K3 surface.

Proof. Let $\mathcal{O}_{Z_A(v_0)}(1)$ be the pull-back by Map (4.1.10) of the hyperplane line-bundle on $\mathbb{P}(\operatorname{Ann}(F_{v_0} \cap A))$. Then $S_A(v_0) \in |\mathcal{O}_{Z_A(v_0)}(2)|$. By **Proposition 5.2** and **Proposition 5.3** there exist smooth divisors in $|\mathcal{O}_{Z_A(v_0)}(2)|$ and they are K3 surfaces; by simultaneous resolution of Du Val singularities we get that $\hat{S}_A(v_0)$ is a K3 surface. \Box

Corollary 4.9. Let $A \in (\Delta \setminus \Sigma)$. Let $[v_0] \in Y_A(3)$ (and hence Assumption 4.1 holds by Remark 4.2). Then $S_A(v_0)$ is a (smooth) K3.

Proof. Immediate consequence of Corollary 4.8.

Under the hypotheses of **Corollary 4.8** let $\mathcal{O}_{S_A(v_0)}(1)$ be the restriction to $S_A(v_0)$ of $\mathcal{O}_{Z_A(v_0)}(1)$. Let $\mathcal{O}_{\widehat{S}_A(v_0)}(1)$ be the pull-back of $\mathcal{O}_{S_A(v_0)}(1)$ to $\widehat{S}_A(v_0)$. We set

$$D_A(v_0) \in |\mathcal{O}_{S_A(v_0)}(1)| \qquad \widehat{D}_A(v_0) \in |\mathcal{O}_{\widehat{S}_A(v_0)}(1)|.$$
(4.1.30)

Remark 4.10. Let hypotheses be as in **Corollary 4.8**. Then $(\widehat{S}_A(v_0), \widehat{D}_A(v_0))$ is a quasi-polarized K3 surface of genus 6. Moreover the composition

$$\widehat{S}_A(v_0) \longrightarrow S_A(v_0) \longrightarrow \mathbb{P}(\operatorname{Ann}(F_{v_0} \cap A))$$
(4.1.31)

is identified (up to projectivities) with the map associated to the complete linear system $|\hat{D}_A(v_0)|$.

Remark 4.10 has a converse; in order to formulate it we identify $F_{v_0} \cong \bigwedge^2 (V/[v_0])$ (the identification is well-defined up to homothety).

Assumption 4.11. $K \in Gr(3, F_{v_0})$ and

(1) $\mathbb{P}(K) \cap \operatorname{Gr}(2, V/[v_0]) = \emptyset$, or

(2) the scheme-theoretic intersection $\mathbb{P}(K) \cap \operatorname{Gr}(2, V/[v_0])$ is a single reduced point.

Let

$$W_K := \mathbb{P}(\operatorname{Ann} K) \cap \operatorname{Gr}(3, V/[v_0]).$$
(4.1.32)

(This makes sense because we have an isomorphism $\bigwedge^2 (V/[v_0]) \xrightarrow{\sim} \bigwedge^3 (V/[v_0])^{\vee}$ well-defined up to homothety). Let

$$S := W_K \cap Q, \qquad Q \subset \mathbb{P}(\operatorname{Ann} K) \text{ a quadric.}$$

$$(4.1.33)$$

If Q is generic then S is a linearly normal K3 surface of genus 6, see **Corollary 4.8**. In fact the family of such K3 surfaces is locally versal. More generally suppose that **Assumption 4.11** holds, that S is given by (4.1.33) and that S has DuVal singularities. Let $\hat{S} \to S$ be the minimal desingularization - thus \hat{S} is a K3 surface. Let $D \in |\mathcal{O}_S(1)|$ and \hat{D} be the pull-back of D to \hat{S} . Consider the family $S \to B$ of deformations of (S, D) obtained by deforming slightly K and Q; by Brieskorn and Tjurina there is a suitable base change $\widehat{B} \to B$ such that the pull-back of \mathcal{S} to \widehat{B} admits a simultaneous resolution of singularities $\widehat{S} \to \widehat{B}$ with fiber \widehat{S} over the point corresponding to S. Of course there is a divisor class $\widehat{\mathcal{D}}$ on $\widehat{\mathcal{S}}$ whose restriction to \widehat{S} is \widehat{D} - thus $\widehat{\mathcal{S}} \to \widehat{B}$ is a family of quasi-polarized K3 surfaces. The following result is well-known - we omit the (standard) proof.

Proposition 4.12. Keep notation and hypotheses as above. The family $\widehat{S} \to \widehat{B}$ is a versal family of quasi-polarized K3 surfaces.

Lemma 4.13. Suppose that Assumption 4.11 holds. Let S be as in (4.1.33) and assume that Q is transversal to W_K outside a finite set - thus S is a surface with finite singular set. There exists a smooth quadric $Q' \subset \mathbb{P}(\operatorname{Ann} K)$ such that $S = W_K \cap Q'$.

Proof. Since W_K is cut out by quadrics Bertini's Theorem gives that the generic quadric in $\mathbb{P}(\operatorname{Ann} K)$ containing S is smooth outside sing S; let $Q_0 = V(P_0)$ be such a quadric. Let $p \in \operatorname{sing} S$. The generic quadric $Q' = V(P') \in |\mathcal{I}_{W_K}(2)|$ is smooth at p and hence $V(P_0 + P')$ is smooth at p. Since sing S is finite we get that the generic quadric Q containing S is smooth at all points of sing S. It follows that the generic quadric Q containing S is smooth. \Box

The following corollary provides an inverse of the process which produces $S_A(v_0)$ out of $(A, [v_0]) \in \widetilde{\Delta}(0)$ (with the extra hypotheses in **Assumption 4.1**).

Proposition 4.14. Suppose that Assumption 4.11 holds. Let S be as in (4.1.33) and assume that Q is smooth and transversal to W_K outside a finite set. There exist $A \in \Delta$, $[v_0] \in \mathbb{P}(V)$ and a codimension-1 subspace $V_0 \subset V$ transversal to $[v_0]$ such that the following hold:

- (1) $\bigwedge^{3} V_0 \cap A = \{0\},\$
- (2) Items (c) and (d) of Assumption 4.1 hold,
- (3) the natural isomorphism $\mathbb{P}(\bigwedge^3(V/[v_0])) \xrightarrow{\sim} \mathbb{P}(\bigwedge^3 V_0)$ maps S to $S_A^{\mathcal{D}}$ where \mathcal{D} is the direct-sum decomposition of V appearing in (4.1.1).

If we replace the quadric Q by a smooth quadric $Q' \subset \mathbb{P}(\operatorname{Ann} K)$ such that $S = W_K \cap Q'$ and let $A' \in \Delta$ be the corresponding point, there exists a projectivity of $\mathbb{P}(V)$ fixing $[v_0]$ which takes A to A'.

Proof. Let Q = V(P). The dual of Ann K is $\bigwedge^2 (V/[v_0])/K$; thus the polarization of P defines a non-degenerate symmetric map

$$\operatorname{Ann} K \xrightarrow{\sim} \bigwedge^2 (V/[v_0])/K. \tag{4.1.34}$$

The inverse of the above map is non-degenerate symmetric map

$$\bigwedge^{2} (V/[v_0])/K \xrightarrow{\sim} \operatorname{Ann} K.$$
(4.1.35)

Composing on the right with $\bigwedge^2(V/[v_0]) \xrightarrow{\sim} \bigwedge^2(V/[v_0])$ and the quotient map $\bigwedge^2(V/[v_0]) \rightarrow \bigwedge^2(V/[v_0])/K$ and on the left with Ann $K \hookrightarrow \bigwedge^3(V/[v_0])$ and $\bigwedge^3(V/[v_0]) \xrightarrow{\sim} \bigwedge^3(V/[v_0])$ we get a symmetric map

$$\bigwedge^2 V_0 \longrightarrow \bigwedge^3 V_0 \tag{4.1.36}$$

with 3-dimensional kernel corresponding to K. The graph of the above map is a Lagrangian $A \in \mathbb{LG}(\bigwedge^3 V)$. One checks easily that (1), (2) and (3) hold. One gets that the projective equivalence of A does not depend on Q by going through the proof of **Lemma 4.4**.

4.2 X_A^{ϵ} for $A \in (\Delta \setminus \Sigma)$

Let S be a K3. Let $\Delta_S^{[2]} \subset S^{[2]}$ be the irreducible codimension 1 subset parametrizing non-reduced subschemes. There exists a square root of the line bundle $\mathcal{O}_{S^{[2]}}(\Delta_S^{[2]})$: we denote by ξ its first Chern class. There is a natural morphism of integral Hodge structures $\mu: H^2(S) \to H^2(S^{[2]})$ such that $H^2(S^{[2]};\mathbb{Z}) = \mu(H^2(S;\mathbb{Z})) \oplus \mathbb{Z}\xi$, see [1]. Let (\cdot, \cdot) be the Beauville-Bogomolov bilinear symmetric form on $H^2(S^{[2]})$. It is known [1] that

$$(\mu(\eta), \mu(\eta)) = \int_{S} c_1(\eta)^2, \quad \mu(H^2(S; \mathbb{Z})) \perp \mathbb{Z}\xi, \quad (\xi, \xi) = -2.$$
(4.2.1)

Since S and $S^{[2]}$ are regular varieties we may identify their Picard groups with $H^{1,1}_{\mathbb{Z}}(S)$ and $H^{1,1}_{\mathbb{Z}}(S^{[2]})$ respectively. Let $C \in \text{Pic}(S)$; abusing notation we will denote by $\mu(C)$ the class in $\text{Pic}(S^{[2]})$ corresponding to $\mu(\mathcal{O}_S(C)) \in H^{1,1}_{\mathbb{Z}}(S)$: if C is an integral curve it is represented by subschemes whose support intersects C. The following is the main result of the present subsection.

Theorem 4.15. Let $A \in (\Delta \setminus \Sigma)$ and $[v_0] \in Y_A[3]$ (= $Y_A(3)$ by Claim 3.11 of [15]) - thus $S_A(v_0)$ is a K3 surface by Corollary 4.9. Then the following hold:

(1) If $S_A(v_0)$ does not contain lines (true for generic A by **Proposition 4.12**) then there exist a choice ϵ of \mathbb{P}^2 -fibration for X_A and an isomorphism.

$$\psi \colon S_A(v_0)^{[2]} \dashrightarrow X_A^{\epsilon} \tag{4.2.2}$$

such that

$$\psi^* H_A^\epsilon \sim \mu(D_A(v_0)) - \Delta_{S_A(v_0)}^{[2]}.$$
 (4.2.3)

(2) Let A and ϵ be arbitrary. There exists a bimeromorphic map

$$\psi \colon S_A(v_0)^{[2]} \dashrightarrow X_A^{\epsilon} \tag{4.2.4}$$

such that (4.2.3) holds.

Remark 4.16. Suppose that $S_A(v_0)$ contains a line L. The restriction of the right-hand side of (4.2.3) to $L^{(2)}$ (embedded in $S_A(v_0)^{[2]}$) is $\mathcal{O}_{L^{(2)}}(-1)$. Since H_A^{ϵ} is nef we get that in this case Map (4.2.4) cannot be regular.

The proof of **Theorem 4.15** will be given after a series of auxiliary results. Let $S \subset \mathbb{P}^6$ be a linearly normal K3 surface of genus 6 such that $\mathcal{I}_{S/\mathbb{P}^6}(2)$ is globally generated; then S is projectively normal and hence Riemann-Roch gives that dim $|\mathcal{I}_S(2)| = 5$. One defines a rational map $S^{[2]} \dashrightarrow |\mathcal{I}_S(2)|^{\vee}$ as follows. Given $[Z] \in S^{[2]}$ we let $\langle Z \rangle \subset \mathbb{P}^5$ be the line spanned by Z. We let

$$(S^{[2]} \setminus \bigcup_{L \subset S \text{ line}} L^{(2)}) \xrightarrow{g} |\mathcal{I}_S(2)|^{\vee} \cong \mathbb{P}^5$$

$$[Z] \mapsto \{Q \in |\mathcal{I}_S(2)| \mid \text{s.t. } Q \supset \langle Z \rangle\}.$$

$$(4.2.5)$$

Let D be a hyperplane divisor on S; one shows (see Claim (5.16) of [11]) that

$$g^* \mathcal{O}_{\mathbb{P}^5}(1) \cong \mu(D) - \Delta_S^{[2]}.$$
 (4.2.6)

(Notice that the set of lines on S is finite and hence $\bigcup_{L \subset Sline} L^{(2)}$ has codimension 2 in $S^{[2]}$.) In fact g can be identified with the map associated to the complete linear system $|(\mu(D) - \Delta_S^{[2]})|$. We will analyze g under the assumption that S is generic (in a precise sense).

Assumption 4.17. Item (1) of Assumption 4.11 holds.

$$S := W_K \cap Q \tag{4.2.7}$$

where $Q \subset \mathbb{P}(\operatorname{Ann} K)$ is a quadric intersecting transversely W_K .

Let $S \subset \mathbb{P}(\operatorname{Ann} K)$ be as in **Assumption 4.17**. Then S is a linearly normal K3 surface of genus 6 and $\mathcal{I}_S(2)$ is globally generated. Thus the map g of (4.2.5) is defined. Let $F(W_K)$ be the variety parametrizing lines in W_K . Since the set of lines in S is finite (empty for generic S by **Proposition 4.12**) we have a map

$$\begin{array}{cccc} (F(W_K) \setminus \{L \mid L \subset S\}) & \longrightarrow & S^{[2]} \\ L & \mapsto & L \cap Q. \end{array}$$

$$(4.2.8)$$

Definition 4.18. Let $P_S^0 \subset S^{[2]}$ be the image of Map (4.2.8) and P_S be its closure in $S^{[2]}$.

We recall that $F(W_K) \cong \mathbb{P}^2$ by Iskovskih's **Proposition 5.2**.

Claim 4.19. Let $S \subset \mathbb{P}(\operatorname{Ann} K)$ be as in Assumption 4.17. Suppose moreover that S contains no lines. Let C_1, C_2, \ldots, C_s be the (smooth) conics contained in S (of course the generic S contains no conics). Then $P_S, C_1^{(2)}, \ldots, C_s^{[2]}$ are pairwise disjoint subset of $S^{[2]}$. Moreover there exists a biregular morphism

$$c\colon S^{[2]} \longrightarrow N(S). \tag{4.2.9}$$

contracting each of $P_S, C_1^{(2)}, \ldots, C_s^{[2]}$. Thus N(S) is a compact complex normal space with

sing
$$N(S) = \{c(P_S), \dots, c(C^{(2)}), \dots \mid C \subset S \ a \ conic\}$$
 (4.2.10)

and c is an isomorphism of the complement of $P_S \cup C_1^{(2)} \cup \ldots \cup C_s^{[2]}$ onto the smooth locus of N(S). The map g (regular on all of $S^{[2]}$ because S contains no lines) descends to a regular map

$$\overline{g}: N(S) \to |\mathcal{I}_S(2)|^{\vee}, \qquad \overline{g} \circ c = g.$$
 (4.2.11)

Proof. P_S is isomorphic to \mathbb{P}^2 by Iskovskih's **Proposition 5.2** and each $C_i^{(2)}$ is isomorphic to \mathbb{P}^2 because C_i is a conic. Thus each of P_S , C_i can be contracted individually. Let's show that $P_S, C_1^{(2)}, \ldots, C_s^{[2]}$ are pairwise disjoint. Suppose that $[Z] \in P_S \cap C_i^{(2)}$. Let Λ be the plane containing C_i . Then $\Lambda \cap W_K$ contains the line $\langle Z \rangle$ and the smooth conic C_i . Since W_K is cut out by quadrics it follows that $\Lambda \subset W_K$, that is absurd because W_K contains no planes. This proves that $P_S \cap C_i^{(2)} = \emptyset$. On the other hand there does not exist $[Z] \in C_i^{(2)} \cap C_j^{(2)}$ by **Corollary 5.5**. that $P_S, C_1^{(2)}, \ldots, C_s^{[2]}$ are pairwise disjoint. Thus the contraction (4.2.9) exists. It remains to prove that g is constant on each of $P_S, C_1^{(2)}, \ldots, C_s^{[2]}$. In fact if $[Z] \in P_S$ then $g([Z]) = |\mathcal{I}_{W_K}(2)|$, if $[Z] \in C_i^{(2)}$ then

$$g([Z]) = \{ Q \in |\mathcal{I}_S(2)| \mid Q \supset \langle C_i \rangle \}.$$

Now we go back to the "general" case: we suppose that Assumption 4.17 holds however S may very well contain lines. Let

$$S^{[2]}_{\star} := S^{[2]} \setminus P_S \setminus \bigcup_{R \subset S \text{ line or conic}} \operatorname{Hilb}^2 R.$$
(4.2.12)

(Notice that if $R \subset S$ is a conic which is not smooth then we delete all $[Z] \in S^{[2]}$ such that Z is contained in the scheme R.) The following result is essentially **Lemma 3.7** of [14].

Proposition 4.20. Suppose that Assumption 4.17 holds.

- (1) The fibers of $g|_{S^{[2]}}$ are finite of cardinality at most 2 and the generic fiber has cardinality 2.
- (2) There exist an open dense subset $\mathcal{A} \subset S^{[2]}_{\star}$ and an anti-symplectic (and hence non-trivial) involution $\phi \colon \mathcal{A} \to \mathcal{A}$ such that

$$(g|_{\mathcal{A}}) \circ \phi = g|_{\mathcal{A}}. \tag{4.2.13}$$

The induced map

$$\mathcal{A}/\langle \phi \rangle \longrightarrow g(\mathcal{A}) \tag{4.2.14}$$

is a bijection.

(3) If in addition S does not contain lines ϕ descends to a regular involution $\overline{\phi} \colon N(S) \to N(S)$ such that $\overline{g} \circ \overline{\phi} = \overline{g}$ and the induced map

$$j: N(S)/\langle \overline{\phi} \rangle \longrightarrow g(S^{[2]})$$
 (4.2.15)

is a bijection. Moreover

$$\operatorname{cod}(\operatorname{Fix}(\overline{\phi}), N(S)) \ge 2$$
 (4.2.16)

where $\operatorname{Fix}(\overline{\phi})$ is the fixed-locus of $\overline{\phi}$.

Let A and $[v_0]$ be as in the statement of **Theorem 4.15**: we will perform the key computation one needs to prove that theorem. Let $V_0 \subset V$ be a codimension-1 subspace transversal to $[v_0]$ and such that $\bigwedge^3 V_0 \cap A = \{0\}$. Let \mathcal{D} be Decomposition $V = [v_0] \oplus V_0$ and $S_A^{\mathcal{D}}$ be given by (4.1.8) thus $S_A^{\mathcal{D}}$ sits in $\mathbb{P}(\operatorname{Ann} K_A^{\mathcal{D}}) \cap \operatorname{Gr}(3, V_0)$ and is isomorphic to $S_A(v_0)$. Let $f \in V_0^{\vee}$; we let q_f be the quadratic form on $\bigwedge^3 V_0$ defined by setting

$$q_f(\omega) := \operatorname{vol}_0((f \lrcorner \omega) \land \omega) \tag{4.2.17}$$

where vol_0 is a volume-form on V_0 . Then q_f is a Plücker quadric, in fact we have an isomorphism

$$\begin{array}{rcccc}
V_0^{\vee} & \xrightarrow{\sim} & H^0(\mathcal{I}_{\mathrm{Gr}(3,V_0)}(2)) \\
f & \mapsto & q_f.
\end{array}$$
(4.2.18)

Let $V^{\vee} = [v_0^{\vee}] \oplus V_0^{\vee}$ be the dual decomposition of \mathcal{D} ; thus $v_0^{\vee} \in \operatorname{Ann} V_0$ and $v_0^{\vee}(v_0) = 1$. We have an isomorphism

$$\begin{bmatrix} v_0^{\vee} \end{bmatrix} \oplus V_0^{\vee} \xrightarrow{\sim} H^0(\mathcal{I}_{S_A^{\vee}}(2)) xv_0^{\vee} + f \mapsto x(r_A^{\mathcal{D}})^{\vee} + q_f.$$

$$(4.2.19)$$

We let

$$\iota \colon |\mathcal{I}_{S^{\mathcal{D}}_{A}}(2)|^{\vee} \xrightarrow{\sim} \mathbb{P}(V) \tag{4.2.20}$$

be the projectivization of the transpose of (4.2.19).

Proposition 4.21. Let A and $[v_0]$ be as in the statement of **Theorem 4.15** and keep notation as above. Let g be Map (4.2.5) for $S_A^{\mathcal{D}}$ - this makes sense by **Corollary 4.9**. Then $\iota(\operatorname{im} g) \subset Y_A$.

Proof. Let

$$[Z] \in \left((S_A^{\mathcal{D}})_{\star}^{[2]} \setminus \Delta_{S_A^{\mathcal{D}}}^{[2]} \setminus P_{S_A^{\mathcal{D}}} \right).$$

$$(4.2.21)$$

We will prove that

$$\iota(g([Z]) \in Y_A \,. \tag{4.2.22})$$

This will suffice to prove the lemma because the right-hand side of (4.2.21) is dense in $(S_A^{\mathcal{D}})^{[2]}_{\star}$ and Y_A is closed. By hypothesis Z is reduced; thus $Z = \{[\beta], [\beta']\}$ where $\beta, \beta' \in \bigwedge^3 V_0$ are decomposable. The line $\langle [\beta], \beta'] \rangle$ spanned by $[\beta]$ and $[\beta']$ is not contained in $F_A^{\mathcal{D}}$ because $[Z] \notin P_{S_A^{\mathcal{D}}}$. Thus $\langle [\beta], \beta'] \rangle$ is not contained in Gr(3, V_0) and it follows that the vector sub-spaces of V_0 supporting the decomposable vectors β and β' intersect in a 1-dimensional subspace. Thus there exists a basis $\{v_1, \ldots, v_5\}$ of V_0 such that

$$\beta = v_1 \wedge v_2 \wedge v_3, \quad \beta' = v_1 \wedge v_4 \wedge v_5.$$
(4.2.23)

We may assume moreover that $\operatorname{vol}_0(v_1 \wedge v_2 \wedge v_3 \wedge v_4 \wedge v_5) = 1$. By (4.1.6) and (4.1.7) there exist $\alpha, \alpha' \in \bigwedge^2 V_0$ such that

$$v_0 \wedge \alpha + \beta, \ v_0 \wedge \alpha' + \beta' \in A, \qquad \alpha \wedge \beta = \alpha' \wedge \beta' = 0.$$
 (4.2.24)

Since A is Lagrangian we get that

$$\operatorname{vol}_0(\alpha \wedge \beta') = \operatorname{vol}_0(\alpha' \wedge \beta) =: c.$$
(4.2.25)

Let $t_0, \ldots, t_5 \in \mathbb{C}$; a straightforward computation gives that

ι

$$(t_0(r_A^{\mathcal{D}})^{\vee} + \sum_{i=1}^5 t_i q_{v_i^{\vee}})(\beta + \beta') = 2ct_0 + 2t_1.$$
(4.2.26)

Thus

$$(g([Z])) = [cv_0 + v_1]. \tag{4.2.27}$$

It remains to prove that

$$[cv_0 + v_1] \in Y_A \,. \tag{4.2.28}$$

Let $K_A^{\mathcal{D}}$ be as in (4.1.2); we claim that it suffices to prove that there exist $(x, x') \in (\mathbb{C}^2 \setminus \{(0, 0)\})$ and $\kappa \in K_A^{\mathcal{D}}$ such that

$$(cv_0 + v_1) \wedge (x(v_0 \wedge \alpha + \beta) + x'(v_0 \wedge \alpha' + \beta') + v_0 \wedge \kappa) = 0.$$
(4.2.29)

In fact assume that (4.2.29) holds. Then

$$0 \neq (x(v_0 \land \alpha + \beta) + x'(v_0 \land \alpha' + \beta') + v_0 \land \kappa) \in A \cap F_{cv_0 + v_1}.$$
(4.2.30)

(The inequality holds because β , β' are linearly independent.) A straightforward computation gives that (4.2.29) is equivalent to

$$x(c\beta - v_1 \wedge \alpha) + x'(c\beta' - v_1 \wedge \alpha') = v_1 \wedge \kappa.$$
(4.2.31)

As is easily checked we have

$$(c\beta - v_1 \wedge \alpha), \ (c\beta' - v_1 \wedge \alpha') \in ([v_1] \wedge (\bigwedge^2 \langle v_2, v_3, v_4, v_5 \rangle)) \cap \{v_2 \wedge v_3, \ v_4 \wedge v_5\}^{\perp}$$
(4.2.32)

where perpendicularity is with respect to wedge-product followed by vol₀. Multiplication by v_1 gives an injection $K_A^{\mathcal{D}} \to ([v_1] \land (\bigwedge^2 \langle v_2, v_3, v_4, v_5 \rangle))$; in fact no non-zero element of $K_A^{\mathcal{D}}$ is decomposable because $A \notin \Sigma$. Since the right-hand side of (4.2.32) has dimension 4 and dim $K_A^{\mathcal{D}} = 3$ we get that there exists $(x, x') \in (\mathbb{C}^2 \setminus \{(0, 0)\})$ such that (4.2.31) holds.

Lemma 4.22. Let $A \in (\mathbb{LG}(\bigwedge^3 V) \setminus \Sigma)$. Then $Y_A(1)$ is not empty, the topological double cover $f_A^{-1}Y_A(1) \to Y_A(1)$ is not trivial and Y_A is integral.

Proof. By Claim 3.7 we know that $Y_A[3]$ is finite. On the other hand $(Y_A[2] \setminus Y_A[3])$ is a smooth surface - see Proposition 2.8 of [12]. Since sing $Y_A \subset Y_A[2]$ it follows that Y_A is integral and $Y_A(1)$ is connected. Let $[v_0] \in (Y_A[2] \setminus Y_A[3])$. By **Proposition 1.5** we know that $f_A^{-1}([v_0])$ is a singleton $\{q\}$. Moreover X_A is smooth at q by **Lemma 3.3**. Thus there exists an open neighborhood U of $[v_0]$ in Y_A such that $f_A^{-1}U$ is smooth. Moreover $(f_A^{-1}Y_A[2]) \cap f_A^{-1}U$ is nowhere dense in $f_A^{-1}U$. Since $f_A^{-1}U$ is smooth the complement $f_A^{-1}(Y_A(1) \cap U)$ is connected. Since $Y_A(1)$ is connected it follows that $f_A^{-1}Y_A(1)$ is connected.

Proposition 4.23. Keep hypotheses and notation as in **Proposition 4.21**. Then $\iota(\overline{\operatorname{im} g}) = Y_A$.

Proof. By Item (1) of **Proposition 4.20** the map g has finite generic fiber and hence dim $\overline{\operatorname{im} g} = 4$. By **Proposition 4.21** we get that $\iota(\overline{\operatorname{im} g})$ is an irreducible component of Y_A . On the other hand Y_A is irreducible by Lemma 4.22; it follows that $\iota(\overline{\operatorname{im} g}) = Y_A$.

Remark 4.24. Keep notation as in **Proposition 4.21**; then

$$\iota \circ g(P^0_{S^{\mathcal{D}}_A}) = \iota(H^0(\mathcal{I}_{F^{\mathcal{D}}_A}(2))) = [v_0].$$
(4.2.33)

Proof of **Theorem 4.15**. Let's prove that Item (1) holds. Let A and $[v_0]$ be as in the statement of **Theorem 4.15**. Let $V_0 \subset V$ be a codimension-1 subspace transversal to $[v_0]$ and such that $\bigwedge^3 V_0 \cap A = \{0\}$. Let \mathcal{D} be Decomposition $V = [v_0] \oplus V_0$. In order to simplify notation we set $S = S_A^{\mathcal{D}}$; thus $S \cong S_A(v_0)$ and by hypothesis S does not contain lines. Let j be the map of (4.2.15); by **Proposition 4.21** the composition $\iota \circ j$ is a map

$$\iota \circ j \colon N(S)/\langle \overline{\phi} \rangle \longrightarrow Y_A \,. \tag{4.2.34}$$

We claim that $\iota \circ j$ is an isomorphism: in fact it has finite fibers and is birational by **Proposition** 4.20, since dim sing $Y_A = 2$ (because $A \notin \Sigma$) the hypersurface Y_A is normal and hence $\iota \circ j$ is an isomorphism. Let $\pi \colon N(S) \to N(S)/\langle \overline{\phi} \rangle$ be the quotient map. By (4.2.16) the singular locus of $N(S)/\langle \overline{\phi} \rangle$ is the image of $\operatorname{Fix}(\overline{\phi})$ (and thus isomorphic to $\operatorname{Fix}(\overline{\phi})$); since (4.2.34) is an isomorphism we get that

$$\begin{array}{rccc}
N(S) \setminus \operatorname{Fix}(\overline{\phi}) &\longrightarrow & Y^{sm}_{A} \\
& x &\mapsto & \iota \circ j \circ \pi(x)
\end{array}$$
(4.2.35)

is a topological covering of degree 2. We claim that

$$\pi_1(Y_A^{sm}) \cong \mathbb{Z}/(2).$$
 (4.2.36)

In fact $(N(S)\setminus\operatorname{Fix}(\overline{\phi})) \cong (S^{[2]}\setminus(P_S\cup\operatorname{Fix}(\phi|_{S^{[2]}\setminus P_S}))$. Since $(P_S\cup\operatorname{Fix}(\phi|_{S^{[2]}\setminus P_S}))$ is of codimension 2 in the simply connected manifold $S^{[2]}$ we get that $(N(S)\setminus\operatorname{Fix}(\overline{\phi}))$ is simply connected. Thus (4.2.35) is the universal covering of Y_A^{sm} and we get (4.2.36). On the other hand $Y_A^{sm} \subset Y_A(1)$ by Corollary 1.5 of [15] and thus by **Lemma 4.22** we get that $f_A^{-1}Y_A^{sm} \to Y_A^{sm}$ is the universal covering of Y_A^{sm} as well. Hence both X_A and N(S) are normal completions of the universal cover of Y_A^{sm} such that the extended maps to Y_A are finite; it follows that they are isomorphic (over Y_A). The singular locus of N(S) is given by (4.2.10). On the other hand $\operatorname{sing} X_A = Y_A[3]$. By **Remark 4.24** we can order the set of (smooth) conics on S, say C_1, \ldots, C_s and the set of points in $Y_A[3]$ different from $[v_0]$, say $[v_1], \ldots, [v_s]$ so that

$$\overline{\psi}(c(P_S)) = [v_0], \qquad \overline{\psi}(c(C_i^{(2)})) = [v_i], \quad 1 \le i \le s.$$
 (4.2.37)

(Recall **Remark 4.24**.) Let ϵ_0 be a choice of \mathbb{P}^2 -fibration for X_A ; then $\overline{\psi}$ defines a birational map $\psi_0: S^{[2]} \dashrightarrow X_A^{\epsilon_0}$ such that

$$\psi_0^* H_A^{\epsilon_0} \cong \mu(D) - \Delta_S^{[2]}$$
 (4.2.38)

where D is the hyperplane class of S (thus (S, D) is isomorphic to $(S_A(v_0), D_A(v_0))$). The birational map ψ_0 is an isomorphism away from

$$P_S \cup C_1^{(2)} \cup \ldots \cup C_s^{(2)}. \tag{4.2.39}$$

It follows that ψ_0 is the flop of a collection of irreducible components of (4.2.39). By **Proposition 3.10** we get that there exists a choice of \mathbb{P}^2 -fibration for X_A , call it ϵ , such that the corresponding birational map $\psi: S^{[2]} \dashrightarrow X_A^{\epsilon}$ is biregular. Equation (4.2.3) follows from (4.2.38). This finishes the proof that Item (1) holds. Item (2) follows from Item (1) and a specialization argument - we leave the details to the reader.

We close the present subsection by reproving a result of ours. Let $h_A := c_1(\mathcal{O}_{X_A}(H_A))$.

Theorem 4.25 (O'Grady [12]). Let $A \in \mathbb{LG}(\bigwedge^3 V)^0$. Then X_A is a deformation of $(K3)^{[2]}$ and $(h_A, h_A)_{X_A} = 2$. Any small deformation of (X_A, H_A) (i.e. a small deformation of X_A keeping h_A of type (1, 1)) is isomorphic to (X_B, H_B) for some $B \in \mathbb{LG}(\bigwedge^3 V)^0$.

Proof. Let $A_0 \in (\Delta \setminus \Sigma)$ and $[v_0] \in Y_{A_0}[3]$. Suppose moreover that $S_{A_0}(v_0)$ does not contain lines. By **Theorem 4.15** there exists a choice ϵ of \mathbb{P}^2 -fibration for X_{A_0} such that we have an isomorphism

$$\psi: S^{[2]} \xrightarrow{\sim} X^{\epsilon}_{A_0}, \qquad \psi^* H^{\epsilon}_{A_0} \sim \mu(D_A(v_0)) - \Delta^{[2]}_{S_{A_0}(v_0)}.$$
 (4.2.40)

On the other hand (X_A, H_A) is a deformation of $(X_{A_0}^{\epsilon}, H_{A_0}^{\epsilon})$ by **Corollary 3.12**. This proves that (X_A, H_A) is a deformation of $(S^{[2]}, (\mu(D_A(v_0)) - \Delta_{S_{A_0}(v_0)}^{[2]}))$. By (4.2.1) we get that $(h_A, h_A)_{X_A} = 2$. Lastly we prove that an arbitrary small deformation of (X_A, H_A) is isomorphic to $(X_{A'}, H_{A'})$ for some $A' \in \mathbb{LG}(\bigwedge^3 V)^0$. The deformation space of (X_A, H_A) has dimension given by

dim Def
$$(X_A, H_A) = h^{1,1}(X_A) - 1 = 20.$$
 (4.2.41)

On the other hand $\mathbb{LG}(\bigwedge^3 V)^0$ is contained in the locus of points in \mathbb{LG} which are stable for the natural (linearized) PL(V)-action - this is proved in [12]. Thus by varying $A \in \mathbb{LG}(\bigwedge^3 V)$ we get

$$\dim \mathbb{LG}(\bigwedge^{3} V) - \dim SL(V) = 55 - 35 = 20$$
(4.2.42)

moduli of double EPW-sextics. Since (4.2.41) and (4.2.42) are equal we conclude that an arbitrary small deformation of (X_A, H_A) is isomorphic to (X_B, H_B) for some $B \in \mathbb{LG}(\bigwedge^3 V)^0$.

5 Appendix: Three-dimensional sections of $Gr(3, \mathbb{C}^5)$

In the present section V_0 is a complex vector-space of dimension 5. Choose a volume form vol_0 on V_0 ; it defines an isomorphism

Let $K \subset \bigwedge^2 V_0$ be a 3-dimensional subspace such that either

$$\mathbb{P}(K) \cap \operatorname{Gr}(2, V_0) = \emptyset \tag{5.0.2}$$

or else

$$\mathbb{P}(K) \cap \operatorname{Gr}(2, V_0) = \{ [\kappa_0] \} = \mathbb{P}(K) \cap T_{[\kappa_0]} \operatorname{Gr}(2, V_0) .$$
(5.0.3)

In other words either $\mathbb{P}(K)$ does not intersects $\operatorname{Gr}(2, V_0)$ or else the scheme-theoretic intersection is a single reduced point. We will describe

$$W_K := \mathbb{P}(\operatorname{Ann} K) \cap \operatorname{Gr}(3, V_0) \tag{5.0.4}$$

First we recall that the dual of $\operatorname{Gr}(3, V_0)$ is $\operatorname{Gr}(2, V_0)$. More precisely let $[\alpha] \in \mathbb{P}(\bigwedge^2 V_0)$: then

$$\operatorname{sing}(\mathbb{P}(\operatorname{Ann}\alpha) \cap \operatorname{Gr}(3, V_0)) = \{ U \in \operatorname{Gr}(3, V_0) \mid U \supset \operatorname{supp} \alpha \}.$$
(5.0.5)

In particular $\mathbb{P}(\operatorname{Ann} \alpha)$ is tangent to $\operatorname{Gr}(3, V_0)$ if and only if $[\alpha] \in \operatorname{Gr}(2, V_0)$ (and if that is the case it is tangent along a \mathbb{P}^2). Secondly we record the following observation (the proof is an easy exercise).

Lemma 5.1. Let $U \subset V_0$ be a codimension-1 subspace. Let $\alpha \in \bigwedge^2 V_0$. Then

$$\alpha \wedge (\bigwedge^3 U) = 0 \tag{5.0.6}$$

if and only if supp $\alpha \subset U$.

We recall the following result of Iskovskih.

Proposition 5.2 (Iskovskih [10]). Keep notation as above. Let $K \subset \bigwedge^2 V_0$ be a 3-dimensional subspace such that (5.0.2) holds. Then

- (1) W_K is a smooth Fano 3-fold of degree 5 with $\omega_{W_K} \cong \mathcal{O}_{W_K}(-2)$,
- (2) the Fano variety $F(W_K)$ parametrizing lines on W_K (reduced structure) is isomorphic to \mathbb{P}^2 ,
- (3) the projective equivalence class of W_K does not depend on K.

Proposition 5.3. Keep notation as above. Let $K \subset \bigwedge^2 V_0$ be a sub vector-space of dimension 3 such that (5.0.3) holds. Then W_K is a singular Fano 3-fold of degree 5 with $\omega_{W_K} \cong \mathcal{O}_{W_K}(-2)$ and one singular point which is ordinary quadratic and belongs to

$$\{U \in \operatorname{Gr}(3, V_0) \mid U \supset \operatorname{supp} \kappa_0\}.$$
(5.0.7)

Proof. If $\kappa \in (K \setminus [\kappa_0])$ then κ is not decomposable and hence $\mathbb{P}(\operatorname{Ann} \kappa)$ is transverse to $\operatorname{Gr}(3, V_0)$; by (5.0.5) we get that

$$\operatorname{sing} W_K = \{ U \in \operatorname{Gr}(3, V_0) \mid U \supset \operatorname{supp} \kappa_0 \} \cap \mathbb{P}(\operatorname{Ann} K) \,. \tag{5.0.8}$$

We claim that the above intersection consists of one point. First notice that we have a natural identification

$$\{U \in \operatorname{Gr}(3, V_0) \mid U \supset \operatorname{supp} \kappa_0\} \cong \mathbb{P}(V_0 / \operatorname{supp} \kappa_0)$$
(5.0.9)

and a linear map

$$\begin{array}{rcl}
K & \stackrel{\nu}{\longrightarrow} & (V_0 / \operatorname{supp} \kappa_0)^{\vee} \\
\kappa & \mapsto & (\overline{v} \mapsto \operatorname{vol}_0 (v \wedge \kappa_0 \wedge \kappa))
\end{array} \tag{5.0.10}$$

where $v \in V_0$ and \overline{v} is its class in V_0 supp κ_0 . Given (5.0.8) and Identification (5.0.9) we get that

$$\operatorname{sing} W_K = \mathbb{P}(\operatorname{Ann} \operatorname{im} \nu). \tag{5.0.11}$$

Of course $\kappa_0 \in \ker \nu$ and hence in order to prove that $\operatorname{sing} W_K$ is a singleton it suffices to prove that $\ker \nu = [\kappa_0]$. If $\kappa \in (K \setminus [\kappa_0])$ then $\kappa_0 \wedge \kappa \neq 0$; in fact this follows from (5.0.3) together with the equality

$$\mathbb{P}\{\kappa \in \bigwedge^2 V_0 \mid \kappa_0 \wedge \kappa = 0\} = T_{[\kappa_0]} \mathrm{Gr}(2, V_0) \,. \tag{5.0.12}$$

Since $\kappa_0 \wedge \kappa \neq 0$ we have $\nu(\kappa) \neq 0$. This proves that sing W_K consists of a single point. The formula for the dualizing sheaf of W_K follows at once from adjunction. It remains to prove that W_K has a single singular point and that it is an ordinary quadratic point. Let $\widetilde{W}_K \subset \mathbb{P}(\operatorname{supp} \kappa_0) \times \mathbb{P}(V_0/\operatorname{supp} \kappa_0) \times W_K$ be the closed subset defined by

$$W_K := \{ ([v], U, W) \mid v \in W \subset U \}.$$
(5.0.13)

The projection $\widetilde{W}_K \to \mathbb{P}(V_0/\operatorname{supp} \kappa_0)$ is a \mathbb{P}^1 -fibration and hence \widetilde{W}_K is smooth. One shows that the projection $\pi \colon \widetilde{W}_K \to W_K$ is the blow-up of sing W_K . Moreover $\pi^{-1}(\operatorname{sing} W_K) \cong \mathbb{P}^1 \times \mathbb{P}^1$ and one gets that the singularity of W_K is ordinary quadratic.

Our last result is about the base-locus of 3-dimensional linear systems of quadrics containing W_K for $K \subset \bigwedge^2 V_0$ a 3-dimensional subspace such that (5.0.2) holds. First we consider the analogous question for the Grassmannian $\operatorname{Gr}(3, \bigwedge^3 V_0)$. Let's consider the rational map

$$\mathbb{P}(\bigwedge^{3} V_{0}) \xrightarrow{\Phi} |\mathcal{I}_{\mathrm{Gr}(3,V_{0})}(2)|^{\vee} \cong \mathbb{P}(V_{0})$$
(5.0.14)

where the last isomorphism is given by (4.2.18). Let $Z \subset \mathbb{P}(\bigwedge^3 V_0) \times \mathbb{P}(V_0)$ be the incidence subvariety defined by

$$Z := \{ ([\omega], [v]) \mid v \land \omega = 0 \}.$$
(5.0.15)

Then we have a commutative triangle

where Ψ and $\tilde{\Phi}$ are the restrictions to Z of the two projections of $\mathbb{P}(\bigwedge^3 V_0) \times \mathbb{P}(V_0)$. Moreover Ψ is the blow-up of $\operatorname{Gr}(3, V_0)$. In particular the following holds: if $\omega \in \bigwedge^3 V_0$ is not decomposable then

there exists a unique $[v] \in \mathbb{P}(V_0)$ such that $v \wedge \omega = 0$ and moreover $\Phi([\omega]) = [v]$. Let $[v] \in \mathbb{P}(V_0)$; by (4.2.18) we may view $\operatorname{Ann}(v) \subset V_0^{\vee}$ as a hyperplane in $|\mathcal{I}_{\operatorname{Gr}(3,V_0)}(2)|$; by commutativity of (5.0.16) we have

$$\bigcap_{f \in \operatorname{Ann}(v)} V(q_f) = \operatorname{Gr}(3, V_0) \cup \{ [\omega] \in \mathbb{P}(\bigwedge^3 V_0) \mid v \land \omega = 0 \}.$$
(5.0.17)

Proposition 5.4. Let $K \subset \bigwedge^2 V_0$ be a 3-dimensional subspace such that (5.0.2) holds. Let $L \subset |\mathcal{I}_{W_K}(2)|$ be a hyperplane (here \mathcal{I}_{W_K} is the ideal sheaf of W_K in $\mathbb{P}(\operatorname{Ann} K)$). Then

$$\bigcap_{t \in L} Q_t = W_K \cup R_L \tag{5.0.18}$$

where R_L is a plane. Moreover $W_K \cap R_L$ is a conic.

Proof. Restriction to $\mathbb{P}(\operatorname{Ann} K)$ defines an isomorphism

$$\left|\mathcal{I}_{\mathrm{Gr}(3,V_0)}(2)\right| \xrightarrow{\sim} \left|\mathcal{I}_{W_K}(2)\right|. \tag{5.0.19}$$

By (4.2.18) we get that we may identify L with $\mathbb{P}(\operatorname{Ann}(v))$ for a well-defined $[v] \in \mathbb{P}(V_0)$ and each quadric Q_t for $t \in L$ with $\mathbb{P}(\operatorname{Ann} K) \cap V(q_f)$ for a suitable $[f] \in \mathbb{P}(\operatorname{Ann}(v))$. By (5.0.17) we have

$$\bigcap_{f \in \operatorname{Ann}(v)} (\mathbb{P}(\operatorname{Ann} K) \cap V(q_f)) = W_K \cup R_L$$
(5.0.20)

where

$$R_L := \mathbb{P}(\operatorname{Ann} K) \cap \{ [\omega] \in \mathbb{P}(\bigwedge^{\circ} V_0) \mid v \land \omega = 0 \}.$$
(5.0.21)

3

Thus R_L is a linear space of dimension at least 2. Now notice that we have an isomorphism

$$\begin{array}{cccc}
 & \bigwedge^2(V_0/[v]) & \xrightarrow{\sim} & \{[\omega] \in \mathbb{P}(\bigwedge^3 V_0) \mid v \land \omega = 0\} \\
 & \overline{\alpha} & \mapsto & v \land \alpha
\end{array}$$
(5.0.22)

where $\alpha \in \bigwedge^2 V_0$ is an element mapped to $\overline{\alpha}$ by the quotient map $\bigwedge^2 V_0 \to \bigwedge^2 (V_0/[v])$. Since $\dim(V_0/[v]) = 4$ the Grassmannian $\operatorname{Gr}(2, V_0/[v])$ is a quadric hypersurface in $\mathbb{P}(\bigwedge^2 (V_0/[v]))$; it follows that either $R_L \subset W_K$ or $R_L \cap W_K$ is a quadric hypersurface in R_L . By Lefschetz $\operatorname{Pic}(W_K)$ is generated by the hyperplane class; it follows that W_K contains no planes and no quadric surfaces. Thus necessarily dim $R_L = 2$, moreover $R_L \not\subset W_K$ and the intersection $R_L \cap W_K$ is a conic. \Box

Corollary 5.5. Let $K \subset \bigwedge^2 V_0$ be a 3-dimensional subspace such that (5.0.2) holds and $\mathcal{C}(W_K)$ be the variety parametrizing conics on W_K (reduced structure). Then we have an isomorphism

$$\begin{array}{cccc} |\mathcal{I}_{W_K}(2)|^{\vee} & \xrightarrow{\sim} & \mathcal{C}(W_K) \\ L & \mapsto & R_L \cap W_K \end{array} \tag{5.0.23}$$

where R_L is as in **Proposition 5.4**. Moreover given $Z \in W_K^{[2]}$ there exists a unique conic containing Z namely $R_L \cap W_K$ where $L \in |\mathcal{I}_{W_K}(2)|^{\vee}$ is the hypeprlane of quadrics containing $\langle Z \rangle$.

References

- A. Beauville, Variétes Kähleriennes dont la premiére classe de Chern est nulle, J. Differential geometry 18, 1983, pp. 755-782.
- [2] A. Beauville R. Donagi, La variétés des droites d'une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301, 1985, pp. 703-706.
- [3] O. Debarre C. Voisin, Hyper-Kähler fourfolds and Grassmann geometry, J. Reine Angew. Math. 649, 2010, pp. 63-87.

- [4] F. Catanese, Homological algebra and algebraic surfaces, Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math. 62, 1997, pp. 3-56.
- [5] D. Eisenbud S. Popescu C. Walter, Lagrangian subbundles and codimension 3 subcanonical subschemes, Duke Math. J. 107, 2001, pp. 427-467.
- [6] D. Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135, 1999, pp. 63-113. Erratum, Invent. Math. 152, 2003, pp. 209-212.
- [7] A. Iliev, L. Manivel, Fano manifolds of degree ten and EPW sextics, Ann. Sci. Éc. Norm. Supér. (4) 44, 2011, pp. 393-426.
- [8] A. Iliev K. Ranestad, K3 surfaces of genus 8 and varieties of sums of powers of cubic fourfolds, Trans. Amer. Math. Soc. 353, 2001, pp. 1455-1468.
- [9] A. Iliev K. Ranestad, Addendum to "K3 surfaces of genus 8 and varieties of sums of powers of cubic fourfolds", C. R. Acad. Bulgare Sci. 60, 2007, pp. 1265-1270.
- [10] V. A. Iskovskih, Fano 3-folds, I, Math. USSR Izvestija, Vol. 11, 1977, pp. 485-527.
- K. O'Grady, Involutions and linear systems on holomorphic symplectic manifolds, GAFA 15, 2005, pp. 1223-1274.
- [12] K. O'Grady, Irreducible symplectic 4-folds and Eisenbud-Popescu-Walter sextics, Duke Math. J. 34, 2006, pp. 99-137.
- [13] K. O'Grady. Irreducible symplectic 4-folds numerically equivalent to (K3)^[2], Commun. Contemp. Math. 10, 2008, pp. 553–608.
- [14] K. O'Grady, Dual double EPW-sextics and their periods, Pure Appl. Math. Q. 4, 2008, no. 2, 427–468.
- [15] K. O'Grady, EPW-sextics: taxonomy, Manuscripta Math. 138, 2012, pp. 221-272.