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Abstract

We survey some recent and less recent results on hyperkähler manifolds
i.e. irreducible (holomorphic) symplectic manifolds. The point of view will
be that of an algebraic (or complex) geometer.

1 Introduction

A compact Kähler surface S is a K3 if it is simply connected and it carries a
global holomorphic symplectic form (i.e. the canonical bundle KS := ∧2Ω1

S is
trivial). An example: if P (x0, . . . , x4) is a homogeneous polynomial of degree 4
such that ∇P has no non-trivial zeroes then

S = V (P ) := {[x0, . . . , x4] ∈ P3
C| P (x0, . . . , x4) = 0} (1.1)

is a K3 surface1. These surfaces play an important rôle in the classification
of Kähler manifolds and they have a very rich geometry. Thus it is natural to
search for higher dimensional analogues of K3 surfaces. A natural generalization
of the definition of a K3 is that of a Calabi-Yau: a compact Kähler manifold
X with trivial canonical bundle and h0(Ωp

X) = 0 for 0 < p < dim X2. Another
generalization of the definition of a K3 is that of an irreducible symplectic man-
ifold: a simply connected compact Kähler manifold X carrying a holomorphic
symplectic form spanning Γ(Ω2

X). It turns out that higher dimensional irre-
ducible symplectic manifolds behave very much like K3’s in many respects. In
these notes we will survey certain recent (and less recent) results which have
been proved on these manifolds. First we explain why they are also known as
hyperkähler manifolds. If X is irreducible symplectic then by Yau’s solution of
Calabi’s conjecture there exists a Riemannian metric g on X such that (X, g)
is an irreducible hyperkähler manifold i.e. the holonomy is isomorphic to the
tautological representation of

Sp(r) := {φ : Hr → Hr| φ right-linear and φ(v)
t · φ(w) = vt ·w} (1.2)

∗Supported by Cofinanziamento MIUR 2003-2004
1S is simply connected by Lefschetz’ Hyperplane section Theorem. The exact sequence

0 → IS |S → Ω1
P3 |S → Ω1

S → 0 together with the isomorphisms IS |S ∼= OS(−4) and ∧3Ω1
P3 ∼=

OP3 (−4) gives that KS is trivial.
2We do not require that π1(X) is trivial, only that b1(X) = 0. One shows that if n = 2

the latter condition is equivalent to the former.
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on Hr where 4r = dimRX. Conversely let (M, g) be a compact irreducible hy-
perkähler manifold. Fix a point p ∈ M ; left-multiplication by λ = ai + bj + ck
with λ2 = −1 on the tangent space ΘpM is an endomorphism commuting
with the holonomy group and hence gives M the structure of a complex man-
ifold Xλ for which g is the real part of a Kähler metric. Furthermore since
Sp(r) = U(C2r) ∩ Sp(C2r) we get that Xλ carries a holomorphic symplectic
form spanning Γ(Ω2

Xλ
). It can be proved that π1(M) = {1} (see [2]) and hence

Xλ is an irreducible symplectic manifold. We will start our survey by giving the
first examples of higher-dimensional (dim > 2) irreducible symplectic manifolds
that were ever constructed (Fujiki, Beauville): they give two distinct deforma-
tion classes in every (even) dimension greater than 2. In Section (3) we will
review that part of the general theory that was developed roughly 25 years ago
by Bogomolv, Fujiki and Beauville and we will state some of Huybrechts’ recent
theorems on the Kähler cone and surjectivity of the period map. These re-
sults give strong evidence in favour of the slogan higher-dimensional irreducible
symplectic manifolds are analogues of K3 surfaces. In fact these manifolds,
similarly to K3 surfaces, are studied via periods of the symplectic form and the
results of Section (3) are extensions to arbitrary dimension of theorems which
had previously been proved to hold for K3 surfaces. After that we review the
many examples one encounters in algebraic geometry, mostly moduli spaces of
sheaves on projective K3 surfaces or abelian surfaces (following Mukai). These
moduli spaces will also give us examples of interesting birational maps between
irreducible symplectic manifolds. We will recall Huybrechts’ beautiful Theorem
which states that birational equivalent irreducible symplectic manifolds are de-
formation equivalent. In the following section we will give our construction of
examples in dimensions 6 and 10 which are not deformations of the previously
known ones. Every known higher-dimensional irreducible symplectic manifold
is deformation equivalent to one of Beauville’s examples or to one of our exam-
ples3 - thus we know of 2 distinct deformation classes in every even dimension
at least 4 with one extra deformation class in dimensions 6 and 10.

1.1 Notation

We will be working in the category of complex spaces or of complex algebraic
varieties. Thus unless we specify otherwise a symplectic form is holomorphic.

2 First higher dimensional examples

Beauville constructed two families of irreducible symplectic manifolds in every
even dimension greater than 2. The first family consists of Hilbert schemes
of 0-dimensional subschemes of a K3, the second family consists of generalized
Kummer manifolds. Members of distinct families are not deformation equivalent
because they do not have the same Betti numbers.

2.1 Hilbert schemes of K3’s

Let S be a K3 surface: the Hilbert scheme (or Douady space) S[n] is the
2n-dimensional connected manifold parametrizing subschemes Z ⊂ S of finite

3Kodaira proved roughly 40 years ago that any two K3 surfaces are deformation equivalent.
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length4 equal to n. One forms a picture of S[n] by contemplating the cycle map

γn : S[n] → S(n) (2.1)

where S(n) is the symmetric product of n copies of S. The map γn is an
isomorphism over (S(n))0, the smooth locus of S(n), i.e. the subset parametrizing
cycles p1 + · · · + pn with pairwise distinct pi’s. The fibers of γn over points
of sing(S(n)) are positive dimensional. Let’s examine S[2] more closely. In
this case we may avoid appealing to the theory of Hilbert schemes: simply
define S[2] to be the blow-up of S(2) with center sing(S(2)) and thus (2.1) is
the blow-up map (this is Fujiki’s construction of the first example of a higher
dimensional irreducible symplectic manifold). Then S[2] is stratified according
to the dimension of fibers of (2.1). There are two strata: the open stratum
isomorphic to (S(2))0 and the closed stratum isomorphic to the projectivization
of the tangent bundle of S. The manifold S[n] is Kähler by a Theorem of
Varouchas. One associate to a symplectic form σ on S a symplectic form σ[n]

on S[n] as follows. Let πi : Sn → S be the i-th projection. The 2-form on Sn

given by
∑n

i=1 π∗i σ is symplectic and invariant under the action of the symmetric
group hence it descends to a symplectic form on on (S(n))0. Since γn is an
isomorphism over (S(n))0 we get a symplectic form on γ−1

n (S(n))0; one verifies
easily that this form extends to a symplectic form on S[n]. We refer to [2] for the
proof that S[n] is irreducible symplectic. The important Betti number b2(S[n])
is computed as follows. One proves that the exceptional divisor γ−1

n (sing(S(n)))
is irreducible; from this one easily gets5 that

b2(S[n]) = b2(S(n)) + 1 = b2(S) + 1 = 23, n ≥ 2. (2.2)

2.2 Generalized Kummer manifolds

Let T be a 2-dimensional complex torus6 and σ be a symplectic form on T .
Proceeding as in the case of K3 surfaces one associates to σ a symplectic form
σ[n+1] on T [n+1]. However T [n+1] is not irreducible symplectic. In fact consider
the composition

T [n+1] γn+1−→ T (n+1) ζn+1−→ T, (2.3)

where γn+1 is the cycle map (see (2.1)) and ζn+1 is the map defined by the
addition law on T . By (2.3) we have b1(T [n+1]) ≥ b1(T ) = 4 and we also get
that (ζn+1 ◦ γn+1)∗(σ) is a 2-form independent of σ[n+1]. On the other hand [2]
it turns out that K [n+1](T ) := (ζn+1 ◦ γn+1)−1(0) is irreducible symplectic of
dimension 2n. If n = 1 this is the classical Kummer surface, a particular K3.
Considering the cycle map γn+1 one shows that

b2(K [n+1](T )) = b2(T ) + 1 = 7, n ≥ 2. (2.4)

4If the ideal sheaf of Z is IZ ⊂ OS the length of Z is the dimension of OZ := OS/IZ as
complex vector space.

5Thom-Hirzebruch’s Index Theorem gives that b2(K3) = 22.
6T = C2/Λ where Λ ∼= Z4 is a discrete subgroup, i.e. it spans C2 over R.
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3 Periods

Almost 50 years ago A. Weil [32] formulated a series of conjectures on mod-
uli7 and periods8 of K3 surfaces. Most of the conjectures were proved in
the following 20 years; the most celebrated result is the Global Torelli The-
orem proved in the ’70’s by Piatechki-Shapiro and Shafarevich [27], Burns and
Rapoport [7], Looijenga and Peters [20] (Friedman [11] gave a radically differ-
ent proof). Roughly 20 years ago Beauville [20] started investigating periods
of irreducible symplectic manifolds of arbitrary dimension (there had been a
first attempt by Bogomolov [4]) and showed that periods of higher dimensionsal
irreducible symplectic manifolds behave very much like those of K3’s. Recently
Huybrechts [15, 16, 17] proved many deep results on Kähler classes and moduli
of irreducible symplectic manifolds. Huybrechts made heavy use of the pe-
riod map, in particular periods of the twistor family {Xλ}λ∈P1 described in
Section (1). Notice that the twistor family exists because of the equivalence
between irreducible symplectic manifolds and irreducible hyperkähler manifolds
(i.e. thanks to Yau’s solution of the Calabi conjecture).

3.1 Deformations and the local period map

Let X be an irreducible symplectic manifold. Bogomolov [4] proved that de-
formations of X are unobstructed. Thus there exists a proper submersive map
f : X → U where U is a polydisc, X ∼= X0 := f−1(0) and any irreducible
symplectic manifold whose complex structure is “close”to X is isomorphic to
Xt := f−1(t) for some t ∈ U (if Aut(X) is trivial then t is unique, in general
the set of such t is at most countable). Furthermore the Kodaira-Spencer map

ΘU,0
κ−→ H1(ΘX) ∼−→ H1(Ω1

X) (3.1)

is an isomorphism. (The second map of (3.1) is the isomorphism induced by
contraction with a symplectic form.) We say that f : X → U is a representative
of Def(X): in what follows we will feel free to shrink arbitrarily U around 0 -
in other words we are mostly interested in the germs of X and U at X0 and 0
respectively. From (3.1) and the Hodge equality b2(X) = 2h2,0(X) + h1,1(X)
we get that

dim U = b2(X)− 2. (3.2)

Example 3.1. Let S be a K3 and X = S[n] with n ≥ 2: by (3.2)-(2.2) we have
dim U = 21. On the other hand the deformation space of S has dimension 20
by (3.2) and hence the generic deformation of S[n] is not of the form (K3)[n].
Similarly the generic deformation of a generalized Kummer manifold is not a
generalized Kummer.

Now we define the period map. Since U is contractible X is diffeomeorphic
to X × U and hence for all t ∈ U we have a well-defined integral isomorphism

φt : H2(X) ∼−→ H2(Xt). (3.3)

7Isomorphism classes.
8Integrals (“periods”) of a symplectic form over integral 2-cycles.
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The local period map of X is given by

U
PX−→ P(H2(X))

t 7→ φ−1
t H2,0(Xt)

(3.4)

By Griffiths’s general results on the derivative of period maps the image of
dPX(0) lies in the subspace

Hom(H0(Ω2
X),H1(Ω1

X)) ⊂ Hom(H0(Ω2
X),H2(X)/H0(Ω2

X)) (3.5)

and we have a natural identification of dPX(0) with the map

H1(ΘX) −→ Hom(H0(Ω2
X),H1(Ω1

X))
θ 7→ contr(·, θ). (3.6)

Since H0(Ω2
X) is spanned by a symplectic form σ and contraction with σ defines

an isomorphism of vector-bundles ΘX
∼−→ Ω1

X we get that the above map is an
isomorphism. Thus dPX(0) is injective and hence PX is an immersion of U near
0 - this is the Local Torelli Theorem. By (3.6) (or by (3.2)) the image PX(U) is
a smooth analytic subset of codimension 1 in P(H2(X)).

3.2 Beauville’s quadratic form and Fujiki’s constant

Theorem 3.2. [(Beauville: Thm. (4) of [2])+(Fujiki: Thm. (4.7) of [12])] Let
X be an irreducible symplectic manifold of dimension 2n. There exist a pos-
itive rational number cX (Fujiki’s constant) and an integral indivisible non-
degenerate symmetric bilinear form (, )X on H2(X) (Beauville’s form) of sig-
nature (3, b2(X)− 3) such that the following hold:

(1) Im(PX) ⊂ Q := {[σ] ∈ P(H2(X))| (σ, σ)X = 0, (σ, σ)X > 0},
(2)

∫
X

α2n = cX · (α, α)n
X for α ∈ H2(X).

(3) (α, α′)X = 0 if α ∈ Hp,2−p(X), α′ ∈ Hp′,2−p′(X) with p + p′ 6= 2.

Proof. Let F̃ ∈ S2nH2(X)∨ be the intersection form

F̃ (α1, . . . , α2n) :=
∫

X

α1 ∧ · · · ∧ α2n. (3.7)

Let [α] ∈ Im(PX) and β1, . . . , βn−1 ∈ H2(X) be arbitrary; we claim that

F̃ (α, . . . , α︸ ︷︷ ︸
n+1

, β1, . . . , βn−1) = 0. (3.8)

In fact if [α] = PX(t) then

F̃ (α, . . . , α︸ ︷︷ ︸
n+1

, β1, . . . , βn−1) =
∫

Xt

φt(α)n+1 ∧ φt(β1) · · · ∧ φt(βn−1). (3.9)

By definition of the period map we may represent φt(α) by a (holomorphic)
symplectic form and hence the integrand is represented by a sum of forms of
type (p, q) with p ≥ (2n + 2); since dim X = 2n these forms are identically zero
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and the integral vanishes. This proves (3.8). Let F be the degree-2n polynomial
defined by

F (γ) := F̃ (γ, . . . , γ︸ ︷︷ ︸
2n

). (3.10)

Setting β1 = · · ·βn−1 = α in (3.8) we get that F vanishes on Im(PX): since
F is not identically zero9 it follows that the Zariski closure10 of Im(PX) in
P(H2(X)) is a proper subset of P(H2(X)). On the other hand we know by
Subsection (3.1) that Im(PX) is a smooth connected analytic subset of codi-
mension 1 in P(H2(X)) and hence the Zariski closure of Im(PX) is the set of
zeroes of an irreducible non-zero homogeneous polynomial A. One verifies that
Im(PX) does not belong to a hyperplane, i.e. deg A ≥ 2. Since F vanishes
on Im(PX) it vanishes also on V (A) and hence by irreducibility of A we have
F = F1 · A. If n = 1 we have 2 = deg F = deg F1 + deg A ≥ deg F1 + 2 and
hence deg F1 = 0, deg A = 2. Of course if n = 1 the theorem is quite trivial:
Beauville’s form is the intersection form F and Fujiki’s constant is equal to 1.
If n = 2 we notice that (3.8) tells us that the partial derivatives of F vanish on
Im(PX) and hence also on the zero-set of A. This implies that A divides F1 and
hence

F = F2 ·A2. (3.11)

Thus 4 = deg F = deg F2+2deg A ≥ deg F2+4 and hence deg F2 = 0, deg A = 2.
Equation (3.11) determines the constant F2 and the quadratic form A up to
multiplicative factors; as is easily verified we can rescale F2 and A so that A is
integral, indivisible and A(σ+σ, σ+σ) > 0 for a (holomorphic) symplectic form
σ. Let (, )X be the bilinear form defined by the “rescaled”quadratic polynomial
A and cX be the “rescaled”F2. All the statements in the theorem hold by
construction except possibly for the statement regarding the non-degeneracy and
signature of (, )X ; this follows easily from the Hodge index Theorem. If n > 2
one proceeds similarly; by (3.8) the partial derivatives of F up to order (n− 1)
vanish on Im(PX) and hence also on the zero-set of A. Dividing F successively
by A one gets that F = Fn ·An where Fn is a constant and deg A = 2. The rest
of the argument is as in the case n = 2.

A few comments:

(a) Let U be a representative of Def(X): by the Local Torelli Theorem (see
the end of Subsection (3.1)) PX : U → Q is an isomorphism onto an open
subset of Q.

(b) The quantities cX and (, )X are uniquely characterized by Properties (1)-
(2) above and are invariant under deformation of complex structure; they
are the main discreet invariants of X.

(c) Since (, )X is integral it gives H2(X;Z) a structure of lattice11.

The discreet invariants of Beauville’s examples are as follows. Let S be a K3
surface; then

cS[n] =
(2n)!
n!2n

, H2(S[n];Z) ∼= H⊕3⊕(−E8)⊕2⊕(−2(n−1)), n ≥ 2 (3.12)

9If ω is a Kähler class then F (ω) > 0.
10Common zeroes of all homogeneous polynomials vanishing on Im(PX).
11A finitely generated free abelian group endowed with a non-degenerate integral symmetric

bilinear form.
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where H is the standard hyperbolic plane. Let T be a 2-dimensional complex
torus; then

cK[n+1](T ) =
(2n)!
n!2n

(n+1), H2(K [n+1](T );Z) ∼= H⊕3⊕ (−2(n+1)), n ≥ 2.

(3.13)

3.3 The Kähler cone and surjectivity of the period map

We will state some of Huybrechts’ recent results (with an improvement by
Boucksom [5]); we refer to [18] for a very readable survey and of course to
the original papers [15, 16, 17, 5]. The first result is a projectivity criterion.

Proposition 3.3. [Projectivity criterion] An irreducible symplectic manifold X
is projective if and only if there exists α ∈ H1,1

Z (X) such that (α, α)X > 0.

Assume that X is projective and that L is an ample line bundle on X. Let
σ ∈ Γ(Ω2

X) be a symplectic form; then
∫

X
c1(L)2 ∧ (σ +σ)2n−2 > 0, where 2n =

dim X. Applying Items (2)-(3) of Theorem (3.2) we get that (c1(L), c1(L))X >
0. Thus the non-trivial part of the criterion is the sufficiency of the condition.
The next result describes the Kähler coneKX ⊂ H1,1

R (X) of Kähler classes. First
we recall that the positive cone CX ⊂ H1,1

R (X) is the connected component of
{α ∈ H1,1

R (X)| (α, α)X > 0} containing KX .

Theorem 3.4. [Huybrechts [17]+Boucksom [5]] The Kähler cone KX consists
of those α ∈ CX such that

∫
C

α > 0 for all rational curves C ⊂ X.

Here a rational curve C ⊂ X is the image of a non-constant map P1 →
X. A comment on the statement of the theorem. Demailly-Paun [9] have
recently extended the Nakai-Moishezon theorem to the case of a compact Kähler
manifold X, i.e. they proved that the Kähler cone is a connected component
of the set of α ∈ H1,1

R (X) such that
∫

Z
αd > 0 for all d-dimensional analytic

subsets Z ⊂ X. Theorem (3.4) states that if X is an irreducible symplectic
manifold it suffices to test those Z which are rational curves: in this respect X
really behaves like a K3 surface. A comment on the proof: essential use is made
of the twistor family f : X → P1 one can associate to an irreducible symplectic
manifold together with the choice of a Kähler class - the complex structure on
the fibers Xλ := f−1(λ) is defined as in Section (1).

In order to formulate the last result we recall how to define the global period
map. Choose a deformation class D of irreducible symplectic manifolds: thus
there is a lattice Λ with bilinear form (, )Λ such that for any X ∈ D the lattice
H2(X;Z) is isometric to Λ. The associated period space is

QΛ := {[σ] ∈ P(Λ⊗ C)| (σ, σ)Λ = 0, (σ, σ)Λ > 0}. (3.14)

A marked manifold in D consists a couple (X, φ) where X ∈ D and φ : H2(X;Z) ∼→
Λ is an isometry. To a marked manifold we associate its period

P (X, φ) := φC(H2,0(X)) ∈ QΛ.

The set of equivalence classes of marked manifolds in D is a (non-Hausdorff)
analytic space MD and the period map P : MD → QΛ is holomorphic.

Theorem 3.5. [Huybrechts [15]] Let M0
D be a connected component of MD.

The restriction of P to M0
D is surjective onto QΛ.

Again the existence of the twistor family is essential for the proof.
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4 More examples, birational maps

We will present most of the known explicit constructions of irreducible symplec-
tic manifolds. First the Fano variety of lines on a smooth cubic hypersurface in
P5 - this example is due to Beauville and Donagi. Next we give the construc-
tion, due to Mukai, of a symplectic form on moduli spaces of stable sheaves on
a projective surface S with trivial canonical bundle12 and we recall the result
(Mukai, Huybrechts-Göttsche, O’Grady, Yoshioka) stating that if such a moduli
space is compact then it is an irreducible symplectic manifold (S a K3) or one
of its “Bogomolov-Beauville factors”is (S an abelian surface). By this method
one gets a very rich series of examples of irreducible symplectic varieties and
also of interesting birational maps between them; we give explicit examples of
Mukai flops, the symplest non-regular birational maps. We finish by stating
Huybrechts’ Theorem on birational irreducible symplectic manifolds.

4.1 Lines on a cubic 4-fold

Let Y ⊂ P5 be a smooth cubic hypersurface and X := F (Y ) be the set of lines
L ⊂ X. Thus X is a closed subvariety of the Grassmannian Gr(1,P5). Beauville
and Donagi [3] proved that X is an irreducible symplectic manifold deformation
equivalent to (K3)[2]. Let Gr(1,P5) ↪→ P14 be the Plücker embedding. Thus
we have X ⊂ P14; let h := c1(OX(1)) be the first Chern class of the hyperplane
bundle on X. One verifies [3] that (h, h)X = 6. The remarkable feature of
Beauville-Donagi’s example is the following: the family of X = F (Y ) one gets
by letting Y vary among all smooth cubic hypersurfaces is locally complete
for deformations keeping the class h of type (1, 1). In other words every small
deformation of X = F (Y ) keeping h of type (1, 1) is isomorphic to X ′ = F (Y ′)
for some cubic hypersurface Y ′. I know of no other explicit locally complete
family of higher-dimensional polarized irreducible symplectic varieties.

4.2 Moduli spaces of sheaves

Let S be a projective surface. In general any natural algebraic structure on
the set of isomorphism classes of vector-bundles on S is not separated, i.e. not
Hausdorff. In order to get separated moduli spaces one restricts to the class of
H-stable vector-bundles, where H is an ample divisor13 on S. In general moduli
spaces of H-stable vector-bundles are not compact: in order to get compact
moduli spaces one considers the larger class of H-semistable torsion-free sheaves
and one introduces S-equivalence, a relation which coincides with isomorphism
for H-stable sheaves and is coarser than isomorphism for H-semistable non
stable sheaves. Explicitely: a torsion-free sheaf F is H-semistable if for all
non-zero subsheaves G ⊂ F we have

1
rk(G)

χ(G⊗OS(mH)) ≤ 1
rk(F )

χ(F ⊗OS(mH)). (4.1)

If the inequality is strict whenever G 6= F then F is H-stable. A celebrated
theorem of Gieseker and Maruyama states that the set of S-equivalence classes of
H-semistable torsion-free sheaves with fixed rank and Chern classes (in H∗(S))

12Thus S is either a K3 or an abelian surface.
13i.e. there exists an embedding f : S ↪→ Pn with f∗OPn (1) ∼= OS(kH) for some k > 0.
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has a natural structure of projective variety. Now let’s assume that KS is trivial,
i.e. that S is a K3 or an abelian surface. Given a positive r ∈ N, s ∈ Z and
c1 ∈ H1,1

Z (S) we let M(r, c1, s) be the set of S-equivalence classes of coherent
pure H-semistable sheaves F on S with

rk(F ) = r, c1(F ) = c1, χ(F ) =

{
r + s if S is a K3,

s if S is an abelian surface.
(4.2)

(To simplify notation we omit reference to S, H; however one must keep in mind
that the moduli space depends both on S and H.) Mukai [22] proved that the
open subset Mst(r, c1, s) ⊂ M(r, c1, s) parametrizing stable sheaves is smooth
and that if it is non-empty then

dim Mst(r, c1, s) = 2− 2rs + c2
1. (4.3)

Furthermore Mukai showed how to associate to a symplectic form σ on S a
symplectic form σM on Mst(r, c1, s). We give the definition of σM at a point
[F ] ∈ Mst(r, c1, s) representing a locally-free sheaf, i.e. a vector-bundle. Since
F is a vector-bundle there is a canonical isomorphism14

Θ[F ]M(r, c1, s) ∼= H0,1(End(F )). (4.4)

Given α, β ∈ H0,1(End(F )) one sets

〈σM , α ∧ β〉 :=
∫

S

σ ∧ Tr(α ∧ β). (4.5)

If (r, c1, s) and H are suitably chosen then Mst(r, c1, s) = M(r, c1, s) and we
may hope that M(r, c1, s) is an irreducible symplectic manifold.

Example 4.1. If S is a K3 surface then M(1, 0, 1 − n) ∼= S[n]: a sheaf is
represented by a point of M(1, 0, 1 − n) if and only if it is isomorphic to IZ

where [Z] ∈ S[n]. If S is an abelian surface then M(1, 0,−n) ∼= S[n] × Pic0(S):
a sheaf is represented by a point of M(1, 0,−n) if and only if it is isomorphic
to IZ ⊗ L where [Z] ∈ S[n] and [L] ∈ Pic0(S).

The example above suggests that M(r, c1, s) might be irreducible symplectic
if S is a K3 but that if S is an abelian surface we should first “reduce”M(r, c1, s).
In fact one considers the map

M(r, c1, s)
Φ−→ S × Picc1(S)

[F ] 7→ (
∑

crat
2 (F ), [∧rF ])

(4.6)

We explain our notation: crat
2 (F ) ∈ CH2(S) is the 2-nd Chern class in the group

of rational equivalence classes of 0-cycles on S and
∑

: CH2(S) → S is induced
by the addition law on S, [∧rF ] is the isomorphism class of the line-bundle
∧rF . Assume that dim M(r, c1, s) ≥ 4: then Φ is submersive and any two of
its fibers are isomorphic. Thus M(r, c1, s)0 := Φ−1(a, [ξ]) is well-defined up to
isomorphism and by (4.3)

dim M(r, c1, s)0 = −2− 2rs + c2
1. (4.7)

14If F is not locally-free replace H0,1(End(F )) by Ext1(F, F ).
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One verifies that the restriction of σM to Mst(r, c1, s)0 is symplectic. Now we
can state the main result regarding M(r, c1, s) when S is a K3 and M(r, c1, s)0

when S is an abelian surface under the hypothesis that (r, c1, s) and H have been
chosen so that Mst(r, c1, s) = M(r, c1, s).

Theorem 4.2. [[23, 13, 24, 30, 31]] Keep notation and hypotheses as above. If
S is a K3 then M(r, c1, s) is a deformation of S[n] where 2n = 2−2rs+c2

1. If S
is an abelian surface and dim M(r, c1, s) ≥ 4 then M(r, c1, s)0 is a deformation
of K [n+1](S) where 2n = −2− 2rs + c2

1.

We notice that although the above moduli spaces belong to the same defor-
mation class as Beauville’s examples they are in general not isomorphic (and
not birational) to Beauville’s examples (recall Example (3.1)).

4.3 Moduli spaces and Mukai flops

We will examine a particular moduli space of sheaves on a K3 surface. This will
serve two purposes: it will show how one goes about proving Theorem (4.2) and
it will introduce Mukai flops, the simplest non-regular birational maps between
holomorphic symplecic manifolds. Let S ⊂ P3 be a smooth quartic surface,
i.e. a hypersurface given by (1.1), and assume that S contains a line L. Let
` := c1(L). We consider M := M(2, `,−1), where stability is with respect to
OS(1). As is easily checked M = Mst. By the results of Mukai quoted in the
preceding subsection we get that if M is non-empty then it is a 4-dimensional
smooth projective variety with a regular symplectic form. Let’s show that M is
birational to S[2]: in particular this will prove that M is irreducible symplectic.

Claim 4.3. Keeping notation as above, let [F ] ∈ M . Then h0(F ) ≥ 1.

Proof. Serre duality gives that H2(F ) ∼= Hom(F,OS)∨ and the last group van-
ishes by stability, hence h2(F ) = 0. By definition of M (see (4.2)) we have
χ(F ) = 1 and hence we get that h0(F ) ≥ 1.

Let τ ∈ H0(F ) be non-zero. Then τ has isolated zeroes by stability of F
and hence F fits into an exact sequence

0 → OS
τ−→ F −→ IZ ⊗OS(L) → 0, (4.8)

where IZ is the ideal sheaf of a 0-dimensional subscheme Z ⊂ S. From χ(F ) = 1
we get that χ(IZ⊗OS(L)) = −1 and hence Z has length 2. From this one easily
gets that M = M1

∐
M2 where

Mi := {[F ] ∈ M | h0(F ) = i}. (4.9)

By upper-semicontinuity of cohomology dimension we get that M1 is open in
M . One gets a regular map M1 → S[2] by associating to [F ] the (unique) Z
appearing in Exact Sequence (4.8). One checks easily that this map gives an
isomorphism

f : M1
∼−→ (S[2] \ L[2]), (4.10)

where L[2] ⊂ S[2] is the closed subset parametrizing subschemes of L. On the
other hand we have an isomorphism

M2
∼= (L[2])∨. (4.11)
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(Explanation: L[2] ∼= P2 and (L[2])∨ is the dual plane.) Isomorphism (4.11) is
defined as follows. To [F ] ∈ M2 we associate the set RF of Z ⊂ S appear-
ing in (4.8) as τ varies among (H0(F ) \ {0}). One verifies easily that all Z
parametrized by RF are contained in L and that RF is a line in L[2]. From the
above we get that M1 is dense in M and hence that f defines a birational map
f : M · · · > S[2]. One checks that f is not regular. The inverse f

−1
replaces

L[2] by its dual plane (L[2])∨. This is an example of a Mukai flop, defined in
general as follows. Let X be an irreducible symplectic manifold with symplectic
form σ. Assume that there exists a closed Z ⊂ X of codimension r and that we
have a Pr-fibration ρ : Z → B. Let p ∈ Z and Pr = ρ−1(ρ(p)) be the fiber of ρ
through p. The restriction of σ to Z is the pull-back of a 2-form on B, hence
contraction with σ defines an isomorphism

ΘpPr ∼= (NZ/X)∨p . (4.12)

Let X̃ → X be the blow up of Z and E ⊂ X̃ be the exceptional divisor.
From (4.12) we get an inclusion

E
ι

↪→ Z ×B Z∨ (4.13)

where ρ∨ : Z∨ → B is the dual fibration of ρ and Im(ι) is the relative inci-
dence subvariety consisting of couples (p,H) with ρ(p) = ρ∨(H) and p ∈ H.
Thus in addition to the (blow-up) Pr−1-fibration π : E → Z we have a dual
Pr−1-fibration π∨ : E → Z∨. By Nakano’s contractibility criterion there is a
morphism X̃ → X∨ to a smooth X∨ contracting the fibers of π∨ and hence we
have a non-regular birational map

X · · · > X∨ (4.14)

which is an isomorphism outside Z, Z∨. This is a Mukai flop, see [22]. The com-
plex manifold X∨ is simply connected and it has a symplectic form spanning the
space of holomorphic 2-forms, hence if it is Kähler it is irreducible symplectic.
In our example X = M , X∨ = S[2], r = 2 and B = pt. Markman [21] has intro-
duced and studied so-called generalized Mukai flops. There are many natural
birational maps between moduli spaces of sheaves on a K3 or abelian surface:
they are Mukai flops in low dimensions, in general they tend to be generalized
Mukai flops.

4.4 Huybrechts’ Theorem

Birational maps between irreducible symplectic manifolds have been studied
intensely, see [6, 8, 14, 33]. We single out Huybrechts’ beautiful result.

Theorem 4.4. [Huybrechts [17]] Let X,Y be birational (bimeromorphic) irre-
ducible symplectic manifolds. Then X,Y are deformation equivalent.

The theorem above should be compared to theorems of Batyrev [1] and
Denef-Loeser [10] stating that birational manifolds with trivial canonical bundles
have the same Betti numbers, respectively Hodge numbers; however birational
CY’s need not be deformation equivalent, in fact they may not be homeomor-
phic. As in the proof of Theorems (3.4)-(3.5) a key rôle is played by the Twistor
family.
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5 New deformation classes

We will sketch our construction [25, 26] of 6- and 10-dimensional irreducible
symplectic manifolds which are not deformation equivalent to Beauville’s ex-
amples. Let S be a K3 or abelian surface with an ample divisor H. We
consider the moduli space M(2, 0,−2). This is a typical example in which
Mst(2, 0,−2) 6= M(2, 0,−2); if S is a K3 the sheaf IZ⊕IW where [Z], [W ] ∈ S[2]

is a semistable non-stable sheaf parametrized by M(2, 0,−2), if S is a torus the
sheaf (Ip⊗L)⊕ (Ip′ ⊗L′) where p, p′ ∈ S and [L], [L′] ∈ Pic0(S) is a semistable
non-stable sheaf parametrized by M(2, 0,−2). If H is chosen “generically”these
are precisely the semistable non-stable sheaves parametrized by M(2, 0,−2)
and their moduli sweep out the singular locus of M(2, 0,−2). I was able to
construct a symplectic desingularization π : M̃(2, 0,−2) → M(2, 0,−2) with
M̃(2, 0,−2) projective; symplectic means that π∗σM extends to a symplectic
form on M̃(2, 0,−2). If S is a torus set M̃(2, 0,−2)0 := π−1(M(2, 0,−2)0);
by (4.3) and (4.7) we have dim M̃(2, 0,−2) = 10 and M̃(2, 0,−2)0 = 6. We
proved that if S is a K3 then M̃(2, 0,−2) is irreducible symplectic and

b2(M̃(2, 0,−2)) ≥ 24. (5.1)

This shows that M̃(2, 0,−2) belongs to a new deformation class of 10-dimensional
irreducible symplectic manifolds because for the standard Beauville examples
b2 is either 7 or 23. We proved also that if S is a torus then M̃(2, 0,−2)0 is
irreducible symplectic and

b2(M̃(2, 0,−2)0) = 8. (5.2)

Thus M̃(2, 0,−2)0 belongs to a new deformation class of 6-dimensional irre-
ducible symplectic manifolds. A few comments on the proof. The symplectic
desingularization is obtained by first following Kirwan’s procedure that gives
(partial) desingularizations of GIT quotients whenever there are semistable non-
stable orbits and then by contracting an extremal ray - see also Kaledin and
Lehn [19] for an approach which avoids the contraction. The hardest part of
the proof consists in showing that M̃(2, 0,−2) (when S is a K3) or M̃(2, 0,−2)0

(when S is an abelian surface) is irreducible symplectic and that (5.2) holds -
Inequality (5.1) for S a K3 is straightforward. To explain why this is so let’s
take a step backwards: Theorem (4.2) is proved by showing that for a suitable
choice of (S,H) the moduli space is isomorphic to (K3)[n] (birational suffices
by Huybrechts’ Theorem (4.4)) and this is also the quickest method for showing
that M (or M0) is irreducible symplectic. In studying M̃ and M̃0 we need
to proceed differently: for the moment being we have no description of M̃ (or
M̃0) other than as a moduli space. Applying Lefschetz’ Hyperplane Section
Theorem we can describe quite explicitely a certain subset of M̃ (or M̃0) whose
low-dimensional topology resembles that of the mysterious variety we are study-
ing. Examining this subset we are able to show that the mysterious variety is
irreducible symplectic and also that (5.2) holds when S is a torus. The basic
discreet invariants of M̃0 have been computed recently by Rapagnetta [28]. In
the same paper Rapagnetta also proved that the topological Euler characteristic
of M̃0 is equal to 1920. The question that naturally arises is whether one can
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generalize the above construction to produce other deformation classes of irre-
ducible symplectic manifolds. In [25] we studied M(2, 0, 2− 2k) for S a K3 and
any k ≥ 2 (if k < 2 we get nothing interesting). If H is chosen generically the
semistable non-stable sheaves are represented by IZ ⊕ IW where [Z], [W ] ∈ S[k]

and their moduli sweep out the singular locus of the (8k− 6)-dimensional space
M(2, 0, 2− 2k). The singularities of M(2, 0, 2− 2k) for k > 2 differ from those
of M(2, 0,−2): in [25] we constructed a projective symplectic partial desingu-
larization M̃(2, 0, 2−2k) → M(2, 0, 2−2k) which is an actual desingularization
only when k = 2. Recently Kaledin and Lehn [19] proved that M(2, 0, 2 − 2k)
has no symplectic resolution if k > 2. Of course there are many other moduli
spaces M(r, c1, s) for which Mst(r, c1, s) 6= M(r, c1, s). However M(2r′, 2c′1, 2s′)
with (r′, c′1, s

′) an indivisible vector in (Z⊕H2(S;Z)⊕Z) is deformation equiv-
alent to M(2, 0, 2 − 2k) for an approppriate k and hence we will get nothing
new. In general it looks unlikely that we will find new deformation classes of
irreducible symplectic manifolds by desingularizing moduli spaces M(r, c1, s).
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