Esercizi di Geometria Differenziale per il 31/10/2016

Negli esercizi da 1 a 5 sono in vigore le seguenti notazioni:

- V è uno spazio vettoriale sul campo k, di dimensione finita.
- Se V, W sono spazi vettoriali su k, $\operatorname{Hom}(V, W)$ è lo spazio vettoriale delle applicazioni lineari $V \to W$. Denotiamo V^{\vee} lo spazio vettoriale duale di V, cioè $V^{\vee} = \operatorname{Hom}(V, k)$.
- Multlin (V^m, k) è l'insieme delle applicazioni multilineari $V^m \to k$. La somma di applicazioni e la moltiplicazione per un elemento di k dà a Multlin (V^m, k) una struttura di spazio vettoriale su k.
- Multlin^a $(V^m, k) \subset \text{Multlin}(V^m, k)$ è il sottospazio vettoriale delle applicazioni multilineari alternanti $\Phi \colon V^m \to k$, cioè tali che, per ogni permutazione $\sigma \in \mathcal{S}_m$, si abbia $\Phi(v_{\sigma(1)}, \dots, v_{\sigma(m)}) = \text{sign}(\sigma)\Phi(v_1, \dots, v_m)$. (Qui sign (σ) è il segno della permutazione, cioè 1 se σ è pari, e (-1) se σ è dispari.)

Esercizio 1. Esiste un'applicazione lineare

$$\Phi_m \colon \underbrace{V^{\vee} \otimes \ldots \otimes V^{\vee}}_{m} \longrightarrow \text{Multlin}(V^m, k)$$
 (1)

che manda l'elemento decomponibile $f_1 \otimes \ldots \otimes f_m$ nell'applicazione

$$\begin{array}{ccc}
V^m & \longrightarrow & k \\
(v_1, \dots, v_m) & \mapsto & f_1(v_1) \cdot f_2(v_2) \cdots f_m(v_m)
\end{array} \tag{2}$$

Se si definisce Φ_m in questo modo, è necessario innanzitutto assicurarsi che l'applicazione sia ben definita (scriviamo un elemento α del dominio come somma di tensori decomponibili in due modi diversi, e calcoliamo $\Phi_m(\alpha)$ per linearità: chi ci assicura che otteniamo la stessa applicazione multilineare?). Per definire Φ_m in modo pulito procedete come segue:

1. Definite

$$\Psi_m : \underbrace{V^{\vee} \times \ldots \times V^{\vee}}_{m} \longrightarrow \text{Multlin}(V^m, k),$$
(3)

ponendo $\Psi_m(v_1,\ldots,v_m)$ uguale all'applicazione in (6), e verificate che Ψ_m è multilinea-

2. Per la proprietà universale del prodotto tensoriale, Ψ_m induce un'applicazione lineare Φ_m , come in (5).

Ora dimostrate che Φ_m è un isomorfismo.

Esercizio 2. Date un isomorfismo naturale $\operatorname{Multlin}(V^m,k) \sim \operatorname{Hom}(V^{\otimes},k)$, e concludete che esiste un isomorfismo naturale

$$\underbrace{V^{\vee} \otimes \ldots \otimes V^{\vee}}_{m} \xrightarrow{\sim} \operatorname{Hom}(V^{\otimes}, k). \tag{4}$$

Esercizio 3. Dimostrate che esiste un'applicazione lineare

$$\Psi_m \colon \bigwedge^m V^{\vee} \longrightarrow \text{Multlin}^a(V^m, k)$$
(5)

che manda l'elemento decomponibile $f_1 \wedge \ldots \wedge f_m$ nell'applicazione

$$V^{m} \longrightarrow k$$

$$(v_{1}, \dots, v_{m}) \mapsto \sum_{\sigma \in \mathcal{S}_{m}} \operatorname{sign}(\sigma) f_{1}(v_{\sigma(1)}) \cdots f_{m}(v_{\sigma(m)})$$
(6)

Ora dimostrate che Ψ_m è un isomorfismo di spazi vettoriali.

Esercizio 4. Sia $n := \dim V$, e scegliamo un isomorfismo $\bigwedge^n V \cong k$ (ricordiamo che $\dim \bigwedge^n V = 1$). Dimostrate che se $0 \le p \le n$, la moltiplicazione

(ricordate l'identificazione $\bigwedge^n V \cong k$) definisce un "perfect pairing", cioè le applicazioni indotte

$$\bigwedge^p V \longrightarrow \operatorname{Hom}(\bigwedge^{n-p} V, k), \qquad \bigwedge^{n-p} V \longrightarrow \operatorname{Hom}(\bigwedge^p V, k)$$

sono isomorfismi.

Esercizio 5. Un elemento $\alpha \in \bigwedge^m V$ è decomponibile se esistono $v_1, \ldots, v_m \in V$ tali che $\alpha = v_1 \wedge \ldots \wedge v_m$. Per esempio, ogni elemento di V è banalmente decomponibile.

- 1. Sia $n := \dim V$. Dimostrate che ogni elemento di $\bigwedge^n V$ è decomponibile, e similmente che ogni elemento di $\bigwedge^{n-1} V$ è decomponibile. (Per la seconda affermazione può essere utile l'es. 4.)
- 2. Dimostrate che, se $\alpha \in \bigwedge^2 V$ è decomponibile, allora $\alpha \wedge \alpha = 0$, e deducetene che se $\dim V \geq 4$, allora esistono elemnti non decomponibili di $\bigwedge^2 V$.

Esercizio 6. Sia $X \subset \mathbb{P}^3_{\mathbb{R}}$ la quadrica

$$X := \{ [x_0, \dots, x_3] \mid x_0^2 + x_1^2 = x_2^2 + x_3^2 \}.$$

 $\textit{Verificate che X \`e una sottovariet\`a C^{∞} della variet\`a $\mathbb{P}^3_{\mathbb{R}}$, e che X \`e diffeomorfa a $S^1 \times S^1$.}$