Chapter 3

Rational maps, dimension and degree

3.1 Introduction

3.2 Rational maps

Let X,Y be algebraic varieties. We define a relation on the set of couples (U, ¢) where U < X is open
dense and p: U — Y is a regular map as follows: (U, ) ~ (V, ) if the restrictions of ¢ and ¥ to U n'V
are equal. Then ~ is an equivalence relation. In fact reflexivity and symmetry are trivially true. To
prove transitivity suppose that (U, ) ~ (V,9) and (V,4) ~ (W, u). Then the restrictions of ¢ and u to
UnV AW are equal. Since V is open dense in X, the intersection U nV n W is (open) dense in U nW.
Since X is separable it follows that the restrictions of ¢ and p to U n W are equal, i.e. (U, ) ~ (W, u).

Definition 3.2.1. A rational map f: X --» Y is a ~-equivalence class of couples (U, ¢) where U ¢ X
is open dense and ¢: U — Y is a regular map.

1. The map f is regular at x € X (equivalently x is a regular point of f), if there exists (U, ¢) in the
equivalence class of f such that x € U. We let Reg(f) < X be the set of regular points of f. By
definition Reg(f) is an open subset of X.

2. The indeterminancy set of f is Ind(f) := X\ Reg(f) (notice that Ind(f) is closed). A point x € X
is a point of indeterminancy if it belongs to Ind(f).

Ezxample 3.2.2. If f: X — Y is a regular map, we may consider f as a rational map represented by
(X, f)-
Ezample 3.2.3. Let X be an algebraic variety, and let U < X be open. Let ¢: U <— X be the inclusion

map. Then (U, ) represents a rational map f: X --» U (note that f goes in the “wrong” direction).
Clearly Reg(f) =U.

Ezample 3.2.4. Let V be a finitely generated vector space and let [vg] € P(V'). Let U = (P(V)\{[vo]}).
We assume that dim V' > 2, and hence U is open dense in P(V). The map

U -5 P(V/(v))
[w] — [

where W is the equivalence class of w, is regular. Hence (U, ¢) represents a rational map f: P(V) --»
P(V /{vo)), which is called the projection from [vg]. If dimV = 2 then ¢ is constant and hence ¢ is
regular. If dim V' > 2 then the regular locus of ¢ is equal to U.

From now on we will consider only rational maps between irreducible algebraic varieties. Let
f: X --» Y and g: Y --» W be rational maps between (irreducible) algebraic varieties. It might
happen that for all € Reg(f) the image f(z) does not belong to Reg(g), and hence the composi-
tion g o f makes no sense. In order to deal with compositions of rational maps, we give the following
definition.
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3. RATIONAL MAPS, DIMENSION AND DEGREE

Definition 3.2.5. A rational map f: X --+ Y between irreducible algebraic varieties is dominant if it
is represented by a couple (U, ¢) such that ¢(U) is dense in Y.

Remark 3.2.6. Let f: X --» Y be a dominant rational map between irreducible algebraic varieties. If
(V, %) is an arbitrary representative of f then (V') is dense in Y. In fact by definition f is represented
by a couple (U, ¢) such that ¢(U) is dense in Y. Replacing V' by V n U (which is open dense in X') we
may assume that V' < U, and hence ¢ = ¢|. Suppose that (V) is not dense in Y, i.e. there exists a
proper closed W < Y containing (V). Since o~ 1(W) < U is closed and it contains the dense subset
V < U, it is equal to U. Thus ¢(U) « W, and this is a contradiction.

Let X,Y, W be irreducible algebraic varieties. Let
x-5Ly Lw (3.2.1)

be dominant rational maps, represented by (U, ¢) and (V, ) respectively. Since ¢(U) is dense in Y,
©(U) NV is non empty and hence ¢~1(V) is non empty. Since ¢~!(V) is open and X is irreducible, it
follows that »~1(V) is dense in X.

Definition 3.2.7. Keeping notation as above, the composition fog is the rational map X --» W repres-
ented by (= 1(V), o). (The equivalence class of (¢~(V), o) is independent of the representatives
(U, ) and (V,¢).)

Definition 3.2.8. A dominant rational map f: X --» Y between irreducible algebraic varieties is
birational if there exists a dominant rational map g: Y --+ X such that go f =Idx and fog = Idy.
An irreducible algebraic variety X is rational if it is birational to P™ for some n, it is unirational if
there exists a dominant rational map f: P" --» X.

Ezample 3.2.9. Of course isomorphic irreducible quasi projective varieties are birational. Example 3.2.3
is a slightly less trivial instance of birational map. The inclusion map ¢: U — X has rational inverse
the map f: X --» U of Example 3.2.3.

FEzample 3.2.10. Let V be a K vector space of dimension n + 1. Suppose that P: V — K is a quadratic
form of rank at least 3, i.e. ker P has codimension at least 3 (recall that ker P — V is the subspace of
vectors u such that P(u + v) = P(v) for all v € V). Then P is not the product of linear functions and
hence @ == V(P) < P(V) is an irreducible quadric. Let [vg] € (Q\P(ker P)). The restriction of the
projection from [vg] (see Example 3.2.4) is a rational map

Q L5 POV Cuo)). (3.2.2)

We claim that f is birational, and hence @ is rational. The reason is the following. First note that by
associating to a line P(W) < P(V) containing [vo] the element W /(vo) of P(V /{vo)) we get a bijection
between the set of lines containing [vg] and P(V /{(vg)). Thus we view the latter as parametrizing lines
through [vg]. An open dense subset of lines through [vg] intersect @ in [vp] and another point (because
P has degree 2). Thus for an open dense U < P(V /{vg)) we may define a map U — @ by associating to
the line A € U the unique point in An@Q other than [vg]. This is a regular map U — @ defining a rational
map g: P(V/{vy)) --» @ which is the rational inverse of f. More explicitly: in suitable coordinates
20, - ..y Zn, we have vg = (0,0,...,0,1) and F = ZyZ,, — G, where 0 G € K[Zy, ..., Zp_1]2. Then
Q 7{_) Pnfl
[Zo,...,Zn] —> [Z07~~~»Zn—1]
and
Ipmfl _5_7_) anl
[To, ..., Tuo1] +— [T3,ToTh,.. ., ToTw1,G(To,. .., Tn_1)]
Notice that if n = 2, then f and g are regular (see Example 1.5.9). If n > 3 then neither f nor g is
regular. Moreover the quadric @ is not isomorphic to P"~!. We cannot prove this now in general. For
K = C and n = 3 you may show that Q = P3(C) with the Euclidean topology is not homeomorphic to
IP?(C) with the Euclidean topology, and hence they are not isomorphic as algebraic varieties.
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3.2. Rational maps

Proposition 3.2.11. Irreducible algebraic varieties X, Y are birational if and only if there exist open
dense subsets U < X and V 'Y that are isomorphic.

Proof. An isomorphism ¢: U — V clearly defines a birational map f: X --» Y. To prove the converse,
let

x-Sy Iix (3.2.3)

be birational inverse maps. Let (U, ¢) represent g and (V1)) represent f. Then ¢~ 1(V) and ¢~(U)
are open dense subsets of U and V respectively. By hypothesis the composition

Yo (p-1v)) 9 (V) = U

is equal to the identity on an open non-empty subset of p~(V). By separability of X we get that
Vo (¢jp-1(v)) = Idy-1(. In particular 1o ¢ (9=1(V)) € U, ie. ¢ (¢~ H(V)) < ¥~ 1(U). Similarly

po (Y1) =dy-1y, ¥ (7)) € o (V).

Thus the restrictions of ¢ and 1 define regular maps ¢~ 1(V) — »~}(U) and v~} (U) = ¢~ 1(V)
which are inverse of each other. O

Example 3.2.12. Let f, g be the birational maps in Example 3.2.10. Assume that n > 3, so that both
non regular. Then

Reg(f) = Q\{[0,0,...,0,1]}, Reg(g) = P""\V (T, G(Ty, ..., Tp_1))- (3.2.4)

On the other hand open dense subsets which are isomorphic are strictly smaller than the regular loci.
In fact f defines an isomorphism

Q\V(Zo) — P"""\V(Ty). (3.2.5)

If X, Y are algebraic varieties defined over a subfield F' c K, then one defines the notion of rational
map f: X --+Y defined over F by considering equivalence classes of couples (U, ) where U c X is an
open subset defined over F' and ¢: U — Y is defined over F. As a consequence we have the notion of
algebraic varieties defined over F' which are birational over F. In particular we have the notion of an
algebraic varieties defined over F' which is rational over F.

Ezample 3.2.13. Let Vi be an F vector space of dimension n + 1, and let FPy: Vo — F be a quadratic
form of rank at least 3. Let V := Vj ®r K and let P: V — K be the quadratic form obtained from
Py by extending scalars. Then @ = V(P) is a quadric defined over F'. We claim that @ is rational
over F' if and only if Q(F)\P(ker Py) is not empty. In fact suppose that there exists a birational map
from a projective P (for some m) space to @, and hence a regular dominant map ¢: U — @ where
U < P™ is open dense. There are plenty of points in U defined over F' and their images are points
in Q(F). Moreover not all of these rational points are contained in P(ker Py) because ¢ is dominant.
Hence Q(F)\P(ker Py) is non empty. On the other hand, if there exists a point [vg] in (Q(F)\P(ker Fy)),
then the procedure described in Example 3.2.10 gives a birational map f: Q --+ P(V /{vy)) defined over
F'. In fact this holds because we can choose coordinates Zj, ..., Z, for Vj such that vy = (0,0,...,0,1)
and F = ZyZ, — G, where 0 = G € F[Zy,...,Zp-1]2-

Many natural invariants of complete algebraic varieties do not separate between birational varieties.
This fact gives practical criteria that allow to establish that couples of complete varieties are not
birational. On the other hand, it leads one to approach the classification of isomorphism classes of
complete (or projective) varieties in two steps: first one classifies equivalence classes for birational
equivalence, then one distinguishes isomorphim classes within each birational equivalence class.
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3. RATIONAL MAPS, DIMENSION AND DEGREE

3.3 The field of rational functions

If X is an affine variety then one can reconstruct X from the ring K[X] of regular functions on X.
Actually there is a contravariant equivalence between the category of affine varieties and the category
of finitely generated K algebras with no non zero nilpotents, see Section 1.8. On the other hand if X is
proper then, since every regular function is locally constant, the ring K[ X] gives very little information
about X (unless X is a finite set, i.e. affine). One gets a rich algebraic object by associating to
an irreducible algebraic variety the field of rational functions. From this field one reconstructs the
algebraic variety modulo birational maps.

Let X be an irreducible algebraic variety. A rational function on X is a rational map X --» K(= A%).
We define addition and multiplication of rational functions on X by adding and multiplying regular
representatives. Let f,g: X --» K be represented by (U, ¢) and (V, 1)) respectively. Then

f+g = [(UHVMPWmV +'L/}|UmV)]7
f-g (U V,ouav - Yioav)]-

The definition makes sense because changing representatives of f and g we get equivalent couples. We
claim that with the above operations the set of rational functions on X is a field. It is obvious that it
is a ring. To check that every non zero element has a multiplicative inverse let f: X --+ K be a non
zero rational function. Then f = [(U, )] where ¢ £ 0. Thus V(¢) < U is a proper closed subset and
therefore UY := (U\V(y)) is open dense in X. Then g = [(U?, »~!)] is the multiplicative inverse of f.

Definition 3.3.1. Let X be an irreducible algebraic variety. The field of rational functions on X is
the set of rational functions on X with the above operations. It is denoted by K(X).

Remark 3.3.2. Let X be an irreducible algebraic variety. We have a canonical embedding K — K(X)
as the subfield of constant functions.

Remark 3.3.3. Let X be an irreducible algebraic variety. Let U — X be a dense open subset. The map

KU) - K(X)
[(Vio)] = [(V,¢)]

is an isomorphism of extensions of K, i.e. it is an isomorphism of fields and the composition K «—
K(U) - K(X), where the first map is the the canonical embedding, equals the canonical embedding
K — K(X). In particular K(X) is isomorphic (as extension of K) to the field of rational functions of
any of its dense open affine subsets.

(3.3.6)

The field of rational functions of an irreducible affine variety is isomorphic to the field of fractions
of its ring of regular functions. To see this, first note that if X is an irreducible algebraic variety we
have an inclusion of K extensions:

(field of fractions of K[X]) — K(X)

o

B [(X\V(B), )] (3.3.7)

Claim 3.3.4. Let X be an affine irreducible variety. Then (3.3.7) is an isomorphism.

Proof. We must prove that the map in (3.3.7) is surjective. Let f € K(X), and let (U, ¢) represent f.
By Example 1.6.5, there exists 0 4 v € K[X] such that the dense principal open subset X, is contained
in U. Moreover, by Example 1.6.5 and Theorem 1.6.2, K[X] is generated as K-algebra by K[X] and
71, hence ¢ is represented by (X, %) where a € K[X]. Let 8 := 4™. Since X, = X3, we have
proved that f belongs to the image of (3.3.7). O
Ezample 3.3.5. By Claim 3.3.4 the field K(A™) is the field of fractions of K[z1, ..., 2,], i.e. K(z1, ..., 2p).
By Remark 3.3.3 we also have K(P") = K(z1,...,2p).
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3.3. The field of rational functions

Remark 3.3.6. If X is an irreducible algebraic variety then K(X) is finitely generated over K. In fact
by Remark 3.3.3 we may replace X by a dense open affine Y < X. Then K(Y) is the field of quotients
of K[Y] by Claim 3.3.4. Let Y < A™ as a closed subset. By Theorem 1.6.2 the restriction of coordinate
functions zq|x, ..., 2, x generate K[Y] as K-algebra and hence they generate K(Y) as extension of K.
In particular we can extract a transendence basis of K(Y) from zyx, ..., 2px-

Let f: X --+ Y be a dominant rational map of irreducible algebraic varieties. Since f is dominant
the pull-back map

f*
KY) — K(X)
¢ = pof
is well defined. The map f* is an inclusion of fields and if K < K(Y) is the canonical inclusion then

*
the composition K < K(Y) £- K(X) is the canonical inclusion. Thus f* is a morphism of extensions
of K. Suppose that f: X --» Y and g: Y --» W are dominant rational maps of irreducible algebraic
varieties. Then go f: X --+ W is dominant and

[fog*=(g90h)". (3.3.8)
Of course Id% : K(X) — K(X) is the identity map. This gives a contravariant functor

RAT/K — FGF/K
X - K(X) (3.3.9)
x- Ly o~ g

where RAT /K is the category whose objects are irreducible algebraic varieties and FGF /K is the
category of finitely generated field extensions of K (with morphisms the morphisms as extensions of K).

Proposition 3.3.7. The functor in (3.3.9) is an equivalence between the category of irreducible algeb-
raic varieties with homomorphisms dominant rational maps and the category of finitely generated field
extensions of K.

Proposition 3.3.7 follows from Proposition 3.3.8, which proves that the functor in (3.3.9) is essentially
surjective, and Proposition 3.3.10, which proves that the functor in (3.3.9) is fully faithful.

Proposition 3.3.8. Let E be a finitely generated field extension of K. There exist an irreducible
algebraic variety X and an isomorphisms of E — K(X) of extensions of K.

Proof. Let m be the transcendenece degree of E over K. By Corollary A.4.8, there exist a prime

polynomial P € K(z1, ..., 2m)[2m+1] and an isomorphism of extensions of K
E—=K(z1, .., 2m)[zm+1]/(P). (3.3.10)
Write
P:z,’i+1 +clzi;_11 +--+cqg, ce€K(z1,...,2m)-

Then, fori € {1,...,d}, we have ¢; = Z— where a;,b; € K[z1, ..., 2] and b; & 0. Let Pe K[z1, -y Zmt1]
be obtained from P by clearing denominators, i.e. P = (by-...-bq)P. Lastly, let Q € K[z1,. .., 2m+1] be

obtained from P by factoring out the maximum common divisor of the coefficients of P as polynomial
in zm41 (recall that K[zq,...,2y,] is a UFD). Notice that @ is irreducible and hence prime. Write

d d—1
Q=eozp +e125 0+ +eq, e; € Klz1,...,2m], eo*0.

Then X := V(Q) = A™*! is an irreducible hypersurface because @ is prime. Because of the isomorphism
in (3.3.10) it suffices to prove that there is an isomorphism of extensions of K

K(z1, .., 2m) [man ]/ (P) = K(X). (3.3.11)
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3. RATIONAL MAPS, DIMENSION AND DEGREE

Let Z; := 2z;x. We claim that the rational functions on X represented by {Z1,...,Zm} are algebra-
ically independent over K. In fact, suppose that R € K[ty,...,t,] and R(Z1,...,Z,) = 0. By the
fundamental Theorem of Algebra, for any (£1,...,&n) € (A"™\V(ep)) there exists &,,+1 € K such that
(&1, &ms&me1) € X. Tt follows that R(&1,...,&y,) = 0 for all (&1,...,&m) € (A™\V(ep)), and hence
R - g vanishes identically on A™. Thus R - ey = 0, and since eg + 0 it follows that R = 0. This
proves that {Z1,...,Z,,} are algebraically independent over K. On the other hand Z,,4; is algebraic
over K(Z1,...,Zn) and its minimal polynomial equals P. Thus by mapping z; to z; fori e {1,...,n+1}
(and mapping K to K by the identity map) we get an isomorphism of extensions of K as in (3.3.11). O

Proposition 3.3.9. Let X and Y be irreducible algebraic varieties, and let a: K(Y) — K(X) is an
inclusion of extensions of K. There exists a unique dominant rational map f: X --+ Y such that
f*=a.

Proof. By remark 3.3.3 we may assume that X ¢ A™ and Y < A™ are closed. Hence by Claim 3.3.4
K(X), K(Y) are the fields of fractions of K[X] and K[Y] respectively. By Theorem 1.6.2, K[X] =
K[z1,...,2,]/I(X) and K[Y] = K[wn, ..., wm]/I(Y). Given p € K[z1,...,2,] and ¢ € K[w1, ..., wn,
we let P := p|x and 7 := g|y. We have
[ _
o (w;) = 7. fisgi €Klz1, ... z0], 7; #0.

Let U := X\(V(g1) U ... U V(gm)). Then U is open and dense in X. Let

v -z A™

a —s (fl(a) fm(a))

gi(a)’ """ gm(a)

We claim that $(U) c Y. In fact let h € I(Y). Since « is an inclusion of extensions of K,
B(f1/T1s- s Fon/Tm) = B(a(@1), ..., (W) = a(h(@y, ..., Wy)) = a(0) = 0.

This proves that if b € I(Y) then h vanishes on 3(U), i.e. 3(U) < Y. Thus ¢ induces a regular map
p:U—>Y. IfbeK[Y] c K(Y) then

¢*(b) e K[U] = K(U) = K(X)

is equal to «(b). It follows that if b 4 0 then ¢*(b) & 0. Thus ¢ is dominant. Let f: X --» Y be the
equivalence class of (U, ¢). Then f* = .

Moreover it is clear from the above construction that f is the unique rational (dominant) map such
that f* = a. O

The result below follows at once from what has been proved above.

Corollary 3.3.10. Irreducible algebraic varieties are birational if and only if their fields of rational
functions are isomorphic as extensions of K.

Ezample 3.3.11. Let p € K[z] be free of square factors (and degp > 1). Then ¢? — p(z) is prime and
hence X :=V (t* — p(z)) = A? is irreducible. Thus we have the extensions of fields K(X) > K(z) > K
where the top extension is algebraic of degree 2. Then X is rational if and only if K(X) is a purely
trascendental extension of K. If degp = 1 then K(X) is a purely trascendental extension of K because
it is generated (over K) by ¢. Similarly it is a purely trascendental extension of K if degp = 2 by
Example 1.5.9. If degp > 3 then X is not rational (the proof of this fact this requires new ideas) and
hence K(X) is not a purely trascendental extension of K.

The result below follows from the above corollary and the proof of Proposition ?7.

Proposition 3.3.12. Let X be an irreducible algebraic variety and let m := Tr.degg K(X). Then X
is birational to an irreducible hypersurface in A™*1,
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3.4. Dimension

3.4 Dimension

Definition 3.4.1. 1. The dimension of an irreducible algebraic variety X is the transcendence de-
gree of K(X) over K.

2. Let X be an arbitrary quasi projective variety, and let X = X3 u---uU X, be its irreducible decom-
position. The dimension of X is the maximum of the dimensions of its irreducible components.
We say that X has pure dimension n if every irreducible component of X has dimension n.

3. Let p € X. The dimension of X at p is the maximum of the dimensions of the irreducible
components of X containing p.

Remark 3.4.2. The dimension of an irreducible algebraic variety X is equal to the dimension of any
open dense subset U < X. In fact, by definition it suffices to prove it for irreducible X, and in that
case it holds because the fields of rational functions K(X) and K(U) are isomorphic extensions of K.

Ezample 3.4.3. The dimension of A" and of P" is equal to n. In fact K(A") = K(P") = K(z1,...,2n),
and {z1,...,2,} is a transcendence basis of K(z1,...,2,) over K.

Ezample 3.4.4. The dimension of Gr(h,V) is equal to h - (dimV — h), because it is irreducible and it
contains an open dense subset isomorphic to an affine space of dimension k- (dim V — h) (actually many
such subsets), see Exercise 2.6.3.

Example 3.4.5. Let X < A™*! be a hypersurface. We claim that X has pure dimension n. Since the
irreducible components of X are hypersurfaces, in fact the zero loci of the prime factors of f, it suffices
to show that if X is an irreducible hypersurface then it has dimensjon n. Let I(X) = (f). Reordering
the coordinates (z1,...,2n, 2n+1) We may assume that

f=cozg+1+clzgzﬁ+~~+cd, ci€Klz1,...,2n), ¢ #0, d>0. (3.4.1)

For i e {1,...,n+ 1} let z; = zijx- In the proof of Proposition 3.3.8 we showed that Zy,...,z, are
algebraically independent in K(X). Since K(X) is generated over K by Z1,...,Zp, Zn+1 and since Zp,41
is algebraic over the subfield generated by Zzi,...,Zz, it follows that Zi,...,Z, is transcendence basis
of K(X) over K. Similarly, a hypersurface in P**! has pure dimension n. (Intersect with P, for
ie{0,1,...,n+1})

Remark 3.4.6. An algebraic variety has dimension 0 if and only if it is a finite set.

Remark 3.4.7. If f: X --+ Y is a dominant map of irreducible algebraic varieties then dim X > dim X
because we have the inclusion f*: K(Y) — K(X) of field extensions of K.

Proposition 3.4.8. Let X be an irreducible algebraic variety and let Y < X be a proper closed subset.
Then dimY < dim X.

Proof. We may assume that Y is irreducible. Since X is covered by open affine varieties, we may assume
that X is affine. Thus we may assume that X < A™. Thus Y is also closed in A™. We may choose a
transcendence basis {f1,..., fa} of K(Y'), where each f; is a regular function on Y, see Remark 3.3.6.

Let fl, ..., fa € K[X] such that f;jW = f;. Since Y is a proper closed subset of X, there exists a
non zero g € K[X] such that gy = 0. It suffices to prove that fi,--., fa, g are algebraically independent
over. We argue by contradiction. Suppose that there exists 0 # P e K[S,...,54,T] such that
P(f1,...,fa,9) = 0. Since X is irreducible we may assume that P is irreducible. Restricting to ¥’
the equality P(f1,..., f4,9) = 0, we get that P(f1,..., fq,0) = 0. Thus P(Sy,...,S4,0) = 0, because
f1,-.., fa are algebraically independent. This means that 7' divides P. Since P is irreducible P = cT,
ce K*. Thus P(f1,..., fd,9) = 0 reads g = 0, and that is a contradiction. O

Corollary 3.4.9. A (non empty) closed subset X < A"T' has pure dimension n if and only if it
is a hypersurface. Similarly, a closed subset X < P"*' has pure dimension n if and only if it is a
hypersurface.
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3. RATIONAL MAPS, DIMENSION AND DEGREE

Proof. If X < A™*! is a hypersurface then it has pure dimension n, see Eaxmple 3.4.1.

In order to prove the converse, suppose that X < A"*! is a closed subset of pure dimension n.
Thus every irreducible component of X is a closed subset of A®*! of dimension n. Since the union of
hypersurfaces in A"*1! is a hypersurface in A”*1, it suffices to prove that each irreducible component of
X is a hypersurface. Thus we may assume that X is irreducible. Since dim X = n < dim A"*!, there
exists a non zero f € I(X) < K[z1,...,2p41]. Since X is irreducible, the ideal I(X) is prime, and hence
there exists a prime factor g of f which vanishes on X. Thus X < V(g) and V(g) is irreducible. By
Example 3.4.1 we have dim V' (g) = n, and hence dim X = dim V' (g). Since X is closed it follows from
Proposition 3.4.8 that X = V(g). This finishes the proof for closed subsets of A"+1.

The result for closed subsets of P**! follows by a smilar proof, or by intersecting with the standard
open affine subsets P, for i € {0,...,n + 1}. O

Proposition 3.4.10. Let X, Y be algebraic varieties. Then dim(X xY) = dim X + dimY'.

Proof. We may assume that X and Y are irreducible affine varieties. There exist transcendence bases
{f1,-- s fa}, {91, -5 ge} of K(X) and K(Y') respectively given by regular functions. Let mx: X xY — X
and 7y : X x Y — Y be the projections. We claim that {7% (f1),...,7%(f4), 75 (1), ..., 75 (ge)} is a
transcendence basis of K(X x Y).
First, by Proposition 2.3.6 K[ X x Y] is algebraic over the subring generated (over K) by 7% (f1),. .., 75 (ge)-
Secondly, let us show that 7% (f1),..., 75 (ge) are algebraically independent. Suppose that there is
a polynomial relation

S P TR TR () (g™ - mE (g™ = 0,

0<ma,....,me<N

where each P, . . is a polynomial. Since gi,...,g. are algebraically independent we get that
Py m.(f1(a),..., fa(a)) = 0 for every a € X. Since fi,..., fq are algebraically independent, it
follows that P, . mn. = 0 for every 0 < my,...,m, < N, and hence P = 0. This proves that
7% (f1);- .., 75 (ge) are algebraically independent. O

3.5 Dimension and intersection

3.5.1 Closed subsets of P": dimension and intersection with linear subspaces

Let X < P" be a hypersurface. Thus X = V(F) where F € K[Zy,...,Zy]q with d > 0 and F #+ 0. Let
A =P(U) be a linear subspace of P", i.e. U < K" is a K vector subspace. Then A n X =V (Fjy). It
follows that if dim A > 1 then A has non empty intersection with X. If, on the other hand, dim A = 0
i.e. A is a point, then A n X is empty for all points in the dense open subset P"\X. An analogous
characterization of the dimension of a closed subset of P™ holds in general. In order to formulate the
relevant result we introduce a definition and a classical piece of terminology.

Definition 3.5.1. Let X be an irreducible algebraic variety, and let Y < X be a closed subset. The
codimension of Y in X is equal to dim X — dimY’, and is denoted by cod(Y, X).

Terminology 3.5.2. Let X be an algebraic variety, and let & be a property that each point of X
might or might not have (formally “the subset of points of X having the property &”). Then a general
point of X has property &2 if there is a dense open subset of X of points having property 2.

Proposition 3.5.3. Let X < P" be closed.

(a) Let k < cod(X,P"™). Then for a general A € Gr(k,P™) we have A n X = J (i.e. there exists a
dense open U < Gr(k,P™) such that An X = ¢ for all A€ U).

(b) Let A P be a linear subspace such that dim A > cod(X,Pg). Then A n X # F.

The proof of Proposition 3.5.3 is given after a few preliminary results.
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Definition 3.5.4. Let X < P" be closed. For k € {0,...,n} let I'x (k) = X x Gr(k,P™) be given by
Tx(k) = {(p,A) € X x Gr(k,P") | pe A}.
Proposition 3.5.5. Let X < P” be closed. The following hold:
(a) T'x (k) is closed in X x Gr(k,P")
(b) dimT'x (k) = dim X + k(n — k).
(¢) If X is irreducible then I'x (k) is irreducible.

Proof. Let us show that I'pn (k) is closed. Let A = (a; ;) € Mg41,n+1(K) be a matrix of maximal rank,
i.e. of rank k + 1. Thus the rows of A span a subspace Uy < K"**! of dimension k + 1, and hence
P(Uya) € Gr(k,P"). Let [Z] € P™. Then ([Z],P(Ua)) € I'pn (k) if and only if the (k +2) x (n+ 1) matrix
obtained by adding the row Z to A has rank less than k + 2, i.e. if and only if for all 0 < jo < j1 <
coo < Jr+1 < (n+ 1) we have

X; X; . ¢
0,50 @051 -+ --- A0k

Det | %50 @150 -+ --- Olgpy =0
Ak,jo  Ak,j1 -++ oo Qkgry,

Expanding the determinant on the left hand side we get that ([Z],P(U4)) € T'pn (k) if and only if

k+1
> Pioirie X, = 0 (3.5.1)
s=0

for all 0 < jo < j1 < ... < jpt1 < (n+ 1), where [...,pjo51.....5us1s- - -] are the Pliicker coordinates of
P(U,) (see Exercise 2.6.4) with respect to the basis of A*"! K1 associated to the standard basis of
K"*1. This proves that I'p» (k) is closed.

Now we show that I'x (k) is closed for X < P" closed. Let m: P" x Gr(k,P™) — P™ be the projection.
Then T'x (k) = 77 1(X) A Tpn (k). Since X is closed in P" and = is regular 771(X) is closed in P™ x
Gr(k,P") and hence I'x (k) is closed in P™ x Gr(k,P™) because I'pn (k) is closed. Of course this gives
that I'x (k) is closed in X x Gr(k,P™). This finishes the proof of Item (a).

Next we note that if X = X; u---u X, is the irreducible decomposition of X then

Tx(k) =Tx, (k) U U Dy, (k). (3.5.2)

From this we get that it suffices to prove that (b) and (c) hold for X irreducible. For i € {0,...,n} we
have the isomorphism

Xz, x Gr(k,K") =5 Tx(k)n (P% x Gr(k,P"))

(n. W) - by FIV) (8:5:3)

where W is a k-dimensional vector subspace of K" viewed as the vector space acting on the affine space
P} =~ A", and p + W denotes the closure in P" of the affine subspace p + W < P ~ A"™. Suppose
that I'x (k) n (P%, x Gr(k,[P")) is non empty. Then by the isomorphism in (3.5.3) it is irreducible, and

dim (Tx (k) n (P%, x Gr(k,P"))) = dim Xz, x Gr(k,K") = dim X + dim Gr(k,K") = dim X + k(n— k).
(See Exercise 3.8.2 for the dimension of Gr(k,K").) Thus I'x (k) is covered by the open non empty

irreducible subsets I'x (k) n (P% x Gr(k,P™)). Since any two (non empty) such subsets have non empty
intersection (because X is irreducible), Items (b) and (c) follow. O
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Corollary 3.5.6. Let X < P" be closed. If k < cod(X,P") then
dimI'x (k) < dim Gr(k, P™), (3.5.4)
and equality holds if and only if k = cod(X,P™).
Proof. By Exercise 3.8.2 we have
dim Gr(k,P") =n—k + k(n — k). (3.5.5)
The corollary follows at once from the above equality and Proposition 3.5.5. O

Proposition 3.5.7. Let X < P" be closed. Suppose that p € P"\X and that H < P™ is a hyperplane
not containing p. Let
Tp

P"\{p}) — H
q - {ponH

be projection from p. Then mp(X) is a closed subset of H and dimm,(X) = dim X.

Proof. We may assume that X is irreducible. Since 7, x is regular and X is projective m,(X) is closed.
It remains to prove that dimm,(X) = dim X. We may assume that p = [0,...,0,1] and H = V(X,,).
We have
71';0([Z07 ey Zn]) = [Zo7 ceey Zn—1]~

Let Y := m,(X). The map m, defines a regular surjective map p: X — Y between irreducible (pro-
jective) varieties. We have the injection of fields p*: K(Y') < K(X). It suffices to prove that K(X) is
algebraic over p*K(Y).

One of V(Zy),...,V(Z,—1) does not contain Y, say V(Zp), and hence K(Y') is generated over K by

(Z1/Z0)ly s - - (Zn—1/Zo)]|y-

On the other hand K(X) is generated by

(Z1/Z0)|x = p* (Z1/Z0)ly) - (Zn-1/Z0)|x = p* (Zn-1/Z0)|y)

and (Z,/Zo)|x. There exists F' € I(X) such that F(p) # 0 because p ¢ X. Since p = [0,...,0,1] we
get that
F=aZl+a, 20+ +aq, a;€K[Zo,..., 720 1)i, ao#0. (3.5.6)

Dividing by Z¢ and restricting to X we get that
Qo (Zn)Zo)ix)* + @1 (Zn)Z0)1x)" "+ +8g =0
where for 0 < j <d

;= (a;/Z8)1x € K(p* (Z1/Zo)ly) -, p* (Zn-1/Z0)Iv)).- (3.5.7)

Since @ # 0 this proves that (Z,/Zp)|x is algebraic over p*K(Y).
O

Proof of Proposition 3.5.3. By considering an irreducible component of X of maximum dimension we
may assume that X is irreducible (see (3.5.2)). Let p: I'x(k) — Gr(k,P"™) be the restriction of the
projection map P"* x Gr(k,P") — Gr(k,P™). Then A € Gr(k,P™) has non empty intersection with X if
and only if it belongs to im(p). The map p is closed because I'x (k) is projective, hence im(p) is closed.
Moreover im(p) is irreducible because X is irreducible. Thus p defines a dominant map I'x (k) — im(p)
of irreducible varieties. It follows that dim(im(p)) < I'x (k). Now suppose that k < cod(X,P™). By
Corollary 3.5.6 we get that dim(im(p)) < dim Gr(k,P™) and hence Gr(k,P")\im(p) is an open dense
subset of dim Gr(k,P™). Item (a) follows because any A € (Gr(k,P™)\im(p)) does not intersect X.
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Next we prove Item (b). The proof is by induction on cod(X,P"). If cod(X,P"™) = 0 the result is
trivial (if you don’t like to start from cod(X,P™) = 0 you may begin from cod(X,P") =1, i.e. X is a
hypersurface). Let’s prove the inductive step. Let p € A. If p € X there is nothing to prove; thus we
may assume that p ¢ X. Choose a hyperplane H < P not containing p and let 7, be projection from p
to H as in (3.7.1). Then m,(X) = H ~ P"! is closed because X is projective, and dim m,(X) = dim X
by Proposition 3.5.7. Thus

cod(m,(X),P" 1) = cod(X,P") — 1. (3.5.8)

Let A := 7(A\{p}) = A~ H. Thus A c H is a linear subspace and dimA = (dim A — 1). By the
equality in (3.5.8) it follows that dim A > cod(m,(X),P"~1). Hence A n m,(X) is non empty by the
inductive hypothesis. Let ¢ € A n m,(X). Since g € m,(X) there exists § € X such that m,(§) = ¢. But
Ge A because g€ A. Thus §e X n A. O

3.5.2 Dimension of intersections

The result below is a remarkable generalization of the well-known result in linear algebra stating that
the set of solutions of a system of m homogeneous linear equations in n > m unknowns has dimension
at least n — m.

Proposition 3.5.8. Let X, Y < P™ be closed and suppose that (dim X + dimY) > n. Then X nY is
non empty and it has dimension at least dim X + dimY —n. If X and Y are irreducible then each of
the irreducible components of X n'Y has dimension at least dim X + dimY — n.

Remark 3.5.9. It is clear that one needs the hypothesis that X,Y be closed for the thesis of Proposi-
tion 3.5.8 to hold. The hypothesis that the ambient algebraic variety is P™ is also a key hypothesis. As
soon as one replaces P" by other complete algebraic varieties the thesis fails to hold. As a test consider
replacing P™ by a product of projective spaces, or by a Grassmannian.

We prove Proposition 3.5.8 after going through a series of preliminary results. The result below
proves the special case of Proposition 3.5.8 that one gets by letting Y be a hyperplane.

Proposition 3.5.10. Let X < P™ be closed, irreducible of strictly positive dimension. Let H < P" a
hyperplane not containing X. Then X n H is non empty and it has pure dimension equal to dim X — 1.

Proof. Since X n H < X we have dim X n H < dim X by Proposition 3.4.8. Let ¢ := cod(X,P"). Let
A < H be a linear subspace such that dim A = ¢. Note that such subspaces exist because by hypothesis
¢ < (n—1)=dimH. By Proposition 3.5.3 applied to X < P" we have A n X # ¢J, and since A ¢ H
we have A n X < An (X n H). This proves that X n H is non empty and also, by Proposition 3.5.3,
that cod(X n H, H) < c¢. The latter inequality gives that

dm(X nH)>dimH —c=n—1—-c=dimX — 1. (3.5.9)

This proves that X n H is non empty and dim(X n H) = dim X — 1.

The proposition states that in addition X n H has pure dimension. This result is not needed for
the proof of Proposition 3.5.8, but is very important. The proof is by induction on cod(X,P"). If
cod(X,P™) = 0 then X = P" and the statement of the proposition is trivially true. If cod(X,P") =1
then X is a hypersurface by Corollary 3.4.9, hence X n H is a hypersurface in H and hence every
irreducible component of X n H has codimension one in H by Corollary 3.4.9. This proves the validity
of the proposition if cod(X,P™) = 1. Now we prove the inductive step. Assume that cod(X,P") = ¢ > 2.
Let Y be an irreducible component of X n H. Pick a point p € H\X and a hyperplane L not containing
p and different from H. Let

P\{p} L
q - {aonlL

be the projection from p. Let Hy = m,(H\{p}). Note that Hy < L is a hyperplane. We consider
mp(X) N Hy. Let X nH =Y uY; u---UY, be the irreducible decomposition of X n H. We have

(X)) nHy=mp(Y)um(Y1) u...um(Ys),
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and, since p ¢ X, each of m,(Y), m,(Y1),...,mp(Y;) is closed by Proposition 3.5.7. We claim that there
exists p such that
(V) & mp(Y;) Vie{l,...,r}. (3.5.10)

In fact let g € Y\|J;_, ¥;. By Claim 3.5.12 J(q,Y;) is closed, irreducible, and
dim J(q,Y;) = dim ¥; + 1. (3.5.11)

Since dimY; < dim X — 1 and since cod(X,P") > 2 we have dimY; < dim H — 2. Thus (3.5.11) gives
that J(q,Y;) # H. Hence there exists

pE H\OJ(%Y}) (3.5.12)

For such a p the statement in (3.5.10) holds, and hence 7, (Y) is an irreducible component of 7, (X)n H.
By the inductive hypothesis we get that dimm,(Y") = dim 7, (X) — 1. Since dimm,(Y) = dimY and
dim7,(X) = dim X (by Proposition 3.5.7) we are done. O

Let X,Y < PV be two closed subsets. Let (X) = PV and (Y)Y = PV be the linear subspaces
generated by X and Y respectively.

Definition 3.5.11. Suppose that
(X>n{Y)y=¢. (3.5.13)

The join J(X,Y) of X and Y is the subset of PV swept out by the lines joining a point of X to a point
of Y, ie.
JXY) = |J o (3.5.14)

peX,qeY

Claim 3.5.12. Let X,Y < PV be closed and assume that (3.5.13) holds.

1. J(X,Y) is closed in PN,

2. If X and Y are irreducible then J(X,Y') is irreducible.

3. dimJ(X,Y)=dimX +dimY + 1.
Proof. Let m := dim(X) and n := dim(Y"). There exist homogeneous coordinates

(50, Sm:Tos- - T, Vo, ..., Up]
on PV such that (X) = {[So, ..., Sm,0,...,0]} and ¥ = {[0,...,0,Tp,...,T,0,...,0]}. Then
J(X,Y) ={[So,- -+ Sm:Tor - T 0,0 | [Sos- -, Sml € X, [To,.... Tl €Y}  (3.5.15)

Item (1) follows at once.
Let » € (J(X,Y)\X\Y). By (3.5.13) there is unique couple (¢1(r),p2(r)) € X x Y such that
r € {p1(r), p2(r)). Thus we have a map

J(X, Y)\X\Y) % XxY

3.5.16

: = (ea(r).pa(r) (3516

As is easily checked ¢ is regular. The fibers of ¢ are isomorphic to K*. Moreover for any i € {0,...,m}
and j € {0,...,n} we have

o N Xs, x Yp,) = Xg, x Y, x K*. (3.5.17)

Items (2) and (3) follow from this. O
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Proof of Proposition 3.5.8. It suffices to prove the statement for X, Y irreducible. Let [ Sy, ..., Sn, To,- .., Tn]
be homogeneous coordinates on P?"*!. We have the two embeddings

P i P2n+1 Pn J IP)2n+ 1

3.5.18
(Zo,.. .\ Zn] = [Zoy. s Zn,0,...,01  [Zoy..\Zn] = [0,...,0,Z0,....7Zn] ( )

Since the images of i and j are disjoint linear subspaces of P?"*1 the join J(i(X),j(Y)) is defined. Let
A < P?"+! be the linear subspace given by

A= V(SQ—T(),...,S”—T”). (3519)
We have the isomorphism

XnY — AnJ((X),i(Y))

3.5.20
Zoroo Za] > [Zove-e Zos Zonenns 2] (3.5.20)

By Claim 3.5.12 the closed subset J(i(X),j(Y)) < P?"*! is irreducible of (pure) dimension equal to
dim X + dimY + 1. On the other hand A is a codimension-(n + 1) linear subspace of P2"*+!  hence by
repeated application of Proposition 3.5.10 we get that A n J(i(X),j((Y)) is non empty and each of
its irreducible components has dimension at least equal to (dim X + dimY — n). By the isomorphism
in (3.5.20) the proposition follows. O

3.5.3 Dimension and chains of closed subsets

Let X be an algebraic variety. By Noetherianity there is no infinite chain of closed subsets
X=X2X12..X,12X,2 (3.5.21)

Thus every such chain is finite. The following result characterizes the dimension of X via the length of
such chains.

Proposition 3.5.13. Let X be an algebraic variety.
1. The dimension of X is equal to the maximum of the set of n for which there exists a chain
X=Xo2X12..X,,.12X, (3.5.22)
of closed subsets with X; irreducible for all i€ {1,...,n}.

2. Letpe X. The dimension of X at p is equal to the maximum of the set of n for which there exists
a chain
X=Xo2X12..X,12X, op (3523)

of closed subsets with X; irreducible for all i€ {1,...,n}.

Proof. We may assume that X is irreducible. In fact, in proving Item (a) it suffices to replace X by an
irreducible component computing dim X (i.e. whose dimension is equal to dim X), in proving Item (b)
it suffices to replace X by an irreducible component containing p and computing dim, X. Replacing X
by an open dense affine subset (containing p if we are proving Item (b)) we may assume that X is affine
and irreducible. Let d :== dim X. Let N be the maximum of the set of n for which there exists a chain
as in (3.5.22) if we are are proving Item (a), respectively a chain as in (3.5.23) if we are are proving
Item (b). If we have (3.5.22) then dimdim X; > X;;1 for all ¢ € {0,...,n — 1}. Since dim X,, > 0 it
follows that n < d. Similarly, if we have (3.5.22) then n < d. Thus N < d, both when proving Item (a)
and when proving Item (b). We prove that N > d by induction on d. If d = 0 then X is a singleton
and the statement is trivially true. We prove the inductive step. Thus d > 0. Since X is affine we may
assume that X < A™ = P . Let X c P™ be the closure of X. Then X is an open dense subset of X

and dim X = dim X. Let p € X, and let H < P™ be a hyperplane containing p but not containing X.
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By Proposition 3.5.10 the intersection H n X has pure dimension d — 1. Since H contains p there exists
an irreducible component of H n X containing p, call it X;. Of course dim X; = d — 1. By inductive
hypothesis there exists a chain X7 2 ... Xg_2 2 X4_1 3 p of closed irreducible subsets. Adding Xg = X
we get the desired chain (this finishes the proof of both items). O

Remark 3.5.14. The Krull dimension of a (commutative unitary) ring R is the supremum of n such
that there is a chain

Pogplggpn—lgpn

of prime ideals P; ¢ R. Proposition 3.5.13 shows that if X is an affine variety then its dimension equals
the Krull dimension of the ring K[X] of regular functions on X.

3.5.4 Dimensions of fibers

The problems that we discuss are the following. Let f: X — Y be a regular map of algebraic varieties.

1. How does the dimension of fibers f~1(y) vary as y € Y varies?
2. What kind of subset of Y is the image im(f)?

Note that there is a relation between the two questions, since the image of f is the set of y € Y such
that dim f~1(y) > 0.

Ezample 3.5.15. Let V be a finitely generated K vector space. Let X < P(V¥)™ x P(V) be given by

{leal s lemls [0]) [ o1(v) = o = om(v) = 0} (3.5.24)

As is easily checked X is a closed subset of P(VV)™ x P(V). Let f: X — P(V¥)™ be the restriction of
the projection map P(VV)™ x P(V) — P(V¥)™. Let y = ([¢1],-- -, [¢m]) € P(VV)™: then f~1(y) is
identified with the projectivization of the kernel of the map V' — K™ defined by (1, ..., ¢m). From this
we get that the dimension of f~!(y) is an upper semicontinuous function of y, i.e. for every k € N the set
Dy Y of y such that dim f~!(y) > k is (Zariski) closed. In fact Dy, is the locus of y = ([¢1], .., [©m])
such that the linear map (1, ..., @) has rank at most dim V' — k — 1 and thus, once a basis of V' has
been chosen, Dy is the zero locus of determinants of all (dim V — k) x (dim V — k) minors of the matrix
associated to the linear map (¢1,...,¥m) by the choice of a basis of V. In particular the image of f
equals Dy and hence is closed.

Ezample 3.5.16. Let f: A2 — A? be defined by f(w, 2) == (w, wz). We have
1 ifa=0=0,
dim f~(a,b) = {0  ifa+0, (3.5.25)
—oo ifa=0,b%0.
In particular the image of f is not closed nor open.
Thus in Example 3.5.15 the dimensions of fibers vary more nicely than in Example 3.5.16. There is

a hypotheses that guarantees a behaviour similar to that of Example 3.5.15.

Definition 3.5.17. A regular map i: X — Y of algebraic varieties is a closed embedding if it factors
as i = jo f, where f: X —> W is an isomorphism between X and a closed subvariety W < Y and
j: W Y is the inclusion map.

Definition 3.5.18. A regular map f: X — Y of algebraic varieties is a projective map if there exists
a closed embedding i: X < PN x Y such that f = py o4 where py: PN x Y — Y is the projection.
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Remark 3.5.19. Let f: X — Y be regular map of algebraic varieties, and suppose that X is projective.
Then f is a projective map. In fact, assuming that X < PV is closed, let

X % PVNxy

o (@ (@) (3.5.26)

Then i is a closed embedding because it defines an isomorphism between X and the graph I'y < X xY <
PN x Y which is closed in X x Y (Lemma 2.4.4) and hence closed in PY x Y. Since f = py o4 where
py: PN x Y — Y is the projection, f is a projective map.

The result below states that if a regular map is projective (with irreducible domain) then the
dimensions of its fibers behave as in Example 3.5.15.

Theorem 3.5.20. Let f: X — Y be a (reqular) projective map of algebraic varieties.

(a) The function

v N
.o 3.5.27
y o dimfiy) (35:21)
is upper semicontinuous, i.e. for every k € N the set o=t ([k, +0)) is (Zariski) closed.
(b) If X,Y are irreducible and f is dominant then
{yeY | f~Y(y) has pure dimension equal to dim X — dim Y’} (3.5.28)

is an open dense subset of Y.
We prove Theorem 3.5.20 after a few preliminary results.

Proposition 3.5.21. Let X be an irreducible algebraic variety, and let f: X — K be a non constant
reqular function such that V(f) = f~1(0) is non empty. Then V(f) has pure dimension equal to
dim X — 1.

Proof. Since X is a (finite) union of open affine subsets we may assume that X is affine. Thus X < A"
is a closed irreducible subset. By Theorem 1.6.2 there exists f € K[z1,...,2,] such that f = f|x. Let

Y :=V(f). By hypothesis X nY is non empty: let W be one of its irreducible components. We must

prove that dim W = dim X — 1. We have A" = P, < P" as open dense subset. Let X, Y, W < P" be
the closures of X, Y and W respectively. Then Y < P" is a hypersurface. Let P € K[Zy,...,Z,] be a
homogeneous polynomial such that ¥ = V(P), and let d be its degree. Let N := (d:;") — 1, and let

Pn dy IP)N

Zo,.. s Zn) — [28,287'Xy,...,29

be the Veronese map. Since Y = V(P) and P has degree d, there exists a hyperplane H < PV such that

(vj)~'(H) =Y. Thus v} defines an isomorphism X Y — v} (X) n H, and v}(W) is an irreducible
component of v}(X) n H. Since f is not constant (and X is irreducible) H does not contain v/ (X).
By Proposition 3.5.10 we have
dimW = dimW = dim}(W) = dimv}(X) - 1=dimX — 1 = dim X — 1.
O

Corollary 3.5.22. Let f: X — Y be a regular map of algebraic varieties. Let p € X. Every irreducible
component of f~(f(p)) has dimension at least equal to dim X — dimy, Y.
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Proof. Since X and Y are covered by open affine subsets, we may assume that X and Y are affine.
Let ¢ = f(p) and let m = dim,Y. We claim that there exist ¢1,...,¢,n € K[Y] such that ¢ is
an irreducible component of V(¢1,...,%m). In fact one argues by induction on m (see the proof of
Proposition 3.5.13). If m = 0 the statement is trivially true. Let m > 0 and assume that the claim
holds for lower values of m. Since dim, Y > 0 there exists ¢,, € K[Y] vanishing at ¢ and not vanishing
on any irreducible component of Y containing g. Then V(¢,,) contains ¢, and by Proposition 3.5.21
its dimension at ¢ is equal to m — 1. By the inductive hypothesis there exist ¥, ..., ¥mn—1 € K[V (¢1)]
such that ¢ is an irreducible component of V(1,...,%m—1) < V(¢1). Since V(p1) is a closed affine
subset of the affine variety Y, there exist 1, ..., om—1 € K[Y] whose restrictions to V(¢1) are equal to
Y1,...,¥m—1 respectively. Then ¢ is an irreducible component of V(¢1,...,¢n). Thus we have

V(f*(e1),- o fHom) = FHa) u W,

where W is closed in X, i.e. f~%(g) is a union of irreducible components of V (f* (1), ..., f*(¢m)). By
repeated application of Proposition 3.5.21 every irreducible component of V(f*(¢1),..., f*(om)) has
dimension at least equal to dim X —m =dim X —dimY. O

Proof of Theorem 38.5.20. (a): By definition of projective morphism we may assume that X < PV x YV
is closed and that f is the restriction to X of the projection map py: X c PN xY —» Y. Let ye Y.
By Proposition 3.5.3 dim f~1(y) > k if and only if for all A € Gr(N — k,PV) we have A x {y} n X + .
Thus we have
o ([k, +0)) = (1 »AxYnX) (3.5.29)
AeGr(N—k,PN)

Now A x Y n X is closed in PV x Y because by hypotheses X is closed in PV x Y. Since py is closed
(by the Main Theorem of Elimination Theory), it follows that ¢~ ([k, +00)) is closed.

(b): Since f is closed im(f) =Y. Let y € Y. Then y € im(f) and hence by Corollary 3.5.22 every
irreducible component of f~!(y) has dimension at least r == dim X — dim Y. It follows that

{y e Y | () has pure dimension equal to dim X — dimY} = Y\ ' ([r + 1, +0)). (3.5.30)

By Item (a) the right hand side in (3.5.30) is open in Y. It remains to prove that it is non empty.
Replacing Y by an open dense affine subset we may assume that Y is affine. Thus Y < A™ =P . Let
Y < P be the closure of Y. Let

PN x P S $y, € PNmENEm (3.5.31)

be the Segre map, which is an isomorphism. Then oy ., (X) is locally closed in PNmAN+™ hecause X
is locally closed in PV x Y which is closed in PV x P™. Of course the restriction of oN,m to X defines
an isomorphism X — oy ,»(X). Applying r + 1 times Proposition 3.5.10, we get that if Hy,..., H,41
are r + 1 general hyperplanes in PN +N+™ then ox ., (X) N Hy N ... " Hyyq is either empty (recall
that on ., (X) is only locally closed) or it has pure dimension equal to dim X —r —1 < dimY". Since
ON,m is an isomorphism this means that

dim(X noy! (Hi) n... ooyt (Hpy)) < dimY. (3.5.32)
Since f is closed it follows that
f(Xn o;}m(Hl) NN oﬁ}m(HTH)) cY (3.5.33)

is a (proper) closed subset. On the other hand if y € Y then H; n (PY x {y}) is a hyperplane, and hence
@ Y([r + 1, +00)) is contained in the set on the left hand side of (3.5.33). This finishes the proof that
the set in (3.5.28) is an open dense subset of Y. O

Corollary 3.5.23. Let f: X — Y be a (reqular) projective map of irreducible algebraic varieties.
Suppose that there exists yo € Y such that dim f~!(yo) = dim X —dimY. Then f is surjective, and for
a general y € Y the fiber f~'(y) has pure dimension equal to dim X — dimY’.
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Proof. Since f is projective it is closed. Suppose that f is not surjective. Then the image im(f) is a
proper closed subset of Y, and hence dimim(f) < dimY because Y is irreducible. By Corollary 3.5.22
it follows that

dim f~(y) = (dim X — dimim(f)) > dim X — dimY’ (3.5.34)

for every y € Y. This contradicts the hypothesis that dim f~!(y¢) = dim X — dimY. We have proved
that f is surjective. By Theorem 3.5.20 it follows that for general y € Y the fiber f~!(y) has pure
dimension equal to dim X — dimY'. O

Corollary 3.5.24. Let f: X — Y be a (regular) projective map of algebraic varieties. Suppose that
Y is irreducible and that the fibers f~1(y) of f are all irreducible of the same dimension. Then X is
irreducible.

Proof. Let X = X7 u...uU X, be the decomposition into irreducibles. The map f is surjective because
the fibers f~1(y) of f are all irreducible of the same dimension (hence there are no empty fibers), and
thus Y = f(X1) u...u f(X,). Write {1,...,7} = S 1 N where S is the set of ¢ such that f(X;) =Y
and N is the set of ¢ such that f(X;) € Y. Since f(X;) is closed in Y for each i (because f is closed)
and Y is irreducible, S is non empty. Let ip € S such that dim X;, > dim X for all ¢ € S. We claim that
Xi, = X and henceX is irreducible. If y € Y does not belong to the proper closed subset |, f(X5)
then dim f~!(y) = dim X;, — dim Y by Theorem 3.5.20 and our equidimensionality hypothesis. Thus
dim f~1(y) = dim X;, — dimY for all y € Y by the equidimensionality hypothesis. Moreover, letting
fio: Xi, — Y be the restriction of f, we have dim flzl(y) = dim X;, — dimY for all y € Y. Thus,
for every y € Y, f;l(y) c f~!(y) is a closed subset and dim fzgl(y) = dim f~!(y). Since f~!(y) is
irreducible it follows that figl(y) = f~1(y). This shows that X;, = X as claimed. O

Lastly we prove that the image of a regular map of algebraic varieties is very large in its closure.

Proposition 3.5.25. Let f: X — Y be a regular map of algebraic varieties. The image of f contains
an open dense subset of its closure.

Proof. 1t suffices to prove the proposition for X irreducible. We claim that in fact it suffices to prove
the result for an irreducible affine variety. In fact we may write X = Xo u X7 u... U X,, where X is
an open dense (irreducible) affine subset of X, X; is an open dense (irreducible) affine subset of one of
the irreducible components of X\ Xy (unless Xo = X in which case we stop), and so on. Of course the
process stops after a finite set of steps by Noetherianity. Thus we may suppose that X is irreducible
and affine. Thus we may assume that X < AN = Pgﬂ is closed. Let I'y ¢ X x Y be the graph of f,
and let T'y PN x Y be the closure in PV x Y. Let F: Ty — xY be the restriction of the projection
PN x Y — Y. The isomorphism X — I'; defined by z — (x, f()) allows us to identify X with I';
which is an open dense subset of the irreducible algebraic variety I's. Note that the restriction of F to
X =Ty isequal to f. Note also that by construction the map F': ff — XY is projective. In particular
im(F) < Y is closed (and irreducible because T'y is irreducible, being the closure of the irreducible
I'y). Since im(f) < im(F) it suffices to show that im(f) contains an open dense subset of im(F). Let
TA'y = Wi u...u W, be the decomposition into irreducible components. Each W; is closed in I'y
hence closed in PV x Y and thus F(W;) c im(F) is closed. Let

Se={ie{l,...;r}| FW;) =im(F)},  Ne={ie{l,...,r}| F(W;) < im(F)}. (3.5.35)

For each i € S let % < im(F) be the open dense subset of y such that f~1(y) n W; has pure dimension
equal to dim W; — dimim(F) (such a %; exists by Theorem 3.5.20 applied to the restriction of F' to
W,;). Let % < im(F) be the open dense subset of y such that f~!(y) has pure dimension equal to
dim Ty — dimim(F). Lastly let

W= U o (%o [ )(mE)\F(W;)). (3.5.36)

€S iEN
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3. RATIONAL MAPS, DIMENSION AND DEGREE

Then # is an open dense subset of im(F). We claim that % is contained in the image of f. In fact
let y € #. We must show that F~1(y) n Ty + . If i € N then F~'(y) n W; = &. If i € S then
71 (y) nW; has pure dimension equal to dim W; —dim im(F) which is smaller than dimT'; —dim im(F)
which is the (pure) dimension of F~!(y). It follows, as claimed, that F~!(y) n Ty + &. O

Remark 3.5.26. If f: M — N is a smooth map of C® manifold it might very well be that f(M) does
not contain any non-empty open subset of f(M). For example, let

R L T2:=RY/Z2

to— (V2]
We have f(R) = T? but f(R) does not contain any non-empty open subset of T2 because it is a subset
of measure 0. Notice also that the analogue of Proposition 3.5.25 does not hold if we consider real
quasi-projective sets with the Zariski topology and real regular maps: consider the projection

ARoV(@E2+y2 -1 — AL
(z,9) -

3.5.5 Linear subspaces contained in a hypersurface

Let X < P" be closed. If r is a natural number let F,.(X) < Gr(r,P™) be the subset of r-dimensional
linear subspaces contained in X, i.e.

F.(X) = {AeGr(r,P") | A c X}. (3.5.37)

Then F,.(X) is a closed subset of Gr(r,P") (see Exercise 2.6.6), and hence it is a projective variety.
Question 3.5.27. Is F.(X) non empty? If it is non empty, what is its dimension?

Consider the case of a hypersurface X < P". If X is a hyperplane then F,.(X) is a Grassmannian. If
X is a non degenerate quadric hypersurface, i.e. X = V(q) where g € K[Z, ..., Z,]2 is a non degenerate
quadratic form, then F,.(X) is an interesting variety, see Exercises 3.8.7, 3.8.8 and 3.8.9, but it does not
vary as X varies (all non degenerate quadric hypersurfaces are projectively equivalent). If the ideal of
X is generated by a homogeneous polynomial of degree greater than 2 then F,.(X) varies with X and
is often a very interesting variety.

The results of the present section can be used to give (partial) answers to the above question.
In order to apply the results about dimensions of fibers we must parametrize hypersurfaces with an
algebraic variety. Recall that the homogeneous ideal of a hypersurface in a projective space is principal.

Definition 3.5.28. Let X < P™ be a hypersurface. The degree of X is the degree of any generator of
the (homogeneous) ideal I(X) c K[Zy, ..., Zy,].

Let d > 0. Then hypersurfaces in P™ of degree d are parametrized by the subset of P(K[Z, ..., Z,]a4)
whose elements are the points [P] with P € K[Zo, ..., Z,]q a square-free polynomial (so that P generates
a radical ideal). This subset turns out to be open, but as soon as d > 1 it is not the whole projective
space P(K[Z, ..., Z,])aq). Since it is much better to deal with complete varieties than with non complete
varieties, we would rather have P(K[Zy,...,Z,]qs) as parameter space. This forces us to consider
hypersurfaces with “multiplicities”. This is the higher dimensional version of “roots of polynomials
in one variable counted with multiplicities”. The relevant definitions go as follows. Let Div(P™) be
the abelian group with generators the irreducible hypersurfaces in P". Thus an element of Div(P"™) is
a formal finite sum D = ., m;D;, where each m; is an integer, and the D;’s are pairwise distinct
irreducible hypersurface in P*. We have the degree homomorphism (of abelian groups)

Div(E") =% = (3.5.38)
YiermiDi o~ X, mideg D;
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The divisor Y}, ; m;D; is effective if m; > 0 for all ¢ € I (the divisor 0 is effective, it correpsonds to the
empty index set I). Let Divy (P") < Div(P™) be the monoid of effective divisors.
Let P e K[Z,...,Zy,]q be non zero, and let P = [[ P/™" be the decomposition into prime factors,
i=1
where for ¢ + j the factors P; and P; are not associated. The divisor of P is the element of Div(P™)
defined by

div(P) = Z miV (). (3.5.39)

Note that div(P) is effective. Let Divi (P") := Div (P") ndeg™'(d) < Div(P™) be the subset of effective
divisors of degree d. The map

P(K[Zo, ..., Znld) ~% Dive (Pm)

[P] —  div(P) (8:5.40)

is a bijection. This gives a geometric interpretation of P(K[Zy, ..., Z,]4). From now on we identify
Divl (P") with P(K[Zo,...,Zn]a) via the bijection in (3.5.40). If D = ey MiD; is an effective di-
visor, i.e. m; > 0 for each i € I, the support of D is the union of the D;’s and is denoted by supp D.
Let D € Div? (P") with D = div(P). Then

F,(D) = {A € Gr(r,P") | A c supp D} = {U € Gr(r + 1,K"*') | Py = 0}. (3.5.41)

In order to answer Question 3.5.27 we let T, ¢(P") < Gr(r,P™) x P(K[Zo, ..., Z,]4) be the incidence
subset given by
I'yqa(P") = {(A,D) | A < supp D}. (3.5.42)

Claim 3.5.29. T', 4(P") is a closed subset of Gr(r,P™) x P(K[Zo, ..., Zn]a).

We leave the proof of Claim 3.5.29 as an exercise.
The restrictions of the projections to I'y 4(P™) give us two regular projective maps

I, q(P™) (3.5.43)
/ \
Gr(r, P) P(K[Zo,. .., Znla)

Let D € P(K[Zo, ..., Zn)a): then F.(D) is identified with p~!(D). In other words the fibers of p are
what we are after. It follows that knowing the dimension of I',. 4(P™) helps in answering Question 3.5.27.
While the fibers of p can be quite mysterious, the fibers of m are extremely simple. This allows, by
applying the results of the present section, to compute the dimension of I', 4(P™). The following claim
is an extremely easy result.

Claim 3.5.30. Keep notation as above, and suppose that r € {0,...,n —1}. Let A € Gr(r,P™). Then

7~ Y(A) is a linear subspace of P(K[Zy, ..., Zn)q) of codimension equal to (Hr'd).

Applying Corollary 3.5.24 and Theorem 3.5.20 to the (projective) regular map =« it follows that
Iy q(P™) is irreducible and that

cod(T.a(B™), Gr(r,P*) x P(K[Zo, . ., Zu]a)) = <’" * d). (3.5.44)

r
Hence we get that

r+d

dim p(T', ¢(P")) < dim T, 4(P") = dimP(K[Zo, ..., Z,]q)) + dim Gr(r,P") — (
r

). (3.5.45)

In particular we get the following negative result.
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Proposition 3.5.31. Keep notation as above, and assume that (r+1)(n—r) < ("1%). If D € Div% (P")
is general then F,.(D) is empty.

On the other hand Corollaries 3.5.22 and 3.5.23 give the following positive result.
7‘+d)

Proposition 3.5.32. Keep notation as above, and assume that (r + 1)(n —1r) > ( . Suppose that

there exists (one) D € Dive (P™) such that F.(D) is non empty and that

dim F(D) = (r + 1)(n — 1) — (T * d). (3.5.46)

r

Then F,.(D) is non empty for every D € DiV‘_iF (P™), and for general D the equality in (3.5.46) holds.

3.6 Degree

3.6.1 Degree of a map

Definition 3.6.1. Let f: X — Y be a regular map of irreducible algebraic varieties. The degree of f,
denoted by deg f, is given by

deg f 0 if f is not dominant,
eg f =
& [K(X): f*K(Y)] if f is dominant.

The separable degree of f, denoted by deg, f, is given by

0 if f is not dominant,
deg, f = s x e .
[K(X)®: f*K(Y)] if f is dominant,
where K(X)*® < K(X) is the maximal separable extension of f*K(Y).
Thus 0 < deg f < o if and only if f is dominant and dim W = dim Z. Note that deg, f divides
deg f, and that if K has characteristic 0 then deg, f = deg f.

Example 3.6.2. Let (z1,...,2,,w) be affine coordinates on A"*!. Let X < A"*! be an irreducible
hypersurface and let I(X) = P. Write

P =qou® + aqw ' + - + ag, a; €K[z1,...,2n], ap#0
Let Y = A™ and let
X IR Y
(21, v zn,w)  —  (21,...,20)

Then deg f = d. In fact if d = 0 then im f = V(ag) & A™ and hence f is not dominant. If d > 0 then
K(X) = K(z1, ..., 2n)[w]/(P)

and hence [K(X) : K(21,...,2,)] = d. Suppose that charK = p > 0. Let m be the maximum integer
such that p™ | (d — 1) for all i € {0, ...,d} such that a; & 0. Then deg, f = d/p™.

Definition 3.6.3. A regular dominant map f: X — Y of irreducible algebraic varieties is generically
separable if K(X) is an algebraic separable extension of f*K(Y').

In other words f is generically separable if it has finite non zero degree and deg f = deg, f.
Below is the main result of the present section.

Proposition 3.6.4. Let f: X — Y be a regular map of irreducible algebraic varieties such that deg f <
0. Then there exists an open dense Y° 'Y such that

[f M (q) = deg, [ Vge Y. (3.6.1)
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Example 3.6.5. Let us check the statement of Proposition 3.6.4 for the map f: X — A" of Example 3.6.2.
Let P € K[z1,...,2,,w] be as in that example. Let R € K[z1,...,2,,w] be defined as follows. If
char K = 0 then R = P, and if char K = p > 0 then R is the unique polynomial satisfying the following
conditions:

m

P(z1,...,zn,w) = R(z1, ..., 2, wP ), Z—R#O.
w

Thus m is the maximum integer such that p™ | (d — i) for all ¢ € {0,...,d} such that a; £ 0. Then
deg, f is equal to the degree in w of R. Let g: X — V(R) be defined by g(z,w) = (z,w?" ), and let
h: V(R) — A™ be defined by h(z,w) = z. The regular map f: X — A" factorizes as the composition

X -5 V(R) - A (3.6.2)

The map ¢ is bijective, hence the statement of Proposition 3.6.4 for the map f: X — A™ holds if and
only if |h71(Z)| = d for a general Z € A™. Th(i9 gegree in w of the non zero polynomial 25 is strictly

smaller than the degree in w of R, and hence % is not a multiple of R. Since P is prime (because it

generates the ideal of the irreducible hypersurface X) also R is prime. It follows that 2—5 does not vanish
on V(R) and hence V(R, dR/0w) is a proper closed subset of V(R). Thus V (R, dR/0w) has dimension
smaller than n, and hence also A := h(V(R,0R/0w)). In other words A is a proper closed subset of
A" and thus U = (A™\V(ap)\A) is an open dense subset A". Let Z € U. Then R(Z,w) € K[w] is a
polynomial of degree deg, f with simple roots and hence |h~1(Z)| = deg, f.

3.6.2 Proposition 3.6.4 for a generically separable map

We consider the following more general version of Example 3.6.2. Let Y be an irreducible affine variety.
Let P € K(Y)[w] be an irreducible polynomial:

d—1

P=w+aqw +- - +aq, a;eK(Y).

Since Y is affine K(Y) is the field of fractions of K[Y]. Thus there exists 0 # b € K[Y] such that
b-a;eK[Y]foralll1<i<d. Letcy:=b,¢;:=b-a;,1<i<dand

Pi=cow' + erw®™ ! + -+ cq € K[Y][w]. (3.6.1)

If K[Y] is a UFD we may factor out the ged {co, ..., cq} and hence by renaming the ¢;’s we may assume
that ged{co,...,cq} = 1. It follows that V(P) is irreducible (the proof is the same as the one for
hypersurfaces in A™). In general K[Y] is not a UFD and hence there might be no way of “reducing”
the polynomial of (3.6.1) in order to get that V(P) is irreducible. (An example of this phenomenon:
Y := V(2122 — 2z324) and P = ziw — 2z3. Then V(]g) = X u Y where X is the closure of the locus of
(z,w) € V(P) with z; + 0 and Y = V (21, z3). Each of the irreducible components X, ¥ has dimension
3.) Let 7: Y x A' — Y be the projection map. An irreducible component V; of V(]S) dominates Y if
(V) - Y.

Claim 3.6.6. Keep hypotheses and notation as above. There is one and only one irreducible component
of V(P) which dominates Y, call it Vo. We have an isomorphism

~

K(Vo) = K(Y)[w]/(P) (3.6.2)

such that, letting mo: Vo — Y be the restriction of m, the inclusion of fields nff: K(Y') — K(Vy) is the
obuvious one given the above isomorphism.

Proof. To simplify notation let V = V(P). Since 7(V) contains Y\V (¢y), which is dense in Y, there
exists at least one irreducible component V4 of V' such that 7(Vp) =Y. Let g € I(Vy). We claim that

P|gin K(Y)[w]. (3.6.3)
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(Note: we do not claim that Plg in K[Y][w].) In fact suppose that P does not divide g. Then P and
g are coprime in K(Y')[w] because P is prime, and hence there exist «, 8 € K(Y)[w] such that

a-P+B-g=1
Multiplying by 0 # v € K[Y][w] such that « - v, 8 - v belong to K[Y][w] we get that

(a-NP+(B-v)g=r.

Let g € Vi: then g(q) = 0, and since V' 2 Vi we get that v(g) = 0. Since v # 0 it follows that 7(V}) is
not dense in Y, and that is a contradiction. This proves that (3.6.3) holds.

Let I(Vo) = (g1, --,9r). From (3.6.3) we get that there exist hq,. .., h, € K[Y][w] and m4,...,m, €
K[Y'] such that

g,:ﬁ’~hi, m; #0, i=1,...,r.

Set m = mq - --- - m,. By the above equation we get that V\V(m) = V5\V (m) and hence V; is the
unique irreducible component of V' dominating Y. The last statement of the claim is clealry true. [

The proof. Suppose that deg f = 0. Then f(X) # Y and Y° := Y\ f(X) does the job. Now suppose
that d := deg f > 0. Since Y is covered by open affine sets we may assume that Y itself is affine. By
definition we have an inclusion f*: K(Y) < K(X). Since K(X) is a separable extension of K(Y') there
exists £ € K(X) primitive over K(Y). Let

P=w?+aw?™ + - +aq, a;eKY) (3.6.4)

be the minimal polynomial of £&. Let V(P) © Y x Al - notation as in Claim 3.6.6. Let Vo < V(P) be
the unique irreducible component dominating Y. We have a commutative diagram

with ¢ birational. By Proposition 3.2.11 there exist open dense subsets X° < X and V7 < V fitting
into a commutative diagram

xe— Y Ly (3.6.5)
peaN\e g

with ¢ an isomorphism. Since X\X° # X and dim X = dimY we have
F(X\X°) #Y.

On the other hand
g = () g i ge Y\F(X\XO).

By commutativity of (3.6.5) and the fact that ¢ is an isomorphism we get that
[(f) " Ha} | =1(x5) " {a} |, qeY.

Arguing as in Example 3.6.5 one gets that if g is general then the cardinality on the right hand side of
the above equality equals deg f = deg, f. O
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3.6.3 Proposition 3.6.4 for a purely inseparable extension of fields

3.6.4 Proof of Proposition 3.6.4

If K(X) is not a separable extension of K(Y') we have the chain of inclusions K(X) o K(X)* o K(Y)
where K(X)?® is the maximal separable extension of K(Y) in K(X). Correspondingly we have have a
factorization of f as f = hog as a product of dominant maps (of irreducible varieties) of finite degrees

XL x, My,

where K(X;) = K(X)® and the composition of fields inclusions ¢g* o h* is equal to f*. Let ¢ € Y be
general. Then |h=1(q)| = deg, f because h is separable. On the other hand if p € X, is general then
g~ (p) is a single point. The result follows.

3.7 Degree of closed subsets of projective spaces

3.7.1 Definition

Let X < P" be closed, and let ¢ be its codimension. Suppose that X is irreducible and let 7 be the
forgetful regular map
I'x(c) = Gr(e,P)
(pA) — A
Since I'x(c¢) and Gr(c,P") are irreducible we have a well-defined degm. By Corollary 3.5.6 we have
dimT'x(¢) = dim Gr(c,P™). Thus degm < c0. The degree of X is defined to be the separable degree

deg X = deg,(I'x (c) — Gr(c,P™)). (3.7.2)

(3.7.1)

In general let X = X7 u---uU X, be the irreducible decomposition of X. The degree of X is defined to
be the sum of the degrees of irreducible components of X which realize the dimension of X:

deg X := D degX;. (3.7.3)
dim X; =dim X

Proposition 3.7.1. Let X < P" be closed of codimension c. There exists an open dense U < Gr(c,P™)
with the following property: if A € U then X n A is finite of cardinality equal to deg X. Moreover deg X
18 positive.

Proof. If X is irreducible the first statement follows from Proposition 3.6.4 applied to the map 7
in (3.7.1), and the positivity of deg X follows from Proposition 3.5.3. In general let X = X; u--- U X,
be the irreducible decomposition of X. If A € Gr(c,P™) is general then by Proposition 3.5.3

AnX;, =g if dmX; <dimX, An(X;nX;)=gifi#]. (3.7.4)
It follows that if A € Gr(c,P") is general then

AnX = ] AnX, (3.7.5)
dim X; =dim X

and hence the claim follows from the case when X is irreducible. O

Ezample 3.7.2. If X < P" is a hypersurface we have given another definition of the degree of X, namely
in Definition 3.5.28. That definition agrees with the definition given above. In fact let I(Z) = (F).
Then ¥tk

Example 3.7.3. Let Cq < P? be the rational normal curve, i.e. the image of the Veronese map

]P>1 i N ]P;d
3.7.6
[S,T] ~— [84 841, . . T (3.7.6)

Then deg Cy = d. *¥wikikk
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3.7.2 Minimal degree of non degenerate closed subsets of projective spaces

3.8

Exercises

Exercise 3.8.1. The Veronese map is

1.
2.
3.

P -2 P (3.8.1)
(Z0, 21,22 — 2122, 2022, ZoZ1] o

Prove that f is a birational map.
Determine Reg(f).

Describe maximal open sets U, V < P? such that f induecs an isomorphism U — V.

Exercise 3.8.2. Prove that dim Gr(h, V') has dimension equal to h - (dimV — h).

Exercise 3.8.3. An algebraic group is an algebraic variety G equipped with a group structure such that the

map

GxG — G.
(ry) = oy (8.8.2)

is regular. For example GL, (K) with matrix multiplication is an algebraic group. Prove that the irreducible
components of an algebraic groups are pairwise disjoint and they all have the same dimension.

Exercise 3.8.4. Let M, ,(K) be the vector-space of n x n matrices with entries in K. If char K # 2 define
O, (K) and SO, (K) as usual:

O, (K) = {Ae M, (K)| A*- A =1,}, SO0, (K) = {A€ 0,(K) | Det A = 1}, (3.8.3)

where 1,, € My, »(K) is the unit matrix.

1.

Let Q =V(2f+23+...+22—1)c A", and let f: SO,(K) — Q be the map associating to A € SO, (K)
its first column. Prove that f~'(2) is isomorphic to SO,—1(K) for every z € Q.

. Let X be an irreducible component of SO, (K). Prove that f(X) contains an open dense subset of Q.

3. Prove by induction on n that SO, (K) is irreducible.

4.

Prove that O, (K) has two irreducible components.

Exercise 3.8.5. Let

Un(K) := {Z € My (K) | Det(1, — Z) 4 0}.

The Cayley map is given by

4.
5.

U,(K) % M, (K)
Z - (1,+2) - (1,—2)"
Prove that ¢ defines a birational map f: M, ,,(K) --» M, »(K). Determine the rational inverse f~*: M, ,,(K) --»
M, (K)

Assume that charK + 2. Let 0,(K) < M, »(K) be the subspace of anti-symmetric matrices and let
SO, (K) ¢ M, »(K) be the group of special orthogonal matrices. Prove that if Z € 0,,(K) n U, (K) then
©(Z) € SOn(K). Let ¢: 0n(K) n Un(K) — SO, (K) be the restriction of .

(3.8.4)

. Prove that the image of v is dense in SO, (K), and hence 1 defines a dominant rational map g: 0, (K) --»

SO (K).
Prove that Reg(f ™) contains an open dense subset of SO, (K) and hence g is a birational map.

Notice that g is defined over the prime field. Produce many matrices in SO3(Q).

Exercise 3.8.6. Let V be a finitely generated K vector space, and let @ < P(V) be a quadric hypersurface,
i.e. Q = V(q) where q: V — K is a non zero quadratic form (if ¢ = £* where £: V — K is a linear form then
V(g) = V(£) is a hyperplane, the “quadric hypersurface” should be understood to mean the degree 2 effective
divisor 2V (¢)). The kernel of q, denoted by ker g, is the set of u € V such that ¢(v+u) = ¢(v) for all v € V. Note
that ker g is a vector subspace of V. The quadric is degenerate if ker ¢ & {0}, and non degenerate if ker ¢ = {0}.
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1. Prove that if @ is a degenerate quadric hypersurface then Q is a cone with vertex P(ker q), i.e. there exists
a closed subset X < P(V/ker q) such that @ is the union of the linear subspaces A c P(V) containing
P(ker ¢) parametrized by X (we say that @ is a cone with vertex P(ker q) over X). (Note: this makes sense
because the projective space P(V/kerq) is in a natural bijective correspondence with vector subspaces
W < V containing ker ¢ whose dimension is equal to dim(ker q) + 1.) Show that X¢ is a non degenerate
quadric in P(V/ker q).

2. Let Q1,Q2 < P(V) be quadric hypersurfaces, given by quadratic forms ¢1, g2 respectively. Prove that
Q1,Q2 are projectively equivalent, i.e. there exists g € PGLyp41(K) such that g(Q1) = Q2, if and only
ker g1 and ker g2 have the same dimensions.

3. Now suppose that charK + 2. Let @ < P(V) be a non degenerate quadric hypersurface, given by the
quadratic form ¢. Since charK % 2 there exists a unique bilinear symmetric form b: V' x V' — K such
that g(v) = b(v,v) for all v € V. Let pg = [vo] € P(V). The polar hypersurface of po is given by

Py = P(vy) = P({v e V | b(vo,v) = 0}). (3.8.5)

Prove that pg n Q is a quadric hypersurface in pg, that it is degenerate if and only if po € Q, and that if
the latter holds then it is a cone with vertex po over a non degenerate quadric hypersurface in P(vg /{vo)).
Exercise 3.8.7. Assume that charK + 2. Let Q™  P"*! be a non degenerate quadric hypersurface.
1. Prove that if A = @ is a linear space then dim A < 3.
2. Let 7 := | §]. Describe F.(Q™) in terms of well-known varieties for n € {1,2,3,4}.
Exercise 3.8.8. Assume that charK + 2. Let Q*"™' < P?"*? be a non degenerate odd dimensional quadric
hypersurface.

1. Let T.(Q* ') c Q%" x Gr(r,P?"*?) be the incidence subset defined by

L Q™) ={(p,A) | pe A c Q). (3.8.6)
The restrictions to I'(Q*" ™) of the projection maps of Q* ™! x Gr(r,P>"*?) define regular projective
maps
L (Q¥ ") (3.8.7)
/ \
Q2r+1 GI‘(T, P2r+2)
Note that im(p,) = F-(Q*"*'). Prove that 7, *(p) = Fr—1(Q*" ') for every p e Q* .
2. Prove, using Item (2) and arguing by induction on 7, that F,.(Q* ™) is irreducible and
\ 2
dim F (Q¥ 1) = (T; ) (3.8.8)

Exercise 3.8.9. Let Q?" ¢ P*"*! be a non degenerate even dimensional quadric hypersurface. The purpose
of this exercise is to prove that

(I) F-(Q*) has two irreducible components F,.(Q*")+ and F,.(Q*")—, each of dimension (Tgl), and they are
disjoint.
(I1) A1, Az € F.(Q*") belong to the same irreducible component if and only if
dim(A1 nA2) =7 (mod 2).
(Here we agree that dim @ = —1.)

1. Prove that each irreducible component of F,(Q*") has dimension at least ("}'). (Hint: this amounts to
the statement that each irreducible component of F,(Q?") has codimension at most dim K[Ty, ..., Tr]2.)
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2. Let H c P?"*! be a hyperplane such that Q*" n H is non degenerate, i.e. H = p* where p € (PZ"*1\Q*").
Show that there is a well-defined regular map

2r 2r—1
R e

and use this, together with Item (1) to prove that F,.(Q*") has pure dimension (T;rl)7 and that it has at
most two connected components.

3. Given W e F.(Q*") let o < F.(Q®") be defined by
= {U e F(Q*) |UnW = {0}}.

Prove that oy is an affine space of dimension equal to (T;rl), and that if Wy, W, € @4y then

dimWiy nWa=7r+1 (mod 2).

(Hint: Fix Wy € #4y. The symmetric bilinear form b induces an isomorphism W ~ Wy'. Given U € oAy
the condition U n W = {0} gives that U < K*>" 2 = W, @W is the graph of a linear map ¢y : Wo — W ~
Wy . Lastly note that ¢y is skew-symmetric, i.e. ¢f; = —¢u, because Wy is isotropic for a quadratic form
defining Q")

4. Prove that F.(Q%") = Uwer, (g2 @w and that if dim W1 n W2 # r + 1 (mod 2) then o, N Zw, = .
5. Prove that (I) and (II) hold.

Exercise 3.8.10. Prove Claims 3.5.29 and 3.5.30.
Exercise 3.8.11. Prove Propositions 3.5.31 and 3.5.32.
Exercise 3.8.12. The goal of the exercise is to prove the following result:

Every cubic surface in P? contains a line. (3.8.10)

Let F = Zs - (ZoZ1 — Z22) + L1 - Lo - Ly where L; € K[Zy, Z1, Z3]1 are linear functions such that the following
hold.

o The intersection in P? of V(L;) and V(ZoZ:1 — Z3) consists of two distinct points.
o Ifi,5 € {1,2,3} are distinct then V(L;) n V(L;) n V(ZoZ1 — Z3) (intersection in P?) is empty.

Tt follows that the intersection in P? of V(L1 -Ls - L3) and V(ZoZ1 — Z%) consists of six distinct points:
V(L1 -Lo-L3) nV(ZoZ1 — Z3) = {q1, - -, 6} (3.8.11)

Let X = V(F) c P2
1. Prove that F' is prime and hence X is an irreducible cubic surface.

2. Let po = [0,0,0,1] € X, and let

X - s (3.8.12)
[Zo,21,22,25] — [Zo,Z1,Z5]
Show that f is birational.
3. Let R c P? be a line. Prove that R — X if and only if one of the following hold.
(3a) R =<{po,gqjy where g; is one of the points appearing in (3.8.11).
(3b) R = {gj, qxy where g;,qr are two distinct pointsappearing in (3.8.11).

4. Prove that the statement in (3.8.10) holds.
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Exercise 3.8.13. Let &7 c Divd (P") be the set of prime divisors, i.e. the set of irreducible hypersurface of
degree d. Prove that if n > 2 and d > 2 then the codimension of the complement of 227 in P(K[Zo,...,Zn]a)

is equal to
d+n—1
—n. 3.8.
( "1 ) n (3.8.13)

In particular 27 is a dense open subset of P(K[Zo, ..., Zx]a). (Hint: For 0 < a < d let T%(P") c Div% (P") x
Div? (P") be the subset defined by

L4(P") == {(A,D) | D = A+ B, BeDivi*(P")}. (3.8.14)

Show that T'¢(P") is closed subset. Consider the two regular maps T'¢(P") — Div¢ (P") and T'¢(P") — Dive (P™)
given by the restrictions of the projections of Div% (P") x DivZi (P™).)
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