Esercizi di Istituzioni di Geometria Superiore (Prof. O'Grady) per il 22/10/2018

Esercizio 1. Dimostrate che $\mathbb{P}^n(\mathbb{C})$ è orientabile.

Esercizio 2. Abbiamo visto che se n è pari, $\mathbb{P}^n(\mathbb{R})$ non è orientabile perchè è il quoziente di S^n per l'azione di una involuzione (un diffeomorfismo di ordine 2) $\iota \colon S^n \to S^n$ (esplicitamente $\iota(x) = -x$) tale che $\iota^*\omega = -\omega$, dove ω è una opportuna forma di volume di S^n . Dimostrate che una varietà connessa M è non orientabile se e solo se esistono una varietà orientabile connessa \widetilde{M} , una forma di volume ω di \widetilde{M} , e una involuzione $\iota \colon \widetilde{M} \to \widetilde{M}$ tali che

- 1. M è diffeomorfa al quoziente $\widetilde{M}/\langle \iota \rangle$, e
- 2. $\iota^*\omega = -\omega$.

(Suggerimento: Se valgono (1) e (2), la dimostrazione che M non è orientabile è uguale a quella data in classe della non orientabilità di $\mathbb{P}^n(\mathbb{R})$ per n pari. Se M non è orientabile, \widetilde{M} è il ricopimento topologico di M con fibra su $p \in M$ uguale a $\bigwedge^n T_p^*(M)/\mathbb{R}_+$, dove $n = \dim M$, e \mathbb{R}_+ agisce per moltiplicazione.) Dedurne che una varietà non orientabile ha gruppo fondamentale non banale. Notate che questo ridà il risultato dell'Esercizio 1.

Esercizio 3. Sia M una varietà C^{∞} che ha un buon ricoprimento $M = U_1 \cup \ldots \cup U_{r+1}$, dove $r \geq 1$. Dimostrate che $H^p_{DR}(M) = 0$ per ogni $p \geq r$. Dedurne che se una varietà compatta orientabile di dimensione n ha un buon ricoprimento finito, allora la cardinalità del buon ricoprimento è almeno n+2. Per ogni $n \geq 1$, dare una varietà compatta orientabile di dimensione n con un buon ricoprimento finito di cardinalità n+2.