Esercizi di Istituzioni di Geometria Superiore (Prof. O'Grady) per il 26/11/2018

Esercizio 1. Let f be an entire function, i.e. a holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$. Suppose that there exists an integer d such that

$$
\begin{equation*}
\lim _{|z| \rightarrow+\infty} \frac{|f(z)|}{|z|^{d+1}}=0 . \tag{1}
\end{equation*}
$$

Prove that f is a polynomial of degree at most d, i.e. there exist $a_{0}, \ldots a_{d} \in \mathbb{C}$ such that $f(z)=a_{0} z^{d}+\ldots+a_{d}$. (Hint: prove that $f^{(n)}(0)=0$ for $n>d$.) In particular one gets Liouville's Theorem: a bounded entire function is constant.

Esercizio 2. Let $U \subset \mathbb{C}$ be open, and $a \in U$. Suppose that $f:(U \backslash\{a\}) \rightarrow \mathbb{C}$ is holomorphic, and that there exists $r>0$ such that f is bounded on $B(a, r) \cap U$. Riemann's extension Theorem states that f extends to a holomorphic function $\widetilde{f}: U \rightarrow \mathbb{C}$. Prove it as follows. Let $r>0$ be such that $\overline{B(a, r)} \subset U$. Show that the usual Cauchy integral formula holds for all $z \in(B(a, r) \backslash\{a\}):$

$$
f(z)=\frac{1}{2 \pi i} \int_{\Gamma_{a}(r)} \frac{f(t)}{t-z} d t
$$

and then notice that the right hand side of the above equation extends to a holomorphic function over a as well.

Esercizio 3. Let $U \subset \mathbb{C}$ be open and connected and let $f: U \rightarrow \mathbb{C}$ be holomorphic non constant. Prove that f is open, i.e. it maps open sets to open sets, proceeding as follows. Let $a \in U$, and let

$$
f(z)=\sum_{m=0}^{\infty} c_{m}(z-a)^{m}
$$

be a power series expansion of f in a neighborhhod of a, say $B(a, r)$. Let m_{0} be the minimum strictly positive natural number such that $c_{m_{0}} \neq 0$ (since f is not constant on U, such an m_{0} exists by the Principle of analytic prolungation). Then, on $B(a, r)$ we have

$$
f(z)=c_{0}+c_{m_{0}}(z-a)^{m_{0}} g(z)
$$

where g is holomorphic and $g(a) \neq 0$.

1. Prove that for a sufficiently small positive δ, there exists a homolorphic function $h: B(a, \delta)$ such that $\left.g\right|_{B(a, \delta)}=h^{m_{0}}$ (use the Inverse function Theorem for holomorphis maps).
2. Let $\varphi: B(a, \delta) \rightarrow \mathbb{C}$ be the holomorphic function $\varphi(z)=c_{m_{0}}^{1 / m_{0}}(z-a) \cdot h(z)$. By Item (1), on $B(a, \delta)$ we have $f(z)=c_{0}+\varphi(z)^{m_{0}}$. Check that $\varphi^{\prime}(a) \neq 0$, and hence $\varphi(B(a, \delta)) \supset$ $B\left(0, \delta_{1}\right)$, for some $\delta_{1}>0$ by the Inverse function Theorem.
3. Conclude that $f(B(a, \delta)) \supset B\left(c_{0}, \delta_{1}^{m_{0}}\right)$.

Notice that the analogous statement for differentiable (or even analytic) real functions of a real variable is false.

Esercizio 4. Prove the Maximum modulus priciple: Let $U \subset \mathbb{C}^{n}$ be open and connected, and let $f: U \rightarrow \mathbb{C}$ be holomorphic non constant. If $K \subset U$ is compact, any $z_{0} \in K$ achieving the maximum of the absolute value function $|f(z)|$ is not an interior point of K, i.e $z_{0} \in \partial K$. (Hint: if $n=1$ the result follows at once from Esercizio ??. If $n>1$ reduce to the case $n=1$ by restricting f to lines in \mathbb{C}^{n}.)
Esercizio 5. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an invertible 2×2 matrix. Then

$$
\begin{array}{ccc}
\mathbb{P}_{\mathbb{C}}^{1} & \xrightarrow{f} & \mathbb{P}_{\mathbb{C}}^{1} \tag{2}\\
{\left[z_{0}, z_{1}\right]} & \mapsto & {\left[c z_{1}+d z_{0}, a z_{1}+b z_{0}\right]}
\end{array}
$$

is an automorphism of $\mathbb{P}_{\mathbb{C}}^{1}$. (The weird choice of formula in (2) is explained by the formula $f(z)=\frac{a z+b}{c z+d}$ valid when using the affine coordinate $z=z_{1} / z_{0}$.) Prove that every automorphism of $\mathbb{P}_{\mathbb{C}}^{1}$ (as complex manifold!) is of the above form, and hence

$$
\operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{1}\right) \cong P G L_{2}(\mathbb{C})
$$

by arguing as follows.

1. Let $\varphi \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{C}}^{1}\right)$. Composing with a suitable automorphism in (2), we may assume that $\varphi\left([0,1]=[0,1]\right.$, and hence the restriction of φ to the afffine line $\mathbb{P}_{\mathbb{C}}^{1} \backslash\{[0,1]\}$ defines a (holomorphic) automorphism of \mathbb{C}.
2. Prove that (1) holds for $d=1$, and conclude that φ is a polynomial function of degree 1 by the first exercise.

Notice that we have also proved that a holomorphic map $f: \mathbb{C} \rightarrow \mathbb{C}$ is an automorphism if and only if there exists $(a, b) \in \mathbb{C}^{*} \times \mathbb{C}$ such that $f(z)=a z+b$.

Esercizio 6. Prove that the upper half plane

$$
\mathbb{H}:=\{z \in \mathbb{C} \mid \operatorname{im}(z)>0\}
$$

is isomorphic (as complex manifold) to the unit disc $\Delta \subset \mathbb{C}$. (Hint: find an automorphism f of $\mathbb{P}_{\mathbb{C}}^{1}$ which takes the closure of the real line to the boundary of the unit disc. Either f or $\frac{1}{f}$ will define an isomorphism between \mathbb{H} and Δ.)

