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In previous work, we have introduced a program aimed 
at studying the birational geometry of locally symmetric 
varieties of Type IV associated to moduli of certain projective 
varieties of K3 type. In particular, a concrete goal of our 
program is to understand the relationship between GIT 
and Baily-Borel compactifications for quartic K3 surfaces, 
K3’s which are double covers of a smooth quadric surface, 
and double EPW sextics. In our first paper [36], based 
on arithmetic considerations, we have given conjectural 
decompositions into simple birational transformations of the 
period maps from the GIT moduli spaces mentioned above 
to the corresponding Baily-Borel compactifications. In our 
second paper [35] we studied the case of quartic K3’s; we 
have given geometric meaning to this decomposition and we 
have partially verified our conjectures. Here, we give a full 
proof of the conjectures in [36] for the moduli space of K3’s 
which are double covers of a smooth quadric surface. The 
main new tool here is VGIT for (2, 4) complete intersection 
curves.
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1. Introduction

1.1. Background and motivation

In the context of the search for geometric compactifications for the moduli spaces of 
polarized K3 surfaces (see [18]; and [19], [3], [45], [33], [2] for some recent references), 
almost forty years ago, J. Shah [50] analyzed the GIT moduli space M6,2 of plane sex-
tic curves and then compared it to the Baily-Borel compactification F ∗

2 of the period 
space of degree 2 polarized K3 surfaces. The natural period map p : M6,2 ��� F ∗

2 is 
birational, not regular, with exactly one point of indeterminacy ω. Shah [50,49] proved 
that the blow up ε : M̂6,2 → M6,2 of a scheme supported on ω resolves the indeter-
minacy of p, giving a regular extended period map p̂ : M̂6,2 → F ∗

2 . A few years later, 
Looijenga [37] revisited Shah’s work from a different point of view. Looijenga started 
from the “other end”(i.e. F ∗

2 ) and noted that p̂ : M̂6,2 → F ∗
2 is a small contraction, that 

can be interpreted as the Q-factorialization of F ∗
2 . From this perspective, the blow-up 

ε : M̂6,2 → M6,2 can be interpreted as the contraction of (the strict transform of) a 
certain Heegner divisor Hu in F2 (here, Hu is the unigonal divisor, which parameterizes 
elliptic K3s). Later Looijenga [38,39] developed analogous ideas for pairs (F , H), where 
F is a locally symmetric variety of ball type or of Type IV, and H is an effective Heegner 
divisor. Briefly, Looijenga’s theory constructs an arithmetic birational modification FH

of the Baily-Borel compactification F ∗ which (birationally) contracts the divisor H. In 
a number of significant geometric examples (e.g. degree 2 K3 surfaces, Enriques surfaces 
[52]), it turns out that, for appropriate choice of H, FH is isomorphic to a natural GIT 
model.

Another important case where Looijenga’s theory works perfectly is that of cubic four-
folds. As an application of the comparison between GIT and Baily-Borel models for the 
moduli of cubic fourfolds, Laza [30,31] and Looijenga [40] proved a surjectivity statement 
for the period map for cubic fourfolds, which complements Voisin’s Torelli Theorem [54]. 
The complexity, both geometric and arithmetic, of the case of cubic fourfolds is similar 
to that of degree 2 K3 surfaces.

A case that stands in stark contrast with the examples discussed above is that of 
degree 4 K3 surfaces and their siblings (e.g. double EPW sextics [44]). Specifically, 
despite the apparent geometric similarity between the degree 2 and 4 cases, it is not 
possible to understand the precise relationship between the natural GIT quotient M4,3
and Baily-Borel compactification F ∗

4 for quartic K3 surfaces by either Shah’s geometric 
approach (see [51]), or Looijenga’s theory (see [39, §8.2]). Looijenga’s work hints to an 
arithmetic explanation for this paradox. Namely, the complexity of FH associated to 
a pair (F , H) as above is related to the codimension of the intersection loci in the 
hyperplane arrangement H defining the divisor H (recall, F = D/Γ and H = H /Γ
for some Γ-invariant hyperplane arrangement H ⊂ D). The extreme simplicity of the 
period map of plane sextics is explained by the fact that no two irreducible components 
of the corresponding arrangement H meet; similarly, for cubic 4-folds at most two 
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irreducible components of H meet. By way of contrast, the hyperplane arrangement 
naturally associated to the period map of quartic surfaces is as complex as it possibly 
can be, i.e. there are linearly independent hyperplanes with non-empty intersection of 
any cardinality up to 19(= dim F4).

In recent work [36,35], we have set out to revisit the case of quartic K3 surfaces. By 
refining the work of Looijenga [39], we obtained in [36] a conjectural decomposition of the 
period map M4,3 ��� F ∗

4 for quartic surfaces into elementary birational transformations. 
This (conjectural) wall crossing decomposition is determined, up to a certain “depth”, by 
following the approach of Looijenga, and for higher depths is regulated by subtle second 
order phenomena (of arithmetic nature) that previously had been overlooked. Our main 
new tools in [36] are on one hand a variational approach inspired by the so called Hassett–
Keel program for the moduli of curves (e.g. see [21,22]), and on the other hand the heavy 
use of so called Borcherds’ relations (with origins in [10,8]). Acknowledging the major 
influences guiding us, we have baptized the Hassett–Keel–Looijenga (HKL) program the 
study of the birational geometry of locally symmetric varieties of Type IV (such as moduli 
of polarized K3s). The guiding principle of this study is that any natural/tautological 
model (such as GIT; see [42]) for the moduli of polarized K3 surfaces should be obtained 
via arithmetic modifications from the Baily-Borel compactification F ∗. We regard [20]
and [9] as the starting points for the investigation of the birational geometry of the 
moduli of K3 surfaces, and manifestations of this modularity principle.

In [35] we gave strong evidence (of geometric nature) in favor of the correctness of 
our conjectures regarding this decomposition (but significant parts of [36] still remained 
conjectural).

In the present paper we completely verify our conjectures on the behavior of the 
period map for double covers of P 1 × P 1. Our main result, Theorem 1.1 below, gives 
a highly non-trivial illustration of our Hassett-Keel-Looijenga program. We emphasize 
that the complexity of the period map for double covers of P 1×P 1 is comparable to that 
of quartic surfaces (see Remark 1.2), and an order of magnitude higher than that for 
plane sextic curves [37] or cubic fourfolds [31,40]. Similar considerations to those in this 
paper apply to the study of the moduli space of degree 6 K3 surfaces (and the associated 
GIT models for (2, 3) complete intersections in P 4); this is currently under investigation 
by the first author together with François Greer and Zhiyuan Li. We also expect that 
a version of the Hassett–Keel–Looijenga program for elliptic K3 surfaces (and similarly 
rational elliptic surfaces) to be tightly connected to the recent work of Ascher–Bejleri 
[1,2]. Finally, for another potential application of our results, we refer to Remark 1.3
below.

1.2. The main result

We start by introducing the main actors. Let

M := |OP1×P1(4, 4)|//Aut(P 1 × P 1) (1.2.1)
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be the GIT moduli space of (4, 4) curves on P 1×P 1. Let C be a (4, 4) curve with simple 
singularities (it is GIT stable by Shah [51, Sect. 4]), and let π : XC → P 1 × P 1 be the 
double cover with branch curve C. Then XC is a K3 surface (eventually with canonical 
singularities), and π∗ NS(P 1 × P 1) is a saturated copy of U(2) in NS(XC). Thus XC is 
a U(2)-hyperelliptic K3 surface. The corresponding period space, which we denote by 
F (see Subsection 2.2) is an 18 dimensional locally symmetric variety. We let F ⊂ F ∗

be the Baily-Borel compactification. By associating to a generic [C] ∈ M the primitive 
Hodge structure on H2(XC), we get the rational period map

p : M ��� F ∗. (1.2.2)

By Global Torelli, p is birational. By Baily-Borel, F ∗ is identified with ProjR(F , λ), 
where λ is the Hodge (Q-)line bundle on F .

In [36], we proved that also M is identified with Proj of a ring of sections of a Q-Cartier 
divisor on F . Namely, let Hh ⊂ F be the Heegner divisor parametrizing periods of K3
surfaces which are double covers of a quadric cone. Let Reg(p) ⊂ M be the regular locus 
of p. Then p(Reg(p)) ∩ F contains (F \Hh) (in fact, a posteriori they are equal). We 
define the boundary divisor Δ := Hh/2 (parameterizing the “missing periods”). With this 
notation, we proved that M is identified with ProjR(F , λ + Δ) (cf. [36, Prop. 4.0.20]). 
The main content of [36] is to predict the behavior of the graded C-algebra R(F , λ +βΔ)
for β ∈ [0, 1] ∩Q (interpolating between the algebras associated to the Baily-Borel and 
GIT models). First, we conjecture that it is finitely generated. Secondly we predict the 
critical values of β, i.e. the Mori chamber decomposition of the sector {λ +βΔ}β∈[0,1]∩Q. 
Lastly, we describe the centers of the corresponding flips or contractions. This last part 
of the conjecture is formulated in terms of towers of closed subvarieties

Z8 ⊂ Z7 ⊂ Z6 ⊂ Z4 ⊂ Z3 ⊂ Z2 ⊂ Z1 ⊂ F (1.2.3)

and

W0 ⊂ W1 ⊂ W2 ⊂ W3 ⊂ W5 ⊂ W6 ⊂ W7 = MIV ⊂ M. (1.2.4)

(The “missing” indexes are not misprints.) The superscripts in (1.2.3) denote codimen-
sion (in F ), while those in (1.2.4) denote dimension. The definition of the stratifica-
tion (1.2.3) is recalled in Subsection 2.2, the definition of (1.2.4) is in Definition 4.10. 
Regarding Z•, it will suffice to recall that Z1 = Hh, and that Zk are Shimura subva-
rieties of F corresponding to certain codimension k intersection loci of the hyperplane 
arrangement Hh (where as before, Hh is associated to the divisor Hh). Regarding W•, it 
will suffice to recall that MIV is the locus parametrizing polystable (4, 4) curves C such 
that the corresponding double cover XC → P 1 ×P 1 has non-slc singularities (i.e. signif-
icant limit singularities in the sense of Mumford and Shah [49]). In particular M \MIV

is contained in the regular locus of p (in fact, a posteriori equal).
We are ready to state our main result.
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Theorem 1.1. With notation as above, the following hold:

i) Let β ∈ [0, 1] ∩Q. The ring of sections R(F , λ +βΔ) is a finitely generated C-algebra, 
and hence F (β) := ProjR(F , λ + βΔ) is a projective variety interpolating between 
F ∗ = F (0) and M = F (1).

ii) The variation of models F (β) on the interval [0, 1] ∩Q has a Mori chamber decom-
position whose set of critical values is{

0, 1
8 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1
}
.

Hence for consecutive critical values β′ > β′′ it makes sense to let F (β′, β′′) :=
F (β), where β′ > β > β′′ is arbitary.

iii) The period map p : M = F (1) ��� F (0) = F ∗ is the composition of the elementary 
birational maps in (1.2.5).

F(1, 12 ) ··· F(βk−1,βk) F(βk,βk+1) ··· F( 1
8 ,0)

Φ

M=F(1) F( 1
2 ) F(βk) F( 1

8 ) F(0)=F∗

(1.2.5)

Here the critical values of β are indexed as in (1.2.6).

k 0 1 2 3 4 5 6 7 8
βk 1 1/2 1/3 1/4 1/4 1/5 1/6 1/8 0

(1.2.6)

(The equality β3 = β4 is not a misprint.) Let Ω−(βk) ⊂ F (βk−1, βk) and Ω+(βk) ⊂
F (βk, βk+1) be the exceptional loci of F (βk−1, βk) → F (βk) and F (βk, βk+1) →
F (βk) respectively. Then Ω−(βk) is the strict transform of Wk ⊂ F (1) = M for the 
birational map M ��� F (βk−1, βk) and Ω+(βk) is the strict transform of Zk+1 ⊂
F (0) = F ∗ if k �= 4, and of Z4 ⊂ F ∗ if k = 4, for the birational map F ∗ ���
F (βk, βk+1).

iv) The map F (1/8, 0) → F ∗ is the Q-Cartierization associated to Hh. Moreover 
F (1/8, 0) is a moduli space of double covers of quadrics (possibly singular) in P 3

with slc singularities.

Summarizing: Items (i), (ii), (iii) and the first part of Item (iv) prove that our con-
jectures in [36] hold for the period space of U(2)-hyperelliptic K3 surfaces, while the 
second part of Item (iv) is a “bonus” result which we find very interesting. Namely, it 
says roughly that F (1/8, 0) is a KSBA-like compactification for the moduli space of 
U(2)-hyperelliptic K3 surfaces, and that this compactification is nothing but a small 
partial resolution of the Baily-Borel compactification F ∗. This is an analogue of Shah’s 
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main result from [50] (i.e. F (1/8, 0) is the analogue of M̂6,2). (We refer to [49] and [25]
for some discussion of KSBA versus Hodge theoretic degenerations.)

In addition to the results and techniques of our previous work ([36,35]), the main new 
tool that allows us to prove the theorem above is VGIT for (2, 4) complete intersection 
curves C in P 3 (the double cover XC → Q of the quadric Q containing C ramified over 
C is a U(2)-hyperelliptic K3 surface or a degeneration of such surfaces). A similar case, 
namely (2, 3) complete intersections, was analyzed by the first named author and his 
collaborators in [14,13] in the context of the Hassett-Keel program for genus 4 curves. 
Here, we follow in rough outline the strategy from [14,13], but as the complexity increases, 
some streamlining and new ideas (such as the basin of attraction arguments in Section 6) 
are necessary.

Remark 1.2. Arguably, the case of quartic K3 surfaces would have been of greater ge-
ometric interest, but from the perspective of the HKL program it has almost the same 
complexity. More precisely, in [36], we have introduced an inductive structure (a certain 
D-tower of locally symmetric varieties, see [36, Sect. 1]) on the moduli spaces considered 
here (U(2)-hyperelliptic K3 surfaces, polarized K3 surfaces of degree 4, etc.). We expect 
then (both for geometric and arithmetic reasons) that Theorem 1.1 implies the analo-
gous result for quartics. Furthermore, we expect to be able to bootstrap these results and 
understand the relationship between GIT and periods for EPW sextics ([43,44]); this is 
the next step in our inductive structure. The study of the moduli of EPW sextics was our 
original motivation for this investigation, which in turn led us to the development of a 
general HKL program. We further remark that a non-inductive proof for an analogue of
Theorem 1.1 for quartic K3s should be possible by using GIT/VGIT techniques similar 
to those used in this paper. (We thank O. Benoist for a suggestion that allows to reduce 
the HKL program for quartics to a feasible GIT computation.)

Remark 1.3. One possible application of Theorem 1.1 is the computation of the coho-
mology of the Baily-Borel compactification F ∗. Specifically, Kirwan’s techniques allow 
one to compute the cohomology of M (see [24] for the case of quartics in P 3), while 
(1.2.5) gives a simple wall crossing decomposition which allows one to compute (in a 
standard way by now) the cohomology of F ∗. The considerably simpler case of degree 2
K3 surfaces (where no flip occurs) was studied by Kirwan-Lee [26,27] (see also [12] for 
another similar example).

1.3. Structure of the paper

We start our paper with a review of the basic facts about the moduli space of U(2)-
hyperelliptic K3 surfaces. In Section 2, we discuss the period space F = D/Γ for such 
surfaces. We then recall the definition of the (Shimura type) loci Zk ⊂ F that were 
identified in [36] as conjectural centers of the birational transformations occurring in the 
variation of models F (β). We also describe the loci Zk as the periods of double covers 
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X → Q such that Q is a quadric cone, and the branch curve has a certain singularity at 
the vertex of Q (see Proposition 2.2) – roughly, the higher the k (corresponding to the 
codimension), the worse the singularity of C at the vertex of Q. We end the section with 
a brief discussion of the boundary components of the Baily-Borel compactification F ∗.

In Section 3, we discuss the other end of the period map, namely the GIT quotient 
M for (4, 4) curves on P 1 × P 1. This was first studied by Shah [51, Sect. 4], but we 
caution the reader that some of the results of [51] are incomplete. We then discuss the 
Hodge-theoretic stratification of M analogous to that of the GIT moduli space of quartics 
analyzed in [35, Sect. 3] (building on ideas of Shah [49–51]). In particular, we define the 
tower (W•) in (1.2.4).

In order to understand the variation of models F (β), we introduce in Section 5 a 
“reverse variation” M(t) (for t ∈ (1/6 − ε, 1/2] ∩ Q) given by VGIT which interpo-
lates between the GIT quotient M for (4, 4) curves on P 1 × P 1 and the GIT quotient 
Chow(2,4) / /SL(4) of the Chow variety of (2, 4) complete intersection curves in P 3. The 
precise definition of M(t) is given in (5.2.4), and is mostly based on ideas in [14], where 
the analogous case of (2, 3) curves was discussed. A key point (Proposition 5.8) that 
comes up in our analysis is that only complete intersections V (f2, f4) are relevant for 
the GIT analysis of M(t). We also note that for an infinite set of values of tm, the mod-
uli space M(tm) can be identified with GIT quotients Hilbm

(2,4)/ /SL(4), where Hilbm
(2,4)

denotes the parameter space for m-th Hilbert point of a (2, 4) complete intersection. 
In particular, one sees that the VGIT map M(1

2 − ε) → M(1
2 ) ∼= Chow(2,4) / /SL(4) is 

induced by the Hilbert-Chow morphism Hilb(2,4) → Chow(2,4).
The actual GIT analysis for M(t) is accomplished in Section 6. Although the tools 

that we use are by now standard (we acknowledge the influence of [14] and [7] that 
studied a similar set-up to ours, and [22], [4] and [6] that focused on the relationship 
between GIT and Hassett-Keel program in general), the proof is a somewhat indirect, 
multi-step argument. First, via the numerical criterion, we can destabilize various “bad” 
(2, 4) complete intersection curves. In particular, curves that are relevant to the change 
of stability are contained in a quadric cone. Since a wall crossing in VGIT involves orbits 
with positive dimensional stabilizer, we identify a finite list {tk} ⊂ (0, 12 ) of potential 
critical slopes (or walls), and associated (potential) critical curves {Ck} by analyzing 
(2, 4) curves with a positive dimensional automorphism group. We prove that the poten-
tial critical slopes/orbits actually occur via a two-step argument. First, the numerical 
criterion allows us to prove that the generic curve in Wk is destabilized for some t ≤ tk. 
Secondly, an analysis of the basin of attraction for the potential semistable curves Ck, 
shows that the generic curve in Wk can not be destabilized before tk. Thus, the stratum 
Wk will change from stable to unstable precisely at tk. Furthermore, it is not hard to see 
that the replacement stratum is (birational to) Zk+1. This concludes the GIT analysis 
of the quotients M(t) (we refer the reader to Table 2 for a quick summary). In partic-
ular, we note that M(1

2 − ε) parametrizes double covers of irreducible curves with slc 
singularities.
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In Section 7 we return to the period space F and the variation of models F (β). Given 
the VGIT models M(t) studied in the previous sections, we complete the proof of the 
main Theorem 1.1 by establishing a natural identification

M(t(β)) ∼= F (β) (1.3.1)

for t(β) = 1
4β+2 . As a consequence, we note that specializing (1.3.1) to β = 0 gives:

Corollary 1.4. The Baily-Borel compactification F ∗ for U(2)-hyperelliptic K3 surfaces 
is isomorphic to the GIT quotient Chow(2,4) / /SL(4) for the Chow variety of (2, 4) curves 
in P 3.

In the last section (Section 8), we expand on this isomorphism by looking at the wall 
map F (ε) → F (0) ∼= F ∗ (for ε ∈ (0, 1/8)). On the arithmetic side, this corresponds 
to the Q-Cartierization associated to Hh (Theorem 1.1(4)), on the geometric side it 
corresponds to the map of GIT quotients induced by the Hilbert-Chow Hilb(2,4) →
Chow(2,4). We believe that this dual description (arithmetic/geometric) for F (ε), F ∗, 
and for the morphism relating them, is of independent geometric interest.

2. The period space and its Baily-Borel compactification

2.1. Summary

In this section, we briefly review moduli of U(2)-hyperelliptic K3 surfaces from the 
perspective of the period map. A U(2)-hyperelliptic K3 surface is a U(2)-polarized K3
surface in the sense of Dolgachev [17]. For a generic such surface X the associated 
transcendental cohomology lattice is D18 ⊕ U2. The associated 18-dimensional locally 
symmetric variety F of Type IV (see [17]) is the moduli space of U(2)-hyperelliptic 
K3 surfaces. Furthermore, F has a natural projective compactification, the Baily-Borel 
compactification F ∗, which can be described (Theorem 2.3) following Scattone [47]. 
We observed in [36] that F (= F (18)) fits naturally in a tower of locally symmetric 
varieties F (N) (with N indicating the dimension). In particular, F (19) is the moduli 
space F4 of polarized K3 surfaces of degree 4, while F (17) is naturally identified with 
the Heegner divisor Hh ⊂ F parameterizing double covers of the quadric cone. More 
generally, using this tower structure, we can define inductively the Shimura subvarieties 
Zk ⊂ F mentioned in (1.2.3). A standard argument then gives geometric meaning to the 
Zk’s; they parametrize double covers X → Q of the quadric cone Q, such that branch 
curve C ⊂ Q has specified singularity behavior at the vertex of Q (see Proposition 2.2).

Since most of the arguments here are either standard or occur in our previous work 
[36,35], we omit the proofs, and focus instead on introducing the notions and results 
that are needed for the rest of the paper. The interested reader can consult the preprint 
version of our paper ([34]) for details on the proofs of Proposition 2.2 and Theorem 2.3, 
which are new to a certain extent.
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2.2. Periods of U(2)-hyperelliptic K3 surfaces according to [36]

Let ΛN be the lattice U2 ⊕ DN−2, where U is the hyperbolic plane, DN−2 is the 
negative definite lattice corresponding to the Dynkin diagram DN−2 (for N ≥ 3, and 
where D1 is the rank 1 lattice with generator of square (−4)), and ⊕ will always mean 
orthogonal direct sum. Let

D(N) := {[σ] ∈ P (ΛN ⊗C) | σ2 = 0, (σ + σ)2 > 0}.

Then D(N) is a complex manifold of dimension N , and it has two connected compo-
nents, interchanged by complex conjugation; let D+(N) be one of the two connected 
components. We note that D+(N) is a Type IV bounded symmetric domain. Let 
O+(ΛN ) < O(ΛN ) be the index two subgroup mapping D+(N) to itself. In [36] we 
have studied the locally symmetric variety

F (N) := Γ(N)\D+(N) (2.2.1)

where Γ(N) = O+(ΛN ) if n �≡ 6 (mod 8), and Γ(N) is a subgroup of index 3 in O+(ΛN )
if n ≡ 6 (mod 8), see Prop. 1.2.3 [36]. We let F (N) ⊂ F (N)∗ be the Baily-Borel 
compactification.

Definition 2.1. A U(2)-hyperelliptic K3 surface is a double cover X → Q, where Q is an 
irreducible quadric surface and X is a K3 surface (possibly with canonical singularities). 
The associated degree 4 polarization of X is the line-bundle L such that L⊗2 is isomorphic 
to the pull-back of the (unique) square root of ω−1

Q .

The reason for the reference to U(2) is the following. Let X̃ → X and Q̃ → Q be the 
minimal desingularizations of X and Q respectively. Thus X̃ is a smooth K3 surface, 
and Q̃ is either F0 or F2. The double cover ρ : X → Q lifts to a double cover ρ̃ : X̃ → Q̃. 
Then ρ̃∗H2(Q̃; Z) is a saturated sublattice of H2(X̃; Z) isomorphic to U(2).

An isomorphism between U(2)-hyperelliptic K3 surfaces X1 → Q1 and X2 → Q2
consists of isomorphisms f : Q1 → Q2 and f̃ : X1 → X2 compatible with the double 
covers. Notice that the associated polarized K3 surface (X, L) of degree 4 determines 
the double cover X → Q up to isomorphism: in fact the map ϕL : X → |L|∨ ∼= P 3 has 
image a quadric surface isomorphic to Q, and the map X → Im(ϕL) is isomorphic to 
X → Q. We will denote a U(2)-hyperelliptic K3 surface X → Q also by (X, L), where 
L is the associated degree 4 polarization.

The period space for U(2)-hyperelliptic K3 surfaces is F (18), see Propositions 2.2.1 
and 1.4.5 [36]. The period point of a U(2)-hyperelliptic K3 surface X → Q is defined 
as follows. Let X̃ → X, Q̃ → Q, and ρ̃ : X̃ → Q̃ be as above. The period point of 
X → Q in F (18) is given by the isomorphism class of the weight 2 sub Hodge structure 
(ρ∗H2(Q̃; Z))⊥ ⊂ H2(X̃).
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In order to simplify notation, we let

Λ := Λ18, D+ := D+(18), F := F (18), F ∗ := F (18)∗. (2.2.2)

We recall that w ∈ Λ is a hyperelliptic vector if w2 = −4, and div(w) = 2 (see Defini-
tion 1.3.4 and Remark 1.1.3 [36]), where div(w) is the divisibility of w, i.e. the positive 
generator of (w, Λ). The Heegner divisor Hh ⊂ F is the locus of O+(Λ)-equivalence 
classes of points [σ] ∈ D+

Λ such that σ⊥ contains a hyperelliptic vector. The boundary 
divisor for F is given by Δ := Hh/2, see Definition 1.3.7 in [36].

Given a smooth C ∈ |OP1(4) �OC(4)|, the double cover XC → P 1 ×P 1 ramified over 
C is a U(2)-hyperelliptic K3 surface. Thus we have a period map p : M ��� F ∗ (Shah 
proved that smooth (4, 4) curves are stable, see Theorem 4.8 in [50], or Proposition 3.2). 
By Global Torelli, p is birational. The intersection of F and the image of the regular 
locus of p contains F \ Hh (a posteriori the image, in F , of the regular locus of p is 
equal to F \Hh). The indeterminacy locus of p is a subset of M of dimension 7, with an 
intricate Hodge-theoretic stratification. In [36] we have formulated precise predictions 
on the decomposition of p as a composition of elementary birational maps. In particular 
we defined a tower of closed subsets

Z8 ⊂ Z7 ⊂ Z6 ⊂ Z4 ⊂ Z3 ⊂ Z2 ⊂ Z1 ⊂ F (2.2.3)

(the superscript denotes codimension), and we motivated the expectation that the cen-
ters of the elementary birational maps are birational to the Zk’s. In agreement with 
Looijenga’s vision, most of the Zk’s are the images in F of the locus of points in D+

Λ
which are orthogonal to k (at least) hyperelliptic vectors. More precisely, the Zk’s are 
as follows:

(1) If 1 ≤ k ≤ 4, then Zk = Im f18−k,18, the locus of O+(Λ)-equivalence classes of points 
[σ] ∈ D+

Λ such that σ⊥ contains k pairwise orthogonal hyperelliptic vectors
(2) Z6 = Im(f13,18 ◦q13), the locus of O+(Λ)-equivalence classes of points [σ] ∈ D+

Λ such 
that σ⊥ contains pairwise orthogonal vectors v1, . . . , v5, w, with v1, . . . , v5 hyperel-
liptic, w2 = −12, and the divisibility of w in {v1, . . . , v5}⊥ equal to 4 (see Prop. 1.6.1 
[36]).

(3) Z7 = Im(f12,18◦m12), the locus of O+(Λ)-equivalence classes of points [σ] ∈ D+
Λ such 

that σ⊥ contains pairwise orthogonal vectors v1, . . . , v6, w, with v1, . . . , v6 hyperel-
liptic, w2 = −2, and the divisibility of w in {v1, . . . , v6}⊥ equal to 2 (see Prop. 1.5.2 
[36]).

(4) Z8 = Im(f11,18 ◦ l11), where Im(f11,18 ◦ l11) is the locus of O+(Λ)-equivalence classes 
of points [σ] ∈ D+

Λ such that σ⊥ contains pairwise orthogonal vectors v1, . . . , v7, w, 
with v1, . . . , v7 hyperelliptic, w2 = −4, and the divisibility of w in {v1, . . . , v7}⊥
equal to 4 (see Prop. 1.5.1 [36]).

Notice that Z1 = Hh.
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2.3. U(2)-hyperelliptic K3 surfaces whose periods are parametrized by Zk

In the present subsection we will freely use notation and results contained in [36].

Proposition 2.2. Let X → Q be a U(2)-hyperelliptic K3 surface, and let x ∈ F be its 
period point. Let C be the branch curve of X → Q. The following hold:

(1) Let 1 ≤ k ≤ 15. Then x ∈ Im f18−k,18 if and only if Q is a quadric cone, and C has 
an Am-singularity at the vertex of Q, where m ≥ (k − 1). If k = 8, in addition C
must not contain a line.

(2) x ∈ Im(f13,18 ◦ q13) if and only if Q is a quadric cone, C has an Am-singularity at 
the vertex of Q, where m ≥ 4, and the support of the tangent cone of C at the vertex 
of Q is tangent to a line of Q.

(3) x ∈ Im(f12,18 ◦m12) if and only if C contains a line, and has an Am-singularity at 
the vertex of Q, where m ≥ 5.

(4) x ∈ Im(f11,18 ◦ l11) if and only if C contains a line, and has an A7-singularity at the 
vertex of Q. �

For a detailed proof of Proposition 2.2, see [34, §2.2] (part of the proof is already 
in [48], see Item (iii) of Proposition 5.7 [48]).

2.4. The boundary of the Baily-Borel compactification

The Baily-Borel compactification for quartic K3 surfaces (i.e. F (19)∗) was described 
by Scattone [47, §6.3] (see also [11] for the case N = 20). Similar techniques give the 
following (see [34, Appendix] for details).

Theorem 2.3. The Baily-Borel compactification F ∗ consists of

i) Two Type III boundary points, that we label IIIa and IIIb respectively.
ii) Eight Type II boundary components. Six of the Type II boundary components, call 

them of type a (labeled by D16, D8 ⊕E8, (E7)2 ⊕D2, D12 ⊕D4, A15 ⊕D1, and D2
8) 

are incident only to IIIa. The remaining two Type II boundary components (label 
(E8)2 and D+

16) are incident to both IIIa and IIIb. The incidence diagram is given 
in (2.4.1).
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◦IIa(D16)

◦IIa(D8⊕E8)

◦IIb(D+
16) ◦IIa((E7)2⊕D2)

•IIIb •IIIa ◦IIa(D12⊕D4)

◦IIb((E8)2) ◦IIa(A15⊕D1)

◦IIa(D2
8)

(2.4.1)

iii) Furthermore, each of the six Type IIa boundary components are isomorphic to the 
modular curve h/SL(2, Z). Each of the two Type IIb boundary components are iso-

morphic to the modular curve h/Γ0(2) where Γ0(2) =
{(

a b
c d

)
, c ≡ 0(2)

}
. �

Remark 2.4. We recall that the Baily-Borel compactification F (19)∗ for the moduli of 
degree 4 K3 surfaces has 9 Type II boundary components ([47, §6.3]). There is a natural 
map f∗

18,19 : F ∗ → F (19)∗, which is the normalization map of the image. The image 
f∗
18,19(F ∗) only meets 8 out of the 9 Type II components of F (19)∗, those are the 

one showing up in the theorem above. Over the six Type IIa components, f∗
18,19 is an 

isomorphism. In contrast, the restriction of f∗
18,19 to the two Type IIb components, is a 

3-to-1 map (this follows from item (iii) in the theorem above).

3. Moduli of (4, 4) curves on a smooth quadric

3.1. Summary

The GIT moduli space M of (4, 4) curves in P 1 × P 1 (see (1.2.1)) was analyzed by 
Shah [51, Sect. 4]. Furthermore, Shah introduced a Hodge theoretic stratification for the 
semistable curves C (or rather the associated double covers XC), which plays a key role 
for us. The purpose of this section is to recall the results of Shah [51], but we point out 
that occasionally minor corrections and completions are necessary.
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3.2. GIT for (4, 4) curves on P 1 × P 1

Let q := x0x3−x1x2, and let Q := V (q) ⊂ P 3. In what follows we will identify P 1×P 1

and Q via the Segre isomorphism

P 1 × P 1 ∼−→ Q
([u0, u1], [v0, v1]) �→ [u0v0, u0v1, u1v0, u1v1].

(3.2.1)

Given the above identification, Aut(P 1×P 1) can be described either as the group gener-
ated by PGL(2) ×PGL(2) and the involution exchanging the factors, or as the orthogonal 
group PO(q). A curve on P 1 × P 1 is a line if, with the above identification, it is a line 
in P 3.

As usual, GIT (semi)stability is studied by using the numerical criterion, and analyzing 
the behavior with respect to 1-parameter subgroups (1-PS). To start, we recall that 
diag(r0, . . . , rn) denotes the 1-PS of SL(n + 1) mapping s ∈ C∗ to the diagonal matrix 
(sr0 , . . . , srn) (with r0, . . . , rn ∈ Z not all zero, and adding up to 0). We are interested in 
1-PS λ̃ of SL(2) × SL(2) acting on H0(OP1(4) � OP1(4)). It turns out that in this case, 
GIT (semi)stability can be understood by studying the following three 1-PS’s:

λ̃1(s) = ((s2, s−2), (s, s−1)), λ̃2(s) = ((s, s−1), (s, s−1)), λ̃3(s) = ((s, s−1), (1, 1)).

Up to isogeny, λ̃1, λ̃2 and λ̃3 correspond respectively to the 1-PS’s of SO(q)

λ1 := diag(3, 1,−1,−3), λ2 := diag(1, 0, 0,−1), λ3 := diag(1, 1,−1,−1). (3.2.2)

A straightforward argument gives the following results:

(1) If C ∈ |OP1(4) �OP1(4)| is unstable, then, up to conjugation, there exists i ∈ {1, 2, 3}
such that C is λ̃i-unstable.

(2) Let C ∈ |OP1(4) �OP1(4)| be properly semistable (i.e. semistable and not stable), and 
σ ∈ H0(OP1(4) �OP1(4)) be a section whose divisor is C. Then, up to conjugation, 
there exists i ∈ {1, 2, 3} such that C is destabilized by λ̃i, i.e. the limit lim

s→0
λ̃i(s)∗(σ)

exists.

With these preliminaries, we can state the following two results which summarize the 
GIT analysis for (4, 4) curves in P 1 × P 1.

Lemma 3.1. Let C ∈ |OP1(4) � OP1(4)|. The following hold:

(a) C is desemistabilized by a 1-PS conjugated to λ̃2 if and only if it has a point of 
multiplicity at least 5, and it is destabilized by a 1-PS conjugated to λ̃2 if and only 
if it has a point of multiplicity at least 4.
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(b) C is desemistabilized by a 1-PS conjugated to λ̃3 if and only if C = 3L + C ′, where 
L is a line (on the other hand, if C = 3C ′ +C ′′, where C ′, C ′′ are arbitrary, then C
has points of multiplicity at least 4, hence we go to Item (a) above). C is destabilized 
by a 1-PS conjugated to λ̃3 if and only if C = 2L + C ′, where L is a line.

(c) If C is desemistabilized by a 1-PS conjugated to λ̃1, then it is destabilized by a 1-
PS conjugated to λ̃2 (hence we go to Item (a) above). C is destabilized by a 1-PS 
conjugated to λ̃1 if and only if either it has a singular point p with consecutive triple 
points and tangent cone equal to 3Tp(L) where L is a line, or a point of multiplicity 
at least 4 (if the latter holds, we go to Item (a) above). �

Proposition 3.2 (cf. Proposition 4.5 in [50]). Let C = V (σ) ∈ |OP1(4) � OP1(4)|.

(1) C is stable if and only if each of its irreducible components has multiplicity at most 
2, no component of multiplicity 2 is a line, and each of its points has multiplicity at 
most 3, with the extra condition, if C is singular at a point p with consecutive triple 
points, that its tangent cone is not equal to 3Tp(L) where L is a line.

(2) C is properly semistable and polystable (i.e. the Aut(P 1 × P 1) orbit of σ is closed) 
if and only if one of the following holds:

(a) σ is stabilized by λ̃1: σ = u0u1(a1u0v
2
1 + b1u1v

2
0)(a2u0v

2
1 + b2u1v

2
0) in suitable 

homogeneous coordinates ([u0, u1], [v0, v1]), and (a1 · b2, a2 · b1) �= (0, 0). Equiv-
alently C = L1 + L2 + T1 + T2, where L1, L2 are skew lines, T1, T2 are twisted 
cubics (eventually singular) intersecting each line Li tangentially at the same 
point pi (with p1, p2 not belonging to a line), satisfying the condition that no 
Li has multiplicity greater than 2. The moduli space of such curves is P 1: map 
V (σ) to [a2

1b
2
2 + a2

2b
2
1, a1a2b1b2].

(b) σ is stabilized by λ̃2: σ =
∏4

i=1(aiu0v1 + biu1v0) in suitable homogeneous co-
ordinates ([u0, u1], [v0, v1]), and at most one of the ai’s vanishes, and similarly 
for the bj’s. Equivalently C is the sum of four members of the pencil of conics 
through two points not on a line, and no reducible conic appearing in C (if there 
are any) has multiplicity greater than one. The moduli space of such curves is 3
dimensional. The moduli map is the composition of the map

(P 1 × P 1 × P 1 × P 1)ss −→ P 5

([a1, b1], . . . , [a4, b4]) �→ [a1a2b3b4, a1a3b2b4, . . . , a3a4b1b2]

and the quotient map for the natural action of S4 on the image of the above 
map.

(c) σ is stabilized by λ̃3: σ = u2
0u

2
1F (v0, v1) in suitable coordinates ([u0, u1], [v0, v1]), 

and F (v0, v1) is polystable for the action of PGL(2) on P (C[v0, v1]4). Equiva-
lently C = 2L + 2L′ + R1 + . . . + R4, where L, L′ are distinct lines in the same 
ruling, R1, . . . , R4 are lines in the other ruling, and either R1, . . . , R4 are dis-
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tinct, or R1 = R2 �= R3 = R4. The moduli space is identified with that of binary 
quartics, i.e. P 1 (we map V (σ) to the moduli point corresponding to [F ]).

The remark below will be useful later on.

Remark 3.3. Suppose that C ∈ |OP1(4) �OP1(4)| has a point p of multiplicity 4. Then, in 
the closure of the orbit Aut(P 1×P 1)C there exists C∗ = C1 + . . .+C4 where C1, . . . , C4
are conics through distinct points q1, q2 not on a line - see Item (a) of Lemma 3.1. 
Moreover the tangent cone Cp(C) is isomorphic to the tangent cone Cqi(C∗) at either 
one of the (multiplicity 4) points q1, q2 of C∗.

3.3. Hodge-theoretic stratification of M

We quickly recall some notions which have been treated in [35, Sect. 3].

Definition 3.4. A reduced (not necessarily irreducible) projective surface X0 is a degen-
eration of K3 surfaces if it is the central fiber of a flat proper family X /B over a 
pointed smooth curve (B, 0) such that ωX /B ≡ 0 and the general fiber Xb is a smooth 
K3 surface. If p ∈ X0, then X0 has an insignificant limit singularity at p if it has a 
semi-log-canonical singularity at p.

The above definition ties in with the terminology of Shah. More precisely, the list 
of singularities baptized as insignificant limit singularities by Shah [49] coincides with 
the list of Gorenstein slc singularities (see [46,29]). For a degeneration of K3 surfaces, 
the Gorenstein assumption is automatic. We recall (see Theorem 4.21 of [29]) that a 
Gorenstein surface singularity (X, p) with the property that X \ {p} is semi-smooth 
(i.e. either smooth, normal crossings with two components, or a pinch point) is semi-
log-canonical if and only if it is semi-canonical (see Definition 4.17 [29]), simple elliptic, 
cusp or a degenerate cusp.

Definition 3.5. Let X0 be a degeneration of K3 surfaces, and let p ∈ X0 be an insignificant 
limit singularity. Then

i) X0 is of Type I at p if (X0, p) is an ADE singularity (this includes smooth points).
ii) X0 is of Type II at p if (X0, p) is simple elliptic, locally normal crossings with exactly 

two irreducible components containing p, or a pinch point.
iii) X0 is of Type III at p if (X0, p) is either a cusp or a degenerate cusp.

Definition 3.6. Let X0 be a degeneration of K3 surfaces.

(1) If X0 has insignificant limit singularities, then

(a) X0 is of Type I if all its points are of Type I.
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(b) X0 is of Type II if all its points are of Type I and II, it does have points of Type 
II.

(c) X0 is of Type III, if all its points are of Type I, II or III, and it does have points 
of Type III.

(2) X0 has Type IV if it has significant limit singularities (i.e. there exists p ∈ X0 such 
that (X0, p) is not an insignificant limit singularity).

Remark 3.7. We note that the 1-dimensional components in the singular locus of a Type 
II degeneration X0 of K3s are either smooth elliptic with no pinch points, or rational 
with 4 pinch points. Also, recall that the resolution of a simple elliptic singularity is an 
elliptic curve (of negative self-intersection). Thus, one sees that in all cases, for Type II 
degeneration X0 of K3 surfaces, there is an associated j-invariant. Typically, X0 has a 
single Type II singularity (i.e. simple elliptic, or elliptic double curve, or rational double 
curve with 4 pinch points), but even if there are multiple Type II singularities, the 
j-invariant for the various singularities coincides.

The above definitions are of interest to us because they are related to the period map 
p : M ��� F ∗. Before explaining this, we introduce one more piece of terminology. Let 
C ∈ |OP1(4) � OP1(4)|; we let XC → P 1 × P 1 be the double cover ramified over C. 
Let p ∈ C, and let p̃ ∈ XC be the unique point lying over p. We say that C has an 
insignificant limit singularity at p if (XC , ̃p) is an insignificant limit singularity, and if 
that holds then C has Type I, II or III at p according to the type of (XC , ̃p). If (XC , ̃p) is a 
significant limit singularity, we say that C has Type IV at p. Similarly C has insignificant 
limit singularities if all of its points are insignificant limit singularities, and if that is the 
case the Type of C is that of XC .

Let MI , MII , MIII , MIV ⊂ M be the subsets of points represented by polystable 
curves C ∈ |OP1(4) � OP1(4)| of Type I, II, III and IV respectively. On the other side, 
let F I := F , let F II be the union of the Type II boundary components of F ∗, and let 
F III be the union of the Type III boundary components of F ∗. The proof Proposition 
3.16 of [35] has a straightforward extension to our case, and gives the following result.

Proposition 3.8. The period map p : M ��� F ∗ is regular away from MIV , and

p(MI) ⊂ F , p(MII) ⊂ F II , p(MIII) ⊂ F III .

3.4. The components of MII

Proposition 3.9. The irreducible components of MII are the following:

i) MII
D8⊕E8

, the set parametrizing stable reduced curves C with a singularity of type Ẽ8
at a point p (by Proposition 3.2 the tangent cone at p is 3L with L not the tangent 
space to a line through p). The dimension of MII

D ⊕E is 9.

8 8
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ii) MII
D12⊕D4

, the set parametrizing stable divisors C = 2C0 + D where C0 is a smooth 
conic, and such that the residual curve D intersects C0 transversely. The dimension 
of MII

D12⊕D4
is 5.

iii) MII
A15⊕D1

, the set parametrizing stable divisors C = 2E, where E is smooth. The 
dimension of MII

A15⊕D1
is 2.

iv) MII
D+

16
, the set parametrizing stable divisors C = 2C0 +L1 +L2, where C0 is a twisted 

cubic, and L1, L2 are distinct lines intersecting C0 transversally. The dimension of 
MII

D+
16

is 1.
v) MII

(E8)2 , the set parametrizing polystable divisors as in Item (2a) of Proposition 3.2
such that there are two Ẽ8 singularities (i.e. a1b2 �= 0 �= a2b1). The dimension of 
MII

(E8)2 is 1.
vi) MII

(E7)2⊕D2
, the set parametrizing polystable divisors as in Item (2b) of Proposi-

tion 3.2 such that there are two Ẽ7 singularities, i.e. the divisor is reduced. The 
dimension of MII

(E7)2⊕D2
is 3.

vii) MII
(D8)2 , the set parametrizing polystable divisors as in Item (2c) of Proposition 3.2

such that the lines R1, . . . , R4 are distinct. The dimension of MII
(D8)2 is 1.

Proof. This follows from Shah [51, Theorem 4.8, Type II]. The cases (iii) and (iv) are 
omitted in Shah, but it is clear that they occur. We will discuss in more detail the Type 
II strata (e.g. normal forms) in Section 8 (esp. §8.4). In particular, the dimensions will 
be seen to be as in the statement of the Proposition. For the moment, we only note that 
the labels are chosen so that they match the labels from Theorem 2.3. The justification 
for this is given by [35, Prop. 7.11, Def. 7.7]. We will revisit the issue in Section 8. �
Remark 3.10 (Type III). We will not discuss in detail the stratification of MIII , but we 
note that it corresponds to degenerations of the Type II cases for which the j-invariant 
associated by Remark 3.7 becomes ∞ (e.g. simple elliptic singularity degenerate to cusp 
singularity, or some of the 4 pinch points come together, but at worst with multiplicity 
2). There are 5 strata identified by Shah [51, Thm. 4.8] (labeled A-III-i, A-III-ii, B-III-i, 
B-III-ii, and B-III-iii respectively). We note however, that there is a stratum missing in 
Shah’s analysis, namely, the case of a double twisted cubic together with two tangent 
lines. This stratum is a specialization of the Type II case labeled D+

16 above (again 
missing from Shah’s list). We will label this case IIIb; explicitly:

(IIIb) : V (x0x3 − x1x2, x0x
3
2 + 2x2

1x
2
2 + x3

1x3). (3.4.1)

Similarly, the case where C consists of 4 double lines forming a cycle (the case B-III-iii 
in [50, Thm. 4.8]) will be labeled IIIa; explicitly,

(IIIa) : V (x0x3 − x1x2, x
2
1x

2
2). (3.4.2)



18 R. Laza, K. O’Grady / Advances in Mathematics 383 (2021) 107680
Clearly, IIIa and IIIb are isolated points in MIII . It is not hard to see that the closure 
of any other Type III stratum (or similarly Type II) contains one of those two points. In 
other words, IIIa and IIIb are the deepest strata in MII ∪MIII . The labels are chosen 
such that the adjacency of GIT Type II and III strata reflects the adjacency of Type II 
and III strata in the Baily-Borel compactification (see (2.4.1)). (For a typical picture of 
the behavior of the GIT vs Baily-Borel Type II and III strata see [33, Figure 2, p. 234].)

4. Stratification of MIV

4.1. Summary

As discussed above, the indeterminacy locus of the period map M ��� F ∗ is contained 
in the Type IV locus (in fact, a posteriori the indeterminacy is equal to MIV ). The 
purpose of this section is to define the stratification W• in (1.2.4). The definition is 
inspired by our previous analysis [35] for quartics (which in turn is a refinement of 
Shah [51]). The reader can ignore all this background information, and just regard W•
as a natural stratification of the Type IV stratum in terms of the complexity of the 
singularities (the lower the index the worse the singularity). Results of Arnold et al. [5]
play an essential role here, and will be reviewed below.

4.2. Singularity types (following Arnold)

Let C ∈ |OP1(4) � OP1(4)| be polystable, with isolated singularities, and let XC →
P 1 × P 1 be the double cover ramified over C. Suppose that multp(C) ≤ 3 for all points 
p (note: this condition holds for all stable C by Proposition 3.2). If C does not have 
singular points with consecutive triple points, then XC has ADE singularities, and hence 
[C] ∈ MI , in particular the period map is regular at [C]. If C does have consecutive 
triple points at p, then the initial germ of a defining equation of C at p is equal to 
x3, for a suitable local parameter x. The isomorphism classes of such singularities have 
been classified, see [5, Ch. 16]. We recall the classification, and how to recognize the 
isomorphism class to which a given singularity belongs. Most of the isomorphism classes 
of such singularities are of Type IV, i.e. the corresponding double cover has significant 
limit singularities. They define (together with certain non isolated singularities) our 
stratification of MIV .

Theorem 4.1 (Arnold et al. [5, Ch. 16]). Let f ∈ OC2,0 be the germ of an analytic 
function of two variables in a neighborhood of the origin. Suppose that f has an isolated 
singularity at (0, 0), of multiplicity 3 with tangent cone a triple line. Then there exist 
analytic coordinates (x, y) in a neighborhood of 0 (centered at 0) and a decomposition 
f(x, y) = u(x, y) · g(x, y), where u(x, y) is a unit and g(x, y) is one (and only one) of the 
functions appearing in the first column of the table below. In the first three rows of the 
table k ≥ 1, in the last two rows k ≥ 2, and in the last row p > 0. Moreover
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Table 1
Recognition of singularities (triple points with tangent cone a triple line).
Normal form Leading Term wt(x) wt(y) Name Type
x3 + y3k+1 + axy2k+1 x3 + y3k+1 1

3
1

3k+1 E6k I if k = 1, IV if k ≥ 2
x3 + xy2k+1 + ay3k+2 x3 + xy2k+1 1

3
2

3(2k+1) E6k+1 I if k = 1, IV if k ≥ 2
x3 + y3k+2 + axy2k+2 x3 + y3k+2 1

3
1

3k+2 E6k+2 I if k = 1, IV if k ≥ 2
x3 + bx2yk + y3k + cxy2k+1 x3 + bx2yk + y3k 1

3
1
3k Jk,0 II if k = 2, IV if k ≥ 3

x3 + x2yk + ax3k+p x3 + x2yk 1
3

1
3k Jk,p III if k = 2, IV if k ≥ 3

a := a0 + . . . + ak−2y
k−2, c := a0 + . . . + ak−3y

k−3, 4b3 + 27 �= 0,

(a = 0 if k = 1, and c = 0 if k = 2) and in the last row a0 �= 0.

Proof. This is obtained by putting together Theorems 6k, . . . , 12k in [5, §16.2]. �
We explain the rôle of the weights appearing in the table above. First notice that the 

monomials in the leading term have weight 1, and the remaining monomials in the normal 
form have weight strictly greater than 1. Moreover, with the exception of singularities 
Jk,p with p > 0, the leading term has an isolated critical point at the origin. Thus, 
with the exception of singularities Jk,p with p > 0, the singularities in Theorem 4.1 are 
semiquasihomogeneous.

Theorem 4.2 (Arnold et al. [5, Ch. 16]). Let f(x, y) ∈ OC2,0 be the germ of an analytic 
function of two variables in a neighborhood of the origin, and suppose that f has an 
isolated singularity at (0, 0). Assign weights to x and y according to a chosen row of the 
table in Theorem 4.1. If f = f0 + f1, where f0 is the leading term of the chosen row 
and every monomial appearing in f1 has weight strictly greater than 1, then there exist 
analytic coordinates in a neighborhood of 0 (which we denote again by x, y) such that 
f = u · g, where u is a unit and g is the normal form in the chosen row.

Remark 4.3. Singularities often have more than one name. Here we note that J2,p is also 
denoted T2,3,6+p (cusp singularity), and J2,0 = T2,3,6 is also denoted Ẽ8 (simple elliptic 
singularity).

We will also make use of the following terminology for certain non isolated singulari-
ties.

Definition 4.4. The germ (C, p) of a one dimensional singularity is of Type Jk,∞ if it is 
isomorphic to the germ at (0, 0) of the planar singularity defined by x3 + x2yk = 0.

4.3. The stratification

The following is obtained by an elementary analysis.
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Lemma 4.5. Let C be a stable (4, 4) curve. Then there is at most one Type IV point 
of C. �

This allows us to define the following stratification of MIV .

Definition 4.6.

(1) For each type of isolated singularity T appearing in Theorem 4.1 (i.e. isolated 
singularities of multiplicity 3 with tangent cone of multiplicity 3) of Type IV, let 
MIV

T ⊂ MIV be the set parametrizing stable curves which have a point of Type T .
(2) Let MIV

Jk,∞
⊂ MIV be the set parametrizing stable curves which have a point of 

Type Jk,∞.
(3) Let MIV

Jk,+
:= MIV

Jk,∞
�
∐

r>0 M
IV
Jk,r

.
(4) Let MIV

(3,1) ⊂ MIV be the set parametrizing curves 3C0 + C1, where C0, C1 ∈
|OP1(1) � OP1(1)| are distinct, and C0 is smooth.

(5) Let MIV
(4) ⊂ MIV be the singleton whose unique point corresponds to 4C0, where 

C0 ∈ |OP1(1) � OP1(1)| is smooth.

We have

MIV =
∐
T

MIV
T �MIV

(3,1) �MIV
(4). (4.3.1)

Our next task is to describe explicitly the curves in the subsets MIV
T . The following 

is a slight extension of Lemma 4.6 in [51], we omit the details of the proof.

Lemma 4.7 (Shah). Let C ⊂ P 3 be a (2, 4) complete intersection curve, let Q be the 
quadric containing it, and let p ∈ C be a point not belonging to the singular locus of Q. 
Then the following are equivalent:

(1) There exist homogeneous coordinates [x0, . . . , x3] such that p = [1, 0, 0, 0], and

Q = V (x0x2 + x2
1 + ax2

3), (4.3.2)

C = V (x0x2 + x2
1 + ax2

3, x0x
3
3 + x2

1g2(x2, x3) + x1g3(x2, x3) + g4(x2, x3)).

(4.3.3)

(2) C has consecutive triple points at p, with tangent cone 3L, where L is not the tangent 
space to a line of Q. �

The observation below will be handy when computing the dimensions of the strata 
MIV

T .
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Proposition 4.8. Let C ⊂ P 3 be a (2, 4) complete intersection curve, let Q be the quadric 
containing it, and let p ∈ C be a point not belonging to the singular locus of Q. Suppose 
that C, Q, p satisfy one of the (equivalent) Items (1) or (2) of Lemma 4.7. Retain the 
notation of the quoted lemma, and let gd(x2, x3) =

∑
i+j=d g

i,j
d xi

2x
j
3. Then the following 

hold:

(1) If g2 �= 0, then (C, p) is a J2,r singularity, where r ∈ N ∪ {∞}.
(2) If g2 = 0, and g3,0

3 �= 0, then (C, p) is an E12 singularity.
(3) If g2 = 0, g3,0

3 = 0, and g2,1
3 �= 0, then (C, p) is an E13 singularity.

(4) If g2 = 0, g3,0
3 = g2,1

3 = 0, and g4,0
4 �= 0, then (C, p) is an E14 singularity.

(5) If g2 = 0, g3,0
3 = g2,1

3 = g4,0
4 = 0, and g3,1

4 ((g1,2
3 )2 + 4g3,1

4 ) �= 0, then (C, p) is a J3,0

singularity.
(6) If g2 = 0, g3,0

3 = g2,1
3 = g4,0

4 = g3,1
4 (g1,2

3 · g1,2
3 + 4g3,1

4 ) = 0, and (g1,2
3 , g3,1

4 ) �= (0, 0), 
then (C, p) is a J3,r singularity, for some r > 0 (possibly r = ∞).

(7) If g2 = 0, g3,0
3 = g2,1

3 = g4,0
4 = g1,2

3 = g3,1
4 = 0, and g2,2

4 �= 0, then (C, p) is a J4,∞
singularity.

(8) If g2 = 0, g3,0
3 = g2,1

3 = g4,0
4 = g1,2

3 = g3,1
4 = g2,2

4 = 0, then C = 3C0 + C1, where C0

is a smooth conic.

Proof. Let (x, y, z) be the affine coordinates, centered at p, given by x = x1
x0

, y = x3
x0

, 
and z = x2

x0
. The germ of C at p is isomorphic to germ at (0, 0) of the affine plane curve 

with equation given by

y3 + x2g2(−x2 − ay2, y) + xg3(−x2 − ay2, y) + g4(−x2 − ay2, y) = 0. (4.3.4)

Items (1) - (5) follow from Theorem 4.2. In fact, assign weights to x, y according to 
the table in Theorem 4.1, with the rôles of x and y exchanged, i.e. wt(x) = 1/6 when 
proving Item (1), wt(x) = 1/7 when proving Item (2), wt(x) = 2/15 when proving 
Item (3), wt(x) = 1/8 when proving Item (4), wt(x) = 1/9 when proving Item (5), and 
wt(y) = 1/3 in all cases. Then Item (1) holds because the leading term of the equation 
is y3 +x2g2(−x2, y) (in order to recognize the leading term one needs to pass to analytic 
coordinates (x, y + αx2) for a suitable choice of α), Item (2) holds because the leading 
term of the equation is y3−g3,0

3 x7, Item (3) holds because the leading term of the equation 
is y3+g2,1

3 x5y, Item (4) holds because the leading term of the equation is y3+g4,0
4 x8, and 

Item (5) holds because the leading term of the equation is y3 − g1,2
3 x3y2 − g3,1

4 x6y, and 
there exist non zero distinct α, β such that y3−g1,2

3 x3y2−g3,1
4 x6y = y(y+αx3)(y+βx3)

if and only if g3,1
4 ((g1,2

3 )2 + 4g3,1
4 ) �= 0.

The proof of (6), (7) and (8) is elementary. �
Corollary 4.9. Let T ∈ {E12, E13, E14, J3,0, J3,+, J4,∞, (3, 1), (4, 0)}. Then MIV

T is a (non 
empty) irreducible locally closed subset of MIV , of dimension given below
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MIV
T MIV

E12
MIV

E13
MIV

E14
MIV

J3,0
MIV

J3,+
MIV

J4,∞
MIV

(3,1) MIV
(4)

dimMIV
T 7 6 5 4 3 2 1 0

(4.3.5)
Moreover

MIV = MIV
E12

�MIV
E13

�MIV
E14

�MIV
J3,0

�MIV
J3,+

�MIV
J4,∞ �MIV

(3,1) �MIV
(4), (4.3.6)

and the closure of MIV
T is the union of MIV

T and the strata MIV
T ′ to the right of MIV

T

in (4.3.6).

Proof. Let T ∈ {E12, E13, E14, J3,0, J3,+, J4,∞}, and let [C] ∈ MIV
T , with C polystable. 

Then C is stable by Proposition 3.2 and, by the same proposition, the hypotheses 
of Proposition 4.8 are satisfied, where Q is the smooth quadric containing C, and p ∈ C

is the unique point of Type IV (see Lemma 4.5). By Proposition 4.8 it follows that MIV
T

is non empty, irreducible and locally closed. It is elementary that MIV
(3,1) and MIV

(4) are 
irreducible, locally closed. The statement about the closure follows from Proposition 4.8, 
and also the decomposition in (4.3.6).

It remains to prove that the dimensions are given by (4.3.5). In the case of MIV
(3,1)

and MIV
(4), the computation is straightforward. It remains to deal with MIV

T for T ∈
{E12, E13, E14, J3,0, J3,+, J4,∞}. We may assume that C is contained in the smooth 
quadric x0x2 + x2

1 − x2
3, i.e. we set a = −1 in Lemma 4.7. By Lemma 4.7 and Proposi-

tion 4.8, C is equivalent (under Aut(Q)) to a curve whose equation is given by (4.3.3), 
with g2 = 0 and such that g3 and g4 satisfy the conditions in the Item of Proposition 4.8
corresponding to the chosen T . Let ST ⊂ |OQ(4)| be the subset of such curves. Since C
is stable, it follows that the dimension of MIV

T is equal to the difference between the di-
mension of ST and the dimension of the subgroup of GT < Aut(Q) mapping ST to itself. 
The dimension of ST is easily computed: it is 9 if T = E12, and it decreases by 1 each 
time we move one step to the right. The subgroup GT < Aut(Q) mapping ST to itself is 
contained in the subgroup of automorphisms φ stabilizing p = [1, 0, 0, 0] ∈ Q, and such 
that the differential dφ(p) maps to itself the tangent line V (x2, x3). Thus dimGT ≤ 3. In 
fact a computation shows that the connected component of the identity of GT is equal 
to the subgroup of PGL(4) given by matrices

⎛⎜⎜⎜⎝
1 2β −β2 0
0 α −αβ 0
0 0 α2 0
0 0 0 α

⎞⎟⎟⎟⎠
with α �= 0. Hence dimGT = 2, and this gives the dimensions in (4.3.5). �

At this point, we can give the key definition of the W -stratification.
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Definition 4.10. For d ∈ {0, 1, 2, 4, 5, 6, 7} (no misprint: d = 3 is missing), we let Wd ⊂
MIV be the union of all the strata MIV

T of dimension at most d.

Remark 4.11. The stratum MIV
J3,+

is skipped in the definition of the W -stratification 
because it is flipped together with MIV

J3,0
.

By Corollary 4.9 we have a ladder of irreducible closed subsets indexed by dimension:

W0 ⊂ W1 ⊂ W2 ⊂ W4 ⊂ W5 ⊂ W6 ⊂ W7 = MIV ⊂ M. (4.3.7)

This is the counterpart of the stratification Zk (indexed by codimension) in F ∗ (see 
(2.2.3)).

5. GIT for (2, 4) complete intersections in P3

5.1. Summary

Let U be the parameter space for (2, 4) complete intersection curves in P 3, with the 
natural action of SL(4). The main tool in this paper is a variation of GIT quotients M(t)
for U (for t ∈ (1/6 − ε, 1/2] ∩Q). Since U is not projective, we will consider the closure 
of U in the Hilbert scheme, call it Hilb(2,4). In order to define a GIT quotient of Hilb(2,4)
modulo the natural action of SL(4) we must choose an SL(4)-linearized line bundle. For 
large m, we have the (naturally linearized) ample Plucker line bundle Lm corresponding 
to the m-th Hilbert point; we let Hilb(2,4)/ /Lm

SL(4) be the corresponding quotient. There 
is also the Hilbert-Chow map c : U → Chow to the Chow variety parametrizing effective 
1-cycles on P 3. Let Chow(2,4) be the closure of the image of c, and let L∞ be the 
restriction to Chow(2,4) of the natural polarization of the Chow variety. As suggested 
by the notation, for m → ∞ the polarization Lm approaches the pull-back of L∞, and 
hence the quotient Hilb(2,4)/ /Lm

SL(4) approaches the GIT quotient of the Chow variety 
Chow(2,4) / /SL(4).

In the opposite direction, we may consider m as small as possible, namely m = 4. The 
corresponding line bundle L4 is ample on U but not ample on Hilb(2,4). Here we recall 
that (semi)stability makes sense with respect to any linearized line bundle, and hence 
there is a quasi-projective quotient of the open set of semistable points Hilbss

(2,4)(L4)
(see [41, Thm. 1.10]). On the other hand, we may identify Hilb(2,4)/ /L4SL(4) with the 
GIT quotient of a space birational to Hilb(2,4), with a linearization that is ample. In fact, 
let E be the vector-bundle over |OP3(2)| defined by

H0(Q,OQ(4)) ⊂ E

Q ∈ |OP3(2)|.

(5.1.1)
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Let π : PE → |OP3(2)| be the structure map. The Picard group of PE is generated by

η := π∗O(1), ξ := OPE(1). (5.1.2)

Proposition 5.1 ([7, Thm 2.7]). Let t ∈ Q. The Q-Cartier divisor class η + tξ on PE is 
ample if and only if t ∈ (0, 13 ) ∩Q.

Now, PE contains naturally U , and the complement of U has codimension greater 
than 1, so that the restriction of L4 to U extends uniquely to a line-bundle L4. A 
straightforward computation (see the proof of Item (3) of Theorem 5.6) shows that 
c1(L4) = 10η+ξ. Thus L4 is ample, and from this it follows that the categorical quotient 
Hilbss

(2,4)(L4) is identified with the GIT quotient PE/ /L4
SL(4). Then, a key fact is that 

PE/ /L4
SL(4) is naturally isomorphic to the GIT moduli space M of (4, 4) curves on 

P 1 × P 1 that was discussed in Section 3 (see Theorem 5.6(2)).
On the other hand, the extension of the Chow polarization from U to all of PE

corresponds to t = 1/2 in Proposition 5.1, and one of our final goals is to prove that the 
Chow quotient Chow(2,4) / /SL(4) is isomorphic to the Baily-Borel compactification F ∗. 
Thus it is natural to study the one-parameter variation of GIT models PE/ /η+tξSL(4), for 
t ∈ (0, 1/2] ∩Q. Since we need to consider values of t for which η+tξ is not ample, i.e. t ∈
[1/3, 1/2] ∩Q, our approach is not as straightforward as one would like. In Subsection 5.2
we will define a VGIT on an auxiliary SL(4)-space P, which is somewhat intermediate 
between PE and Chow(2,4). It is natural to expect that the quotient of P with respect 
to a suitable polarization Nt which morally corresponds to (η + tξ) is a projective GIT 
moduli space M(t) interpolating between M and Chow(2,4) / /SL(4). The main result of 
the present section, i.e. Theorem 5.6, establishes the expected interpolation.

A similar analysis was carried out in [14] for (2, 3) complete intersections. We have 
modified some of the arguments in [14], in particular we give a streamlined definition of 
M(t), but we point out that a key argument (Proposition 5.8) is essentially the same.

5.2. Set up of the VGIT, and statement of the main result

As before, let U be the parameter space for (2, 4) complete intersection curves in P 3. 
Thus we have a regular embedding

U ↪→ P (E) × Chow(2,4) . (5.2.1)

Definition 5.2. Let P ⊂ P (E) × Chow(2,4) be the closure of U .

The action of SL(4) on P 3 defines an SL(4)-action on P: this is the space on which 
we will follow the VGIT. To do this, we need to define a variable SL(4)-linearized ample 
line bundle on P. Choose

0 < δ < 1/6, δ ∈ Q. (5.2.2)
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Let p1, p2 be the projections of P onto the first and second factor respectively. For 
t ∈ (δ, 1/2) ∩Q, let

Nt := 1 − 2t
1 − 2δ · p∗1(η + δξ) + t− δ

2(1 − 2δ)p
∗
2L∞. (5.2.3)

Clearly Nt is ample for t ∈ (δ, 1/2) ∩ Q, and semi-ample for t = 1/2. Thus for each 
t ∈ (δ, 1/2] ∩Q, we have a GIT quotient

M(t) := P//Nt
SL(4). (5.2.4)

Notice that, a priori, M(t) depends also on the choice of δ. Formally, we choose one δ, 
and this justifies the absence of δ from the notation. More substantially, a posteriori we 
will see that M(t) does not depend on the choice of δ.

Remark 5.3. For t ∈ (δ, 1/2) ∩ Q, Nt is ample and thus there is no ambiguity in the 
definition of M(t) := P/ /Nt

SL(4). For t = 1
2 , Nt is only semi-ample, thus some care 

should be taken in defining M(1
2 ). Specifically, we define

M

(
1
2

)
:= ProjR

(
P, N 1

2

)SL(4)
. (5.2.5)

By (5.2.3), it is clear that

M

(
1
2

)
∼= Chow(2,4) //SL(4). (5.2.6)

Furthermore, a straightforward application of the functoriality of the numerical function 
μ ([41, p. 49]) and an application of the numerical criterion, gives that M(t) behaves as 
expected as t attains the value 1

2 . Specifically, the following hold:

i) If x ∈ Pss(t) for t ∈
( 1

2 − ε, 1
2
)
, then p2(x) ∈ Chowss

(2,4) (where p2 : P → Chow(2,4)
is the projection). Conversely, if y ∈ Chows

(2,4), then p−1
2 (y) ∈ Ps(t). Thus, we can 

write (by a slight abuse of notation)

Ps

(
1
2

)
⊂ Ps

(
1
2 − ε

)
⊂ Pss

(
1
2 − ε

)
⊂ Pss

(
1
2

)
(5.2.7)

(compare [32, (3.18)] in the standard VGIT set-up).
ii) In particular, there exists a natural birational map

M

(
1
2 − ε

)
→ M

(
1
2

)
(5.2.8)

which is compatible with the Hilbert-Chow morphism Hilb(2,4) → Chow(2,4).
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In order to make the connection with the discussion at the beginning of the present 
section, and to explain the choice of coefficients in (5.2.3), we prove the following result.

Proposition 5.4. Let L∞ ∈ Pic(PE)Q be the unique extension of c∗L∞ (recall that 
c : U → Chow(2,4) is the restriction of the Hilbert-Chow map). Then

L∞ = 4η + 2ξ. (5.2.9)

Proof. There exist x, y ∈ Q such that L∞ = xη+yξ. We compute x and y by computing 
intersection indices with the following two projective curves in U :

Γ := {V (q, μ0f + μ1g) | deg q = 2, deg f = deg g = 4}, (5.2.10)

Ω := {V (μ0q + μ1r, f) | deg q = deg r = 2, deg f = 4}. (5.2.11)

(Here q, r, f, g are chosen generically.) Notice that both Γ and Ω are contained in U . The 
degree of L∞|Γ is equal to the number of curves parametrized by Γ meeting a generic 
line in P 3, and similarly for L∞|Ω. Thus

deg(L∞|Γ) = 2, deg (L∞|Ω) = 4. (5.2.12)

On the other hand, we have the following intersection indices

η ξ

Γ 0 1
Ω 1 0

(5.2.13)

Equation (5.2.9) follows at once from (5.2.12) and (5.2.13). �
Corollary 5.5. With notation as above, η + tξ is the unique divisor class in Pic(PE)
which, restricted to U , is equal to Nt|U .

With these preliminaries out of the way, we are almost ready to state the main result 
of the present section. We will compare GIT quotients of P, PE, Hilb(2,4) and Chow(2,4)
modulo the natural SL(4)-action. With the exception of the latter, all the listed spaces 
contain U , the parameter space for (2, 4) complete intersections in P 3 (with the natural 
SL(4)-action), as an open dense subset. Thus U induces birational maps between any 
SL(4)-quotients of P, PE or Hilb(2,4). Similarly, if V ⊂ Chow(2,4) is the dense subset of 
Chow forms of (2, 4) intersections, the Hilbert-Chow map induces a birational (regular) 
map U → V , and hence also a birational map between any SL(4)-quotient of P, PE or 
Hilb(2,4) and any SL(4)-quotient of Chow(2,4). In the result below, whenever we state that 
certain moduli spaces are isomorphic, what we really mean is that one of the birational 
maps discussed above is, in fact, an isomorphism. We will also compare SL(4)-quotients 
of PE and the quotient M := |OP1(4) � OP1(4)|/ /Aut(P 1 × P 1); when we state that 
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they are isomorphic, it is understood that the isomorphism is induced by the inclusion 
|OP1(4) � OP1(4)| ⊂ U determined by the choice of an isomorphism between P 1 × P 1

and a smooth quadric in P 3.

Theorem 5.6. Keep notation as above, in particular δ is as in (5.2.2). The following hold:

(1) For t ∈ (δ, 1/3), M (t) ∼= PE/ /η+tξSL(4).
(2) For t ∈ (δ, 1/6), M(t) ∼= M.
(3) For m ≥ 4, we have Hilb(2,4)/ /Lm

SL(4) ∼= M(t(m)), where

t(m) := (m− 3)2

2(m2 − 4m + 5) .

Theorem 5.6 is inspired by [14], where the analogous results are established for canoni-
cal genus 4 curves (or equivalently (2, 3) complete intersections in P 3). After a discussion 
of the GIT stability for Hilb(2,4) and PE in Subsection 5.3 and Subsection 5.4 respec-
tively, we conclude the proof of the theorem in Subsection 5.5

5.3. GIT for Hilb(2,d)

We review the application of the numerical criterion for GIT on Hilb(2,d) following 
[23]. We conclude with a proof of Proposition 5.8, a key result for what follows.

5.3.1. The m-th Hilbert point
Let U(2,d) be the open subset of the Hilbert scheme of P 3 parametrizing complete 

intersections of a quadric and a surface of degree d (in short (2, d) c.i.’s), and let Hilb(2,d)
be its closure. Let Pd ∈ Z[m] be defined by Pd = 2dm − d2 + 2d. If C ∈ U(2,d), then

rk(H0(P 3,OP3(m)) −→ H0(C,OC(m))) = Pd(m), m ≥ d− 1.

For m ≥ d, let

U(2,d)
fd,m−→ Gr(H0(P 3,OP3(m)), Pd(m))

C �→ H0(P 3,O|PP 3(m)) � H0(C,OC(m))
(5.3.1)

be the natural map, where Gr(H0(P 3, OP3(m)), Pd(m)) is the Grassmannian parametriz-
ing Pd(m)-dimensional quotients of H0(P 3, OP3(m)). Let Hilbm

(2,d) be the closure of the 
image of fm. A point of Hilbm

(2,d) is determined by a quotient ϕ : H0(P 3, OP3(m)) � V , 
where V is a vector space of dimension Pd(m); we denote the corresponding point by 
I := kerϕ. Thus I ⊂ H0(P 3, OP3(m)) is a vector subspace of codimension Pd(m). If 
m � 0 then Hilbm

(2,d) is isomorphic to Hilb(2,d).
By associating to a curve C ∈ U(2,d) its Chow point (the hypersurface in (P 3)∨×(P 3)∨

parametrizing couples (H1, H2) of hyperplanes such that H1 ∩H2 ∩ C �= ∅), we get the 
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.

Hilbert-Chow map cd : U(2,d) → Chow(P 3). We let Chow(2,d) ⊂ Chow(P 3) be the closure 
of Im(cd).

5.3.2. (Semi)stability of points in Hilbm
(2,4) \ Im fm

The group SL(4) acts on Hilbm
(2,d), and on the restriction to Hilbm

(2,d) of the Plücker 
(ample) line bundle on Gr(H0(P 3, OP3(m)), Pd(m)). Thus we have a notion of (semi)sta-
bility of elements of Hilbm

(2,d). We recall how to determine whether a point of Hilbm
(2,d) is 

(semi)stable, following [23].
Let λ be a 1-PS of SL(4). Let [x0, . . . , x3] be homogeneous coordinates that diag-

onalize λ, i.e. λ(s) = diag(sr0 , sr1 , sr2 , sr3). Given A = (A0, . . . , A3) ∈ N4, we let 
xA := xA0

0 xA1
1 xA2

2 xA3
3 . The λ-weight of xA is

wtλ(xA) :=
3∑

i=0
riAi. (5.3.2)

Given pairwise distinct monomials xA(1), . . . , xA(Pd(m)) of degree m, we let

wtλ(xA(1) ∧ . . . ∧ xA(Pd(m))) :=
Pd(m)∑
j=1

wtλ(xA(j)).

Let I ∈ Hilbm
(2,d). The Hilbert-Mumford index of λ with respect to the Plücker lineariza-

tion is

μm(I,λ)=max{−wtλ(xA(1)∧...∧xA(Pd(m)))| {xA(1), . . . , xA(Pd(m))} (mod I) is a basis of H0(P3,OP3 (m))/I}

(5.3.3)
By the Hilbert-Mumford Criterion, the point I is semistable if and only if μm(I, λ) ≥ 0
for all λ, and it is stable if and only if strict inequality holds for each λ.

Define a total ordering 
λ
≺ on the set of monomials {xA} by declaring that xA

λ
≺ xB if

(1) deg xA < deg xB , or
(2) deg xA = deg xB , and wtλ(xA) < wtλ(xB), or
(3) deg xA = deg xB , wtλ(xA) = wtλ(xB), and xA precedes xB in the lexicographical 

ordering.

Let f ∈ C[x0, . . . , x3]; we let inλ
≺(f) be the maximum (with respect to 

λ
≺) among mono-

mials appearing with non zero coefficient in the expansion of f . Given a non zero vector 
subspace I ⊂ C[x0, . . . , x3], we let inλ

≺(I) be the set whose elements are the monomials 
inλ

≺(f) for f ∈ I.
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Proposition 5.7. Let I ∈ Hilbm
(2,d), and let λ be a 1-PS of SL(4). Then

μm(I, λ) =
∑

xA∈inλ
≺(I)

wtλ(xA). (5.3.4)

Proof. Following [23], it suffices to show that (in the notation of pp. 43-44 of [23])

μ([X]m, ρ′) = −
P (m)∑
i=1

wtρ′(xa(i)). (5.3.5)

The above formula follows from Eqtn (2.5) of [23], and the (easily checked) relation

wtρ(xa(i)) = 1
N + 1(wtρ′(xa(i)) + rm).

In our case Equation (5.3.5) reads

μm(I, λ) = −
∑

xA /∈inλ
≺(I)

wtλ(xA). (5.3.6)

The above equation is equivalent to (5.3.4), because the sum of wtλ(xA) over all degree-m
monomials xA is equal to 0. �

The group SL(4) acts also on Chow(2,d), and on the restriction to Chow(2,d) of the 
Chow polarization. There is a relation between the Hilbert-Mumford index of points in 
the Hilbert scheme and corresponding points of the Chow variety. First notice that the 
Hilbert-Chow morphism restricts to a (birational) morphism γ : Hilb(2,d) → Chow(2,d); 
then

μ(γ(I), λ) = lim
m→+∞

1
m2μm(I, λ). (5.3.7)

(The above equation makes sense because Hilbm
(2,d) = Hilb(2,d) for m � 0.)

The result below generalizes Proposition 5.2 in [14].

Proposition 5.8. Let d ≥ 3, and m ≥ d. Then all points of Hilbm
(2,d) \ U(2,d) are SL(4)-

unstable, and similarly all points of Chow(2,d) \U(2,d) are SL(4)-unstable.

Proof. Let I ∈ Hilbm
(2,d). Then I contains a quadratic form Q, and a degree-d form F

which is not a multiple of Q. Now suppose that I /∈ Im fd,m; then the common zero 
locus of Q and F is not a curve. It follows that there exist homogeneous coordinates 
[x0, . . . , x3] on P 3 such that one of the following holds:

(1) Q = x0x1, and F = x0G, where G ∈ C[x0, . . . , x3]d−1, and x1 � |G.
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(2) Q = x2
0, and F = x0G, where G ∈ C[x0, . . . , x3]d−1, and x0 � |G.

First assume that Item (1) holds. Let λ be the 1-PS of SL(4) defined by λ =
diag(−3, 1, 1, 1) (with respect to the chosen homogeneous coordinates). Let us prove 
that

μm(I, λ) ≤ −2(a+ 1)m2 − (d2 − 2(2a+ 3)d+ 6(a+ 1))m+ 2
3(d− 1)(d− 2)(d− 3(a+ 1)).

(5.3.8)
Let

U := x0x1C[x0, . . . , x3]m−2, V := x0GC[x0, . . . , x3]m−d, T := U + V.

Notice that U, V, T are subspaces of I. We claim that

∑
xA∈inλ

≺(T )
wtλ(xA)=− 1

2m
3+ 1

2 (2d−4a−5)m2− 1
6 (9d2−3(8a+13)d+36(a+1))m+ 2

3 (d−1)(d−2)(d−3(a+1)).

(5.3.9)
In fact, since wtλ(x0x1) = −2 and the representation of λ on dimC[x0, . . . , x3]m−2 has 
determinant 1, we have

∑
xA∈inλ

≺(U)

wtλ(xA) = (−2) · dimC[x0, . . . , x3]m−2 = (−2) ·
(
m + 2

3

)
. (5.3.10)

Next, let 0 ≤ a ≤ (d − 1) be the maximum number such that xa
0|G. Then

∑
xA∈inλ

≺(V )

wtλ(xA) = (d− 4a− 4) · dimC[x0, . . . , x3]m−d = (d− 4a− 4) ·
(
m + 3 − d

3

)
.

(5.3.11)
Lastly, since U ∩ V = x0x1GC[x0, . . . , x3]m−d−1, we have

∑
xA∈inλ

≺(U∩V )

wtλ(xA) = (d−4a−3)·dimC[x0, . . . , x3]m−d−1 = (d−4a−3)·
(
m + 2 − d

3

)
.

(5.3.12)
Next, we have the Grassmann-like formula∑

xA∈inλ
≺(T )

wtλ(xA) =
∑

xA∈inλ
≺(U)

wtλ(xA) +
∑

xA∈inλ
≺(V )

wtλ(xA) −
∑

xA∈inλ
≺(U∩V )

wtλ(xA).

Equation (5.3.9) follows from the above formula, together with (5.3.10), (5.3.11), 
and (5.3.12).

In order to prove Equation (5.3.8), we notice that wtλ(xA) ≤ m for every monomial 
of degree m, and hence
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μm(I, λ) =
∑

xA∈inλ
≺(I)

wtλ(xA) ≤
∑

xA∈inλ
≺(T )

wtλ(xA) + m · (dim I − dimT )

=
∑

xA∈inλ
≺(T )

wtλ(xA) + 1
2(m3 − (2d− 1)m2 + d(d− 1)m).

Thus Equation (5.3.8) follows from (5.3.9).
Let P (d, a, m) be the right hand side of (5.3.8); we claim that P (d, a, m) < 0 for 

d ≥ 3, a ∈ {0, . . . , d − 1}, and m ≥ d. One easily checks that P (d, a + 1, m) < P (d, a, m)
if m > 0. Hence it suffices to check that P (d, 0, m) < 0 for m ≥ d. The function P (d, 0, m)
is decreasing for m ≥ d, hence one is reduced to proving that P (d, 0, d) < 0 for d ≥ 3; 
this is straightforward.

This proves that if Item (1) holds, then μm(I, λ) < 0, and hence I is unstable. More-
over

lim
m→+∞

1
m2μm(I, λ) ≤ lim

m→+∞
1
m2 (−2(a + 1)m2 − (d2 − 2(2a + 3)d + 6(a + 1))m

+ 2
3(d− 1)(d− 2)(d− 3(a + 1)))

= −2(a + 1) < 0. (5.3.13)

By Equation (5.3.7) it follows that μ(γ(I), λ) < 0, i.e. the corresponding point of the 
Chow variety is unstable.

Next, assume that Item (2) holds. Again, let λ be the 1-PS of SL(4) defined by 
λ = diag(−3, 1, 1, 1). We claim that

μm(I, λ) ≤ −(2d + 6)m2 − (d2 − 6d + 17)m− (2d2 − 6d + 10). (5.3.14)

We quickly go over the proof of (5.3.14). Let

U := x2
0C[x0, . . . , x3]m−2, V := x0GC[x0, . . . , x3]m−d, T := U + V.

Then U, V, T are subspaces of I, and computations similar to those performed above give 
that

∑
xA∈inλ

≺(T )

wtλ(xA) = −1
2m

3 − 2d + 13
2 m2 + d2 + 5d− 32

2 m− 2d2 + 6d− 10. (5.3.15)

Since wtλ(xA) ≤ m for every monomial of degree m, it follows that

μm(I, λ) =
∑

xA∈inλ
≺(I)

wtλ(xA) ≤
∑

xA∈inλ
≺(T )

wtλ(xA) + m · (dim I − dimT )

=
∑

A λ

wtλ(xA) + 1
2(m3 − (2d− 1)m2 − (3d2 − 7d + 2)m).(5.3.16)
x ∈in≺(T )
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Inequality (5.3.14) follows at once from (5.3.15) and (5.3.16). The right hand side 
of (5.3.14) is negative for d ≥ 3 and m ≥ d; it follows that I is unstable. Proceed-
ing as in the previous case, we also get that the corresponding point of the Chow variety 
is unstable. �
5.4. On (non-semi)stability of points of PE and of P

We denote points of PE as follows:

PE = {([f2], [f̄4]) | fd ∈ Γ(OP3(d)), f̄4 = f4|V (f2)} (5.4.1)

The Hilbert-Mumford numerical function for points of PE relative to η + tξ has been 
computed by Benoist [7]. First we recall that the Hilbert-Mumford numerical function 
of a non zero homogeneous polynomial f =

∑
A fAx

A with respect to a 1-PS λ(s) =
diag(sr0 , . . . , srn) is

μ(f, λ) = max{wtλ(xA) | fA �= 0}. (5.4.2)

Thus

μ(f, λ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 0 if and only lim

s→0
λ(s)f = 0,

= 0 if and only lim
s→0

λ(s)f �= 0,

> 0 if and only lim
s→0

λ(s)f does not exist.

(Recall that g ∈ SL(n + 1) acts on f ∈ C[x0, . . . , xn] by the formula gf(x) = f(g−1x).) 
Let ([f2], [f4]) ∈ PE and let λ be a 1-PS of SL(4). Then, by Proposition 2.15 of [7]

μη+tξ(x, λ) := μ(f2, λ) + t min
f∈[f4]

μ(f, λ). (5.4.3)

The straightforward proof of the result below is left to the reader.

Proposition 5.9. Let t ∈ (0, 1/2] ∩Q. Let ([f2], [f̄4]) ∈ PE \U . Then there exist homoge-
neous coordinates [x0, . . . , x3] on P 3 such that one of the following holds:

(1) f2 = x0x1, and f4 = x0g, where g ∈ C[x0, . . . , x3]3, and x1 � |g.
(2) f2 = x2

0, and f4 = x0g, where g ∈ C[x0, . . . , x3]3, and x0 � |g.

Moreover, let λ be the 1-PS of SL(4) given by λ = diag(−3, 1, 1, 1) in the coordinates 
[x0, . . . , x3] above. Then μη+tξ([f2], [f̄4]) ≤ −2.

Corollary 5.10. Let t ∈ (0, 1/3) ∩Q. Then PEss(η + tξ) ⊂ U .
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Proof. The corollary follows at once from Proposition 5.9 and the Hilbert-Mumford 
numerical criterion for semistability, which holds because η+tξ is ample for t ∈ (0, 1/3) ∩
Q. �
Proposition 5.11. Let t ∈ (δ, 1/2] ∩Q. Then Pss(Nt) ⊂ U .

Proof. Let z ∈ (P\U). There exist a curve C ⊂ P 3, parametrized by a point of Hilb(2,4), 
and a decomposition

H0(P 3,IC (4)) = H0(P 3,OP3(2)) · f2 + Cf4, fd ∈ H0(P 3,OP3(d)),

such that

z = (([f2], [f4]), c(C )),

(here c : Hilb(2,4) → Chow(2,4) is the Hilbert-Chow map) and either Item (a) or Item (b) 
of Proposition 5.9 holds. Let [x0, . . . , x3] and λ be the projective coordinates and 1-PS of 
SL(4) of Proposition 5.9. Then, by linearity of the Hilbert-Mumford numerical function

μNt(z, λ) = 1 − 2t
1 − 2δ μ

η+δξ(([f2], [f4]), λ) + t− δ

2(1 − 2δ)μ
L∞(c(C ), λ). (5.4.4)

We claim that both numerical functions in the right hand side of (5.4.4) are strictly 
negative. In fact μη+δξ(([f2], [f4]), λ) < 0 by Proposition 5.9. On the other hand, the 
proof of Proposition 5.8 gives that μL∞(c(C ), λ) < 0. �
5.5. Proof of the main result (Theorem 5.6)

Item (1): We will apply Lemma 4.17 in [14]. For the reader’s convenience, we record 
below the part of that lemma that we will need.

Lemma 5.12 ([14, Lemma 4.17]). Let X be a projective variety, let G be a reductive group 
acting on X, and let L be a G-linearized ample line bundle on X. Then the natural map

Xss(L)//G −→ X//LG = Proj
( ∞⊕

n=0
H0(X,L⊗n)G

)

is an isomorphism.

Applying Lemma 5.12 to X = P, G = SL(4), L = Nt, and to X = P (E), G = SL(4), 
L = η + tξ, we get two isomorphisms

Pss(Nt)//SL(4) ∼−→ M(t), PEss(η + tξ)//SL(4) ∼−→ PE//η+tξSL(4). (5.5.1)
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By Proposition 5.11 we have Pss(Nt) ⊂ U , and by Corollary 5.10 we have PEss(η+tξ) ⊂
U . On the other hand, Nt|U = (η+ tξ)|U by Corollary 5.5. It follows that both Pss(Nt)
and PEss(η + tξ) are equal to the set of points in U which are semistable for the action 
of SL(4), with respect to the linearized line bundle Nt|U . Thus Pss(Nt) = PEss(η+ tξ)
and Pss(Nt)/ /SL(4) = PEss(η + tξ)/ /SL(4). Item (1) now follows from (5.5.1).

Item (2): By Item (1) it suffices to prove that

PE//η+tξSL(4) ∼= M. (5.5.2)

Let ([f2], [f4]) ∈ PEss(η+ tξ). We claim that V (f2) is a smooth quadric. In fact, assume 
that V (f2) is singular. Then there exist homogeneous coordinates [x0, . . . , x3] such that 
f2 ∈ C[x1, x2, x3]2. Let λ = diag(−3, 1, 1, 1). Then μ(f2, λ) = −2, and hence (recall that 
t < 1/6)

μ(f2, λ) + t min
f∈[f4]

μ(f, λ) ≤ −2 + 12t < 0. (5.5.3)

This is a contradiction. Hence we have proved that if ([f2], [f4]) ∈ PEss(η + tξ), then 
V (f2) is a smooth quadric. Now the isomorphism in (5.5.2) follows from the proof of 
Lemma 4.18 in [14] (which applies verbatim).

Item (3): Arguing as in the proof of Item (1), it suffices to show that

Lm|U = (2(m2 − 4m + 5)η + (m− 3)2ξ)|U . (5.5.4)

Let Γ, Ω ⊂ U be the projective curves in (5.2.10) and (5.2.11) respectively. By (5.2.13), 
it suffices to show that

deg(Lm|Γ) = (m− 3)2, deg(Lm|Ω) = 2(m2 − 4m + 5). (5.5.5)

This is a straightforward computation that we leave to the reader. �
6. The stability analysis for M(t)

6.1. Summary

In the previous sections, we have defined M(t) for t ∈ (δ, 12 ] (with 0 < δ < 1
6 fixed) 

and, for special values of t, we have identified it with natural Hilbert and Chow GIT 
quotients for (2, 4) complete intersection curves. In the present section we analyze the 
variation of GIT describing M(t). To start, we recall that the general theory of variations 
of GIT quotients [53,15] (see also [32]) says that the interval (δ, 12 ) ∩Q will be partitioned 
into finitely many (open) intervals, called chambers, on which M(t) stays constant. The 
limits of these intervals are called walls, or critical values t. At such a critical value, 
there are birational maps M(t ± ε) → M(t). The composition M(t − ε) ��� M(t + ε)
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is typically a (generalized) flip, that we will refer to as a wall crossing. Since [53,15] a 
significant number of applications of VGIT to moduli problems have appeared in the 
literature. Most relevant for us are [22], [14], and [7] from which we borrow a number of 
techniques and results.

6.2. Main GIT results and structure of the argument

In order to state the main results of the present section, we introduce the following 
tables.

value of tk 1/6 1/4 3/10 1/3 1/3 5/14 3/8 2/5 1/2
k 0 1 2 3 4 5 6 7 8

(6.2.1)

(The equality t3 = t4 is not a misprint.)

type of sing. (4, 0) (3, 1) J4,∞ J3,+ J3,0 E14 E13 E12

tag 0 1 2 3 4 5 6 7
(6.2.2)

Theorem 6.1. Let t ∈ [1/6, 12 ) ∩Q, and let C = V (f2, f4) be a (2, 4) curve which is Nt

semistable (notation as in Subsection 5.2). Let XC → V (f2) be the double cover ramified 
over C. Then every non slc singularity of XC appears in the list in (6.2.2), where notation 
for singularities is as in Section 4. More precisely, letting k ∈ {0, . . . , 7}, the following 
holds:

(1) If t = tk, then every singularity of XC has tag at least k.
(2) If tk < t < tk+1, then every singularity of XC has tag at least k + 1.

In particular, if 2/5 < t < 1/2, then every surface parametrized by M(t) has slc singu-
larities, and hence we have a regular period map Φ: M(t) → F ∗.

Theorem 6.2. The critical slopes of the VGIT for M(t) in the interval (δ, 12 ) ∩ Q are 
given by the tk’s appearing in (6.2.1), with the exclusion of t8 = 1/2. Hence for k ∈
{0, . . . , 7} \ {3} it makes sense to let M(tk, tk+1) := M(t) for tk < t < tk+1 (in addition, 
recall that M(δ, 1/6) ∼= M). The VGIT for M(t) gives the sequence of birational maps

M∼=M(δ, 16 ) M( 1
6 , 14 ) ··· M(tk−1,tk) M(tk,tk+1) ··· M( 2

5 , 12 )

Φ

M( 1
6 ) M( 1

4 ) M(tk) M( 2
5 ) M(1/2)

(6.2.3)

where each dotted arrow denotes a flip, and each solid arrow is a small contraction, with 
the exception of M(1 , 1 ) → M(1 ) which is a divisorial contraction, and M(δ, 1 ) → M(1 )
6 4 6 6 6
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which is an isomorphism. Furthermore, the following holds. For a critical value tk, let 
Σ−(tk) ⊂ M(tk−1, tk) (if k = 0, we mean {[4C]} ⊂ M(δ, 1/6) where C is a smooth 
conic) and Σ+(tk) ⊂ M(tk, tk+1) be the exceptional loci of M(tk−1, tk) → M(tk) and 
M(tk, tk+1) → M(tk) respectively. Then Σ−(tk) is the strict transform of Wk ⊂ M for 
the birational map M ��� M(tk−1, tk) (if k = 0 we mean the inverse image of W0), and 
Σ+(tk) is the strict transform of Zk+1 ⊂ F ∗ for k �= 4, and of Z4 ⊂ F ∗ for k = 4, for 
the birational map F ∗ ��� M(tk, tk+1).

Remark 6.3. The value t = 1
2 is also a critical value, the proof is in Subsection 7.3.

Remark 6.4. At t = 1
3 , (the strict transform of) the 4 dimensional locus W4 ⊂ M is 

replaced by (the strict transform of) the codimension 4 locus Z4 ⊂ F ∗. At t = 1
3 , the 

center of the flip is the curve parametrizing equivalence classes of (2, 4) curves

V (x0x2 + x2
1, x0x

3
3 + 2αx1x2x

2
3 − βx3

2x3),

i.e. the set of [α, β] ∈ WP (2, 1). Moreover W4 and Z4 are birationally fibered over it. 
The special case, [α, β] = [1, 1] morally corresponds to (an undefined) W3, but we have 
avoided defining W3 in Definition 4.10, because this stratum is flipped together with 
W4. Similarly, the undefined Z5 is “hidden” in Z4. This behavior is explained by the 
properties of automorphic forms on F (N) studied in [36].

Before stating the last main result of the present section, we recall that

p(t) : M(t) ��� F ∗ (6.2.4)

is the (birational) period map.

Proposition 6.5. For t ∈ (1/6, 12 ] ∩ Q, the period map p(t) is an isomorphism in codi-
mension 1.

The proof of Theorem 6.1 is in Subsection 6.5, the proof of Theorem 6.2 and Proposi-
tion 6.5 is in Subsection 6.7. Here we outline the main ingredients in the proofs. Similar 
methods have previously occurred in the GIT analysis associated to the Hassett-Keel 
program (see esp. [22] and [6]).

Outline of the proof of the main results. Step (1): We compute a set of potential critical 
values tk for the VGIT M(t) and the corresponding potential critical curves C∗

k , listed 
in Table 2. If t is a critical value, then there exists a curve with C∗ stabilizer that is Nt

semistable but not Nt±ε semistable. Based on this observation, we give in Subsection 6.3
a straightforward algorithm that produces a set of tk’s containing all actual critical 
values, and corresponding curves C∗

k (there is one curve C∗
k up to projectivities for all 

k �= 3, while for k = 3 we get 1 moduli for the C∗
k ’s). The list of potential critical values 
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coincides with the list of critical values in Theorem 6.2, but we will be able to prove that 
C∗

k is Ntk -semistable only at the end of the present section.
Step (2): As always in a GIT analysis, a key rôle is played by the numerical criterion for 
(semi)stability. In particular it allows us to prove that a curve C with a singularity with 
tag k in Table (6.2.2) is Nt-unstable for tk < t, see Proposition 6.11. The desemistabiliz-
ing 1-PS is (conjugated to) the stabilizer of the corresponding curve C∗

k (if k ∈ {0, 1} the 
stabilizer is not 1 dimensional, one has to choose appropriate 1-PS’s of the stabilizers). 
This is the key step in the proof of Theorem 6.1.
Step (3): In order to prove that the tk’s are actual critical values we argue via a basin 
of attraction argument. This means that for each curve C∗

k we study the curves C such 
that lims→0 λ(s)C = C∗

k for some 1-PS in the stabilizer of C∗
k . Each C∗

k lies on a quadric 
V (f2) of rank 3, it has an Am singularity at the vertex of the quadric, it has a point 
in the smooth locus of V (f2) with tag k in (6.2.2), and no other singularities. We show 
that if C is in the basin of attraction of C∗

k and Nt semistable for t < tk, then it has a 
point with tag k, while if it is Nt semistable for tk < t, then it lies on a quadric Q of 
rank 3, it passes through the vertex of Q and near the vertex it is of the same type as 
C∗

k . Theorem 6.2 is a straightforward consequence of this result. �
6.3. Potential critical values and potential critical curves

By general results on VGIT ([53], [15]; see also [32]) there exists a finite set {ti} ⊂
(δ, 1/2) ∩Q of critical values (or walls) for the VGIT M(t). (Recall that in Subsection 
5.2 we have chosen a rational δ ∈ (0, 1/6) in order to define our VGIT; in the end the 
choice of δ will make no difference.) A point t0 ∈ (δ, 1/2) ∩Q is a critical value if for all 
sufficiently small ε ∈ Q+, the following holds (e.g. [32, §3.2.1])

Pss(Nt0−ε) ∩ Pss(Nt0+ε) � Pss(Nt0). (6.3.1)

We let Pss(Nt0)new ⊂ Pss(Nt0) be the complement of the left hand side of (6.3.1). 
Notice that Pss(Nt0)new is a closed PGL(4)-invariant subset of Pss(Nt0), and that all its 
points are strictly semistable (semistable but not stable) because Ps(Nt0) ⊂ Ps(Nt0±ε).

Now let x ∈ Pss(Nt0)new. It follows from the results recalled above that there is a 
unique closed PGL(4)-orbit in the closure of the orbit PGL(4) · x in Pss(Nt0)new, and 
that if x∗ belongs to such a closed orbit, then its stabilizer is a reductive group (cf. 
Matsushita’s criterion) of strictly positive dimension. In particular, x∗ is stabilized by 
a 1-PS λ. In other words the changes of stability are associated to geometric objects 
stabilized by (at least) a C∗ (N.B. a similar idea occurs in [4]).

Based on this observation, we will write down a finite subset of (δ, 1/2) containing the 
set of critical values. The numbers in our list are critical values, but before we are in a 
position to prove that statement, they will be called potential critical values. Moreover, 
for each potential critical value ti we will give a subset of Pss(Nti) containing all elements 
of Pss(Nt0)new stabilized by a 1-PS - the elements of that subset (or any point in the 



38 R. Laza, K. O’Grady / Advances in Mathematics 383 (2021) 107680
Table 2
Potential critical values for the VGIT M(t).
k tk Critical curve C∗

k = V (f2, f4) 1-PS Sing. at p Type of C∗
k at v

0 1
6 V (q, x4

3) (1, α, 2α − 1,−3α) 4×(conic) v /∈ C∗
k

1 1
4 V (q, x3

3x1) (1, α, 2α − 1,−3α) 3×(conic) A1

2 3
10 V (q, x0x

3
3 + x2

2x
2
3) (7, 3,−1,−9) J4,∞ A2

3 1
3 V (q, x0x

3
3 + 2x1x2x

2
3 − x3

2x3) (3, 1,−1,−3) J3,∞ 2×(twisted cubic)

4 1
3 V (q, x0x

3
3 + 2αx1x2x

2
3 − βx3

2x3) (3, 1,−1,−3) J3,0 A3

5 5
14 V (q, x0x

3
3 + x4

2) (17, 5,−7,−15) E14 A4, CvC
∗
k = 2Tv(L)

6 3
8 V (q, x0x

3
3 + x1x

2
2x3) (11, 3,−5,−9) E13 A5, C∗

k ⊃ L

7 2
5 V (q, x0x

3
3 + x1x

3
2) (4, 1,−2,−3) E12 A7, C∗

k ⊃ L

same PGL(4) orbit) are the potential critical curves (notice that by Proposition 5.11 any 
element of Pss(Nt0) is in U , i.e. is a (2, 4) c.i. curve).

Proposition 6.6. Keeping notation as above, the set of critical values for the VGIT M(t)
is included in the set (of potential critical values){

1
6 ,

1
4 ,

3
10 ,

1
3 ,

5
14 ,

3
8 ,

2
5

}
. (6.3.2)

For each potential critical value tk, the corresponding potential critical curve(s) C∗
k appear 

in the row corresponding to tk in Table 2. In that table v = [0, 0, 0, 1] ∈ P 3 is the vertex 
of the quadric cone V (q) (with q = x0x2 + x2

1) containing C∗
k , p = [1, 0, 0, 0] ∈ P 3 is the 

unique singular point of C∗
k , CvC

∗
k is the tangent cone to C∗

k at v, and L is a line of 
V (f2) (in fact L = V (x0, x1)).

(In the row corresponding to k = 4, (α, β) and (1, 1) are linearly independent. The 
imprecise notation 2Tv(L) means the tangent cone at v of V (x0, x0x2 +x2

1) = V (x0, x2
1).)

Before proving Proposition 6.6, we go through a few auxiliary results.

Lemma 6.7. Let x = V (f2, f4) ∈ U . If

(1) f2 has rank at most 2, or
(2) there exists a point p ∈ V (f2, f4) which is singular both for V (f2) and V (f4),

then x is t-unstable for all t ∈ (δ, 1/2).

Proof. If (1) holds, the proof is similar to that of [14, Prop. 4.6]. If (2) holds, the proof 
is similar to that of [14, Prop. 4.7]. We omit the details. �
Remark 6.8. We will repeatedly use the function μ(f2, λ) + tμ(f4, λ) to destabilize curves 
C = V (f2, f4) at specific values of t. An attentive reader might notice that this is in 
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fact different from the numerical function μNt ((f2, f4), λ) that we should use in the 
application of the numerical criterion for P with linearization Nt. In fact, μ(f2, λ) +
tμ(f4, λ) is the numerical function (for the linearization η + tξ) on the PE model of P. 
The point is that μNt ((f2, f4), λ) = μ(f2, λ) + tμ(f4, λ) if

lim
t→0

λ(t)V (f2, f4) ∈ U (6.3.3)

(recall that U is a common open subset of PE and P, and that the linearizations agree 
over U , cf. Corollary 5.5). Equation (6.3.3) always holds in the cases that we will consider.

Lemma 6.9. Keeping notation as above, let t0 be a critical value for the VGIT M(t). Let 
C ∈ Pss(Nti)new be a minimal orbit (notice that Pss(Nti) ⊂ U by Proposition 5.11). 
Then, there exists λ 1-PS of PGL(4) stabilizing C and equations C = V (f2, f4) such that

μ(f2, λ) �= 0, μ(f4, λ) �= 0. (6.3.4)

(and μ(·, λ) is minimized by f4 among representatives of f4 (mod f2)).

Proof. Let t0 ∈ (δ, 1/2) be a critical value, and C an associated critical polystable 
orbit. Since, the stability of C changes at t0, it is clear that we can choose a 1-PS λ
and equations C = V (f2, f4) such that μt((f2, f4), λ) = μ(f2, λ) + tμ(f4, λ) and that 
μt((f2, f4), λ) changes sign at t0 �= 0. It follows that conditions (6.3.4) are satisfied. 
Finally, the condition μt0((f2, f4), λ) = 0 means that

lim
s→0

λ(s) · (f2)⊗n ⊗ (f4)⊗m

(for some integers n, m with t0 = m
n ) exists and it is non-zero (compare (6.6.4) below). 

Replacing (f2, f4) by the limit (f2, f4), we get that λ stabilizes V (f2, f4) and that 
(f2, f4) and (f2, f4) are in the same SL(4)-orbit (since the orbit is closed). Finally, 
f2 = lims→0 s

cm · λ(s) · f2 and f4 = lims→0 s
−cn · λ(s) · f4 for appropriate n and m as 

before (and a constant c). We get μ(fk, λ) = μ(fk, λ) for k = 2, 4 (i.e. the monomial 
computing the λ-weight agree for fk and fk). �
Proof of Proposition 6.6. Let t0 ∈ (δ, 1/2) ∩ Q be a critical value for the VGIT M(t), 
and let V (f2, f4) ∈ U(Nt0)ss be a critical curve for t0. As noted above, there exists a 
1-PS λ of SL(4) stabilizing x, i.e. λ(s)f2 = smf2 and λ(s)f4 ≡ snf4 (mod f2) for some 
m, n. Replacing f4 by a suitable multiple of f2, we may assume that λ(s)f4 = snf4. Since 
x is Nt0 -semistable, λ acts trivially on the fiber of OP(Nt0) over x, i.e.

μ(f2, λ) + t0μ(f4, λ) = 0. (6.3.5)

(Notice that μ(f2, λ) = m and μ(f4, λ) = n, where m, n are as above.) By Lemma 6.9
we know that (6.3.4) holds. Since a smooth quadric is semistable, it follows that f2 is 
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degenerate. On the other hand, we may suppose f2 has rank at least 3 by Lemma 6.7, 
and hence it has rank equal to 3. A straightforward argument shows that there exist 
coordinates (x0, . . . , x3) on C4 such that

λ(s) = diag(sr0 , . . . , sr3), f2 = x0x2 + x2
1.

Since λ(s)f2 = smf2, we have

2r1 = r0 + r2.

It follows that

3r1 + r3 = 0

because r0 + . . . + r3 = 0. By interchanging λ and λ−1, we can assume r1 ≥ 0 ≥ r3. 
Interchanging the variables x0 and x2, we can assume r0 ≥ r1 = r0+r2

2 ≥ r2 (in particular, 
r0 > 0). At this point we may rescale the ri’s so that r0 = 1 (we will get a virtual 1-PS, 
it makes no difference as far as our proof is concerned), and we get r0 = 1, r1 = α, 
r2 = 2α− 1, r3 = −3α, where α ∈ [0, 1] ∩Q. Thus we let λα be the virtual 1-PS

λα(s) := diag(s, sα, s2α−1, s−3α), α ∈ [0, 1] ∩Q. (6.3.6)

Consider separately the two cases:

(1) f4 is a multiple of a monomial.
(2) f4 is not a multiple of a monomial.

Suppose that Item (1) holds. The numerical function μ(f4, λα) is a polynomial in α of 
degree 1:

μ(f4, λα) = cα + d, c, d ∈ Q, c �= 0. (6.3.7)

We are assuming that (6.3.5) holds for a certain t0 ∈ [0, 1/2] ∩ Q and λ = λα0 . Since 
μ(f2, λα) = −2α, it follows that c > 0 and d = 0. In fact, if d = 0 and c ≤ 0, then 
clearly (6.3.5) cannot hold for t0 > 0, and if d �= 0, then there exist (many!) values of 
α ∈ [0, 1] ∩Q with the property that μ(f2, λα) +t0μ(f4, λ) < 0 or μ(f2, λα) +t0μ(f4, λ) >
0, i.e. (after reparametrization, if λα is a virtual 1-PS) λα fixes V (f2, f4) and acts non 
trivially on the fiber of OP(Nt0) over V (f2, f4). That is a contradiction because V (f2, f4)
is assumed to be Nt0-semistable. This proves that c > 0 and d = 0. A straightforward 
computation then shows that, after rescaling, f4 ∈ {x4

3, x1x
4
3, x

2
1x

2
3, x0x2x

2
3}. The critical 

value for f4 = x4
3 is t0 = 1/6, the critical value for f4 = x1x

3
3 is t0 = 1/4, while 

f4 ∈ {x2
1x

2
3, x0x2x

2
3} is impossible, because of Lemma 6.7.
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Now suppose that Item (2) holds. Thus in the expansion of f4 there are two (at 
least) monomials xi0

0 . . . xi3
3 and xj0

0 . . . xj3
3 with non-zero coefficients. Let kl = il − jl for 

l = 0, . . . , 3. Since λ(s)f4 = snf4 for some n, we have

k0 + αk1 + (2α− 1)k2 − 3αk3 = 0. (6.3.8)

The above equation determines α, and hence we get t0 upon replacing λ by λα in (6.3.5), 
and solving for t0. We get the potential critical values in (6.3.2) other than 1/6 by listing 
all couples of degree 4 monomials and going through the steps described above (or 
programming a computer to do it in our place). Once we have the potential critical values, 
it is clear how to compute the potential critical curves associated to each (potential) 
critical value. �
6.4. Relations between singularities of C and Nt-(semi)stability

The following proposition is an easy adaptation to the case of singular quadrics of 
some of the content of Proposition 3.2.

Proposition 6.10. Let C ∈ U , and assume that C has consecutive triple points at p, and 
that it has a significant limit singularity at p. Let Q be the unique quadric containing C. 
Suppose that Q is a quadric cone, and that it is smooth at p. Lastly, let t ∈ (δ, 1/2), and 
suppose that C is Nt-semistable. Then the tangent cone to C at p is not equal to 3Tp(L), 
for L the unique line in Q through p. �

We are now able to complete Step (2) of the proof of Theorem 6.2.

Proposition 6.11. Let C ∈ U , and let p ∈ C be a point contained in the smooth locus of the 
unique quadric containing C. Suppose that C has a singularity at p appearing in (6.2.2), 
with tag k. Then C is Nt-unstable for t ∈ (tk, 1/2], and it is Nt-desemistabilized by a 
1-PS conjugated to the one appearing in the row of Table 2 with index k.

Proof. Let us assume that multp(C) = 4, i.e. we are in one of the first two cases in 
Table 2. We may choose homogeneous coordinates [x0, . . . , x4] so that p = [1, 0, 0, 0] and 
C = V (f2, f4) where

f2 = x0x2 + x2
1 + ax2

3, a ∈ C, f4 ∈ C[x1, x2, x3]4. (6.4.1)

In fact, choose coordinates so that f2 is as above, and let C = V (f2, f̃4). Then, since 
multp(C) = 4, we can add a suitable multiple of f2 to f̃4 so that we get a quartic 
polynomial in x1, x2, x3. Choose affine coordinates xi/x0 around p, i.e. set x0 = 1. 
Then (x1, x3) are local coordinates on V (f2) centered at p, and we have an embedding 
Cp(C) ⊂ A2 as the cone V (f4(x1, 0, x3)). It follows that
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(1) if Cp(C) = 4A then in the generic case we may make another change of coordinates 
so that

f4 = x4
3 + x2g3, g3 ∈ C[x1, x2, x3]3,

(2) if Cp(C) = 3A + B (with A �= B) then in the generic case we may make another 
change of coordinates so that

f4 = x3
3(cx3 + x1) + x2g3, c ∈ C, g3 ∈ C[x1, x2, x3]3.

Since the locus of Nt-unstable points is closed, it will suffice to prove Nt-unstability 
if (1) or (2) above holds. Let λα be the virtual 1-PS in (6.3.6) with α ≤ 1/5. Then the 
exponents are ordered as follows:

1 ≥ α ≥ −3α ≥ 2α− 1. (6.4.2)

Now suppose that (1) holds. Then

μ(f2, λα) + tμ(f4, λα) = 2α + tmax{−12α, 5α− 1}. (6.4.3)

Let 0 < α ≤ 1/17. Then μ(f2, λα) + tμ(f4, λα) = 2α(1 − 6t), and hence it is strictly 
negative for t > 1/6. Since λα(s)f2 = s2αf2, this proves that C is Nt-unstable if t ∈
(1/6, 1/2] ∩Q, see Remark 6.8.

Next suppose that (2) holds. Then

μ(f2, λα) + tμ(f4, λα) = 2α + tmax{−8α, 5α− 1}. (6.4.4)

Let 0 < α ≤ 1/13. Then μ(f2, λα) + tμ(f4, λα) = 2α(1 − 4t), and hence it is strictly 
negative for t > 1/4. Since λα(s)f2 = s2αf2, this proves that C is Nt-unstable if t ∈
(1/4, 1/2] ∩Q.

Now we suppose that the singularity of C at p appears in one of the remaining rows 
of Table 2 (the fifth column). By Lemma 4.7, we may choose homogeneous coordinates 
[x0, . . . , x4] so that p = [1, 0, 0, 0] and C = V (f2, f4) where

f2 = x0x2 + x2
1 + ax2

3

f4 = x0x
3
3 + x1g3(x2, x3) + g4(x2, x3) (6.4.5)

Let λ be the 1-PS appearing in Table 2 on the corresponding row. An elementary com-
putation shows that if t > tk, then μ(f2, λ) + tμ(f2, λ) < 0, and hence C is Nt-unstable 
because λ(s)f2 = s2r1f2, where λ = diag(r0, r1, r2, r3). �
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6.5. Proof of the first main result

In the present subsection we prove Theorem 6.1. The following key remark (which 
follows from Arnold’s results in Subsection 4.2) will be useful.

Remark 6.12. A non slc singularity which is an arbitrary small deformation of a singu-
larity appearing in (6.2.2) is again a singularity appearing in (6.2.2).

Proof of Theorem 6.1. Let us prove that Item (1) holds for k = 0. Let C be N1/6-
semistable. By the classification of potential critical values of the VGIT M(t), i.e. Propo-
sition 6.6, either C is N1/6−ε-semistable, or C ∈ Pss(N1/6)new. In the former case C
sits on a smooth quadric, and defines a semistable point of M by Theorem 5.6, hence 
Item (1) holds by Corollary 4.9. In the latter case, the closure of the orbit of C contains 
the curve C∗

0 in Table 2. Since C is a quadruple conic, Item (1) follows from Remark 6.12.
Let us prove that Item (2) holds for k = 0. Let C be Nt-semistable, where 1/6 <

t < 1/4. By Proposition 6.6, either C is N1/6−ε-semistable, or C ∈ Pss(N1/6)new. Thus, 
every non slc singularity of C appears in (6.2.2). Moreover, by Proposition 6.11 C is not 
a quadruple conic. This proves that Item (2) holds for k = 0.

Let k0 ∈ {1, . . . , 7}, and assume that Items (1) and (2) hold for all 0 ≤ k < k0. We 
prove that Items (1) and (2) hold for k = k0.

(1): Let C be Ntk0
-semistable. Then either C is Ntk0−ε-semistable, or C ∈

Pss(Ntk0
)new. In the former case, Item (1) holds for k = k0 because Item (2) holds 

for k = k0 − 1. In the latter case, the closure of the orbit of C contains the curve C∗
k0

in Table 2 (if k0 = 3 there is more than one choice for C∗
3 ). Since the unique non slc 

singularity of the curve in Table 2 has tag k0, Item (1) holds by Remark 6.12.
(2): Let C be Nt-semistable, where tk0 < t < tk0+1. By Proposition 6.6, either C is 

Ntk0−ε-semistable, or C ∈ Pss(Ntk0
)new. In the former case, Item (2) holds for k = k0

because Item (2) holds for k = k0 − 1. In the latter case, arguing as above, we get that 
the non slc singularities of C have tag at least k0. On the other hand C does not have 
singularities with tag k0 by Proposition 6.11. �
6.6. Basin of attraction for the potential semistable orbits

We recall the following general VGIT behavior: assume that x changes stability (say 
goes from t-semistable to t-unstable) at some critical slope t (or wall). Then there exist 
some x∗ which gives a minimal orbit at t such that G · x ⊃ G · x∗. As always, the orbit 
closures can be tested by 1-PS subgroups. This leads to the notion of basin of attraction, 
which plays an important role in the GIT analyses related to the Hassett-Keel program 
(e.g. [22]).

Let x∗ ∈ P and t ∈ (δ, 1/2) ∩Q; we set

GNt
(x∗) := {g ∈ SL(4) | g(x∗) = x∗ and g acts trivially on the fiber of Nt at x∗}.

(6.6.1)
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Definition 6.13. Let x∗ ∈ P, and let t ∈ (δ, 1/2) ∩Q. Suppose that λ is a 1-PS of SL(4)
stabilizing x∗ and acting trivially on the fiber of Nt at x∗ (the last hypothesis is satisfied 
if x∗ is Nt-semistable). The λ-basin of attraction of x∗ is equal to

Aλ(x∗) = {x ∈ P | lim
s→0

λ(s) · x = x∗}.

The basin of attraction of x∗ is equal to

A(x∗) = {x ∈ P | lim
s→0

λ(s) · x = x∗ for some 1-PS λ of GNt
(x∗)}.

Remark 6.14. Suppose that x ∈ Aλ(x∗), and let x̃ be a non zero element of the fiber of 
Nt at x. Then, since the action of λ on the fiber of Nt at x∗ is trivial, lims→0 λ(s)x̃ exists 
and is a non zero element of the fiber of Nt at x∗.

6.6.1. Transition at t = 1/6
Let C∗ = V (f2, f4), where

f2 = x0x2 + x2
1, f4 = x4

3. (6.6.2)

Proposition 6.15. Keep notation as above, and let C ∈ Pss(Nt) be in the basin of attrac-
tion of C∗. The following hold:

(1) If t ∈ (δ, 1/6) ∩Q, then C has a point p of multiplicity 4, belonging to the smooth locus 
of the unique quadric containing C, and such that Cp(C) = 4A, i.e. the singularity 
of C at p is as in the first row of Table 2.

(2) If t ∈ (1/6, 1/4) ∩Q then C = Q ∩ S, where Q is an irreducible quadric, and S is a 
quartic surface not containing singular points of Q.

Proof. For α ∈ [0, 1] ∩Q, let λα be the virtual 1-PS of SL(4) given by

λα(s) = (s, sα, s2α−1, s−3α). (6.6.3)

Every virtual 1-PS fixing C∗ is equal to λα for some α ∈ [0, 1] ∩Q. Thus C ∈ Aλ±1
α

(C∗)
for some α ∈ [0, 1] ∩Q.

λα-basin of attraction of C∗: We determine which (2, 4)-curves C = V (f2+f ′
2, f4+f ′

4)
(where f ′

d ∈ C[x0, . . . , x3]d) are in the λα-basin of attraction of C∗ (Nt-semistable points 
of P are actual (2, 4) curves by Proposition 5.11). The fiber of OP(N1/6)⊗−6 at C is 
identified with (f2 +f ′

2)⊗6 ⊗ (f4 +f ′
4), and we must determine for which (f ′

2, f
′
4) we have

lim
s→0

λα(s)
(
(f2 + f ′

2)⊗6 ⊗ (f4 + f ′
4)
)

= f⊗6
2 ⊗ f4. (6.6.4)

(See Remark 6.14.) Now
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λα(s)
(
(f2 + f ′

2)⊗6 ⊗ (f4 + f ′
4)
)

= (f2 + s2αλα(s)f ′
2)⊗6 ⊗ (f4 + s−12αλα(s)f ′

4), (6.6.5)

and hence C is in the basin of attraction of C∗ for λα if and only if

lim
s→0

s2αλα(s)f ′
2 = 0, lim

s→0
s−12αλα(s)f ′

4 = 0. (6.6.6)

Now notice that the ordering of the weights of λα changes as we cross the value α = 1/5. 
In fact

1 ≥ α ≥ 2α− 1 ≥ −3α if 1/5 ≤ α, (6.6.7)

1 ≥ α ≥ −3α ≥ 2α− 1 if 0 ≤ α ≤ 1/5. (6.6.8)

It follows that

f ′
2 ∈

{
〈x0x3, x1x2, x1x3, x

2
2, x2x3, x

2
3〉 if 1/5 < α,

〈x1x2, x1x3, x
2
2, x2x3, x

2
3〉 if 0 ≤ α ≤ 1/5.

(6.6.9)

Thus p = [1, 0, 0, 0] is a smooth point of Q′ := V (f2 + f ′
2), and local parameters on Q′

around p are (x1|Q′ , x3|Q′). Moreover in OQ′,p the following holds:

x2|Q′ ≡
{
bx3|Q′ (mod m2

p), b ∈ C if 1/5 < α,
0 (mod m2

p) if 0 ≤ α ≤ 1/5.
(6.6.10)

On the other hand, if 1/5 ≤ α ≤ 1, then the second equation in (6.6.6) holds if and only 
if f ′

4 = 0, while if 0 ≤ α < 1/5 and it holds for f ′
4, then

f ′
4 = x2P3(x1, x2, x3) + x0x

2
2P1(x1, x2, x3), (6.6.11)

where Pd ∈ C[x1, x2, x3]d. It follows (for all α) that C has multiplicity 4 at p = [1, 0, 0, 0], 
and that the tangent cone at p is equal to 4V (x3).

λ−1
α -basin of attraction of C∗: Let C = V (f2 + f ′

2, f4 + f ′
4). Arguing as above, we see 

that C is in the basin of attraction of C∗ for λ−1
α if and only if

lim
s→0

s−2αλα(s−1)f ′
2 = 0, lim

s→0
s12αλα(s−1)f ′

4 = 0. (6.6.12)

It follows that

f ′
2 ∈

{
〈x2

0, x0x1〉 if 1/5 ≤ α ≤ 1,
〈x2

0, x0x1, x0x3〉 if 0 ≤ α < 1/5,
(6.6.13)

and hence V (f2 +f ′
2) has rank 3. Moreover p /∈ V (f4 +f ′

4); in fact C = V (f2 +f ′
2, f4 +f ′

4)
is projectively equivalent to curves arbitrarily close to C∗ = V (f2, f4), and since C∗ does 
not contain the vertex of V (f2), it follows that C does not contain the vertex of V (f ′

2).
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Let us prove Item (1). If t ∈ (δ, 1/6), then V (f2) is a smooth quadric, and hence C
is in the λα-basin of attraction of C∗. Then Item (1) holds by Proposition 6.10. Now 
assume that t = 1/6. If C is in the λα-basin of attraction of C∗, the same argument 
applies. Thus we may assume that C is in the λ−1

α -basin of attraction of C∗, and hence 
V (f2) is singular. By Lemma 6.7 the rank of f2 is equal to 3, and hence there exist 
coordinates (x0, . . . , x3) such that f2 = x0x2 + x2

1. Let λ(s) = diag(s−1, s−1, s−1, s3). 
Then lims→0 λ(s)f⊗6

2 ⊗ f4 = f⊗6
2 ⊗ f4(0, 0, 0, x3), and we are done.

Let us prove Item (2). Since curves in the λα-basin of attraction of C∗ are Nt-
semistable for t ≤ 1/6, it follows from general results that C is in the λ−1

α -basin of 
attraction of C∗. Thus Item (2) holds by the analysis carried out above. �
6.6.2. Transition at t = 1/4

Let C∗ = V (f2, f4), where

f2 = x0x2 + x2
1, f4 = x3

3x1. (6.6.14)

Proposition 6.16. Keep notation as above, and let C ∈ Pss(Nt) be in the basin of attrac-
tion of C∗. Let Q be the unique quadric containing C. The following hold:

(1) If t ∈ (1/6, 1/4) ∩Q, then there exists a point p ∈ C of multiplicity 4, with tangent 
cone Cp(C) = 3A +B (A �= B), and such Q is smooth point at p, i.e. the singularity 
of C at p is as in the second row of Table 2.

(2) If t ∈ (1/4, 3/10) ∩Q then Q is a quadric cone (of rank 3 by Lemma 6.7), C contains 
the vertex v of Q, and has an A1 singularity at v.

Proof. The arguments are similar to those of Proposition 6.15, we omit the details. �
6.6.3. Transition at the remaining potential critical values

Proposition 6.17. Let k ∈ {2, . . . , 6, 7}, and let C∗
k be as in the row of Table 2 corre-

sponding to k. Suppose that C ∈ Pss(Nt) is in the basin of attraction of C∗
k . Then the 

following hold:

(1) If t ∈ (tk−1, tk) ∩Q, there exists a point p ∈ C such that the unique quadric containing 
C is smooth at p and the singularity of C at p is of the same type as the unique 
singularity of C∗

k away from the vertex of V (f2).
(2) If t ∈ (tk, tk+1) ∩ Q, the unique quadric containing C has rank 3, and its vertex v

is contained in C. Moreover, if k �= 3, then C has the same type at v as C∗
k has at 

the vertex of V (f2). If k = 3, then C has a singularity at v of type Al, where l ≥ 3
(possibly l = ∞).
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Proof. Let αk be as follows:

k 2 3 4 5 6 7
αk

3
7

1
3

1
3

5
17

3
11

1
4

(6.6.15)

Then λαk
is the component of the identity in the stabilizer of C∗

k (consult Table 2). Thus 
C = V (f2 + f ′

2, f4 + f ′
4) ∈ Pss(Nt) is either in the λαk

-basin of attraction of C∗
k or in 

the λ−1
αk

-basin of attraction of C∗
k .

λαk
-basin of attraction of C∗

k : We will prove that

if C is in the λαk
-basin of attraction of C∗

k , then Item (1) holds. (6.6.16)

Noting that tk = 2αk/(9αk − 1), we get that C is in the λαk
-basin of C∗

k if and only if

lim
s→0

s2αkλαk
(s)f ′

2 = 0, lim
s→0

s−(9αk−1)λαk
(s)f ′

4 = 0. (6.6.17)

Since 1/5 < αk, the first equation of (6.6.17) gives that the first alternative in (6.6.9)
holds. In particular p := [1, 0, 0, 0] is a smooth point of the quadric V (f2 + f ′

2), local 
coordinates on Q′ centered at p are

x := x3|Q′, y := x1|Q′.

Moreover x2|Q′ = ϕ, where ϕ is an analytic function such that ϕ ≡ bx (mod m2
p) for 

some b ∈ C (see (6.6.10)). Thus a local equation of C ⊂ Q′ centered at p is given by

f4(1, y, ϕ(x, y), x) + f ′
4(1, y, ϕ(x, y), x) = 0.

Let us prove that the singularity of C at p is as in the row of Table 2 corresponding to k.
We assign weights to x and y as follows:

wtk(x) := 1
3 , wtk(y) := 1 − αk

3(3αk + 1) . (6.6.18)

Notice the following:

(1) The weights of x and y in (6.6.18) are equal to the weights of x and y in Table 1
corresponding to the singularity type listed in Table 2 (on the row with index k) 
- this is a straightforward computation. (Warning: the index k in Table 1 has no 
relation to the index k in Table 2.)

(2) ϕ(x, y) = y2 + ψ(x, y) (see (6.6.10)) where all monomials appearing in ψ(x, y) have 
weight greater than wtk(y2) - this because 2 wtk(y) < wtk(x).
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One easily checks that f4(1, y, ϕ(x, y), x) = h(x, y) +g(x, y) where h(x, y) is homogeneous 
of weight 1 and all monomials appearing in g(x, y) have weight strictly greater than 1, 
and moreover h(x, y) is equal to the leading term appearing in Table 1 on the row with 
index k (with the exception of the case k = 3 in Table 2, where it is equal to the leading 
(and “unique”) term of the J3,∞ singularity).

Thus, by Theorem 4.2, in order to prove (6.6.16), it suffices to check that all monomials 
appearing in f ′

4(1, y, ϕ(x, y), x) have weight strictly greater than 1. Every such monomial 
is obtained from a monomial xi0

0 xi1
1 xi2

2 xi3
3 appearing in f ′

4 by setting x0 = 1, x1 = y, 
x2 = ϕ(x, y) and x3 = x. By item (2) above it suffices to check that the weight of 
xi3yi1+2i2 is strictly greater than 1, i.e. that

(i1 + 2i2)(1 − αk) + i3(3αk + 1) > 3(3αk + 1).

The above inequality follows from the second equation in (6.6.17).

λ−1
αk

-basin of attraction of C∗
k : We will prove that

if C is in the λ−1
αk

-basin of attraction of C∗
k , then Item (2) holds. (6.6.19)

First C is in the λ−1
αk

-basin of C∗
k if and only if

lim
s→0

s−2αkλαk
(s−1)f ′

2 = 0, lim
s→0

s9αk−1λαk
(s−1)f ′

4 = 0. (6.6.20)

Since 1/5 < αk it follows from (6.6.13) that there exist c, d ∈ C such that

f2 + f ′
2 = x0(cx0 + dx1 + x2) + x2

1. (6.6.21)

Thus V (f2 + f ′
2) has rank 3, and its singular point is v = [0, 0, 0, 1]. In order to examine 

the consequences of the second equation in (6.6.20), we introduce some notation. Given 
a 1-PS λ(s) = diag(sr0 , . . . , sr3) we define wtλ(g) for 0 �= g ∈ C[x0, . . . , x3] as

wtλ(g) := min{wtλ(monomial in g)}, (6.6.22)

where wtλ of a monomial is given by (5.3.2). Then the second equation in (6.6.20) is 
equivalent to

wtλαk
(f ′

4) > 1 − 9αk. (6.6.23)

Inequality (6.6.23) gives that v is a singular point of V (f ′
4). Since v is a smooth point 

of V (f4), with tangent plane V (x0), it follows that v is a smooth point of V (f4 + f ′
4), 

with tangent plane V (x0). Now set x3 = 1, and hence (x0, x1, x2) are local coordinates 
in a neighborhood of v in P 3; by the Implicit Function Theorem, the restrictions of 
x1, x2 to in V (f4 + f ′

4) are local coordinates in a neighborhood of v in V (f4 + f ′
4). 

Abusing notation, we use the same symbol for x1, x2 and their restrictions. There exists 
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an analytic function ϕ of two variables defined in a neighborhood of (0, 0) such that 
x0 = ϕ(x1, x2) on V (f4 +f ′

4). By (6.6.21), a local equation of the plane singularity (C, v)
is given by

x2
1 + ϕ(x1, x2)(cϕ(x1, x2) + dx1 + x2) = 0. (6.6.24)

Define

wtm(x1) := 1/2, wtm(x2) := 1/(m + 1), (6.6.25)

and extend it to a weight function on non zero elements of C[[x1, x2]] by defining wtm(g)
as the minimum of weights of monomials appearing in g. In order to prove (6.6.19) it 
suffices to check that

wtm(ϕ) ≥ m

m + 1 , (6.6.26)

and the extra condition involving a line L ⊂ V (f2 + f ′
2) if k ∈ {5, 6, 7}.

Since f4(ϕ(x1, x2), x1, x2, 1) + f ′
4(ϕ(x1, x2), x1, x2, 1) = 0, we get that

wtm(ϕ) = wtm(f4(0, x1, x2, 1) + f ′
4(0, x1, x2, 1)). (6.6.27)

A straightforward computation shows that wtm(f4(0, x1, x2, 1)) = m/(m + 1). Thus it 
suffices to check that

wtm(f ′
4(0, x1, x2, 1)) ≥ m

m + 1 . (6.6.28)

This follows from the values in Table (6.6.29) - notice that it suffices to consider mono-
mials xi3

3 xi2
2 xi1

1 with i1 ∈ {0, 1}, because if i1 ≥ 2 the associated weight is at least 1. (It 
helps to notice that αk’s are decreasing.)

monomial xI x2
3x

2
2 x2

3x2x1 x3x
3
2 x3x

2
2x1 x4

2 x3
2x1

wtλαk
(xI) −2αk − 2 −3αk − 1 3αk − 3 2αk − 2 8αk − 4 7αk − 3

wtλαk
(xI) > 1 − 9αk iff no k k = 2 k = 2 k ∈ {2, . . . , 5} k ∈ {2, 3, 4} k ∈ {2, . . . , 6}

(6.6.29)

Lastly we prove that, if k ∈ {5, 6, 7}, the extra condition involving a line L ⊂ V (f2 + f ′
2)

holds. First notice that L := V (x0, x1) is a line contained in V (f2 + f ′
2). If k = 5 the 

condition CvC = 2Tv(L) holds by the local equation of C, see (6.6.24). If k ∈ {6, 7} the 
line L belongs to V (f4) by the computations above.

Let us finish the proof of the proposition. Suppose that t ∈ (tk, tk+1). By the analysis 
above, either the thesis of Item (1) or the thesis of Item (2) holds. The former is excluded 
by Proposition 6.11.
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Now suppose that t ∈ (tk−1, tk). By the analysis above, either the thesis of Item (1) 
or the thesis of Item (2) holds. Assume that the latter holds. By the analysis of the 
λ±
αk

-basin of attraction of C∗
k , it follows that there exist Nt semistable curves C, with 

tk < t, which are in the basin of attraction of C∗
k for which the thesis of Item (1) holds. 

This contradicts Proposition 6.11. Hence the thesis of Item (1) holds. �
6.7. Proof of the remaining main results of the section

Proof of Theorem 6.2. Let us prove that the critical values for the VGIT M(t) in the 
interval (δ, 1/2) ∩ Q are given by the tk’s appearing in (6.2.1), with the exclusion of 
t8 = 1/2. By Proposition 6.6, every critical value is equal to one of the tk’s. Hence 
it remains to prove that tk is a critical value, for each k ∈ {0, . . . , 7}. There exists 
an N1/6−ε-semistable (4, 4) curve Ck on a smooth quadric Q, such that the double 
cover XCk

→ Q ramified over Ck has a non slc singularity with tag k and no non slc 
singularity with tag strictly less than k. This is immediate for k ∈ {0, 1}, and it follows 
from Lemma 4.5 for k ∈ {2, . . . , 7}. (The argument would work equally well if we knew 
that the curve C∗

k in Table 2 is Ntk -semistable, but at this stage we have not yet proved 
this.) By Proposition 6.11 Ck is Nt-unstable for tk < t. Thus it will suffice to show that 
Ck is Nt-semistable for t < tk. Suppose the contrary. Since Ck is N1/6−ε-semistable, there 
exists 0 ≤ k0 < k such that Ck is in the basin of attraction (form the left) of a curve 
projectively equivalent to C∗

k0
. By the results of Subsection 6.6 this implies that Ck has 

a point with tag k0, contradicting our choice of Ck. This proves that Ck is Nt-semistable 
for t < tk, and hence proves that tk is critical value.

It remains to prove that the exceptional loci of M(tk−1, tk) → M(tk) and 
M(tk, tk+1) → M(tk) are as claimed. We have already established the fact that the 
exceptional loci of M(tk−1, tk) → M(tk) are naturally birational to Wk. Specifically, the 
generic point ζk in Wk ⊂ M is Nt stable for t < 1

6 , it becomes unstable for t > tk (cf.
Proposition 6.11), but via the basin of attraction argument, ζk can not become unstable 
before tk. For the exceptional loci of M(tk, tk+1) → M(tk), we note first that the cases 
k = 0, 1 are discussed in detail in Proposition 6.15 and Proposition 6.16. For the cases 
k = 2, 4, the minimal orbit C∗

k at tk has a singularity of type A2 and respectively A3
at the vertex v of the quadric cone containing C∗

k . For the cases k = 5, 6, 7, there is a 
singularity at v of type A4, A5, and A7 respectively, and additionally a line L in special 
position with respect to the curve C∗

k and the singularity at v (see Table 2). As previ-
ously discussed, the exceptional locus Σ+(tk) of M(tk, tk+1) → M(tk) is obtained via the 
basin of attraction of C∗

k . By the arguments given in the previous subsection, it follows 
that the generic point ξk of Σ+(tk) will correspond to a curve having the same type of 
singularity at v (and position of L) as C∗

k . Furthermore, this curve will have at worst 
some additional nodes (imposed by the special position of the line L). The resulting 
conditions are exactly the conditions that have been used to define the loci Zk+1 in F ∗

(see Proposition 2.2). In other words, there are natural rational maps Σ+(tk) ��� Zk+1

(and clearly one-to-one onto the image). To conclude that the two spaces are birational, 
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we note that Zk+1 are irreducible and that Σ+(tk) and Zk+1 have the same dimension. 
As discussed, the index of Z corresponds to the codimension. On the other hand, the 
dimension of Σ+(tk) can be computed as being complementary to that of Σ−(tk), or 
equivalently Wk. (See Remark 6.4 for a discussion of the dimensions in the special case 
t = 1

3 .) �
Proof of Proposition 6.5.

Claim 6.18. Let C = V (f2, f4) be a (2, 4) c.i. curve such that the associated double cover 
is a K3 surface with canonical singularities. Then the following hold:

(1) C is Nt-stable for t ∈ (2/5, 1/2] ∩Q (and hence asymptotic GIT stable).
(2) If in addition V (f2) is smooth along C, then C is Nt-semistable for t ∈ (1/6, 2/5] ∩Q.

Proof. (1): Let t ∈ (2/5, 1/2) ∩ Q. By Theorem 6.1, every point of M(2/5, 1/2)
parametrizes a (polystable) surface with slc singularities, and the regular period map 
Φ: M(2/5, 1/2) → F ∗ is dominant, hence surjective. Thus the fiber of Φ over a point of 
F is a surface with slc singularities, and moreover, if the double cover X → V (f2) rami-
fied over C = V (f2, f4) has slc singularities, then C must be Nt-semistable. On the other 
hand, if the double cover X → V (f2) ramified over C = V (f2, f4) has slc singularities, 
then the automorphism group of C is finite; it follows that such a curve is necessarily 
Nt-stable.

The same argument applies for t = 1/2. In fact, since the map M(2/5, 1/2) → M(1/2)
induced by the Hilbert-Chow morphism is surjective, every point of Pss(N1/2) is repre-
sented by a curve V (f2, f4) which is Nt-semistable for t ∈ (2/5, 1/2) ∩Q.

(2): By the results of Subsection 6.6, more precisely by Item (2) of Proposition 6.15, 
Item (2) of Proposition 6.16, and Item (2) of Proposition 6.17, C is not in the basin of 
attraction (from the right) of any critical value tk with k ∈ {1, . . . , 7}. It follows that C
remains semistable for all t ∈ (1/6, 2/5] ∩Q. �

Motivated by Claim 6.18, we give a definition that will be useful here and also later 
on.

Definition 6.19. Let U0 ⊂ U be the (open) subset parametrizing curves C = V (f2, f4)
such that the associated double cover is a K3 surface with canonical singularities, and 
V (f2) is smooth along C.

Let

M(t)0 := U0//Nt
SL(4). (6.7.1)

Thus M(t)0 is an open subset of M(t). A dimension count shows that
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cod(M(t) \M(t)0,M(t)) ≥ 2. (6.7.2)

Since M(t)0 is contained in the regular locus of the period map p(t), all that remains to 
prove is that the complement of p(t)(M(t)0) in F ∗ has codimension at least 2. By Propo-
sition 2.2, the complement of p(t)(M(t)0) in F is equal to Z2, which has codimension 
2. Since the boundary F ∗ \ F has codimension 17, we are done. �
7. Proof of the main result

7.1. Summary

In the present section, we prove Theorem 1.1. The proofs of Items (i) and (ii) involve 
our GIT models M(t) for t ∈ (1/6, 1/2] ∩Q. Let

p(t) : M(t) ��� F (7.1.1)

be the period map: if C = V (f2, f4) represents a generic stable point x ∈ M(t), then 
p(t)(x) is the period point of the double cover of V (f2) branched over C (a U(2)-
hyperelliptic K3 surface). The key ingredients in our proofs of Items (i)-(ii) are Propo-
sition 6.5 and results about the Picard groups of F and M(t) that we discuss in the 
following subsection.

7.2. Divisor classes on the locally symmetric and GIT models

The locally symmetric variety F = D/Γ is a Q-factorial quasi-projective variety. Let 
Hn and Hh be the nodal and hyperelliptic divisors of F , respectively (see Definition 
1.3.4 in [36]). Informally, Hn is the closure of the locus of periods of U(2)-hyperelliptic 
K3’s which are double covers X → V (f2) ramified over a (2, 4) curve V (f2, f4) which is 
smooth except for a node at a smooth point of V (f2), while Hh is the locus of periods of 
U(2)-hyperelliptic K3’s which are double covers X → V (f2) of a quadric cone ramified 
over a (2, 4) curve with ADE singularities. We recall that λ is the Hodge (or automorphic) 
Q divisor class.

If Z is an algebraic variety, we let Pic(Z)Q := Pic(Z) ⊗Z Q. A Q-Cartier divisor D
on Z determines an element [D] of Pic(Z)Q.

Proposition 7.1 (cf. [36, Sect. 3]). Let F be the period space of U(2)-hyperelliptic K3’s. 
Then

(1) Pic(F )Q = Q[Hn] ⊕Q[Hh], and
(2) 136λ ≡ Hn + 16Hh.

Next, we come to the Picard group of M(t) for t ∈ (1/6, 1/2] ∩Q. Let Pss(Nt) ⊂ P

be the locus of Nt-semistable points. Let U be the parameter space for (2, 4) complete 
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intersection curves in P 3. Then Pss(Nt) ⊂ U by Proposition 5.11. Since U ⊂ PE, it 
makes sense to restrict η and ξ (see (5.1.2)) to Pss(Nt). The restriction of the SL(4)-
linearized ample divisor class Nt to U is isomorphic to (η + tξ)|U . Hence the following 
definition makes sense because of Corollary 5.5.

Definition 7.2. For t ∈ [1/6, 1/2] ∩ Q, let D(t) be the Q-Cartier divisor class on M(t)
obtained by descent from the divisor class (η + tξ)|Pss(Nt).

Remark 7.3. Let t ∈ [1/6, 1/2] ∩ Q. Then D(t) is an ample Q-Cartier divisor class, 
because Nt is ample on P for t ∈ [1/6, 1/2) ∩Q, and by (5.2.5) if t = 1/2.

Proposition 7.4. Let t ∈ (1/6, 1/2) ∩Q, and assume that t is not one of the critical slopes 
for the VGIT M(t) (see Theorem 6.2). Then both η|Pss(Nt) and ξ|Pss(Nt) descend to 
Q-Cartier divisor classes η(t) and ξ(t) on M(t), and Pic(M(t))Q = Qη(t) ⊕Qξ(t).

Proof. One checks easily that PicG(Pss(Nt))Q = Q[η|Pss(Nt)] ⊕Q[ξ|Pss(Nt)]. In order 
to prove that both η|Pss(Nt) and ξ|Pss(Nt) descend to Q-Cartier divisor classes on M(t)
we apply Theorem 2.3 in [16]. One has to check that if C = V (f2, f4) is Nt-polystable, 
then the stabilizer Stab(C) acts trivially on the fiber of η or ξ at C. Since G is a linearly 
reductive group, it suffices to check that any 1-PS λ contained in Stab(C) acts trivially 
on the fiber of η or ξ at C. Now, t is not one of the critical slopes for the VGIT M(t), 
hence μ(f2, λ) = 0 and μ(f4, λ) = 0. The fiber of η at C is identified with (Cf2)∨, and 
the fiber of ξ at C is identified with (Cf4)∨ (mod f2); it follows that λ acts trivially 
both on the fiber of η and of ξ at C. �

Our next task is to compare Q-Cartier divisors on M(t) with the pull-back via p(t)
of Q-Cartier divisors on F . Let U0 ⊂ U be as in Definition 6.19, and let p̃0 : U0 → F

be the (regular) period map.

Lemma 7.5. Let t ∈ (1/6, 1/2] ∩Q. In Pic(U0)Q, we have

p̃∗0Hh = 4η|U0 , p̃∗0Hn = (72η + 68ξ)|U0 . (7.2.1)

Proof. We have

p̃∗0Hh = {([f2], [f̄4]) ∈ U0 | V (f2) is singular},

and

p̃∗0Hn = closure of {([f2], [f̄4]) ∈ U0 | C = V (f2, f4)is singular at a smooth point of V (f2)}.

Since the locus of singular quadrics is a degree 4 hypersurface in |OP3(2)|, the first equality 
in (7.2.1) is clear. The second equality in (7.2.1) is proved by a computation analogous 
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to the one done in [13, Prop. 1.1] for (2, 3) complete intersections in P 3. We omit the 
details. �

For t �= 0, let β(t) = 1−2t
4t .

Proposition 7.6. Let t ∈ (1/6, 1/2] ∩Q. Then p(t)∗(λ + β(t)Δ) is a Q-Cartier divisor on 
M(t), and we have the relation

D(t) = 2tp(t)∗(λ + β(t)Δ). (7.2.2)

Proof. We recall that, since SL(4) has no non trivial characters, Pic(M(t)) injects into the 
group of SL(4)-linearized line bundles on Pss(Nt). Since Pss(Nt) \U0 has codimension 
at least 2 in Pss(Nt), and U0 is smooth, p̃∗(λ +β(t)Δ) extends uniquely to a Q-Cartier 
divisor on Pss(Nt), and moreover it suffices to prove that

(η + tξ)|U0 = 2tp̃∗(λ + β(t)Δ)|U0 . (7.2.3)

Since Δ = 1
2Hh, we have p̃∗Δ|U0 = 2η|U0 by Lemma 7.5. On the other hand, by Propo-

sition 7.1 and by Lemma 7.5,

p̃∗λ|U0 = 1
136 p̃

∗(Hn + 16Hh)|U0 = 1
136(72η + 68ξ + 64η)|U0 = (η + 1

2ξ)|U0 .

Thus,

p̃∗(λ + β(t)Δ)|U0 = (η + 1
2ξ +

(
1
2t − 1

)
η)|U0 = 1

2t(η + tξ)|U0 .

This proves (7.2.3). �
7.3. Proof of Items (i)-(iii) of Theorem 1.1

First we notice that β defines an invertible function [1/6, 1/2] ∩ Q → [0, 1] ∩ Q. In 
fact the inverse is given by

t(β) := 1
4β + 2 . (7.3.1)

Let us prove Item (i). Since D(t) is ample (see Remark 7.3), it follows that it will suffice 
to prove that the period map induces an isomorphism of rings

p(t)∗ : R(F , λ + β(t)Δ) ∼−→ R(M(t), D(t)). (7.3.2)

If β = 1, then t = 1/6, and in that case (7.3.2) has been proved in [36], Prop. 4.0.20. 
More precisely, in that proposition D(1/6) is replaced by an ample L(18), but Pic(M)Q
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has rank one because M = |OP1×P1(4, 4)|/ /Aut(P 1×P 1), and hence D(1/6) is a positive 
multiple of L(18), and (7.3.2) for t = 1/6 follows.

Thus we may assume that t ∈ (1/6, 1/2] ∩Q. Let M(t)0 ⊂ M(t) be as in (6.7.1). The 
period map is regular on M(t)0, and it defines an isomorphism between M(t)0 and its 
image F0 ⊂ F . Moreover

cod(M(t) \M(t)0,M(t)) ≥ 2, cod(F \ F0,F ) ≥ 2. (7.3.3)

In fact, the first inequality is (6.7.2), the second one has been proved in the proof 
of Proposition 6.5. Since F and M(t) are normal varieties, Equation (7.3.2) now follows 
from Proposition 7.6 and (7.3.3).

We have proved Item (i).
In order to prove Items (ii) and (iii) we take the Proj of both sides of (7.3.2), and we 

get an isomorphism

p(t(β))−1 : F (β) ∼−→ M(t(β)). (7.3.4)

Given the above isomorphism, Items (ii) and (iii) follow from Theorem 6.2, except that 
we do not know yet whether β = 1 is a critical value. For this we must show that for 
ε ∈ Q+ small the period map p(t(ε)) : F (t(ε)) ��� F ∗ is not an isomorphism. Suppose 
that it is an isomorphism. Then λ +t(ε)Δ is a Q-Cartier divisor, and since λ is Q-Cartier, 
so is Δ. Thus Hh is Q-Cartier, and this is a contradiction, one knows that Hh is not 
Q-Cartier (e.g. it follows from [39, Cor. 3.5]).

7.4. Proof of Item (iv) of Theorem 1.1

By the discussion above, we have F (ε) ∼= M 
(1

2 − ε′
) ∼= Hilb�0

(2,4)/ /SL(4) (see Theo-
rem 5.6) (with 1

2 − ε′ = t(ε), and 0 < ε, ε′ � 1). Similarly, F ∗ ∼= F (0) ∼= M 
( 1

2
) ∼=

Chow(2,4) / /SL(4). Furthermore, with these identifications, F (ε) → F ∗ is compatible 
with the natural Hilbert-Chow map (see Remark 5.3).

By Proposition 7.4, it follows that F (ε) is Q-factorial with Picard number 2. As 
already noted, F ∗ is not Q-factorial with (the closure of) Hh being a Weil divisor, which 
is not Q-Cartier. By the GIT description, it is clear that F (ε) → F ∗ is a small map 
(e.g. Proposition 6.5). It follows then that F (ε) is isomorphic to the Q-factorialization 
of Looijenga associated to the divisor Hh (see [28, Lemma 6.2]).

8. The structure of the Chow and (asymptotic) Hilbert GIT quotients

8.1. Summary

As previously discussed, the period map induces an isomorphism M(t(β)) ∼= F (β)
for β ∈ [0, 1] ∩Q. The purpose of this section is to discuss the geometric meaning of this 
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isomorphism for β close to 0 (or equivalently t close to 1
2 ). Specifically, we are interested 

in the following diagram:

M(1
2 − ε) ∼= Hilbm�0

(2,4) //SL(4)
∼=

Ψ

F̂ ∼= F (ε)

Π

M(1
2 ) ∼= Chow(2,4) //SL(4)

∼=
F ∗ ∼= F (0)

(8.1.1)

where

i) F ∗ is the Baily-Borel compactification of F , F̂ is Looijenga’s Q-factorialization of 
F ∗, and Π : F̂ → F ∗ is the structure morphism constructed by Looijenga [39],

ii) Hilbm�0
(2,4) / /SL(4) is the GIT quotient of the Hilbert scheme for (2, 4) complete inter-

sections (see Subsubsection 5.3.1 and Theorem 5.6), and similarly Chow(2,4) / /SL(4)
is the Chow quotient. The map Ψ is induced by the Hilbert-Chow morphism,

iii) the horizontal isomorphisms are those of (7.3.4) (i.e. induced by the period map).

8.2. Structure of Looijenga’s Q-factorization F̂

We have already discussed the structure of the Baily-Borel compactification F ∗ in
Subsection 2.4. We recall that while F is Q-factorial, its compactification F ∗ is not. 
For this reason, Looijenga [39] has introduced the semitoric compactifications (that of-
fer common generalization of both Baily-Borel and toroidal compactifications) that for 
appropriate choices give the Q-Cartierizations of the closures of Heegner divisors in F . 
As already used elsewhere in the paper, we denote by F̂ the Q-Cartierization associated 
to the divisor Δ; we have F̂ ∼= F (ε).

By definition, F̂ → F ∗ is a small map, which is an isomorphism over F (recall 
F is Q-factorial). The structure of the Baily-Borel compactification was discussed in
Theorem 2.3. Then, following Looijenga [39], the fibers of F̂ → F ∗ reflect the arithmetic 
structure of the hyperplane arrangement associated to the divisor Δ (or equivalently 
Hh ⊂ F ) at the boundary of the period domain. Explicitly, in our situation the following 
holds.

Proposition 8.1. Let F̂ → F ∗ be the Looijenga Q-factorialization associated to the divi-
sor Hh. Then

i) The dimensions of the pre-images in F̂ of the eight Type II components in F ∗ are 
as given in Table 3.

ii) With the exception of the component labeled D16, the remaining 7 Type II boundary 
components in F̂ are naturally birational to 7 Type II boundary components in the 
GIT quotient for (4, 4) curves in P 1×P 1 (see Proposition 3.9 - the labeling is chosen
compatibly). The geometric meaning is given in Table 3.
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Table 3
The Type II boundary components of F̂ → F∗.
Label Type Dim. in F̂ Geometric Meaning Quartic Case
D16 a 1 double twisted cubic (on the quadric cone) D17

D8 ⊕ E8 a 9 Ẽ8, double line D9 ⊕ E8

D12 ⊕ D4 a 5 double conic D12 ⊕ D5

(E7)2 ⊕ D2 a 3 two Ẽ7 singularities (E7)2 ⊕ D3

A15 ⊕ D1 a 2 double elliptic quartic A15 ⊕ D2

(D8)2 a 1 two skew double lines; smooth quadric (D8)2 ⊕ D1

(E8)2 b 1 two Ẽ8 singularities; smooth quadric (E8)2 ⊕ D1

(D16)+ b 1 double twisted cubic; smooth quadric D16 ⊕ D1

Proof. In [35, Sect. 7], we have analyzed the Q-factorialization F̂ (19) → F (19)∗ for 
quartic surfaces. In particular, we refer to [35, Prop. 7.6] for the computation of the 
dimensions of the boundary components, and to [35, Def. 7.7] and [35, Prop. 7.11] for 
the geometric meaning. The proof for the case of U(2)-hyperelliptic K3’s is essentially 
verbatim. For the reader’s convenience, the last column of Table 3 indicates the analogous 
case for quartic K3 surfaces. As previously indicated (see Remark 2.4), one of the cases 
occurring for quartics does not occur for hyperelliptic quartics. �
8.3. Arithmetic dictates the structure of the Chow and Hilbert quotients

In conclusion, the isomorphisms of (8.1.1), the structure of Baily-Borel compactifica-
tion (Theorem 2.3), and the structure of the Q-factorialization (Proposition 8.1), give 
the following information on the structure of the Chow GIT quotient Chow(2,4) / /SL(4)
and asymptotic Hilbert quotients Hilb�0

(2,4)/ /SL(4):

(1) There are 8 one-dimensional Type II strata in the Chow GIT Chow(2,4) / /SL(4). Ad-
ditionally, there are two Type III points in Chow(2,4) / /SL(4). The union of the Type 
II and III boundary strata is the complement of the ADE locus (as in Claim 6.18) 
in Chow(2,4) / /SL(4).

(2) In the Hilbert GIT Hilbm
(2,4)/ /SL(4) (m � 0), there are 8 Type II boundary compo-

nents of dimensions between 1 and 9 according to the third column of Table 3.
(3) Seven of the 8 Type boundary II components in Hilbm

(2,4)/ /SL(4) are birational to 
the seven Type II boundary components of M identified by Proposition 3.9. More 
precisely, the VGIT M(t) for t ∈ (δ, 1/2) affects these seven components only bi-
rationally. In particular, they have the same dimension in M as in Hilbm

(2,4)/ /SL(4)
(given by Table 3).

(4) Finally, the eighth Type II component (label D16) only exists in the range t ∈
(1/3, 1/2]. (It appears in the exceptional locus of the flip at t = 1

3 , when the locus 
W4 ⊂ M is replaced by the stratum Z4 ⊂ F ; see Remark 6.4).
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The above results are much more involved and subtle than those present in the existing 
literature ([50], [39], [40], [31]). In particular Item (4) is completely new, and it offers 
an elegant explanation to an apparent contradiction to the Shah/Looijenga study of 
GIT versus Baily-Borel for quartic surfaces. Namely, in the case of degree 2 K3 surfaces 
(and similarly for cubic fourfolds), the number of Type II components on the GIT and 
Baily-Borel models agree. In contrast, for quartic K3 surfaces (and similarly for U(2)-
hyperelliptic K3’s), comparing the number of the Type II components in the GIT model 
(cf. [51, Thm. 2.4]) to the number of Type II components for the Baily-Borel model (cf. 
[47, §6.3]) one observes a discrepancy of 1 (i.e. 8 vs. 9). This is somewhat unexpected from 
Looijenga’s theory [39]. Our previous work [36,35] gives a conjectural explanation for this 
discrepancy (a “second order” arithmetic correction). The present paper establishes that 
this conjectural behavior is accurate (at least for U(2)-hyperelliptic K3’s).

8.4. The GIT analysis of the Chow and asymptotic Hilbert quotients

The following result is the geometric counterpart of the discussion from Subsection 8.3. 
The essential new aspect here is the geometric explanation for the drop in dimensions for 
Type II components as we pass from the Hilbert to the Chow GIT quotient. Somewhat 
surprisingly, there are four different geometric behaviors (labeled (A)–(D) in the proof 
below) that occur here.

Theorem 8.2. The following hold:

a) Let C be an irreducible (2, 4) complete intersection with only planar singularities of 
type ADE (equivalently, the associated double cover is a K3 surface with canonical 
singularities). Then C is GIT stable w.r.t. the Chow polarization. Consequently, we 
can view F as an open subset in M(1

2 ).
b) The boundary of F in the Chow GIT Chow(2,4) / /SL(4) is the union of 8 rational 

curves (the closure of eight 1-dimensional Type II components listed below), meeting 
as in diagram (2.4.1). In particular, there are two Type III points (compare Re-
mark 3.10).

Furthermore,

(II) The polystable curves parametrized by the 8 Type II boundary components are given 
by the following equations, where the cases are labeled according to the labels of the 
Type II components in the Baily-Borel compactification F ∗ (cf. Theorem 2.3), 
using the identification Chow(2,4) / /SL(4) ∼= F ∗.

i) (D8 ⊕E8): V
(
x2

1 + x0x2, x0x
3
3 + x2

1x
2
2 + ax2

1x2x3
)
;

ii) (D12 ⊕D4): V
(
x2

1 + x0x2, x1(x0 + ax2)x2
3
)
;

iii) (A15 ⊕D1): V (f2, g2
2), where V (f2, g2) is an elliptic normal curve;

iv) (D+
16): V

(
(u0 + u1)(u0 + au1)(u0v

2
1 + u1v

2
0)2
)
⊂ P 1 × P 1;
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v) (E2
8): V

(
u0u1(u0v

2
1 + u1v

2
0)(u0v

2
1 + au1v

2
0)
)
⊂ P 1 × P 1;

vi) (E2
7 ⊕D2): V (x0x3, x1x2(x1 − x2)(x1 − ax2));

vii) (D2
8): V (u2

0u
2
1v0v1(v0 − v1)(v0 − av1)) ⊂ P 1 × P 1;

viii) (D16): V
(
x2

1 + x0x2, (x3 + x1 + ax2)(x0x
2
3 + 2x1x2x3 − x2

2x3)
)
.

The dimensions of the preimages (via M(1/2 − ε) → M(1/2)) of these strata in 
M(1/2 − ε)(∼= Hilbm�0

(2,4) / /SL(4) ∼= F̂ ) are given in the third column of Table 3. 
Furthermore, the Type II components in M(1/2 − ε) corresponding to first seven 
cases (i)–(vii) are birational to the seven Type II components in M (via the natural 
map M ∼= M(1/6 −ε) ��� M(1/2 −ε)) listed in Proposition 3.9. The eighth stratum 
(label D16) is visible (as a Type II stratum) in M(t) only for t ∈ (1/3, 1/2].

(III) The polystable orbits corresponding to the two Type III points have equations:

(III a) : V (x0x3, x
2
1x

2
2);

(III b) : V (x0x3 − x1x2, x0x
3
2 + 2x2

1x
2
2 + x3

1x3).

Proof. Item (a) was established in Claim 6.18.
We consider the behavior of the Type II polystable orbits listed in Proposition 3.9. 

According to the analysis of Subsection 6.6, there is no change of (semi)stability for a 
Type II (and similarly for Type III) curve C for t ∈ (δ, 1) (i.e. if C is stable/semistable as a 
(4, 4) curve or equivalently for t = 1

6−ε, the same will be true for t = 1 −ε). Thus the seven 
Type II strata in M ∼= M(1/6 − ε) listed in Proposition 3.9 will survive (birationally) 
in Hilbm�0

(2,4) / /SL(4) ∼= M(1/2 − ε) ∼= F̂ . In particular, we note that the dimensions of 
these strata listed in Proposition 3.9 match the dimensions of the corresponding Type 
II components in F̂ (cf. the third column of Table 3). We know that the Hilbert-Chow 
morphism induces the VGIT map M(1/2 −ε) → M(1/2), and then (by our main theorem) 
this morphism is identified to F̂ → F ∗. Since the Type II components in F ∗ are 1-
dimensional, it follows that the Type II components in M(1 − ε) of dimension larger 
than 1 will collapse to 1-dimensional components in M(1/2) ∼= Chow(2,4) / /SL(4). As 
explained, this is a corollary of our main result (see Subsection 8.3 above), but we would 
like to see this behavior purely in GIT terms. In particular, this allows us to identify the 
minimal orbits for Chow(2,4).

A Type II stratum in M(1/2 − ε) might drop dimension in M(1/2) for two distinct 
reasons. The first reason (the typical behavior in VGIT) is the creation of new semistable 
orbits at t = 1

2 which absorb some of the (1
2 − ε)-polystable orbits. The second reason 

is a contraction is induced by the Hilbert-Mumford morphism. The latter case is only 
relevant for non-reduced curves, and since we restrict to Type II, it affects only curves 
in the stratum A15 + D1. Returning to the former case, an analysis similar to that of
Section 6 allows us to identify the following new critical orbits at t = 1

2 :

V (x2
1 + x0x2, x

2
1f2(x2, x3) + x0f3(x2, x3)) (8.4.1)
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with stabilizer λ = (5, 1, −3, −3). This curve has a double line passing through the vertex 
v of the cone, and an Ẽ8 singularity at the point p = [1, 0, 0, 0].

V (x0x3, f4(x1, x2)) (8.4.2)

stabilized by λ = (3, 1, 1, −1). In this situation, the quadric becomes reducible, and it is 
cut out by 4 planes (that share an axis).

V (x2
1 + x0x2, q(x0, x1, x2)x2

3) (8.4.3)

stabilized by λ = (1, 1, 1, −3). In this situation, we have a double conic, together with 4
lines passing through the vertex v. (As limiting cases, we obtain IIIa and IIIb listed in 
the theorem.)

In conclusion, we identify the following cases for the behavior of the Type II GIT 
boundary:

Case A: The 1-dimensional Type II boundary components in Proposition 3.9 (label 
(D8)2, (E8)2, and (D16)+). The stability in these cases does not change in the interval 
(0, 12 ] (two of the cases are strictly semistable for all t, while the third one is stable). In 
all cases, the relevant curves sit on the smoth quadric.

Case B: The stratum A15 ⊕ D1 (double elliptic normal curve). Such curves C =
V (f2, g2

2) are stable at all time. The difference between this case and case A is that the 
dimension of the stratum drops by one via the Hilbert-Chow morphism. Geometrically, 
in the Hilbert scheme, the unique quadric containing C (i.e. V (f2)) is recorded, while in 
the Chow variety it is not.

Case C: Strata D8 ⊕E8, D12 ⊕D4 and (E7)2 ⊕D2. In these cases the stability is not 
affected in the interval (0, 12), but at t = 1

2 , new orbits become semistable and absorb 
the polystable orbits (of the given 3 types). The arguments and computations are very 
similar to those of Section 6.

For instance, assume that we are in the situation of the stratum with a single Ẽ8 and 
no special line. Then, Lemma 4.7 gives the normal form:

f2 = x0x2 + x2
1 + ax2

3

f4 = bx0x
3
3 + x2

1g2(x2, x3) + x1g3(x2, x3) + g4(x2, x3)

As usual, we are interested in singularity at p = [1, 0, 0, 0]. In affine coordinates, x2 =
x2

1 + ax2
3, and once we substitute (x0 = 1, x3 = v, x1 = w, x2 = v2 + aw3) the leading 

term of f4 becomes

v3 + w2g2(w2, v)
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If the leading term defines an isolated singularity, we get the singularity J2,0 = Ẽ8. If 
this is not the case, we get J2,p, which is the same as T2,3,6+p (a cusp singularity, still 
insignificant, but of Type III). Here g2 is assumed non-vanishing, otherwise we get Type 
IV case discussed previously. Very similarly to the E12 case discussed in Section 6, the 
potential critical orbit (case (8.4.1) above) is

V (x0x2 + x2
1, x0x

3
3 + x2

1g2(x2, x3))

with stabilizer λ = (5, 1, −3, −3). This can be semistable only at t = 1
2 . For t > 1

2 , we 
see νt(x, λ) < 0 for all points in the Ẽ8 stratum. At t = 1

2 , the limit of x in this stratum 
with respect to λ is the orbit with C∗-stabilized as above.

The case of 2Ẽ7 is similar. The polystable orbits V (f2, f4(x1, x2)) (i.e. a quadric 
cut by 4-coaxial planes) will further degenerate to the case of f2 = x0x3 (as discussed 
in Lemma 6.7, the reducible quadric case can not be semistable until t = 1

2 ). This leads 
to the equation (8.4.2) above.

In the case of a double conic, the residual curve will be (in general) an elliptic curve 
E (Type (2,2) in the smooth quadric case) cutting the double conic in 4 points. At 
t = 1

2 this will degenerate to the curve of arithmetic genus 1 with a 4-tuple elliptic point 
(i.e. 4 lines passing through the origin in A3). This type of degeneration is not allowed 
until t = 1

2 (N.B. by Lemma 6.7, for t < 1
2 only planar singularities are allowed). This 

corresponds to (8.4.3) above.

Case D: The stratum D16 is not visible in GIT quotient M for (4, 4) curves, but 
becomes visible in M(t) for t > 1

3 . Geometrically, the relevant polystable curves sit only 
on the quadric cone. They consist of a double twisted cubic, together with a residual 
conic. The minimal orbits at t = 1

3 are

V (x2
1 + x0x2, x0x

3
3 + 2αx1x2x

2
3 − βx3

2x3).

For generic α, β, there will be a singularity of type A3 at the vertex of the cone v =
[0, 0, 0, 1], and a singularity of type E3,0 at p = [1, 0, 0, 0]. For the special value of α =
β = 1, we obtain the double twisted cubic. The singularity at v will be of type A∞, 
while the singularity at p is of type J3,∞. The curves that will have this polystable orbit 
in their orbit closure at t = 1

2 will have either a singularity of type J3,k (k > 0) at p
or a singularity of type Ak (k > 3, and such that the curve doesn’t split a line through 
the vertex). At t increases, we have seen that all J3,k (we allow also k = 0, ∞) are 
destabilized, while the curves with Ak singularity (allow also k = ∞, but require that it 
doesn’t split a line) at the vertex are allowed to become stable. In practice, we modify 
the equation f4 = x0x

3
3 + 2αx1x2x

2
3 − βx3

2x3 by adding monomials of lower weight with 
respect to λ = (3, 1, −1, −3). We are interested in preserving the double twisted cubic 
thus

f4 = x3(x0x
2
3 + 2x1x2x3 − x2

2x3)
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is modified by moving the conic V (x2
1 + x0x2, x3), i.e. modify the linear form x3 to 

�(x0, x1, x2, x3). It needs to avoid passing through the vertex, which gives the normal 
form from the theorem. �
References

[1] K. Ascher, D. Bejleri, Stable pair compactifications of the moduli space of degree one del Pezzo 
surfaces via elliptic fibrations, arXiv :1802 .00805, 2018.

[2] K. Ascher, D. Bejleri, Compact moduli of elliptic k3 surfaces, arXiv :1902 .10686, 2019.
[3] V. Alexeev, P. Engel, A. Thompson, Stable pair compactification of moduli of K3 surfaces of degree 

2, arXiv :1903 .09742, 2019.
[4] J. Alper, M. Fedorchuk, D.I. Smyth, Singularities with Gm-action and the log minimal model 

program for M g, J. Reine Angew. Math. 721 (2016) 1–41.
[5] V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Differentiable Maps, Modern 

Birkhäuser Classics, vol. 1, Birkhäuser/Springer, New York, 2012.
[6] J. Alper, D. Hyeon, GIT Constructions of Log Canonical Models of M g, Compact Moduli Spaces 

and Vector Bundles, Contemp. Math., vol. 564, Amer. Math. Soc., Providence, RI, 2012, pp. 87–106.
[7] O. Benoist, Quelques espaces de modules d’intersections complètes lisses qui sont quasi-projectifs, 

J. Eur. Math. Soc. 16 (8) (2014) 1749–1774.
[8] R.E. Borcherds, L. Katzarkov, T. Pantev, N.I. Shepherd-Barron, Families of K3 surfaces, J. Alge-

braic Geom. 7 (1) (1998) 183–193.
[9] N. Bergeron, Z. Li, J. Millson, C. Moeglin, The Noether-Lefschetz conjecture and generalizations, 

Invent. Math. 208 (2) (2017) 501–552.
[10] R.E. Borcherds, Automorphic forms on Os+2,2(R) and infinite products, Invent. Math. 120 (1) 

(1995) 161–213.
[11] C. Camere, Some remarks on moduli spaces of lattice polarized holomorphic symplectic manifolds, 

Commun. Contemp. Math. 20 (4) (2018) 1750044.
[12] S. Casalaina-Martin, S. Grushevsky, K. Hulek, R. Laza, Cohomology of the moduli space of cubic 

threefolds and its smooth models, arXiv :1904 .08728, 2019.
[13] S. Casalaina-Martin, D. Jensen, R. Laza, The geometry of the ball quotient model of the moduli 

space of genus four curves, in: Compact Moduli Spaces and Vector Bundles, in: Contemp. Math., 
vol. 564, Amer. Math. Soc., Providence, RI, 2012, pp. 107–136.

[14] S. Casalaina-Martin, D. Jensen, R. Laza, Log canonical models and variation of GIT for genus 4 
canonical curves, J. Algebraic Geom. 23 (4) (2014) 727–764.

[15] I.V. Dolgachev, Y. Hu, Variation of geometric invariant theory quotients, Publ. Math. Inst. Hautes 
Études Sci. (87) (1998) 5–56, With an appendix by Nicolas Ressayre.

[16] J.-M. Drezet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables 
sur les courbes algébriques, Invent. Math. 97 (1) (1989) 53–94.

[17] I.V. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci. 81 (3) (1996) 
2599–2630, Algebraic Geometry, p. 4.

[18] R. Friedman, D.R. Morrison, The birational geometry of degenerations: an overview, in: The Bira-
tional Geometry of Degenerations, Cambridge, Mass., 1981, in: Progr. Math., vol. 29, Birkhäuser, 
Boston, Mass, 1983, pp. 1–32.

[19] M. Gross, P. Hacking, S. Keel, Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. 
Hautes Études Sci. 122 (2015) 65–168.

[20] V.A. Gritsenko, K. Hulek, G.K. Sankaran, The Kodaira dimension of the moduli of K3 surfaces, 
Invent. Math. 169 (3) (2007) 519–567.

[21] B. Hassett, D. Hyeon, Log canonical models for the moduli space of curves: the first divisorial 
contraction, Trans. Am. Math. Soc. 361 (8) (2009) 4471–4489.

[22] B. Hassett, D. Hyeon, Log minimal model program for the moduli space of stable curves: the first 
flip, Ann. Math. (2) 177 (3) (2013) 911–968.

[23] B. Hassett, D. Hyeon, Y. Lee, Stability computation via Gröbner basis, J. Korean Math. Soc. 47 (1) 
(2010) 41–62.

[24] F.C. Kirwan, Moduli spaces of degree d hypersurfaces in Pn, Duke Math. J. 58 (1) (1989) 39–78.
[25] J. Kollár, S.J. Kovács, Log canonical singularities are Du Bois, J. Am. Math. Soc. 23 (3) (2010) 

791–813.

http://refhub.elsevier.com/S0001-8708(21)00118-3/bib1109867462B2F0F0470DF8386036243Cs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib1109867462B2F0F0470DF8386036243Cs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib14DA3A611E2F8953D76B6FB7866B01D1s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib0EA45ED60339A51D308353BC885320C8s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib0EA45ED60339A51D308353BC885320C8s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib79DAE77EAE214A51D0B9DAFB358038C7s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib79DAE77EAE214A51D0B9DAFB358038C7s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib0952DFC8D6A1BA5CDDE6B842203A0CB7s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib0952DFC8D6A1BA5CDDE6B842203A0CB7s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib3CF4046014CBDFAA7EA8E6904AB04608s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib3CF4046014CBDFAA7EA8E6904AB04608s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibD7B0D51EE48DDCDC7DFFA3E154E631B4s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibD7B0D51EE48DDCDC7DFFA3E154E631B4s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibD67E42738BA041A322925BF57F9DC015s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibD67E42738BA041A322925BF57F9DC015s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib5D158A31CC87327A1D3F4E9071560037s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib5D158A31CC87327A1D3F4E9071560037s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib9DD515E6F0A1FC084BB91CBF7474B699s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib9DD515E6F0A1FC084BB91CBF7474B699s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib7C9D70949D6BE768272FCDD238BF13B0s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib7C9D70949D6BE768272FCDD238BF13B0s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib50333A5AB8B258ABD7011307B68C525Fs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib50333A5AB8B258ABD7011307B68C525Fs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib85F602D33CC3CF82E6DC01BC44B4DB00s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib85F602D33CC3CF82E6DC01BC44B4DB00s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib85F602D33CC3CF82E6DC01BC44B4DB00s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibB53B97C8429E889FD924ED824CA6EA7Es1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibB53B97C8429E889FD924ED824CA6EA7Es1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibD82ADAF9958A9DBBE5F8CDE860B321B9s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibD82ADAF9958A9DBBE5F8CDE860B321B9s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibB2BEB0A593E83DB8F3D3C78D70BC2EF2s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibB2BEB0A593E83DB8F3D3C78D70BC2EF2s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibA90BFBC5A40AF195CB69E901EA128E08s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibA90BFBC5A40AF195CB69E901EA128E08s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibAB6FAD50ADF499F8AEA3BBA0F2AB9A15s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibAB6FAD50ADF499F8AEA3BBA0F2AB9A15s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibAB6FAD50ADF499F8AEA3BBA0F2AB9A15s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibADB4A344B4C1ADF93A675F0A865B32C0s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibADB4A344B4C1ADF93A675F0A865B32C0s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibE6A0C1183FEF7D755EAE58AE933B6C4Bs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibE6A0C1183FEF7D755EAE58AE933B6C4Bs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibE6FC2F75A041940873A68E27C68D2EF7s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibE6FC2F75A041940873A68E27C68D2EF7s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibEFE7BDC7DC50437F8DF2EE0A772391FDs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibEFE7BDC7DC50437F8DF2EE0A772391FDs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibA2584101DEBD6959256A438FFFBE0E76s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibA2584101DEBD6959256A438FFFBE0E76s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib1E18B4893E755EF24E0799B9CCE54D25s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibDC468C70FB574EBD07287B38D0D0676Ds1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibDC468C70FB574EBD07287B38D0D0676Ds1


R. Laza, K. O’Grady / Advances in Mathematics 383 (2021) 107680 63
[26] F.C. Kirwan, R. Lee, The cohomology of moduli spaces of K3 surfaces of degree 2. I, Topology 
28 (4) (1989) 495–516.

[27] F.C. Kirwan, R. Lee, The cohomology of moduli spaces of K3 surfaces of degree 2. II, Proc. Lond. 
Math. Soc. (3) 58 (3) (1989) 559–582.

[28] J. Kollár, S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, 
vol. 134, Cambridge University Press, Cambridge, 1998.

[29] J. Kollár, N.I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 
91 (2) (1988) 299–338.

[30] R. Laza, The moduli space of cubic fourfolds, J. Algebraic Geom. 18 (3) (2009) 511–545.
[31] R. Laza, The moduli space of cubic fourfolds via the period map, Ann. Math. (2) 172 (1) (2010) 

673–711.
[32] R. Laza, GIT and moduli with a twist, in: Handbook of Moduli. Vol. II, in: Adv. Lect. Math. 

(ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 259–297.
[33] R. Laza, The KSBA compactification for the moduli space of degree two K3 pairs, J. Eur. Math. 

Soc. 18 (2) (2016) 225–279.
[34] R. Laza, K.G. O’Grady, GIT versus Baily-Borel compactification for K3’s which are double covers 

of P1 × P1, arXiv :1801 .04845v2, 2018 (expanded version of this manuscript).
[35] R. Laza, K.G. O’Grady, GIT versus Baily-Borel compactification for quartic K3 surfaces, in: J.A. 

Christophersen, K. Ranestad (Eds.), Geometry of Moduli, in: Abel Symp., vol. 14, Springer, Cham, 
2018, pp. 217–283.

[36] R. Laza, K.G. O’Grady, Birational geometry of the moduli space of quartic K3 surfaces, Compos. 
Math. 155 (9) (2019) 1655–1710.

[37] E. Looijenga, New compactifications of locally symmetric varieties, in: Proceedings of the 1984 
Vancouver Conference in Algebraic Geometry, in: CMS Conf. Proc., vol. 6, Amer. Math. Soc., 
Providence, RI, 1986, pp. 341–364.

[38] E. Looijenga, Compactifications defined by arrangements. I. The ball quotient case, Duke Math. J. 
118 (1) (2003) 151–187.

[39] E. Looijenga, Compactifications defined by arrangements. II. Locally symmetric varieties of type 
IV, Duke Math. J. 119 (3) (2003) 527–588.

[40] E. Looijenga, The period map for cubic fourfolds, Invent. Math. 177 (1) (2009) 213–233.
[41] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, third ed., Ergebnisse der Mathe-

matik und ihrer Grenzgebiete (2), vol. 34, Springer-Verlag, Berlin, 1994.
[42] A. Marian, D. Oprea, R. Pandharipande, Segre classes and Hilbert schemes of points, Ann. Sci. Éc. 

Norm. Supér. (4) 50 (1) (2017) 239–267.
[43] K.G. O’Grady, Periods of double EPW-sextics, Math. Z. 280 (1–2) (2015) 485–524.
[44] K.G. O’Grady, Moduli of double EPW-sextics, Mem. Am. Math. Soc. 240 (1136) (2016) 1–172.
[45] Y. Odaka, Y. Oshima, Collapsing K3 surfaces, tropical geometry and moduli compactifications of 

Satake, Morgan-Shalen type, arXiv :1810 .07685, 2018.
[46] N.I. Shepherd-Barron, Degenerations with numerically effective canonical divisor, in: The Birational 

Geometry of Degenerations, Cambridge, Mass., 1981, in: Progr. Math., vol. 29, Birkhäuser Boston, 
Boston, MA, 1983, pp. 33–84.

[47] F. Scattone, On the compactification of moduli spaces for algebraic K3 surfaces, Mem. Am. Math. 
Soc. 70 (1987) 374.

[48] B. Saint-Donat, Projective models of K − 3 surfaces, Am. J. Math. 96 (1974) 602–639.
[49] J. Shah, Insignificant limit singularities of surfaces and their mixed Hodge structure, Ann. Math. 

(2) 109 (3) (1979) 497–536.
[50] J. Shah, A complete moduli space for K3 surfaces of degree 2, Ann. Math. (2) 112 (3) (1980) 

485–510.
[51] J. Shah, Degenerations of K3 surfaces of degree 4, Trans. Am. Math. Soc. 263 (2) (1981) 271–308.
[52] H. Sterk, Compactifications of the period space of Enriques surfaces. I, Math. Z. 207 (1) (1991) 

1–36.
[53] M. Thaddeus, Geometric invariant theory and flips, J. Am. Math. Soc. 9 (3) (1996) 691–723.
[54] C. Voisin, Théorème de Torelli pour les cubiques de P5, Invent. Math. 86 (3) (1986) 577–601.

http://refhub.elsevier.com/S0001-8708(21)00118-3/bib658CC5ADA11E5B8601CE3C9D15A8606As1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib658CC5ADA11E5B8601CE3C9D15A8606As1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibC7CA74AE60C0A3F87E3A93AB9DA7DDD3s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibC7CA74AE60C0A3F87E3A93AB9DA7DDD3s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib9B05DE73D43F8C4EC1110C6BCC5312BCs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib9B05DE73D43F8C4EC1110C6BCC5312BCs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibB24176D34261F3E5CD8B3B78BC90072Bs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibB24176D34261F3E5CD8B3B78BC90072Bs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib4953E59394E6C14FF377626BAAA5C257s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib8B5BBFB3A8AC8E8F04CCB86171420499s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib8B5BBFB3A8AC8E8F04CCB86171420499s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibE0E7BD1B4D4FBCC4BFF8741A004F34F1s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibE0E7BD1B4D4FBCC4BFF8741A004F34F1s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibEC772FF67577B7BD9FD8522CBE1065E3s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibEC772FF67577B7BD9FD8522CBE1065E3s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibA3857DBEBDFE8D292D86E9C8BD0F7E52s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibA3857DBEBDFE8D292D86E9C8BD0F7E52s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib7B1A5A4DD8DF61DC8E4EA38FA24F4490s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib7B1A5A4DD8DF61DC8E4EA38FA24F4490s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib7B1A5A4DD8DF61DC8E4EA38FA24F4490s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib23848B5F8EBF7D1342F06722F8F73302s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib23848B5F8EBF7D1342F06722F8F73302s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib87F00D1AE7218C6EE2FF5637E75F22C7s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib87F00D1AE7218C6EE2FF5637E75F22C7s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib87F00D1AE7218C6EE2FF5637E75F22C7s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib09CD22419FA875EF284178913EEA0A78s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib09CD22419FA875EF284178913EEA0A78s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib62E79D91AE63B705971774DC89432557s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib62E79D91AE63B705971774DC89432557s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib12A790D1E0C7659A1022FAF351066E23s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibED82DC1C7066F5E5103D0204B6FE58D0s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibED82DC1C7066F5E5103D0204B6FE58D0s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibAF291240E221BB0E94C2F09EE87606CFs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibAF291240E221BB0E94C2F09EE87606CFs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib8F7ED25F682906B75CFBACDF0DC6D184s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibD08AEC141D473CA2D7161DE34ADEE514s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibD1F0EA4D0459A315869E021835622807s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibD1F0EA4D0459A315869E021835622807s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib5434C2025A07B2FE587433643BF4C282s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib5434C2025A07B2FE587433643BF4C282s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib5434C2025A07B2FE587433643BF4C282s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib7A91016118BAEF79A101F6E0D355FD65s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib7A91016118BAEF79A101F6E0D355FD65s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib87DF39B9C32EEAD3E1B29AB6BF069F9Bs1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib7B9AA4FC3E37B752D6DE90D729751FB8s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib7B9AA4FC3E37B752D6DE90D729751FB8s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib1630937C3D00B4F4B153599D93469963s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib1630937C3D00B4F4B153599D93469963s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib0EFB40A7A299FD8270815C11F79EC705s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibEDDA120A0F06ADB9EB7C335EC175509Es1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibEDDA120A0F06ADB9EB7C335EC175509Es1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bib291030CA3DC40BC0336786920D489BD3s1
http://refhub.elsevier.com/S0001-8708(21)00118-3/bibF1CAE8920C8702BA258482E5CCF1EB18s1

	GIT versus Baily-Borel compactification for K3’s which are double covers of P1×P1
	1 Introduction
	1.1 Background and motivation
	1.2 The main result
	1.3 Structure of the paper

	2 The period space and its Baily-Borel compactification
	2.1 Summary
	2.2 Periods of U(2)-hyperelliptic K3 surfaces according to [36]
	2.3 U(2)-hyperelliptic K3 surfaces whose periods are parametrized by Zk
	2.4 The boundary of the Baily-Borel compactification

	3 Moduli of (4,4) curves on a smooth quadric
	3.1 Summary
	3.2 GIT for (4,4) curves on P1×P1
	3.3 Hodge-theoretic stratification of M
	3.4 The components of MII

	4 Stratification of MIV
	4.1 Summary
	4.2 Singularity types (following Arnold)
	4.3 The stratification

	5 GIT for (2,4) complete intersections in P3
	5.1 Summary
	5.2 Set up of the VGIT, and statement of the main result
	5.3 GIT for Hilb(2,d)
	5.3.1 The m-th Hilbert point
	5.3.2 (Semi)stability of points in Hilbm(2,4)\Imfm

	5.4 On (non-semi)stability of points of PE and of P
	5.5 Proof of the main result (Theorem 5.6)

	6 The stability analysis for M(t)
	6.1 Summary
	6.2 Main GIT results and structure of the argument
	6.3 Potential critical values and potential critical curves
	6.4 Relations between singularities of C and Nt-(semi)stability
	6.5 Proof of the first main result
	6.6 Basin of attraction for the potential semistable orbits
	6.6.1 Transition at t=1/6
	6.6.2 Transition at t=1/4
	6.6.3 Transition at the remaining potential critical values

	6.7 Proof of the remaining main results of the section

	7 Proof of the main result
	7.1 Summary
	7.2 Divisor classes on the locally symmetric and GIT models
	7.3 Proof of Items (i)-(iii) of Theorem 1.1
	7.4 Proof of Item (iv) of Theorem 1.1

	8 The structure of the Chow and (asymptotic) Hilbert GIT quotients
	8.1 Summary
	8.2 Structure of Looijenga’s Q-factorization F
	8.3 Arithmetic dictates the structure of the Chow and Hilbert quotients
	8.4 The GIT analysis of the Chow and asymptotic Hilbert quotients

	References


