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0 Introduction

Let V be a complex vector-space of dimension 6. Choose a volume-form vol on V . Wedge-product

followed by vol defines a symplectic form on
∧3

V : let LG(
∧3

V ) be the symplectic grassmannian

parametrizing lagrangian subspaces of
∧3

V (of course LG(
∧3

V ) is independent of the choice of vol).

Let A ∈ LG(
∧3

V ): following Eisenbud-Popescu-Walter [3] one defines a subscheme YA ⊂ P(V ) as

follows. Let

F ⊂
3∧
V ⊗OP(V ) (0.0.1)

be the sub-vector-bundle whose fiber at [v] ∈ P(V ) is equal to

Fv := {α ∈
3∧
V | v ∧ α = 0}. (0.0.2)

We let YA be the degeneracy locus of the map

F
λA−→ (

3∧
V/A)⊗OP(V ) (0.0.3)

where λA is given by Inclusion (0.0.1) followed by the obvious quotient map: thus YA = V (detλA).

We have detF ∼= OP(V )(−6): it follows that if A is generic then YA is a sextic hypersurface (an

EPW-sextic). An EPW-sextic YA comes equipped with a double cover XA → YA (a double EPW-

sextic), see [21]. There is an open dense LG(
∧3

V )0 ⊂ LG(
∧3

V ) parametrizing smooth double

EPW-sextics (warning: YA is smooth only in the degenerate case YA = P(V )). If A ∈ LG(
∧3

V )0

then XA is a hyperkähler 4-fold deformation equivalent to the Hilbert square K3[2] of a K3 surface,

see [18, 8, 21]. As A varies in LG(
∧3

V )0 the XA’s vary in a locally complete family of projective

deformations of K3[2] with ample divisor (the pull-back of OYA(1)) of square 2 for the Beauville-

Bogomolov quadratic form. The group PGL(V ) acts naturally on LG(
∧3

V ) and we have a GIT

quotient

M := LG(

3∧
V )//PGL(V ). (0.0.4)

(There is a unique linearization of the action, see Section 2.) The open LG(
∧3

V )0 is PGL(V )-

invariant and is contained in the stable locus (a straightforward corollary of Proposition 6.1 of [18],

it will be reproved in this paper). It follows that M is a compactification of the moduli space of

smooth double EPW-sextics (see Proposition 6.2 of [18] or Proposition 1.0.5). The goal of this

paper is to analyze the GIT quotient M. Our first main result is in Section 2: we will show that

the locus of non-stable A ∈ LG(
∧3

V ) is the union of 12 locally closed subsets of LG(
∧3

V ) (the

standard non-stable strata) defined by “flag conditions”, e.g. the set of A for which there exists a

codimension-1 subspace V0 ⊂ V such that A ∩
∧3

V0 6= {0}. First we will show that the standard

non-stable strata parametrize non-stable lagrangians: this will be a straightforward consequence

of the formula giving the numerical function µ(A, λ) of a lagrangian A with respect to a 1-PS

λ : C× → SL(V ) in terms of the dimension of the intersections of A with the isotypical summands

of
∧3

λ. In order to prove that any non-stable lagrangian belongs to one of the standard non-stable

strata we prove the Cone Decomposition Algorithm: it applies whenever we have a linearly reductive

group G acting on a product of Grassmannains Gr(n0, U
0)× . . .×Gr(nr, U

r) via a representation

G → GL(U0) × . . . × GL(Ur). It provides a finite list of 1-PS’s of G (ordering 1-PS’s) with the

property that if A• = (A0, . . . , Ar) is non-stable then it is destabilized by a 1-PS conjugated to one

of the ordering 1-PS’s - of course our point of departure is Hilbert-Mumford’s numerical criterion

for stability. We will apply the Cone Decomposition Algorithm to the case of interest to us: using
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a computer we will get the finite list of ordering 1-PS’s of SL(V ). Another computation will give

the following result: if A is not stable then it is destabilized by a 1-PS conjugated to one among

the simplest ordering 1-PS’s, where simplicity is measured by the magnitude of the weights of the

1-PS. The “simplest”ordering 1-PS’s are exactly those defining the 12 standard non-stable strata.

Once we have a description of stable lagrangians in terms of “flag conditions” the question arises

whether stable lagrangians may be characterized via geometric properties of the double cover XA

(we will prove that if YA = P(V ) then A is unstable and hence every point of M represents an

equivalence class of double EPW-sextics). We will give a partial answer in terms of the period map

P : LG(

3∧
V ) 99K DBB

Here D is the quotient of a 20-dimensional bounded symmetric domain of Type IV by a suitable

arithmetic group and DBB is its Baily-Borel compactification. On the open dense LG(
∧3

V )0 ⊂
LG(

∧3
V ) parametrizing smooth double EPW-sextics the map P associates to A the Hodge struc-

ture on the primitive H2(XA)pr modulo Hodge isometries. The map P induces the period map of

the moduli space:

p : M 99K DBB . (0.0.5)

Notice that the map p is birational by Verbitsky’s Global Torelli Theorem and Markman’s mon-

odromy results [25, 6, 14, 15]. Our results will relate (semi)stability of A ∈ LG(
∧3

V ) and the

behaviour of P at A. In order to state the results we need to introduce some notation. Given an

isotropic subspace A ⊂
∧3

V (e.g. a lagrangian) we let

ΘA := {W ∈ Gr(3, V ) |
3∧
W ⊂ A}. (0.0.6)

Let Σ ⊂ LG(
∧3

V ) and Σ̃ ⊂ Gr(3, V )× LG(
∧3

V ) be defined by

Σ := {A ∈ LG(

3∧
V ) | ΘA 6= ∅}, (0.0.7)

Σ̃ := {(W,A) ∈ Gr(3, V )× LG(

3∧
V ) |W ∈ ΘA}. (0.0.8)

A dimension count shows that Σ is a prime divisor. Away from Σ the map P is regular and it lands

into D, the interior of the Baily-Borel compactification, see [19] and [21]. One may analyze the

behaviour of P at A ∈ Σ as follows, see [22]. Let (W,A) ∈ Σ̃: notice that
∧3

W ⊂ (Fw ∩A) for all

[w] ∈ P(W ), in particular P(W ) ⊂ YA. In Subsection 3.1 we will define a Lagrangian degeneracy

locus CW,A ⊂ P(W ) such that

suppCW,A = {[w] ∈ P(W ) | dim(A ∩ Fw) ≥ 2}. (0.0.9)

We will show that CW,A is a sextic curve (generic case) or P(W ) (pathological case).

Theorem 0.0.1 ([22]). Let A ∈ Σ be semistable with closed orbit and suppose that for all W ∈ ΘA

the following holds: CW,A is a sextic curve and it belongs to the regular locus of the compactified

period map

|OP(W )(6)| 99K DBBK3,2 (0.0.10)

where DBBK3,2 is the Baily-Borel compactification of the period space for K3 surfaces of degree 2.

Then p is regular at [A]. Moreover p([A]) ∈ D if and only if CW,A has simple singularities for all

W ∈ ΘA.

We remark that the proof of Theorem 0.0.1 requires some results that will be proved in the

present work and hence [22] follows the present paper as far as logic is concerned. On the other

hand the results of [22] suggest that we should examine the relationship between (semi)stability

of A ∈ LG(
∧3

V ) and the behavior of Map (0.0.10) at the points CW,A for W ∈ ΘA: that will

motivate a large part of what will be done in this paper.
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Definition 0.0.2. Let LG(
∧3

V )ADE ⊂ LG(
∧3

V ) be the set of A such that CW,A is a curve with

simple singularities for every W ∈ ΘA.

Below is the main result of Section 3.

Theorem 0.0.3. LG(
∧3

V )ADE is contained in the stable locus LG(
∧3

V )st.

Theorem 0.0.3 and Theorem 0.0.1 give that there is an open (dense) MADE ⊂M parametriz-

ing the isomorphism classes of double EPW-sextics XA with A ∈ LG(
∧3

V )ADE and moreover p

is regular on MADE and it maps it into D. Theorem 0.0.3 is analogous to Proposition 3.2 of

R. Laza [10] on periods of cubic 4-folds with simple singularities. We should point out that the

existing results on moduli and periods of cubic 4-folds, see [26, 9, 10, 12] have been a model for

this work. There is a strong analogy between the two families of varieties. In fact Beauville and

Donagi [1] proved that the variety of lines on a smooth cubic 4-fold is a HK variety deformation

equivalent to the Hilbert square of a K3 and that by varying the cubic 4-fold we get a locally

complete family of projective deformations of such varieties, moreover the Hodge structure of the

primitive H4 of a smooth cubic 4-fold is isomorphic to the primitive H2 of the variety of lines

on the cubic. The (Plücker) polarization on the variey of lines on a cubic 4-fold has square 6 for

the Beauville-Bogomolov quadratic form - thus we may think of the family of double EPW-sextics

as analogous to the family of K3 surfaces which are double covers of a plane and the family of

varieties of lines on cubic 4-folds as analogous to the family of K3’s of degree 6 (generically com-

plete intersections of a quadric and a cubic in P4). Now let’s pass to the contents of Section

5. One of the main results is the description of the irreducible components of the GIT-boundary

∂M := (M \Mst) where Mst is the open subset of M parametrizing isomorphism classes of stable

double EPW-sextics. By applying the Cone Decomposition Algorithm we will show that ∂M has

8 irreducible components and dimension 5. A remark: from the analogy between cubic 4-folds and

K3 surfaces of degree 6 and between double EPW-sextics and K3’s of degree 2 one would expect

the moduli space and period map of double EPW-sextics to be somewhat simpler than the moduli

space and period map of cubic 4-folds. That is not the case: the reason must be the fact that the

(Plücker) polarization on the variey of lines on a cubic 4-fold has divisibility 2 i.e. it is non-split in

the terminology of [5]. In order to explain the other main result of Section 5 we give a definition.

Definition 0.0.4. Let I ⊂ M be the subset of points represented by A ∈ LG(
∧3

V )ss for which

the following hold:

(1) The orbit PGL(V )A is closed in LG(
∧3

V )ss.

(2) There exists W ∈ ΘA such that CW,A is either P(W ) or a sextic curve in the indeterminacy

locus of the period map (0.0.10).

By Theorem 0.0.1 the indeterminacy locus of the period map (0.0.5) is contained in I - an

educated guess is that they are actually equal. In Section 5 we will describe the intersection

I ∩ ∂M. We will prove that I ∩ ∂M is the union XV ∪ XZ where XV is an irreducible 3-fold and

XZ is an irreducible curve. Our results suggest that the period map (0.0.5) may be understood

via Looijenga’s compactifications of hyperplane arrangements [11] i.e. M might be isomorphic to

Looijenga’s compactification of the complement of 3 specific “hyperplanes” in D. We will go through

some preliminaries and then we will describe the 3 hyperplanes. Let A ∈ Σ and suppose that

W1,W2 ∈ ΘA: then W1 ∩ W2 6= {0} because A is lagrangian. Suppose that W1 6= W2 and let

p ∈ P(W1∩W2): then p ∈ CWi,A for i = 1, 2 and a local equation of CWi,A at p has vanishing linear

term. Thus either CWi,A = P(Wi) or else every point of P(W1 ∩W2) is a singular point of CWi,A.

This explains the relevance of those A ∈ LG(
∧3

V ) such that dim ΘA > 0 when determining I.

Suppose that Θ is an irreducible component of ΘA of strictly positive dimension. Since the planes

P(W ) for W ∈ Θ are pairwise incident we may apply Morin’s Theorem [16] on complete irreducible

families of pairwise incident planes. Morin gives that Θ is contained in one of 6 families of pairwise

incident planes, 3 elementary families defined by Schubert conditions and three more interesting

families, namely one of the two rulings of a smooth quadric hypersurface Q ⊂ P(V ) by planes,
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the family of planes tangent to a Veronese surface V2 ⊂ P(V ) and the family of planes which

cut V2 in a conic. There are uniquely determined lagrangians A+, Ak and Ah with the following

properties: ΘA+ is the first family, ΘAk is the second family and ΘAh is the third family, see (2.2.11)

and (3.2.20) for more details. Each of A+, Ak, Ah is semistable with closed orbit in LG(
∧3

V )ss:

the corresponding points y := [A+], x := [Ak] and x∨ := [Ah] are distinct and we have y = XV ∩XZ
while x, x∨ ∈ XZ . Suppose that A approaches A+ generically: then XA will approach the Hilbert

square of a quartic K3 surface, see [4]. Similarly if A approaches Ak or Ah generically then XA will

approach the Hilbert square of a K3 of genus 2 or a moduli space of pure sheaves on such a K3.

The corresponding periods will approach the divisor in D parametrizing points in the perpendicular

to a class of square −4 in the first case and of square −2 in the remaining two cases: these are the

hyperplanes that we mentioned above. What about the other points of XV ∪XZ ? The picture that

emerges from our result is the following: if A approaches generically a point in (XW \ {y}) (XW is

a curve in XV , see Definition 4.3.3) then XA approaches the Hilbert square of a double cover of a

smooth quadric surface, if A approaches generically a point in (XV \XW) then XA approaches the

Hilbert square of a K3 which is a double cover of the Hirzebruch surface F2 (the relevant reference

is [24]), if A approaches generically a point in (XZ \ {y, x, x∨}) then XA approaches the Hilbert

square of a K3 which is a double cover of the Hirzebruch surface F4.

Notation and conventions: Throughout the paper V is a complex vector-space of dimension 6.

We choose a volume-form vol on V and we let (, )V be the corresponding symplectic form on
∧3

V

i.e.

(α, β)V := vol(α ∧ β).

Let W be a finite-dimensional complex vector-space. The span of a subset S ⊂ W is denoted by

〈S〉. Let S ⊂
∧q

W : the smallest subspace U ⊂ W such that S ⊂ im(
∧q

U −→
∧q

W ) is the

support of S, we denote it by supp(S). If S = {α} is a singleton we let supp(α) = supp({α}) (thus

if q = 1 we have supp(α) = 〈α〉).

Let U be a complex vector-space. Let U1, . . . , U` ⊂ U be a collection of subspaces and i1+· · ·+i` = d

a partition of d; the associated wedge subspace of
∧d

U is defined to be

i1∧
U1 ∧ · · · ∧

i∧̀
U` := 〈α1 ∧ · · · ∧ α` | αs ∈

is∧
Us〉 (0.0.11)

Let W be a finite-dimensional complex vector-space. We will adhere to pre-Grothendieck conven-

tions: P(W ) is the set of 1-dimensional vector subspaces of W . Given a non-zero w ∈ W we will

denote the span of w by [w] rather than 〈w〉; this agrees with standard notation. Given a non-empty

subset Z ⊂ P(W ) we let 〈Z〉 ⊂ P(W ) be the linear span of Z and 〈〈Z〉〉 ⊂W be the cone over 〈Z〉
i.e. the span of the set of w ∈W such that [w] ∈ Z.

Schemes are defined over C, the topology is the Zariski topology unless we state the contrary,

points are closed points. As customary we identify locally-free sheaves with vector-bundles.

Acknowledgments: It is a pleasure to thank Andrea Ferretti for helping me out with the compu-

tations of Subsection 2.4. I would also like to thank Corrado De Concini for a series of tutorials

on group representations and Paolo Papi for the interest he took in the present work.
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1 Double EPW-sextics modulo isomorphisms

Let

N(V ) := {A ∈ LG(

3∧
V ) | YA = P(V )}. (1.0.1)

Notice that N(V ) is not empty: for example Fv ∈ N(V ). It follows from the definition of EPW-sextic

that N(V ) is a proper closed PGL(V )-invariant subset of LG(
∧3

V ). If A ∈ (LG(
∧3

V ) \ N(V ))

there is a double cover fA : XA → YA, see [21]. Let A1, A2 ∈ (LG(
∧3

V )\N(V )). The double covers

fA1 , fA2 are isomorphic if there exists a commutative diagram

XA1

fA1

��

∼ // XA2

fA2

��
YA1

∼ // YA2

(1.0.2)

with horizontal isomorphisms. We will prove the following result.

Proposition 1.0.5. Let A1, A2 ∈ (LG(
∧3

V ) \N(V )). The double covers fA1
, fA2

are isomorphic

if and only if A1, A2 are PGL(V )-equivalent.

Before proving the above proposition we go through a few preliminaries. Let F be the vector-

bundle on P(V ) given by (0.0.1): a straightforward computation involving the Euler sequence (see

Proposition 5.11 of [18]) gives an isomorphism

F ∼= Ω3
P(V )(3). (1.0.3)

Moreover (op. cit.) the transpose of Inclusion (0.0.1) induces an isomorphism

3∧
V ∨ ∼= H0(F∨). (1.0.4)

Claim 1.0.6. The vector-bundle F is slope-stable.

Proof. Since the (co)tangent bundle of a projective space is slope-stable [7] the vector-bundle Ω3
P(V )

is poly-stable i.e. a direct sum of stable bundles of equal slope (op. cit.); by (1.0.3) it follows that

F is poly-stable. The slope of F is µ(F ) = −3/5 and the rank is r(F ) = 10; it follows that if F is

not slope-stable then

F = A⊕ B, µ(A) = µ(B) = −3/5, r(A) = r(B) = 5. (1.0.5)

By (1.0.3) we have χ(F (−3)) = −1; since it is odd we get that for any g ∈ PGL(V ) we have

g∗A 6∼= B. The action of SL(V ) on P(V ) lifts to an action on F and hence on F∨; this action

is induced by SL(V )-actions on A∨ and B∨ because A,B are slope-stable and g∗A 6∼= B for any

g ∈ PGL(V ). Hence the induced SL(V )-action on H0(F∨) is the direct-sum of representations

H0(A∨) and H0(B∨). Since F∨ is globally generated each of H0(A∨), H0(B∨) is non-zero; that is a

contradiction because by (1.0.4) the SL(V )-representation H0(F∨) is the standard representation∧3
V ∨ and hence is irreducible.

Proof of Proposition 1.0.5. It follows from the definition of double EPW-sextic that if A1 and

A2 are PGL(V )-equivalent then fA1 and fA2 are isomorphic. Let’s prove the converse. Since YAk
is a hypersurface in P(V ) ∼= P5 its Picard group is generated by the hyperplane class and moreover

YAk is linearly normal. It follows that YA1
is projectively equivalent to YA2

and hence by acting

with a suitable element of PGL(V ) we may assume that YA1
= YA2

= Y . We will prove that with

this hypothesis A1 = A2. Let A ∈ (LG(
∧3

V ) \ N(V )). Since A is Lagrangian the symplectic form

defines a canonical isomorphism
(∧3

V/A
)
∼= A∨; thus (0.0.3) defines a map of vector-bundles

λA : F → A∨ ⊗ OP(V ). Let i : YA ↪→ P(V ) be the inclusion map: since a local generator of detλA
annihilates coker(λA) there is a unique sheaf ζA on YA such that we have an exact sequence

0 −→ F
λA−→ A∨ ⊗OP(V ) −→ i∗ζA −→ 0. (1.0.6)
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Let ξA := ζA(−3). We recall that ξA is the (−1)-eigensheaf of fA : XA → YA. By (1.0.2) we

get that there exists an isomorphism ξA1

∼−→ ξA2
and hence also an isomorphism φ : ζA1

∼−→
ζA2 . Isomorphism (1.0.3) and Bott vanishing give that hi(F ) = 0 for all i; by (1.0.6) we get an

isomorphism A∨k
∼−→ H0(ζAk). Thus we have a commutative diagram with exact rows and vertical

isomorphisms

0 → F
λA1−→ A∨1 ⊗OP(V ) −→ i∗ζA1

→ 0yψ yH0(φ)⊗IdO

yφ
0 → F

λA2−→ A∨2 ⊗OP(V ) −→ i∗ζA2 → 0

(1.0.7)

By (1.0.4) the transpose ψt : F∨ → F∨ induces an automorphism

H0(ψt) :

3∧
V ∨

∼−→
3∧
V ∨.

By (1.0.7) we have

H0(ψt) ◦H0(λtA2
) = H0(λtA1

) ◦H0(φ)t. (1.0.8)

Let s :
∧3

V
∼−→
∧3

V ∨ be the isomorphism defined by the symplectic form (, )V i.e. s(v)(w) :=

(v, w)V . Letting jk : Ak ↪→
∧3

V be inclusion we have

s ◦ jk = H0(λtAk). (1.0.9)

Let ε := s−1 ◦H0(ψt) ◦ s; we claim that

ε(A2) = A1. (1.0.10)

In fact by (1.0.8) and (1.0.9) we have

ε ◦ j2 = s−1 ◦H0(ψt) ◦ s ◦ j2 = s−1 ◦H0(ψt) ◦H0(λtA2
) =

= s−1 ◦H0(λtA1
) ◦H0(φ)t = j1 ◦H0(φ)t (1.0.11)

and this proves (1.0.10). By Claim 1.0.6 the vector-bundle F is slope-stable and hence ψ = c IdF
for some c ∈ C×. It follows that H0(ψt) = c IdH0(F∨) and hence ε = c Id∧3 V by (1.0.4). Thus

ε(A2) = A2 and therefore A2 = A1 by (1.0.10).

We showed in [18] that there is a non-trivial involution δ : M → M. We recall the definition of δ.

Let ∧3
V

δV
∼−→

∧3
V ∨

α 7→ β 7→ vol(α ∧ β)
(1.0.12)

be the isomorphism defined by (, )V . We notice that δV sends isotropic subspaces of
∧3

V to

isotropic subspaces of
∧3

V ∨; in particular it induces an isomorphism LG(
∧3

V )
∼−→ LG(

∧3
V ∨).

We record the following: given E ∈ Gr(5, V )

E ∈ YδV (A) if and only if (

3∧
E) ∩A 6= {0}. (1.0.13)

Let A ∈ LG(
∧3

V ) be generic: then YδV (A) is the classical dual Y ∨A of YA, see [18]. The map δV
induces a regular involution

M
δ−→ M

[A] 7→ [δV (A)]
(1.0.14)

We showed in [18] that a generic EPW-sextic is not self-dual and hence δ is not the identity.
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2 One-parameter subgroups and stability

Let A ∈ LG(
∧3

V ). Choose 0 6= ω ∈
∧10

A; thus ω ∈
∧10

(
∧3

V ). By the Hilbert-Mumford

criterion A is not stable if and only if there exists a one-parameter subgroup λ : C× → SL(V ) such

that limt→0 ω exists in
∧10

(
∧3

V ) (by definition a 1-PS is not trivial). Equivalently the numerical

function µ(A, λ) is non-negative (our sign convention is the opposite of Mumford’s). The first goal

of the present section is to write out µ(A, λ) in terms of the dimensions of intersections of A with

the subspaces of the flag in
∧3

V determined by the isotypical decomposition of
∧3

λ. We will

carry out the discussion in a more general context: that will allow us to apply it later on in the

analysis of the GIT boundary components of M. As an application of the formula for µ(A, λ) we

will define a series of locally closed subsets of LG(
∧3

V ) consisting of non-stable or unstable points;

they are defined by imposing suitable flag conditions on A ∈ LG(
∧3

V ), and are named standard

non-stable (or unstable) strata. A first consequence will be that if A ∈ LG(
∧3

V ) is semistable then

YA 6= P(V ) i.e. points of M do represent double covers of EPW-sextics. The following subsection

introduces the Cone Decomposition Algorithm: it applies to a linearly reductive group acting on a

product of Grassmannians. The output of the algorithm is an explicit description of the non-stable

locus as a finite union of translates of Schubert cells. In the last subsection we will apply the Cone

Decomposition Algorithm in order prove that A ∈ LG(
∧3

V ) is stable if and only if it does not

belong to one of the standard non-stable strata. We start off by fixing our conventions regarding

Geometric Invariant Theory (GIT), the standard reference is [17]. Let G be a linearly reductive

group which acts on a projective variety Z ⊂ P(W ) via a homomorphism G→ SL(W ). Let [w] ∈ Z.

Then [w] is semistable if there exists a G-invariant σ ∈ H0(Ln) (for some n) such that σ(w) 6= 0;

we let Zss ⊂ Z be the open subset of semistable points. A point [w] ∈ Z is stable if it is semistable

and in addition the stabilizer Stab([w]) is finite and the orbit G[w] is closed in Zss; we let Zst ⊂ Z
be the open subset of stable points. We say that [w] is properly semistable if it is semistable but not

stable and that it is unstable if it is not semistable. Minimal orbit in Zss is sinonimous of closed

orbit in Zss. The set of (closed) points of Z//G is in one-to-one correspondence with the set of

minimal obits in Zss, in particular it contains an open subset parametrizing orbits of stable points.1

We name G-equivalence the equivalence relation induced by the quotient map Zss → Z//G: thus

[w1], [w2] ∈ Zss are G-equivalent if and only if the unique closed orbit in G[w1] ∩ Zss is equal

to the unique closed orbit in G[w2] ∩ Zss. Next we will recall the Hilbert-Mumford criterion for

(semi)stability. Let W be a (finite-dimensional) complex vector space and λ : C× → GL(W ) a

homomorphism . Let

W = ⊕a∈ZWa, λ(t)|Wa
= ta IdWa

, (2.0.1)

be the decomposition into isotypical addends. Given [w] ∈ P(W ) let w =
∑
a∈Z wa be the decom-

position according to (2.0.1); we set

µ([w], λ) := min{a | wa 6= 0}. (2.0.2)

(Warning: our µ is the opposite of Mumford’s.) The following elementary remark explains the

importance of the µ function.

Remark 2.0.7. Keep notation as above. Then µ([w], λ) ≥ 0 if and only if limt→0 λ(t)w exists.

Suppose that µ([w], λ) ≥ 0 and let w := limt→0 λ(t)w. Then w = 0 if and only if µ([w], λ) > 0.

Next recall that a 1-PS (one-parameter-subgroup) of a group G is a non-trivial homomorphism

λ : C× → G. Below is the formulation of the celebrated Hilbert-Mumford Criterion that goes with

our choice of µ.

Theorem 2.0.8 (Hilbert-Mumford’s Criterion [17]). Let G be a linearly reductive group acting on

a projective variety Z ⊂ P(W ) via a homomorphism ρ : G→ SL(W ). Then

(1) [w] is stable if and only if µ([w], ρ ◦ λ) < 0 for all 1-PS’s λ of G.

1We recall that [w] is semistable if and only if 0 is not in the closure of Gu, and the orbit G[w] of a semistable

[w] is closed in Zss if and only if Gw is closed in W .
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(2) [w] is semistable if and only if µ([w], ρ ◦ λ) ≤ 0 for all 1-PS’s λ of G.

(3) [w] is unstable if and only if there exists a 1-PS λ of G for which µ([w], ρ ◦ λ) > 0.

2.1 (Semi)stability and flags

Let U0, . . . , Ur be finite-dimensional complex vector spaces. Let G be a linearly reductive group

and

G→ GL(U0)× . . .×GL(Ur) (2.1.1)

be a homomorphism. Let mp, np > 0 be integers for 0 ≤ p ≤ r; we assume that np < dimUp.

Homomorphism (2.1.1) gives a representation ρ of G on Sm0(
∧n0 U0) ⊗ . . . ⊗ Smr (

∧nr Ur): we

assume that

ρ : G→ SL

(
Sm0(

n0∧
U0)⊗ . . .⊗ Smr (

nr∧
Ur)

)
. (2.1.2)

Let Lp be the Plücker ample line-bundle on Gr(np, U
p). We have the embedding

Gr(n0, U
0)× . . .×Gr(nr, U

r) ↪→ P

(
Sm0(

n0∧
U0)⊗ . . .⊗ Smr (

nr∧
Ur)

)
(2.1.3)

associated to Lm0
0 ⊗ . . . ⊗ Lmrr . Homomorphism (2.1.1) induces an action of G on Gr(n0, U

0) ×
. . .×Gr(nr, U

r). In this paper we will study particular cases of the above construction. The main

example for us is the action of G = SL(V ) on
∧3

V and the induced action on Gr(10,
∧3

V ): we

will be interested in the closed SL(V )-invariant subset LG(
∧3

V ) ⊂ Gr(10,
∧3

V ), on the other

hand we will examine more general homomorphisms in Section 5. Let λ : C× → G be a 1-PS.

Let µm(·, ρ ◦ λ) be the Hilbert-Mumford numerical function defined by Embedding (2.1.3) - here

m = (m0, . . . ,mr) and the input is a point (A0, . . . , Ar) ∈ Gr(n0, U
0) × . . . × Gr(nr, U

r). One

expands µm as follows. Let πp : G → GL(Up) be projection. Then πp ◦ λ : C× → GL(Up) and we

have the numerical function µ(Ap, πp ◦ λ) (relative to Lp): abusing notation we will denote it by

µ(Ap, λ). We have

µm((A0, . . . , Ar), ρ ◦ λ) =

r∑
p=0

mpµ(Ap, λ). (2.1.4)

Next we will write out explicitly µ(Ap, λ). First we must introduce the λ-type of Ap. To simplify

notation we set U = Up. Thus we suppose that λ : C× → GL(U) is a homomorphism (πp ◦ ρ ◦ λ in

the notation used above). Let

U = Ue0 ⊕ . . .⊕ Ues (2.1.5)

be the decomposition into isotypical summands for the action of λ. We assume throughout that

the weights are numbered in decreasing order:

e0 > e1 > . . . > es. (2.1.6)

For 0 ≤ i ≤ s we let

Li := Ue0 ⊕ . . .⊕ Uei . (2.1.7)

Definition 2.1.1. Let λ : C× → GL(U) be a homomorphism. Keep notation as above, in particu-

lar (2.1.5) and (2.1.6). Let 0 < n < dimU and A ∈ Gr(n,U). We let

dλi (A) := dim(A ∩ Li/A ∩ Li−1) 0 ≤ i ≤ s. (2.1.8)

The vector dλ(A) := (dλ0 (A), . . . , dλs (A)) is the λ-type of A. More generally let λ : C× → GL(U0)×
. . .×GL(Ur) be a homomorphism and (A0, . . . , Ar) ∈ Gr(n0, U

0)× . . .×Gr(nr, U
r): the collection

of vectors

(dπ0◦λ(A0), . . . , dπr◦λ(Ar))

is the λ-type of (A0, . . . , Ar). Whenever possible we omit reference to λ i.e. we denote the λ-type

of (A0, . . . , Ar) by (d(A0), . . . , d(Ar)).
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Let λ : C× → GL(U) be a homomorphism - we assume that (2.1.5) and (2.1.6) hold. Let

A ∈ Gr(n,U). Then µ(A, λ) is determined by the λ-type of A:

µ(A, λ) =

s∑
i=0

eid
λ
i (A). (2.1.9)

In order to examine limt→0 λ(t)(A0, . . . , Ap) we introduce a definition.

Definition 2.1.2. Keep notation as in Definition 2.1.1. Let 0 < n < dimU and A ∈ Gr(n,U).

Then A is λ-split if A = (A ∩ Ue0)⊕ (A ∩ Ue1)⊕ . . .⊕ (A ∩ Ues).

Remark 2.1.3. Keep notation as above. Then A ∈ Gr(n,U) is λ-split if and only if λ(t)A = A for

all t ∈ C×.

Next assume that λ is a 1-PS of G. Let (A0, . . . , Ar) ∈ Gr(n0, U
0)×. . .×Gr(nr, U

r) and suppose

that µm((A0, . . . , Ar), ρ ◦ λ) = 0. Let ω be a generator of (
∧max

A0)m0 ⊗ . . .⊗ (
∧max

Ar)
mr . Then

limt→0 ρ ◦ λ(t)ω exists and is non-zero by Claim 2.1.7: call it ω. Of course there exists a unique

(A0, . . . , Ar) ∈ Gr(n0, U
0) × . . . × Gr(nr, U

r) such that (
∧max

A0)m0 ⊗ . . . ⊗ (
∧max

Ar)
mr = Cω.

The result below follows directly from the definitions.

Claim 2.1.4. For 0 ≤ p ≤ r the subspace Ap is λ-split of type equal to dλ(Ap).

Next we consider the case in which we are given a symplectic form σ ∈
∧2

U∨ and G acts via a

homomorphism

G −→ Sp(U, σ) := {g ∈ GL(U) | g∗σ = σ}.

The main example for us is G = SL(V ), U =
∧3

V and σ = (, )V . Let’s go through some elementary

facts regarding Decomposition (2.1.5). If a weight e occurs then so does −e: by (2.1.6) we get that

ei + es−i = 0, 0 ≤ i ≤ s. (2.1.10)

Moreover

Uei⊥Uek if i+ k 6= s

and
Uei × Ues−i −→ C

(α, β) 7→ σ(α, β)

is a perfect pairing - in particular dimUei = dimUes−i and the restriction of (, )V to U0 is a

symplectic form. Now assume that A ∈ LG(U) where “lagrangian” refers to the symplectic form

σ. Then the first half of the di(A)’s determine the remaining ones - this is a well-known fact, we

recall the proof for the reader’s convenience.

Claim 2.1.5. Let U be a finite-dimensional complex vector-space and σ ∈
∧2

U∨ a symplectic

form. Let λ : C× → Sp(U, σ) be a homomorphism. Let (2.1.5) be the isotypical decomposition of λ

and suppose that (2.1.6) holds. For A ∈ LG(U) we have that

dλi (A) + dλs−i(A) = dimUei , 0 ≤ i ≤ s. (2.1.11)

Proof. We have L⊥i = Ls−i−1 where orthogonality is with respect to the symplectic form σ. Thus

σ induces a perfect pairing

(Li/Li−1)× (Ls−i/Ls−i−1) −→ C.

Intersecting A with Li and with Ls−i we get that

dλi (A) + dλs−i(A) ≤ dimUei = dimUes−i (2.1.12)

because projection defines an isomorphism Uei
∼= Li/Li−1 and A is lagrangian. On the other hand

s∑
i=0

dimUei = dimU = 2 dimA =

s∑
i=0

(dλi (A) + dλs−i(A)) ≤
s∑
i=0

dimUei .

It follows that (2.1.12) is an equality for 0 ≤ i ≤ s.
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Definition 2.1.6. Keep assumptions as in Claim 2.1.5. The reduced λ-type of A is

dλred(A) := (dλ0 (A), . . . , dλ[(s−1)/2](A)).

(In other words we truncate the λ-type of A right before the middle.)

By Claim 2.1.5 the reduced λ-type of A determines the λ-type of A.

Claim 2.1.7. Let U be a finite-dimensional complex vector-space and σ ∈
∧2

U∨ a symplectic form.

Let λ : C× → Sp(U, σ) be a homomorphism. Let A ∈ LG(U). Then

µ(A, λ) = 2

 ∑
0≤i<s/2

eid
λ
i (A)−

∑
i<s/2

ei dimUei
2

 . (2.1.13)

Proof. By (2.1.9), (2.1.10) and (2.1.11) we have

µ(A, λ) =

s∑
i=0

eid
λ
i (A) =

∑
0≤i<s/2

eid
λ
i (A) +

s∑
s/2<i≤s

eid
λ
i (A) =

=
∑

0≤i<s/2

eid
λ
i (A)−

∑
0≤i<s/2

ei(dimUei − dλi (A)).

The last term on the right is clearly equal to the right-hand side of (2.1.13).

2.2 Examples of non(semi)stable loci

We will define closed subsets of LG(
∧3

V ) contained either in the complement of the stable locus or

in the unstable locus - we name them standard non-stable (unstable) strata. Some of the standard

non-stable (unstable) strata have appeared in [20] as loci of lagrangians containing a strictly positive-

dimensional set of decomposable elements - we will make the connection in Subsubsection 2.2.2.

We refer to Section 3 for a geometric description of all the standard non-stable strata.

2.2.1 The examples

Let λ be a 1-PS of SL(V ) and

F := {v0, . . . , v5} (2.2.1)

be a basis of V which diagonalizes λ. Thus

λ(t)vi = trivi 0 ≤ i ≤ 5

5∑
i=0

ri = 0. (2.2.2)

Let
3∧
V = Ue0 ⊕ . . .⊕ Ues ,

3∧
λ(t)|Uei = tei IdUei (2.2.3)

be the decomposition of
∧3

λ into isotypical summands. Notation is as in (2.1.5) but notice the

potential for confusion between λ and
∧3

λ. In particular the weights are in decreasing order -

see (2.1.6). Let

Pλ := {(d0, . . . , d[(s−1)/2]) | di ∈ N, di ≤ dimUei}.

The reduced λ-type of A ∈ LG(
∧3

V ) belongs to Pλ; viceversa every [(s+ 1)/2]-tuple in Pλ is the

reduced λ-type of some A. Let d = (d0, . . . , d[(s−1)/2]) ∈ Pλ; we let

µ(d, λ) := 2

 ∑
0≤i<s/2

eidi −
∑
i<s/2

ei dimUei
2

 . (2.2.4)

The above definition is motivated by (2.1.13).
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Definition 2.2.1. Let � be the partial ordering on Pλ defined by a � b if

(a0 + a1 + . . .+ ai) ≥ (b0 + b1 + . . .+ bi), 0 ≤ i < s/2.

Claim 2.2.2. Keep notation as above. Let a,b ∈ Pλ. If a � b then µ(a, λ) � µ(b, λ) and equality

holds if only if a = b.

Proof. By (2.1.13) we need to show that∑
0≤i<s/2

ei(ai − bi) ≥ 0

and that equality holds if and only if a = b. Let xi := (a0 − b0) + . . . + (ai − bi). Since a � b

we have xi ≥ 0 for 0 ≤ i < s/2, moreover xi = 0 for all 0 ≤ i < s/2 if and only if a = b. A

straightforward computation gives that

∑
0≤i<s/2

ei(ai − bi) =

 ∑
0≤i≤[(s−3)/2]

(ei − ei+1)xi

+ e[(s−1)/2]x[(s−1)/2].

The claim follows because e0 > e1 > . . . > e[(s−1)/2] > 0.

Let r = (r0, . . . , r5) be the sequence (counted with multiplicities) of weights of λ. Given d ∈ Pλ
we let

EF
r,d := {A ∈ LG(

3∧
V ) | dλred(A) � d}. (2.2.5)

Claim 2.2.3. The Schubert variety EF
r,d is closed and irreducible. If in addition µ(d, λ) ≥ 0

(µ(d, λ) > 0) then EF
r,d is contained in the non-stable locus (respectively the unstable locus) of

LG(
∧3

V ).

Proof. EF
r,d is closed by uppersemiconinuity of the dimension of the intersection of subspaces. One

checks easily that the locus of A ∈ LG(
∧3

V ) such that dλ(A) = d is open dense in EF
r,d and

irreducible; it follows that EF
r,d is irreducible. The statement about non-stability (respectively

instability) follows at once from Claim 2.1.7 and Claim 2.2.2.

Let

E∗r,d :=
⋃
F

EF
r,d, Er,d := E∗r,d (2.2.6)

where F runs through the set of bases of V ; thus E∗r,d is locally closed and Er,d is (tautologically)

closed. If µ(d, λ) = 0 then E∗r,d and Er,d are contained in the non-stable locus by Claim 2.2.3.

Similarly if µ(d, λ) > 0 then both E∗r,d and Er,d are contained in the unstable locus of LG(
∧3

V ).

We will define non-stable (unstable) strata by choosing certain r and d such that µ(d, λ) = 0

(µ(d, λ) > 0). Table (1) defines the standard non-stable strata by defining the corresponding EF
r,d

where F is the basis (2.2.1). We explain the notation of that table. We let (5,−15) stand for

(5,−1,−1,−1,−1,−1) and similarly for the other rows in the first column. To a given row we

associate the 1-PS λ given by (2.2.2) where r = (r0, . . . , r5) is the entry in the first column. The

second column contains µ(d, λ). The third column gives a d ∈ Pλ such that µ(d, λ) = 0. The

fourth column gives a flag condition on A ∈ LG(
∧3

V ) which is equivalent to A ∈ EF
r,d - for r and

d in the same row. In that column we adopt the notation

Vij := 〈vi, vi+1, . . . , vj〉, 0 ≤ i < j ≤ 5. (2.2.7)

An entry in the last column is the name that we have chosen for EF
r,d with r and d in the same

row. We let

B∗A :=
⋃
F

BF
A, BA := B∗A, . . . ,B∗F2

:=
⋃
F

BF
F2
, BF2

:= B∗F2
, X∗N3

:=
⋃
F

XF
N3
, XN3

:= X∗N3
.

(2.2.8)

Table (2) defines the standard unstable strata; notation is as in Table (1) except that we have X’s

everywhere - the rationale for the distinction between B’s and X’s will be explained in Section 3.
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Remark 2.2.4. Let X ∈ {A,A∨, . . . ,F1} be one of the indices of the standard non-stable strata

with the exception of N3; by definition we have XX ,+ ⊂ BX . Similarly XN3,+
⊂ XN3

.

Duality. Given a 1-PS λ let λ−1 be the inverse 1-PS i.e. λ−1(t) = λ(t−1). The set of weights of∧3
λ and of

∧3
λ−1 are the same and moreover dimUe(

∧3
λ) = dimUe(

∧3
λ−1) for each weight e.

Thus Pλ = Pλ−1 and

µ(d, λ) = µ(d, λ−1), d ∈ Pλ = Pλ−1 .

This implies that the non-stable (or unstable) strata E∗r,d come in couples, namely E∗r,d and E∗−r,d.

Notice that if a non-stable (or unstable) stratum E∗r,d appears in Table (1) then so does E∗−r,d. The

remarkable fact is that the mirror of a stratum may be identified with the image of the stratum when

we apply the duality isomorphism LG(
∧3

V )
∼−→ LG(

∧3
V ∨) induced by (1.0.12): more precisely

we have

δV (E∗r,d(V )) = E∗−r,d(V ∨),

where E∗r,d(V ) is the non-stable (or unstable) stratum in LG(
∧3

V ) indicized by r,d and similarly

for E∗−r,d(V ∨). The above equation explains our notation for coupled non-stable (or unstable) strata

in Tables (1) and (2).

2.2.2 Geometric significance of certain strata

Let

Σ∞ := {A ∈ LG(

3∧
V ) | dim ΘA > 0}. (2.2.9)

Theorem 2.37 of [20] lists the irreducible components of Σ∞, in particular it gives that

BA, BA∨ , BC2 , BD, BE2 , BE∨2 , BF1
(2.2.10)

are irreducible components of Σ∞, that they are pairwise distinct and that if A is generic in one

of the above standard non-stable strata then ΘA is an irreducible curve2. How do we distinguish

geometrically the strata above? We consider a generic A in the stratum and we look at the curve

ΘA and the ruled 3-fold RΘA ⊂ P(V ) swept out by P(W ) for W ∈ ΘA. A few examples: if A ∈ BF1

then ΘA is a line, if A ∈ BD then ΘA is a conic, if A ∈ BE2 or A ∈ BE∨2 then ΘA is a rational normal

cubic curve, in the first case RΘA is a cone in the second it is not, etc. - see Section 2 of [20] for a

detailed discussion. In [20] we described also those A such that dim ΘA > 1; it will turn out that

they are not stable, actually unstable with a few explicit exceptions - see Lemma 5.2.6. Below

we will give a geometric consequence of the results of [20]. First we will recall the definition of a

particular PGL(V )-orbit in LG(
∧3

V ), see Section 1.5 of [20]. We have embeddings

P(U)
i+
↪→ Gr(3,

∧2
U)

[u] 7→ {u ∧ u′ | u′ ∈ U}
, P(U∨)

i−
↪→ Gr(3,

∧2
U)

[f ] 7→
∧2

(ker f).
. (2.2.11)

The pull-back to P(U), P(U∨) of the Plücker line-bundle on Gr(3,
∧2

U) is isomorphic to OP(U)(2),

OP(U∨)(2) respectively and the map on global sections is surjective; it follows that each of im(i+),

im(i−) spans a 9-dimensional subspace of
∧3

(
∧2

U). Now choose an isomorphism V ∼=
∧2

U where

U is a complex vector-space of dimension 4. Let

A+(U), A−(U) ⊂
3∧
V (2.2.12)

be the affine cones over the linear spans of im(i+), im(i−); thus dimA+(U) = dimA−(U) = 10.

Since each of A+(U), A−(U) is spanned by decomposable vectors and the supports of any two

of them intersect non-trivially it follows that A+(U), A−(U) ∈ LG(
∧3

V ). Let Q := Gr(2, U) ⊂
P(
∧2

U) be the Grassmannian embedded by Plücker: in Section 1.5 of [20] we proved

YA+(U) = 3Q. (2.2.13)

2Writing ΘA = P(A) ∩Gr(3, V ) we may give ΘA a structure of scheme: it is generically reduced but not reduced

everywhere.
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Table 1: Standard non-stable strata.

(r0, . . . , r5) µ(d, λ) reduced type d flag condition name

(5,−15) 2(3d0 − 15) (5) dimA ∩ ([v0] ∧
∧2 V15) ≥ 5 BF

A

(15,−5) 2(3d0 − 15) (5) dimA ∩ (
∧3 V04) ≥ 5 BF

A∨

(13,−13) 2(3d0 + d1 − 6)
(1, 3) A ⊃

∧3 V02 and dimA ∩ (
∧2 V02 ∧ V35) ≥ 3 BF

C1

(0, 6) dimA ∩ (
∧3 V02 ⊕ (

∧2 V02 ∧ V35)) ≥ 6 BF
C2

(1, 04,−1) 2(d0 − 3) (3) dimA ∩ ([v0] ∧
∧2 V14) ≥ 3 BF

D

(4, 12,−23) 2(6d0 + 3d1 − 12)
(1, 2) A ⊃ [v0] ∧

∧2 V12 and dimA ∩ ([v0] ∧ V12 ∧ V35) ≥ 2 BF
E1

(0, 4) dimA ∩ ([v0] ∧ (
∧2 V12)⊕ ([v0] ∧ V12 ∧ V35)) ≥ 4 BF

E2

(23,−12,−4) 2(6d0 + 3d1 − 12)
(1, 2) A ⊃

∧3 V02 and dimA ∩ (
∧2 V02 ∧ V34) ≥ 2 BF

E∨1

(0, 4) dimA ∩ (
∧3 V02 ⊕ (

∧2 V02 ∧ V34)) ≥ 4 BF
E∨2

(12, 02,−12) 2(2d0 + d1 − 4)

(2, 0) A ⊃ (
∧2 V01 ∧ V23) BF

F1

(1, 2)
dimA ∩ (

∧2 V01 ∧ V23) ≥ 1 and
BF
F2

dimA ∩ (
∧2 V01 ∧ V23 ⊕

∧2 V01 ∧ V45 ⊕ V01 ∧
∧2 V23) ≥ 3

(2, 1, 02,−1,−2) 2(3d0 + 2d1 + d2 − 7) (1, 1, 2)

dimA ∩ (
∧2 V01 ∧ V23) ≥ 1 and

XF
N3dimA ∩ (

∧2 V01 ∧ V23 ⊕ 〈v0 ∧ v1 ∧ v4, v0 ∧ v2 ∧ v3〉) ≥ 2 and

dimA ∩ (
∧3 V03 ⊕ [v0] ∧ V13 ∧ [v4]⊕ [v0 ∧ v1 ∧ v5]) ≥ 4

Of course A+(U), A−(U) is well-defined up to PGL(V ); we denote it by A+, A−. Moreover it is

clear that the orbits PGL(V )A+ and PGL(V )A− coincide (nonetheless it is useful to consider both

lagrangians, see below). We notice that ΘA+
∼= P(U), ΘA−

∼= P(U∨), in particular dim ΘA+
=

dim ΘA− = 3. Theorem 2.36 of [20] lists those A ∈ LG(
∧3

V ) such that dim ΘA > 2: that

classifiation together with Table (2) gives the following result.

Proposition 2.2.5. Let A ∈ LG(
∧3

V )ss and suppose that dim ΘA > 2; then A is projectively

equivalent to A+.

Later we will prove that A+ is actually semistable.

Corollary 2.2.6. Let A ∈ LG(
∧3

V )ss. Then YA 6= P(V ) and Yδ(A) 6= P(V ∨).

Proof. The isomorphism LG(
∧3

V )
∼−→ LG(

∧3
V ∨) induced by (1.0.12) maps semi-stable points

to semi-stable points hence it suffices to prove that YA 6= P(V ). Suppose that A ∈ LG(
∧3

V )ss and

that YA = P(V ): by Claim 1.11 of [20] we have dim ΘA ≥ 3 . By Proposition 2.2.5 it follows that

A is projectively equivalent to A+. Claim 1.14 of [20] gives that YA+
is a triple quadric (in fact the

Plücker quadric), in particular YA+ 6= P(V ): that is a contradiction.

Remark 2.2.7. Let U be as above i.e. dimU = 4. Then we have an isomorphism of GL(U)-modules

3∧
(

2∧
U) =

(
S2 U ⊗ detU

)
⊕
(
S2 U∨ ⊗ (detU)2

)
. (2.2.14)

The direct summand S2 U ⊗ detU is identified with A+(U) and S2 U∨ ⊗ (detU)2 is identified with

A−(U).

2.3 The Cone Decomposition Algorithm

We resume the hypotheses of Subsection 2.1. We will study (semi)stability of points in Gr(n0, U
0)×

. . .×Gr(nr, U
r) with respect to Embedding (2.1.3). Let T < G be a maximal torus. Let X̌(T ) be
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Table 2: Standard unstable strata.

(r0, . . . , r5) µ(d, λ) reduced type d flag condition name

(5,−15) 2(3d0 − 15) (6) dimA ∩ ([v0] ∧
∧2 V15) ≥ 6 XF

A+

(15,−15) 2(3d0 − 15) (6) dimA ∩ (
∧3 V04) ≥ 6 XF

A∨
+

(13,−13) 2(3d0 + d1 − 6)
(1, 4) A ⊃

∧3 V02 and dimA ∩ (
∧2 V02 ∧ V35) ≥ 4 XF

C1,+

(0, 7) dimA ∩ (
∧3 V02 ⊕ (

∧2 V02 ∧ V35)) ≥ 7 XF
C2,+

(1, 04,−1) 2(d0 − 3) (4) dimA ∩ ([v0] ∧
∧2 V14) ≥ 4 XF

D+

(4, 12,−23) 2(6d0 + 3d1 − 12)
(1, 3) A ⊃ [v0] ∧

∧2 V12 and dimA ∩ ([v0] ∧ V12 ∧ V35) ≥ 3 XF
E1,+

(0, 5) dimA ∩ ([v0] ∧ (
∧2 V12)⊕ ([v0] ∧ V12 ∧ V35)) ≥ 5 XF

E2,+

(23,−12,−4) 2(6d0 + 3d1 − 12)
(1, 3) A ⊃

∧3 V02 and dimA ∩ (
∧2 V02 ∧ V34) ≥ 3 XF

E∨
1,+

(0, 5) dimA ∩ (
∧3 V02 ⊕ (

∧2 V02 ∧ V34)) ≥ 5 XF
E∨
2,+

(12, 02,−12) 2(2d0 + d1 − 4) (2, 1)
A ⊃

∧2 V01 ∧ V23 and
XF
F1,+

dimA ∩ (
∧2 V01 ∧ V45 ⊕ V01 ∧

∧2 V23) ≥ 1

(12, 02,−12) 2(2d0 + d1 − 4) (1, 3)
dimA ∩ (

∧2 V01 ∧ V23) ≥ 1 and
XF
F2,+

dimA ∩ (
∧2 V01 ∧ V23 ⊕

∧2 V01 ∧ V45 ⊕ V01 ∧
∧2 V23) ≥ 4

(2, 1, 02,−1,−2) 2(3d0 + 2d1 + d2 − 7) (1, 1, 3)

dimA ∩ (
∧2 V01 ∧ V23) ≥ 1 and

XF
N3,+dimA ∩ (

∧2 V01 ∧ V23 ⊕ 〈v0 ∧ v1 ∧ v4, v0 ∧ v2 ∧ v3〉) ≥ 2 and

dimA ∩ (
∧3 V03 ⊕ [v0] ∧ V13 ∧ [v4]⊕ [v0 ∧ v1 ∧ v5]) ≥ 5

the lattice of 1-PS of T (thus we include the trivial homomorphism) - the structure of free finitely

generated group is given by pointwise multiplication in T . Let X̌(T )R := X̌(T )⊗Z R.

Notation 2.3.1. Let C ⊂ X̌(T )R be a Weyl chamber for the action of the Weyl group NG(T )/T .

Thus C is a closed convex cone in X̌(T )R. Let’s be explicit in the case G = SL(V ). Choose a

basis F = {v0, . . . , v5} of V . We have an associated maximal torus and corresponding X̌(T ):

T = {diag(t0, . . . , t5) | t0 · · · t5 = 1}, X̌(T ) = {λ(t) = diag(tr0 , . . . , tr5) | r0 + . . .+ r5 = 0}.

The choice of C corresponds to an ordering of the ri’s. Our choice will be the standard one:

C = {(r0, . . . , r5) ∈ R6 | r0 + . . .+ r5 = 0, r0 ≥ r1 ≥ . . . ≥ r5}. (2.3.1)

Next let T → GL(Up) be the composition of the inclusion T < G, Homomorphism (2.1.1) and the

projection GL(U0)× . . .×GL(Ur)→ GL(Up). The T -module Up decomposes as a weight spaces

Up =
⊕
χ∈Mp

U⊕aχχ (2.3.2)

where the action on Uχ is given by χ and Mp is a (finite) set of characters of T . For χ1 6= χ2 ∈Mp

let

Jχ1,χ2
:= {λ ∈ X̌(T ) | χ1 ◦ λ = χ2 ◦ λ}. (2.3.3)

Then Jχ1,χ2
is a subgroup of X̌(T ) and rkJχ1,χ2

= (rk X̌(T )− 1). Thus

Hχ1,χ2
:= Jχ1,χ2

⊗ R ⊂ X̌(T )R (2.3.4)

is a codimension-1 vector subspace: we name it an ordering hyperplane for Homomorphism (2.1.1).

Let 0 6= v ∈ X̌(T )R: then

[v[:= {xv | x ≥ 0} (2.3.5)

is the half-line generated by v.
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Definition 2.3.2. Let C be as in Notation 2.3.1. A half-line [v[⊂ C is an ordering ray for

Homomorphism (2.1.1) if the subspace 〈v〉 is the intersection of a collection of ordering hyperplanes

for Homomorphism (2.1.1). (We let 0 ≤ p ≤ r be arbitrary.) A 1-PS λ : C× → T contained in C is

an ordering 1-PS for Homomorphism (2.1.1) if it generates an ordering ray.

The Cone Decomposition Algorithm states that if certain (weak) conditions hold then a point

of Gr(U0) × . . . × Gr(Ur) is non-stable (unstable) if and only if it is projectively equivalent to a

point which is destabilized (desemistabilized) by an ordering 1-PS. Since the set of ordering rays is

finite the algorithm allows us (in theory) to list all the non-stable (unstable) points. First we define

a subdivision of C into chambers as follows. An open ordering-chamber is a connected component

of

C \
⋃

χ1 6=χ2∈M

Hχ1,χ2
.

The closure (in C) of an open chamber is a closed ordering-chamber. Let m = (m0, . . . ,mr) ∈ Nr+1
+

correspond to a choice of very ample line-bundle on Gr(n0, U
0)× . . .×Gr(nr, U

r) - see Subsection

2.1.

Lemma 2.3.3. Let (A0, . . . , Ar) ∈ Gr(n0, U
0)× . . .×Gr(nr, U

r). Let Ck ⊂ C be a closed ordering-

chamber. There exists a linear function ϕk : X̌(T )R → R such that

µm((A0, . . . , Ar), λ) = ϕk(λ) (2.3.6)

for all λ ∈ Ck.

Proof. Let 0 ≤ p ≤ r. We may give an ordering Mp = {χ1, . . . , χu} such that the following holds.

For 1 ≤ j ≤ u let χj ◦ λ(t) = tej(λ). Then

if λ ∈ Ck and i > j then ei(λ) ≥ ej(λ). (2.3.7)

In fact the ordering-chambers have been defined so that (2.3.7) holds. Let λ ∈ Ck: then Up is a C×

module via the homomorphism λ : C× → T . We have the decomposition into sub-representations

of C×:

Up = U
⊕aχ1
χ1 ⊕ . . .⊕ U⊕aχuχu

where Uχj corresponds to the character tej(λ). For 1 ≤ j ≤ u let

L′j := Uχ1
⊕ . . .⊕ Uχj .

Let d′j := dim(A ∩ L′j/A ∩ L′j−1). We claim that

µ(Ap, λ) =

u∑
j=1

d′jej(λ). (2.3.8)

In fact if λ is in the open ordering chamber whose closure is Ck then d′j = dλ(Ap) and hence (2.3.8)

holds by (2.1.9). One easily checks that (2.3.8) holds as well for λ in the boundary of Ck. The

function from the set of 1-PS’s in Ck to Z which assigns ej(λ) to λ is the restriction of a linear

function on X̌(T )R. Thus the lemma follows from Equation (2.1.4).

Before proving the key result we introduce some notation. Suppose first that G = T0×G1 where

T0 is a torus and G1 is a semisimple group. Then T = T0 × T1 where T1 is a maximal torus of G1.

Thus we may define

P = {Hχ1,χ2 | χ1, χ2 ∈ T̂0}. (2.3.9)

In general G is isogenous to a product of a torus T0 and a semisimple group and the same definition

makes sense.

Proposition 2.3.4. Keep notation and assumptions as above, in particular choose a maximal torus

T < G and a cone C as in Notation 2.3.1. Suppose that the following hold:
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(1) Each face of C spans an ordering-hyperplane.

(2) Let P be as in (2.3.9): then the intersection ∩H∈PH is equal to Z ×N(T1) where dimZ ≤ 1.

Let (A0, . . . , Ar) ∈ Gr(n0, U
0)× . . .×Gr(nr, U

r). Then (A0, . . . , Ar) is non-stable (unstable) if and

only if its G-orbit contains (A′0, . . . , A
′
r) which is destabilized (desemistabilized) by an ordering 1-PS

of G.

Proof. Suppose that (A0, . . . , Ar) is non-stable (unstable): we must prove that its orbit contains

an element which is destabilized (desemistablized) by an ordering 1 PS. By the Hilbert-Mumford

criterion there exists a 1-PS λ of G such that

µm((A0, . . . , Ar), λ0) ≥ 0 (µm((A0, . . . , Ar), λ0) > 0). (2.3.10)

Since T is a maximal torus there exists g1 ∈ G such that g1 ◦ λ ◦ g−1
1 : C× → T . By our choice

of cone C (see Notation 2.3.1) there exists g2 ∈ G such that λ′ := g2 ◦ g1 ◦ λ ◦ g−1
1 ◦ g−1

2 ∈ C.

Let a := g2 ◦ g1(A0, . . . , Ar): by (2.3.10) we have µm(a, λ′) ≥ 0 (respectively µm(a, λ′) > 0). Let’s

prove that there exists an ordering 1-PS λ such that µm(a, λ) ≥ 0 (respectively µm(a, λ) > 0).

There exists a closed ordering cone Ck such that λ′ ∈ Ck. Since Ck is a closed convex cone (with

vertex 0) we may write Ck = L × K where L ⊂ X̌(T )R is a vector subspace and K is a pointed

cone with vertex 0 (i.e. it contains no lines). Thus K is the convex envelope of its extremal rays

(see for example Prop. 1.35 of [2]); by Item (1) each extremal ray is spanned by an ordering 1-PS

and hence K is the convex envelope of [λ1[, . . . , [λc[ where λ1, . . . , λc are ordering 1-PS’s. On the

other hand all vector-subspaces of C are contained in t0; thus L ⊂ t0. It follows that dimL ≤ 1.

In fact suppose that dimL ≥ 2. By Item (2) there exists f ∈ X̌(T )∨R such that ker f is an ordering

hyperplane and f takes strictly positive and strictly negative valuse on L; that implies that Ck is

not an ordering cone, contradiction. We have proved that dimL ≤ 1. Thus L = {0} or L = 〈λ0〉
where λ0 is an ordering 1-PS. Since λ′ ∈ Ck we have

0 6= λ′ = x(±λ0) +

c∑
i=1

ziλi, x ≥ 0, zi ≥ 0. (2.3.11)

Now let ϕk ∈ X̌(T )∨R be the linear function associated to a as in Lemma 2.3.3. By hypothesis

ϕk(λ′) ≥ 0 (respectively ϕk(λ′) > 0) and hence (2.3.11) gives that there exists one of ±λ0, λ1, . . . , λc,

say λ such that ϕk(λ) ≥ 0 (respectively ϕk(λ) > 0). Then λ is an ordering ray and µm(a, λ) ≥ 0

(respectively µm(a, λ) > 0) by Lemma 2.3.3.

2.4 The stable locus

Theorem 2.4.1. The non-stable locus LG(
∧3

V ) \ LG(
∧3

V )st is the union of the standard non-

stable strata i.e. those listed in Table (1). More precisely

LG(

3∧
V ) \ LG(

3∧
V )st = B∗A ∪ B∗A∨ ∪ B∗C1 ∪ B

∗
C2 ∪ B

∗
D ∪ B∗E1 ∪ B

∗
E2 ∪ B

∗
E∨1
∪ B∗E∨2 ∪ B

∗
F1
∪ B∗F2

∪X∗N3
.

Proof. We will apply the Cone Decomposition Algorithm of Subsection 2.3 to the action of SL(V )

on LG(
∧3

V ) ⊂ Gr(10,
∧3

V ). We choose a basis F = {v0, . . . , v5} of V and we let T < SL(V )

be the maximal torus of elements diagonal in the basis F. We make the standard choice of cone

C ⊂ X̌(T )R - see (2.3.1). First we list all ordering hyperplanes. Let

3 = |{i, j, k}| = |{l,m, n}|, 0 ≤ i, j, k, l,m, n ≤ 5 (2.4.1)

and Φi,j,kl,m,n : X̌(T )R → R be the linear function

Φi,j,kl,m,n(r0, r1, . . . , r5) := ri + rj + rk − rl − rm − rn. (2.4.2)

It is clear that H ⊂ X̌(T )R is an ordering hyperplane if and only if there exist i, j, k, l,m, n as

above with {i, j, k} 6= {l,m, n} such that H = ker(Φi,j,kl,m,n). The faces of C span the hyperplanes
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Table 3: “Essential”functions Φi,j,kl,m,n(x) with {i, j, k} ∩ {l,m, n} = ∅.

Φ1,2,3
0,4,5 Φ2,3,4

0,1,5 Φ1,2,4
0,3,5 Φ0,3,4

1,2,5 Φ0,2,5
1,3,4

−x1 + x3 + 2x4 + x5 −x1 − 2x2 − x3 + x5 −x1 + x3 + x5 x1 − x3 + x5 x1 + x3 − x5

ker(ra − rb) for 0 ≤ a < b ≤ 5; since ra − rb = Φa,j,kb,j,k we get that the hypotheses of Proposition

2.3.4 are satisfied. Thus A ∈ LG(
∧3

V ) is not stable if and only if there exist A′ ∈ SL(V )A and

an ordering 1-PS λ of SL(V ) such that µ(A′, λ) ≥ 0. Next let us list all ordering 1-PS’s of SL(V )

i.e. those r ∈ C which span the zero-set of four linearly independent functions among the Φi,j,kl,m,n’s.

It is convenient to work with the coordinates (x1, . . . , x5) given by

xi := ri−1 − ri, i = 1, . . . , 5 (2.4.3)

In the coordinates x1, . . . , x5 the cone C is the set of vectors with non-negative coordinates. Follow-

ing is the column of the linear functions r0, . . . , r5 (restricted to X̌(T )R) in terms of the coordinates

(x1, . . . , x5): 

r0
r1
r2
r3
r4
r5

 =



5/6 2/3 1/2 1/3 1/6

−1/6 2/3 1/2 1/3 1/6

−1/6 −1/3 1/2 1/3 1/6

−1/6 −1/3 −1/2 1/3 1/6

−1/6 −1/3 −1/2 −2/3 1/6

−1/6 −1/3 −1/2 −2/3 −5/6

 ·

x1

x2

x3

x4

x5

 (2.4.4)

By definition the linear functions (ri−1 − ri) are equal to the new coordinate functions xi. We will

rewrite the linear functions Φi,j,kl,m,n in the new coordinates. First notice that whenever Φi,j,kl,m,n is

a linear combination of a collection of the xi’s with coefficients of the same sign then it may be

disregarded because its zero set is the zero set of a collection of the coordinate functions x1, . . . , x5.

If |{i, j, k} ∩ {l,m, n}| = 2 then Φi,j,kl,m,n is a sum of xi’s with coefficients of the same sign and hence

we disregard it. Next let’s consider the Φi,j,kl,m,n’s such that |{i, j, k} ∩ {l,m, n}| = 1: up to ±1 we

get the following functions

(x1−x3), (x1−x4), (x1−x5), (x2−x4), (x2−x5), (x3−x5), (x1+x2−x4), (x1+x2−x5), (x2+x3−x5),

(x1 − x3 − x4), (x1 − x4 − x5), (x2 − x4 − x5), (x1 + x2 − x4 − x5). (2.4.5)

Lastly assume that {i, j, k} ∩ {l,m, n} = ∅; then Φi,j,kl,m,n(r) = 2(ri + rj + rk). The functions

Φ0,1,2
3,4,5(x) = x1 + 2x2 + 3x3 + 2x4 + x5, Φ0,1,3

2,4,5(x) = x1 + 2x2 + x3 + 2x4 + x5,

Φ2,3,5
0,1,4(x) = −(x1 + 2x2 + x3 + x5), Φ1,4,5

0,2,3(x) = −(x1 + x3 + 2x4 + x5), Φ0,2,4
1,3,5(x) = x1 + x3 + x5

have all non-zero coefficients of the same sign and hence we may disregard them. Table (3) lists the

remaining such functions (with {i, j, k} ∩ {l,m, n} = ∅) modulo ±1. It follows that in order to list

all ordering 1-PS’s we must find all non-zero solutions (x1, . . . , x5) ∈ C of 4 linearly independent

linear functions among the union of the set of coordinate functions, the set given by (2.4.5) and that

given by Table (3). In practice we consider the 5×23-matrix M whose columns are the coordinates

of the linear functions listed above i.e.[
1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1

0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 2 0 0 0

0 0 1 0 0 −1 0 0 0 0 1 0 0 1 −1 0 0 0 −1 1 −1 −1 1

0 0 0 1 0 0 −1 0 −1 0 0 −1 0 0 −1 −1 −1 −1 −2 0 0 0 0

0 0 0 0 1 0 0 −1 0 −1 −1 0 −1 −1 0 −1 −1 −1 −1 −1 −1 1 −1

]

and we proceed as follows. For each 5× 4 minor MI of M we compute (actually we ask a computer

to compute) the vector in R5 whose coordinates are the determinants with alternating signs of 4×4

minors of MI and discard all those vectors whose coordinates do not have the same sign. The

remaining vectors are the x-coordinates of ordering 1-PS’s (with many repetitions). Multiplying

each such vector by the matrix appearing in (2.4.4) one gets the weights of all ordering 1-PS’s. The

outcome of the computations is as follows. First the 1-PS’s appearing in Table (1) are among the
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ordering 1-PS’s. For example the first three 1-PS’s of Table (1) correspond in the x-coordinates

to the extremal rays of C generated by (1, 0, 0, 0, 0), (0, 0, 0, 0, 1) and (0, 0, 1, 0, 0) respectively.

Tables (4), (5) and (6) list all the ordering 1-PS’s up to rescaling and duality (ordering 1-PS’s

come in dual pairs (r0, . . . , r5) and (−r5, . . . ,−r0)). Tables (4), (5) and (6) give also the strictly-

positive weight isotypical addends of
∧3

λ for each ordering 1-PS in the list; abc denotes va∧vb∧vc
and an isotypical addend is determined via its monomial basis. Next one needs to examine, for

each ordering 1-PS λ, the set of A ∈ LG(
∧3

V ) such that µ(A, λ) ≥ 0. One finishes the proof

of Theorem 2.4.1 by checking that each such A belongs to one of the standard non-stable strata

i.e. those listed in Table (1): details are in Tables (7), (8), (9) and (10). One should read the tables

as follows. The first column of each row gives the weights of an ordering 1 PS λ, the second column

contains an explicit expression for µ(d, λ) (to get it use Tables (4), (5) and (6)), the third column

contains a collection of subsets of Pλ (to be precise a condition on d determining such a subset)

whose union is all of

P≥0
λ := {d ∈ Pλ | µ(d, λ) ≥ 0},

the last column gives for each such subset of P≥0
λ a stratum (or union of strata) containing all

A ∈ LG(
∧3

V ) such that dλ(A) belongs to the subset. We notice that since Table (1) is invariant

under duality it suffices to examine one ordering 1-PS in each dual pair. Following are a few remarks

on how to check that the last step of the proof has been carried out correctly. One first needs to

make sure that every d ∈ P≥0
λ belongs to one of the sets defined by the conditions on the third

column: that is time-consuming but completely straightforward. Secondly one needs to verify that

each subset of d ∈ P≥0
λ listed in Tables (7), (8) and (9) is contained in the stratum (or union of

strata) on the same row and on the last column: that is completely routine except in the two cases

below.

λ(t) = (t7, t4, t, t, t−5, t−8), d ∈ Pλ such that (d0 + d1) ≥ 1 and d2 ≥ 2 We remark that the order-

ing 1-PS appears in Table (8). Suppose that dλ(A) = (d0, d1, . . .) is as above (notice that d2 = 2

by Table (5)). Then A contains

0 6= α = v0 ∧ w1 ∧ w2, β = v0 ∧ w′1 ∧ w′2 + v1 ∧ v2 ∧ v3, w1, w2, w
′
1, w

′
2 ∈ 〈v1, v2, v3〉.

We distinguish two cases according to whether w′1∧w′2 is a multiple of w1∧w2 or not. If the former

holds then A contains v1 ∧ v2 ∧ v3 and since 〈w1, w2〉 ⊂ 〈v1, v2, v3〉 it follows that A ∈ B∗F1
. If the

latter holds then we may complete w1, w2 to a basis {w1, w2, w3} of 〈v1, v2, v3〉 in such a way that

β = v0 ∧ w1 ∧ w3 + w1 ∧ w2 ∧ w3 = w1 ∧ w3 ∧ (v0 − w2).

Since

dim(suppα ∩ suppβ) = dim(〈v0, w1, w2〉 ∩ 〈w1, w3, (v0 − w2)〉) = 2

we get that A ∈ B∗F1
.

λ(t) = (t10, t7, t, t−2, t−5, t−11), d = (0, 0, 1, 1, 3, 0) We remark that the ordering 1-PS appears in

Table (9). Let F := {v0, v1, v2, z3, z4, v5} be a basis of V . Let r be the set of weights of λ in decreasing

order and d be as above. Let λ′ be the 1-PS corresponding to XN3 according to Table (1) and r′

its set of weights in decreasing order. Let d′ = (1, 1, 2) be the λ′-type defining XN3
. Let A ∈ EF

r,d:

we will exhibit a basis F′ of V (depending on A) such that

A ∈ EF′

r′,d′ := {A ∈ LG(

3∧
V ) | dλ

′
(A) � (1, 1, 2)}. (2.4.6)

Since A ∈ EF
r,d there exist α, β, γ, δ ∈ A such that

α =v0 ∧ v1 ∧ ω1,

β =v0 ∧ (v1 ∧ ω2 + v2 ∧ z3),

γ =v0 ∧ (v1 ∧ ω3 + v2 ∧ (az3 + z4)),

δ =v0 ∧ (v1 ∧ ω4 + bv2 ∧ z3 + v1 ∧ v5),
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where

ω1, ω2, ω3, ω4 ∈ 〈v2, z3, z4〉, ω1 6= 0.

There exists (x0, y0) 6= (0, 0) such that

ω1 ∈ 〈v2, x0z3 + y0(az3 + z4)〉.

Let v3 := x0z3 + y0(az3 + z4). Notice that v2, v3 are linearly independent and they belong to

〈v2, z3, z4〉; thus there exists v4 ∈ 〈z3, z4〉 such that {v2, v3, v4} is a basis of 〈v2, z3, z4〉. We let

F′ := {v0, v1, v2, v3, v4, v5}. Let’s prove that (2.4.6) holds. Let d′λ′(A) = (d′0(A), d′1(A), d′2(A)).

First d′0(A) ≥ 1 because α 6= 0. Next

A 3 (x0β + y0γ) = v0 ∧ (v1 ∧ (x0ω2 + y0ω3) + v2 ∧ v3), (x0ω2 + y0ω3) ∈ 〈v2, v3, v4〉.

It follows that d′1(A) ≥ 1. Lastly let L0 ⊂ L1 ⊂ . . . ⊂ L6 =
∧3

V be the filtration defined by the

isotypical addends of
∧3

λ′ in decreasing order, see (2.1.7). Then β, γ, δ ∈ L2 and the image of

〈β, γ, δ〉 in L2/L1 has dimension 2, thus d′2(A) ≥ 2. This finishes the proof that (2.4.6) holds.

Theorem 2.4.1 provides an algorithm that decides whether a given A ∈ LG(
∧3

V ) is stable or

not: see Remark 3.3.5 for details.
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Table 7: Flag conditions defined by ordering 1-PS’s, I

1-PS λ µ(d, λ) subsets covering P≥0
λ

⊂

(1, 04,−1) 2(d0 − 3) d0 ≥ 3 B∗D

(12, 02,−12) 2(2d0 + d1 − 4)

d0 = 2 B∗F1

d0 = 1 and d1 ≥ 2 B∗F2

d1 = 4 B∗F1

(12, 03,−2) 2(2d0 + d1 − 6)
d0 ≥ 2 B∗F1

d0 + d1 ≥ 5 B∗A∨

(13,−13) 2(3d0 + d1 − 6)
d0 = 1 and d1 ≥ 3 B∗C1

d1 ≥ 6 B∗C2

(14,−22) 6(d0 − 2) d0 ≥ 2 B∗F1

(2, 1, 02,−1,−2) 2(3d0 + 2d1 + d2 − 7)

d0 = 2 B∗F1

d0 + d1 ≥ 3 or d0 + d1 + d2 ≥ 5 B∗D

d = (1, 1, 2) X∗N3

(2, 12,−12,−2) 2(4d0 + 2d1 + d2 − 8)

d0 = 1 and d1 + d2 ≥ 3 B∗C1

d0 + d1 ≥ 3 B∗D

d0 + d1 + d2 ≥ 6 B∗E2

(2, 12, 0,−1,−3) 2(4d0 + 3d1 + 2d2 + d3 − 9)

d0 + d1 ≥ 2 B∗F1

d0 + d1 + d2 ≥ 4 or d0 + d1 + d2 + d3 ≥ 5 B∗D

d0 = 1 and d1 + d2 ≥ 2 B∗
E∨1

(3, 12,−12,−3) 2(5d0 + 3d1 + d2 − 11)

d0 = 1 and d1 + d2 ≥ 4 B∗C1

d0 + d1 ≥ 3 B∗D

d0 + d1 + d2 ≥ 7 B∗A

(3, 12, 0,−2,−3) 2(5d0 + 4d1 + 2d2 + d3 − 11)

d0 + d1 ≥ 2 B∗F1

d0 = 1 and d1 + d2 ≥ 3 B∗C1

d0 + d1 + d2 + d3 ≥ 5 B∗D

(3, 2, 1,−1,−2,−3) 2(6d0 + 4d1 + 3d2 + 2d3 + d4 − 12)

d0 + d1 ≥ 2 B∗F1

d0 + d1 ≥ 1 and d2 + d3 ≥ 3 B∗F2

d0 = 1 and d1 + d2 + d3 + d4 ≥ 3 B∗C1

d0 + d1 + d2 ≥ 3 B∗D∑3
i=0 di ≥ 5 or

∑4
i=0 di ≥ 6 B∗E2

(3, 2, 1, 0,−1,−5) 2(6d0 + 5d1 + 4d2 + 3d3 + 2d4 + d5 − 15)

d0 + d1 ≥ 2 B∗F1

d0 + d1 ≥ 1 and d2 + d3 ≥ 3 B∗F2

d0 = 1 and d1 + d2 + d3 ≥ 2 B∗
E∨1

d0 + d1 + d2 ≥ 3 B∗D

d0 + d1 + d2 + d3 + d4 + d5 ≥ 5 B∗A∨

(4, 12,−23) 2(6d0 + 3d1 − 12)
d0 = 1 and d1 ≥ 2 B∗E1

d1 ≥ 4 B∗E2

(4, 13,−2,−5) 2(6d0 + 3d1 − 15)
d0 ≥ 2 B∗F1

d0 + d1 ≥ 4 B∗D
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Table 8: Flag conditions defined by ordering 1-PS’s, II

1-PS λ µ(d, λ) subsets covering P≥0
λ

⊂

(4, 2, 1, 0,−3,−4) 2(7d0 + 6d1 + 5d2 + 3d3 + 2d4 + d5 − 15)

d0 + d1 + d2 ≥ 2 B∗F1

d0 + d1 ≥ 1 and d2 + d3 ≥ 2 B∗F2

d0 = 1 and d1 + d2 + d3 ≥ 2 B∗E1

d0 = 1 and d1 + d2 + d3 + d4 ≥ 3 B∗C1

d0 + d1 + d2 + d3 + d4 ≥ 5 B∗
E∨2

d0 + d1 + d2 + d3 + d4 + d5 ≥ 6 B∗A

(4, 3, 1, 0,−3,−5) 2(8d0 + 7d1 + 5d2 + 4d3 + 2d4 + d5 − 17)

d0 + d1 + d2 ≥ 2 B∗F1

d0 + d1 ≥ 1 and d2 + d3 ≥ 2 B∗F2

d0 = 1 and d1 + d2 + d3 + d4 ≥ 3 B∗C1∑4
i=0 di ≥ 5 or

∑5
i=0 di ≥ 6 B∗

E∨2

(42, 1,−22,−5) 6(3d0 + 2d1 + d2 − 6)

d0 + d1 ≥ 2 B∗F1

d0 = 1 and d1 + d2 ≥ 3 B∗C1

d0 + d1 + d2 ≥ 5 B∗
E∨2

(42, 12,−2,−8) 6(3d0 + 2d1 + d2 − 8)

d0 ≥ 2 B∗F1

d0 ≥ 1 and d1 ≥ 2 B∗F2

d0 + d1 + d2 ≥ 5 B∗A∨

(5,−15) 2(3d0 − 15) d0 ≥ 5 B∗A

(5, 22,−12,−7) 6(3d0 + 2d1 + d2 − 7)

d0 + d1 ≥ 3 B∗D

d0 = 1 and d1 ≥ 2 or d1 + d2 ≥ 3 B∗
E∨1

d0 + d1 + d2 ≥ 5 B∗A∨

(5, 3, 1,−1,−3,−5) 2(9d0 + 7d1 + 5d2 + 3d3 + d4 − 19)

d0 + d1 ≥ 2 B∗F1

d0 + d1 ≥ 1 and d2 + d3 ≥ 3 B∗F2

d0 + d1 + d2 ≥ 3 or d0 + d1 + d2 + d3 ≥ 5 B∗D

d0 = 1 and d1 + d2 + d3 + d4 ≥ 4 B∗C1

d0 + d1 + d2 + d3 + d4 ≥ 7 B∗A

(52,−13,−7) 6(3d0 + d1 − 8)
d0 ≥ 2 B∗F1

d0 + d1 ≥ 6 B∗A∨

(52, 2,−1,−4,−7) 6(4d0 + 3d1 + 2d2 + d3 − 8)

d0 + d1 ≥ 2 B∗F1

d0 + d1 ≥ 1 and d2 ≥ 2 B∗F2

d0 + d1 + d2 + d3 ≥ 5 B∗
E∨2

d0 = 1 and d1 + d2 ≥ 2 or d1 + d2 + d3 ≥ 3 B∗
E∨1

(7, 4, 1,−22,−8) 6(4d0 + 3d1 + 2d2 + d3 − 9)

d0 + d1 ≥ 2 B∗F1

d0 + d1 + d2 ≥ 3 B∗D

d0 + d1 + d2 + d3 ≥ 6 B∗A∨

d0 = 1 and d1 + d2 + d3 ≥ 4 B∗C1

(7, 4, 12,−5,−8) 6(4d0 + 3d1 + 2d2 + d3 − 9)

d0 + d1 ≥ 2 or d0 + d1 ≥ 1 and d2 ≥ 2 B∗F1

d0 + d1 + d2 ≥ 4 B∗
E∨2

d0 + d1 + d2 + d3 ≥ 6 B∗A

d0 = 1 and d1 + d2 ≥ 2 or d1 + d2 + d3 ≥ 4 B∗
E∨1

25



Table 9: Flag conditions defined by ordering 1-PS’s, III

1-PS λ µ(d, λ) subsets covering P≥0
λ

⊂

(7, 4, 12,−2,−11) 6(4d0 + 3d1 + 2d2 + d3 − 11)

d0 ≥ 2 B∗F1

d0 + d1 ≥ 3 or d0 + d1 + d2 ≥ 4 B∗D

d0 + d1 + d2 + d3 ≥ 5 B∗A∨

(7, 42,−2,−5,−8) 6(4d0 + 3d1 + 2d2 + d3 − 11)

d0 + d1 ≥ 2 B∗F1

d0 ≥ 1 and d1 + d2 ≥ 2 or d2 ≥ 1, d3 ≥ 3 B∗E1
∪ B∗
E∨1

d0 + d1 + d2 ≥ 4 or d0 + d1 + d2 + d3 ≥ 6 B∗
E∨2

(72, 12,−5,−11) 6(5d0 + 3d1 + d2 − 12)

d0 ≥ 2 B∗F1

d0 ≥ 1 and d1 ≥ 2 B∗F2

d0 + d1 + d2 ≥ 6 B∗A∨

(8, 5, 2,−1,−4,−10) 6(5d0 + 4d1 + 3d2 + 2d3 + d4 − 11)

d0 + d1 ≥ 2 or d0 + d1 + d2 ≥ 3 B∗F1

d0 + d1 + d2 + d3 ≥ 4 B∗D

d0 + d1 + d2 + d3 + d4 ≥ 6 B∗A∨

d0 = 1 and d1 + d2 + d3 ≥ 2 B∗
E∨1

d0 = 1 and d1 + d2 + d3 + d4 ≥ 4 B∗C1

d = (0, 1, 1, 1, 2) X∗N3

(10, 7, 1,−2,−5,−11) 6(6d0 + 5d1 + 4d2 + 3d3 + 2d4 + d5 − 13)

d0 + d1 + d2 ≥ 2 B∗F1

d0 + d1 ≥ 1 and d2 + d3 + d4 ≥ 3 B∗F2

d0 + d1 + d2 + d3 ≥ 3 B∗D

d0 + d1 + d2 + d3 + d4 + d5 ≥ 6 B∗A∨

d0 = 1 and d1 + d2 + d3 + d4 + d5 ≥ 4 B∗C1

d = (0, 0, 1, 1, 3, 0) X∗N3

(10, 7, 4,−2,−8,−11) 6(7d0 + 5d1 + 4d2 + 3d3 + 2d4 + d5 − 14)

d0 + d1 + d2 ≥ 2 B∗F1

d0 + d1 ≥ 1 and d2 + d3 ≥ 2 B∗F2∑4
i=0 di ≥ 5 or

∑5
i=0 di ≥ 6 B∗

E∨2

d0 = 1 and d1 + d2 + d3 + d4 + d5 ≥ 3 B∗C1

(11, 5, 2,−1,−4,−13) 6(6d0 + 5d1 + 4d2 + 3d3 + 2d4 + d5 − 14)

d0 + d1 ≥ 2 B∗F1

d0 + d1 + d2 + d3 ≥ 3 B∗D∑4
i=0 di ≥ 5 or

∑5
i=0 di ≥ 6 B∗A∨

d0 = 1 and
∑4
i=1 di ≥ 3 or

∑5
i=1 di ≥ 4 B∗

E∨1

d = (0, 1, 1, 0, 2, 1) X∗N3

(11, 52,−1,−7,−13) 6(7d0 + 5d1 + 3d2 + d3 − 15)

d0 + d1 ≥ 2 B∗F1

d0 + d1 + d2 ≥ 4 B∗
E∨2

d0 + d1 + d2 + d3 ≥ 7 B∗A

d0 = 1 and d1 + d2 ≥ 2 B∗
E∨1

(11, 8, 2,−1,−7,−13) 6(7d0 + 6d1 + 4d2 + 3d3 + 2d4 + d5 − 15)

d0 + d1 ≥ 2 or d0 + d1 + d2 ≥ 3 B∗F1

d0 + d1 ≥ 1 and d2 + d3 ≥ 2 or d2 + d3 + d4 ≥ 3 B∗F2

d0 = 1 and d1 + d2 + d3 + d4 + d5 ≥ 4 B∗C1

d0 + d1 + d2 + d3 + d4 ≥ 5 B∗D

d0 + d1 + d2 + d3 + d4 + d5 ≥ 6 B∗A∨
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Table 10: Flag conditions defined by ordering 1-PS’s, IV

1-PS λ µ(d, λ) subsets covering P≥0
λ

⊂

(11, 8, 5,−4,−7,−13) 6(8d0 + 5d1 + 4d2 + 3d3 + 2d4 + d5 − 16)

d0 + d1 ≥ 2 or d0 + d1 + d2 ≥ 3 B∗F1

d0 = 1 and d1 + d2 + d3 ≥ 2 B∗
E∨1

d0 = 1 and d1 + d2 + d3 + d4 + d5 ≥ 3 B∗C1

d0 + d1 + d2 + d3 ≥ 4 or d0 + d1 + d2 + d3 + d4 ≥ 5 B∗
E∨2

(13, 7, 12,−5,−17) 6(7d0 + 5d1 + 3d2 + d3 − 18)

d0 = 2 or d0 + d1 ≥ 3 B∗F1

d0 + d1 + d2 ≥ 4 B∗D

d0 + d1 + d2 + d3 ≥ 6 B∗A∨

(17, 11, 5,−1,−13,−19) 6(11d0 + 9d1 + 7d2 + 5d3 + 3d4 + d5 − 23)

d0 + d1 + d2 ≥ 2 B∗F1

d0 + d1 ≥ 1 and d2 + d3 ≥ 2 B∗F2

d0 = 1 and d1 + d2 + d3 + d4 ≥ 3 B∗C1∑4
i=0 di ≥ 5 or

∑5
i=0 di ≥ 7 B∗

E∨2

(19, 13, 7,−5,−11,−23) 6(13d0 + 9d1 + 7d2 + 5d3 + 3d4 + d5 − 27)

d0 + d1 ≥ 2 or d0 + d1 + d2 ≥ 3 B∗F1

d0 = 1 and d1 + d2 + d3 ≥ 2 B∗
E∨1

d0 = 1 and
∑4
i=1 di ≥ 3 or

∑5
i=1 di ≥ 4 B∗C1∑3

i=0 di ≥ 4 or
∑4
i=0 di ≥ 5 B∗

E∨2
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3 Plane sextics and stability

In the present section we will check that if A ∈ LG(
∧3

V ) is not stable then there exists W ∈ ΘA

such that CW,A (see (0.0.9)) is either P(W ) or a sextic curve in the indeterminacy locus of the period

map (0.0.10): in other words we will prove Theorem 0.0.3. In the first subsection we will equip

the set CW,A with the structure of a subscheme of P(W ) and we will prove a simple result (Claim

3.1.4) that will be very useful in Section 5 when we will describe CW,A for properly semistable

A’s with orbit closed in LG(
∧3

V )ss. Subsection 3.2 contains the proof that if A ∈ LG(
∧3

V )ss

belongs to a standard non-stable strata which is not one of BD, BE1 , BE2 or XN3
then there exists

W ∈ ΘA such that CW,A is either P(W ) or a sextic curve in the indeterminacy locus of the period

map (0.0.10). Subsection 3.3 deals with the remaining standard non-stable strata: for those strata

we will need to develop more machinery in order to describe CW,A. For the reader’s convenience

we recall that a curve C has a simple singularity at p ∈ C if the following hold:

(i) p is a planar singularity i.e. dim ΘpC ≤ 2.

(ii) C is reduced in a neighborhood of p.

(iii) multp(C) ≤ 3 and if equality holds the blow-up of C at p does not have a point of multiplicity

3 lying over p.

Remark 3.0.2. Let C ⊂ P2 be a curve. Then C has simple singularities if and only if the double

cover S → P2 branched over C is a normal surface with DuVal singularities; in particular if C is

a sextic then the minimal desingularization of S is a K3 surface with A-D-E curves lying over the

singularities of S.

3.1 Plane sextics

Let W ∈ Gr(3, V ). Let

EW := (

3∧
W )⊥/

3∧
W (3.1.1)

where
∧3

W⊥ is the orthogonal of
∧3

W with respect to (, )V . The symplectic form (, )V induces

a symplectic form on EW that we will denote by (, )W . Let [w] ∈ P(W ); since Fw is a Lagrangian

subspace of
∧3

V containing
∧3

W we have the lagrangian

Gw := Fw/

3∧
W ∈ LG(EW ). (3.1.2)

Thus we have a Lagrangian sub-vector-bundle G of EW ⊗OP(W ) defined by

G := F ⊗OP(W )/

3∧
W ⊗OP(W ). (3.1.3)

We will associate to B ∈ LG(EW ) a subscheme CB ⊂ P(W ) by mimicking the definition of EPW-

sextic given in Section 1. Composing the inclusion G ↪→ EW ⊗ OP(W ) and the quotient map

EW ⊗OP(W ) → (EW /B)⊗OP(W ) we get a map of vector-bundles

G
νB−→ (EW /B)⊗OP(W ). (3.1.4)

We let CB = V (det νB); thus suppCB = {[w] ∈ P(W ) | Gw ∩ B 6= {0}}. A straightforward

computation gives that

detG ∼= OP(W )(−6). (3.1.5)

Thus CB is a sextic curve unless it is equal to P(W ). Next suppose that (W,A) ∈ Σ̃. Since∧3
W ⊂ A ⊂ (

∧3
W )⊥ we have the lagrangian

B := (A/

3∧
W ) ∈ LG(EW ). (3.1.6)
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Definition 3.1.1. Suppose that (W,A) ∈ Σ̃. We let CW,A := CB where B is given by (3.1.6).

Notice that (0.0.9) holds by definition. Let B ∈ LG(EW ) and νB be given by (3.1.4): we will

write out the first terms in the Taylor expansion of det νB in a neighborhood of [v0] ∈ P(W ). Let

W0 ⊂W be complementary to [v0]. We have an isomorphism

W0
∼−→ P(W ) \ P(W0)

w 7→ [v0 + w]
(3.1.7)

onto a neighborhood of [v0]; thus 0 ∈W0 is identified with [v0]. We have

CB ∩W0 = V (g0 + g1 + · · ·+ g6), gi ∈ SiW∨0 (3.1.8)

where the gi’s are well-determined up to a common non-zero multiplicative factor. We will describe

explicitly the gi’s for i ≤ dim(B ∩Gv0
). Given w ∈W we define the Plücker quadratic form ψv0

w on

Gv0 as follows. Let α ∈ Gv0 be represented by α ∈ Fv0 . Thus α = v0 ∧β where β ∈
∧2

V is defined

modulo (
∧2

W + [v0] ∧ V ): we let

ψv0
w (α) := vol(v0 ∧ w ∧ β ∧ β). (3.1.9)

Proposition 3.1.2. Keep notation and hypotheses as above. Let K := B ∩ Gv0 and k := dimK.

Then

(1) gi = 0 for i < k, and

(2) there exists µ ∈ C∗ such that

gk(w) = µdet(ψv0
w |K), w ∈W0. (3.1.10)

Proof. Let B1 := B and B2 ∈ LG(EW ) be transversal both to B1 and Gv0 . Then EW = B1 ⊕ B2

and we have an isomorphism B2
∼= B∨1 such that (, )W is identified with the standard symplectic

form on B1 ⊕ B∨1 . There exists an open W ⊂ W0 containing 0 such that Gv0+w is transversal to

B2 for all w ∈ W and hence Gv0+w is the graph of a map q̃(w) : B1 → B2 = B∨1 . Since Gv0+w is

Lagrangian the map q̃(w) is symmetric; we let q(w) be the associated quadratic form. The map

W → S2B∨1 mapping w to q(w) is regular and there exists ρ ∈ H0(O∗W) such that

g(w) = ρdet q(w), w ∈ W. (3.1.11)

We have ker q(0) = B1 ∩ Gv0
; by Proposition A.1.2 we get that det q ∈ mk0 where m0 ⊂ OW,0

is the maximal ideal; thus Item (1) follows from (3.1.11). Let’s prove Item (2). Let (det q)k ∈(
mk0/m

k+1
0

)
∼= SkW∨0 be the class of det q; by (3.1.11) we have

gk(w) = ρ(0)(det q)k(w), w ∈ V0. (3.1.12)

We have ker q(0) = K; by Proposition A.1.2 there exists θ ∈ C∗ such that

(det q)k(w) = θ det

(
d (q(tw)|K)

dt

∣∣∣∣
t=0

)
, w ∈W0. (3.1.13)

Thus in order to finish the proof of Item (2) it suffices to show that

d (q(tw)|K)

dt

∣∣∣∣
t=0

= ψv0
w |K , w ∈W0. (3.1.14)

Let B̃i ∈ LG(
∧3

V ) be such that B̃i/
∧3

W = Bi. Let α ∈ K be represented by α ∈ Fv0
; thus

we also have α ∈ B̃1. Assume that tw ∈ W where W is as above; there exists r(tw)(α) ∈ B̃2

well-defined modulo
∧3

W such that (α+ r(tw)(α)) ∈ Fv0+tw. Thus

(α+ r(tw)(α)) = (v0 + tw) ∧ ζ(tw). (3.1.15)
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By definition of q(tw) we have

q(tw)(α) = vol(α ∧ r(tw)(α)). (3.1.16)

Now multiply (3.1.15) on the left by α; since α ∈ Fv0
we have v0 ∧ α = 0 and hence

q(tw)(α) = t · vol(α ∧ w ∧ ζ(tw)) (3.1.17)

for w ∈W0. Differentiating with respect to t and setting t = 0 we get that

d (q(tw)|K)

dt

∣∣∣∣
t=0

(α) = vol(α ∧ w ∧ ζ(0)). w ∈W0. (3.1.18)

We may write α = v0 ∧ β because α ∈ Fv0
. Setting t = 0 in (3.1.15) we get that v0 ∧ ζ(0) = v0 ∧ β.

Thus (3.1.18) reads

d (q(tw)|K)

dt

∣∣∣∣
t=0

(α) = vol(v0 ∧ w ∧ β ∧ β) = ψv0
w (α), w ∈W0. (3.1.19)

This proves (3.1.14).

Corollary 3.1.3. Let (W,A) ∈ Σ̃ and [v0] ∈ P(W ). Then either CW,A = P(W ) or

mult[v0] CW,A ≥ dim(A ∩ Fv0)− 1.

Proof. Let B be given by (3.1.6). We apply Proposition 3.1.2: it suffices to notice that k =

(dim(A ∩ Fv0)− 1).

Our last result will be useful when we will describe CW,A for properly semistable A with closed

orbit in LG(
∧3

V )ss - we will use it repeatedly in Section 5. Choose a direct-sum decomposition

V = W ⊕ U ; thus dimU = 3 and we have an identification

EW ∼= EUW :=

2∧
W ⊗ U ⊕W ⊗

2∧
U. (3.1.20)

Notice that EUW is the direct-sum of a vector-space and its dual (after the choice of volume-forms

on W and on U) and hence it is equipped with a symplectic form (defined up to scalar). Under

Isomorphism (3.1.20) the symplectic form on EUW is identified, up to a scalar, with the symplectic

form on EW . We have the embedding

P(W ) ↪→ LG(EUW )

[w] 7→ GUw := {α ∈ EUW | w ∧ α = 0} (3.1.21)

and the pull-back map

Φ : |OLG(EUW )(1)| 99K |OP(W )(6)|. (3.1.22)

Let (W,A) ∈ Σ̃: thus A =
∧3

W ⊕ B where B ∈ EUW . Then
∧9

B corresponds (via wedge-

multiplication) to a hyperplane HB ∈ |OLG(EUW )(1)| and

CW,A = Φ(HB). (3.1.23)

(Notice that CW,A = P(W ) if and only if HB in the indeterminacy locus of Φ.) Of course Φ is

the projectivization of the map Φ of global sections induced by (3.1.21). We will write out Φ as

a GL(W ) × GL(U)-equivariant map. Write GUw = G′w ⊕ G′′w where G′w = GUw ∩ (
∧2

W ⊗ U) and

G′′w = GUw ∩ (W ⊗
∧2

U). We have embeddings

P(W ) ↪→ Gr(6,
∧2

W ⊗ U)

[w] 7→ G′w

P(W ) ↪→ Gr(3,W ⊗
∧2

U)

[w] 7→ G′′w
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They define GL(W )×GL(U)-equivariant surjections

∧6(
∧2 W∨⊗U∨)=H0(OGr(6,

∧2 W⊗U)(1))�H0(OP(W )(3))⊗(detW )−3⊗(detU)−2=S3 W∨⊗(detW )−3⊗(detU)−2.

(3.1.24)

and ∧3(W∨⊗
∧2 U∨)=H0(OGr(3,W⊗

∧2 U)(1))�H0(OP(W )(3))⊗(detU)−2=S3 W∨⊗(detU)−2. (3.1.25)

It follows from the definitions that Φ is identified with the composition of the following GL(W )×
GL(U)-equivariant maps

∧9 EUW
∼−→
∧9(EU )∨W⊗(detW )9⊗(detU)9�

�(S3 W∨⊗(detW )−3⊗(detU)−2)⊗(S3 W∨⊗(detU)−2)⊗(detW )9⊗(detU)9�S6 W∨⊗(detW )6⊗(detU)5. (3.1.26)

(We get the first surjection by writing the exterior power of a direct-sum as direct-sum of ten-

sors products of exterior powers, the second surjection follows from (3.1.24) and (3.1.25), the last

surjection is defined by multiplication of polynomials.) We have

CW,A = V (Φ(ω0)), 0 6= ω0 ∈
9∧
B. (3.1.27)

Claim 3.1.4. Let (W,A) ∈ Σ̃ and ω ∈
∧10

A. Suppose that there exist a direct-sum decomposition

V = W ⊕ U and g = (gW , gU ) ∈ (GL(W ) × GL(U)) ∩ SL(V ) such that gω = ω. Let gW :=

(det gW )−1/3gW - thus gW ∈ SL(W ). Write CW,A = V (P ) where P ∈ S6W∨; then gWP = P .

Proof. The statement is equivalent to gW (P ) = (det gW )−2P . Write A =
∧3

W ⊕ B where B ∈
LG(EUW ). Then ω = α ∧ ω0 where α ∈

∧3
W and ω0 ∈

∧9
B. We have gω0 = (det gW )−1ω0

because gω = ω. The claim follows from (3.1.27) and the GL(W ) × GL(U)-equivariance of Φ -

see (3.1.26).

3.2 Non-stable strata and plane sextics, I

In the present subsection we will prove the following result.

Proposition 3.2.1. Let A ∈ LG(
∧3

V ) and suppose that it belongs to

BA ∪ BA∨ ∪ BC1 ∪ BC2 ∪ BE∨1 ∪ BE∨2 ∪ BF1 ∪ BF2 . (3.2.1)

Then there exists W ∈ ΘA such that CW,A is not a curve with simple singularities, more precisely

either CW,A = P(W ) or else CW,A is a sextic curve and

(1) there exists [v0] ∈ CW,A such that mult[v0] CW,A ≥ 4 if A ∈ BA,

(2) CW,A is singular along a line (and hence non-reduced) if A ∈ (BC2 ∪ BE∨2 ∪ BF1
∪ BF2

),

(3) CW,A is singular along a conic (and hence non-reduced) if A ∈ BE∨1 ,

(4) CW,A is singular along a cubic (and hence equal to a double cubic)) if A ∈ (BA∨ ∪ BC1).

The proof will be given at the end of the subsection. First we will identify the bad points of

CW,A for (W,A) ∈ Σ̃. Let [v0] ∈ P(W ) and W0 ⊂ W be a subspace complementary to [v0]. We

choose V0 ∈ Gr(5, V ) such that

V = [v0]⊕ V0, V0 ∩W = W0. (3.2.2)

We have an isomorphism ∧2
V0/

∧2
W0

∼−→ Gv0

β 7→ v0 ∧ β.
(3.2.3)

Let ψv0
w be as in (3.1.9): we will view it as a quadratic form on

∧2
V0/

∧2
W0 via Isomorphism (3.2.3).

Let V (ψv0
w ) ⊂ P(

∧2
V0/

∧2
W0) be the zero-locus of ψv0

w . Proposition 3.1.2 suggests that in order
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to determine the local form of CW,A at [v0] we should examine the intersection of the V (ψv0
w ) for

w ∈W0. Let

µ̃ : P(

2∧
V0) 99K P(

2∧
V0/

2∧
W0) (3.2.4)

be projection with center
∧2

W0. Let

Gr(2, V0)W0
:= µ̃(Gr(2, V0)). (3.2.5)

(The right-hand side is to be interpreted as the closure of µ̃(Gr(2, V0) \ {
∧2

W0}).) Let µ be the

restriction of µ̃ to Gr(2, V0). The rational map

µ : Gr(2, V0) 99K Gr(2, V0)W0
(3.2.6)

is birational because Gr(2, V0) is cut out by quadrics. We have

dimGr(2, V0)W0 = 6, degGr(2, V0)W0 = 4. (3.2.7)

Claim 3.2.2. Keep notation as above. Then⋂
w∈W0

V (ψv0
w ) = Gr(2, V0)W0 (3.2.8)

and the scheme-theoretic intersection on the left is reduced.

Proof. For v0, v ∈ V let φv0
v be the Plücker quadratic form on Fv0

defined as follows. Let α ∈ Fv0
;

then α = v0 ∧ β for some β ∈
∧2

V . We set

φv0
v (α) := vol(v0 ∧ v ∧ β ∧ β). (3.2.9)

(The above equation gives a well-defined quadratic form on Fv0
because β is determined up to

addition by an element of Fv0
.) Let

λv0

V0
:
∧2

V0
∼−→ Fv0

β 7→ v0 ∧ β
(3.2.10)

Now let [v0] ∈ P(W ) be as above; we will identify
∧2

V0 and Fv0
via (3.2.10). If w ∈ W0 then

V (φv0
w ) ⊂ P(Fv0

) = P(
∧2

V0) is a Plücker quadric containing Gr(2, V0) and singular at
∧2

W0. The

quadric V (ψv0
w ) is the projection of V (φv0

w ) and hence it contains GrW0(2, V0). Thus the left-hand

side of (3.2.8) contains the right-hand side of (3.2.8). Since V (ψv0
w ) is an irreducible quadric for

every w ∈ W0 the left-hand side of (3.2.8) is of pure dimension 6, Cohen-Macaulay and of degree

4; thus the claim follows from (3.2.7).

Next we will identify the points [w] ∈ P(W ) such that CW,A is not as nice as possible - see Propo-

sition 3.2.6. First we give a few definitions. Given a subspace W ⊂ V we let

SW := (

2∧
W ) ∧ V. (3.2.11)

Now suppose that W ∈ Gr(3, V ); then SW ∈ LG(
∧3

V ) and P(SW ) ⊂ P(
∧3

V ) is the projective

space tangent to Gr(3, V ) at W .

Definition 3.2.3. Let (W,A) ∈ Σ̃. We let B(W,A) ⊂ P(W ) be the set of [w] such that

(1) there exists W ′ ∈ (ΘA \ {W}) with [w] ∈W ′, or

(2) dim(A ∩ Fw ∩ SW ) ≥ 2.

Remark 3.2.4. As is easily checked B(W,A) is a closed subset of P(W ).
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Let

ρv0

V0
: Fv0

∼−→
2∧
V0 (3.2.12)

be the inverse of (3.2.10). Now let [v0] ∈ P(W ) be as above and let

K := ρv0

V0
(A ∩ Fv0

). (3.2.13)

Then K ⊃
∧2

W0 and hence

P(K/

2∧
W0) ⊂ P(

2∧
V0/

2∧
W0). (3.2.14)

Claim 3.2.5. Keep notation as above. Then [v0] ∈ B(W,A) if and only if

P(K/

2∧
W0) ∩Gr(2, V0)W0

6= ∅. (3.2.15)

(The intersection above makes sense by (3.2.14).)

Proof. Let’s prove that [v0] ∈ B(W,A) if and only if

(a) P(K) ∩Gr(2, V0) is not equal to the singleton {
∧2

W0}, or

(b) P(K) ∩Θ∧2 W0
Gr(2, V0) is not equal to the singleton {

∧2
W0}.

(Here Θ∧2 W0
Gr(2, V0) ⊂ P(

∧2
V0) is the projective tangent space to Gr(2, V0) at

∧2
W0.) In fact

(a) holds if and only if Item (1) of Definition 3.2.3 holds with w = v0. On the other hand (b)

holds if and only if Item (2) of Definition 3.2.3 holds (with w = v0) because

Θ∧2 W0
Gr(2, V0) = P(ρv0

V0
(Fv0

∩ SW ). (3.2.16)

This proves that [v0] ∈ B(W,A) if and only if one of Items (a), (b) above holds. Since Gr(2, V0)W0

is obtained by projecting Gr(2, V0) from
∧2

W0 the claim follows.

Proposition 3.2.6. Let (W,A) ∈ Σ̃ and [v0] ∈ P(W ). Then [v0] /∈ B(W,A) if and only if one of

the following holds:

(1) dim(Fv0 ∩A) = 1 i.e. [v0] /∈ CW,A by (0.0.9),

(2) dim(Fv0
∩A) = 2 and CW,A is a smooth curve at [v0],

(3) dim(Fv0 ∩A) = 3 and CW,A is a curve with an ordinary node at [v0].

Proof. Suppose that [v0] /∈ B(W,A) - we will prove that one of Items (1), (2), (3) holds. First let’s

show that

dim(Fv0 ∩A) ≤ 3. (3.2.17)

Let K := ρv0

V0
(Fv0 ∩ A). Assume that (3.2.17) does not hold, i.e. that dimP(K) ≥ 3. Since

dim Gr(2, V0) = 6 we get that

(α) dim(P(K) ∩Gr(2, V0)) > 0, or

(β) dimP(K) = 3 and the intersection P(K) ∩Gr(2, V0) is zero-dimensional.

If (α) holds then P(K) ∩ Gr(2, V0) is not equal to the singleton
∧2

W0 and hence [v0] ∈ B(W,A),

contradiction. Now suppose that (β) holds. Suppose first that P(K) is transverse to Gr(2, V0)

at
∧2

W0; then P(K) ∩ Gr(2, V0) is not equal to the singleton
∧2

W0 because deg Gr(2, V0) = 5

and hence [v0] ∈ B(W,A), contradiction. If P(K) is not transverse to Gr(2, V0) at
∧2

W0 then

[v0] ∈ B(W,A) by Claim 3.2.5 - again we get a contradiction. This proves that (3.2.17) holds.

If dim(Fv0 ∩ A) = 1 there is nothing to prove. If dim(Fv0 ∩ A) = 2 then by Claim 3.2.5 we get

that P(K/
∧2

W0) is a point not contained in Gr(2, V0)W0
. By Proposition 3.1.2 and (3.2.8) we

get that CW,A is a smooth curve at [v0]. Lastly suppose that dim(Fv0
∩ A) = 3. By Claim 3.2.5
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we get that P(K/
∧2

W0) is a line that does not intersect Gr(2, V0)W0
. By Proposition 3.1.2

and (3.2.8) we get that CW,A is a curve with a node at [v0]. This proves that if [v0] /∈ B(W,A) then

one of Items (1), (2), (3) holds. One verifies easily that the converse holds; we leave details to the

reader.

Corollary 3.2.7. Let (W,A) ∈ Σ̃(V ). Then CW,A = P(W ) if and only if B(W,A) = P(W ). If

CW,A 6= P(W ) then B(W,A) ⊂ singCW,A.

Proof. If B(W,A) = P(W ) then dim(A ∩ Fw) ≥ 2 for all [w] ∈ P(W ) and hence CW,A = P(W )

by (0.0.9). If CW,A = P(W ) then B(W,A) = P(W ) by Proposition 3.2.6. The second statement

follows at once from Corollary 3.1.3 and Proposition 3.2.6.

Given W ∈ Gr(3, V ) we let

TW := SW /

3∧
W ∼=

2∧
W ⊗ (V/W ) ∼= Hom(W,V/W ). (3.2.18)

(Recall (3.2.11).) Of course the second isomorphism is not canonical, it depends (up to multiplica-

tion by a scalar) on the choice of a volume form on W .

Claim 3.2.8. Let (W,A) ∈ Σ̃ and suppose that CW,A 6= P(W ). Let [w] ∈ P(W ). If there exists

α ∈ (A ∩ SW ) such that

(1) the equivalence class α ∈ TW is non-zero and

(2) α(w) = 0 (we view α as an element of Hom(W,V/W ) thanks to (3.2.18))

then [w] ∈ singCW,A.

Proof. We have α(w) = 0 if and only if α ∈ SW ∩Fw; thus Item (2) of Definition 3.2.3 holds and

the claim follows from Corollary 3.2.7.

Proof of Proposition 3.2.1. We may assume throughout that CW,A 6= P(W ). First we will

consider

A ∈ (BA∨ ∪ BC2 ∪ BE∨2 ∪ BF1
). (3.2.19)

By Section 2.3 of [20] we know the following:

(1) If A ∈ BF1
is generic then ΘA is a line.

(2) If A ∈ BE∨2 is generic then ΘA is a rational normal cubic and the ruled 3-fold swept out by

P(W ) for W ∈ ΘA lies in a hyperplane of P(V ).

(3) If A ∈ BA∨ is generic then ΘA is a projectively normal quintic elliptic curve and the ruled

3-fold swept out by P(W ) for W ∈ ΘA lies in a hyperplane of P(V ).

(4) If A ∈ BC2 is generic then ΘA is a projectively normal sextic elliptic curve and there exists a

plane P(U) ⊂ P(V ) intersecting along a line each plane P(W ) for W ∈ ΘA.

Suppose that (1) holds and let W ∈ ΘA. Let W ′ ∈ (ΘA \ {W}); then P(W ∩ W ′) is a line.

By Corollary 3.2.7 CW,A is singular along P(W ∩W ′). Now suppose that one of Items (2), (3)

or (4) holds. Let W ∈ ΘA and

C :=
⋃

W ′∈(ΘA\{W})

P(W ∩W ′).

If A ∈ BA∨ is generic then C is a cubic curve, this is easily checked. We claim that if A ∈ (BC2∪BE∨2 )

is generic then C is a line. The fact is that in both cases there exists U ∈ Gr(3, V ) such that

dim(W ′ ∩ U) = 2 for all W ′ ∈ ΘA and hence C = P(W ∩ U). Existence of such a U for A generic
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in BC2 was stated in Item (4) above. Let’s prove that such a U exists for A generic in BE∨2 . Write

V = S2 L where L is a complex vector-space of dimension 3. We have embeddings

P(L)
k
↪→ Gr(3,S2 L)

[l0] 7→ {l0 · l | l ∈ L}
P(L∨)

h
↪→ Gr(3,S2 L)

[f0] 7→ {q | f0 ∈ kerq}.
(3.2.20)

The maps k and h have the following geometric interpretation. Let V1 ⊂ P(S2 L) be the subset of

tensors of rank 1 (modulo scalars) i.e. the degree-4 Veronese surface: then

im k = {T[`20]V1 | [`20] ∈ V1}, imh = {〈C〉 | C ⊂ V1 a conic } (3.2.21)

i.e. im k is the set of projective tangent spaces to points of V1 and imh is the set of planes spanned

by conics on V1. Let L be the Plücker(ample) line-bundle on Gr(3,S2 L); one checks easily that

k∗L ∼= OP(L)(3), h∗L ∼= OP(L∨)(3) (3.2.22)

and that H0(k∗), H0(h∗) are surjective. Let R := P(ker f) where [f ] ∈ P(L∨). Then k(R) ⊂
Gr(3,S2 L) is a rational normal cubic curve. Since the union of projective planes parametrized by

k(R) is contained in the hyperplane

{[ϕ] ∈ P(S2 L) | 〈ϕ, f2〉 = 0}

it is actually projectively equivalent to ΘA, see Proposition 2.12 of [20]. Let

U ′ := {[ϕ] ∈ P(S2 L) | f ∈ kerϕ}

Then dim(U ′ ∩W ′) = 2 for all W ′ ∈ k(R); since k(R) is projectively equivalent to ΘA it follows

that there exists U ∈ Gr(3, V ) such that dim(W ′ ∩ U) = 2 for all W ′ ∈ ΘA as claimed. Now let’s

consider

A ∈ (BA ∪ BC1 ∪ BE∨1 ∪ BF2). (3.2.23)

We may assume that A is generic in BF
X for X = A, . . . ,F2 where F is a basis of V given by (2.2.1).

Consider first BF
A. By Table (1) we have

dim(A ∩ [v0] ∧
2∧
V15) ≥ 5. (3.2.24)

We have a natural embedding Gr(2, V15) ↪→ P([v0]∧
∧2

V15) with image of codimension 3; by (3.2.24)

it follows that there exists W ∈ ΘA containing v0 (actually a family of dimension at least 1).

By Corollary 3.1.3 and (3.2.24) we get that mult[v0] CW,A ≥ 4. Now consider one of BF
C1 or BF

E∨1
.

Then ΘA contains W := V02. Let A := A/
∧3

W and TW be as in (3.2.18). We notice that the

inequality which enters into the definition of BF
C1 or BF

E∨1
gives that

{[w] ∈ P(W ) | ∃ 0 6= α ∈ (TW ∩A) s.t. α(w) = 0} (3.2.25)

has dimension at least 1, in fact it contains a cubic curve in the case of BF
C1 and it contains a conic

in the case of BF
E∨1

. This settles the case of A ∈ (BF
C1 ∪ BF

E∨1
). Lastly we consider BF

F2
. By the first

inequality defining BF
F2

we get that there exists 0 6= u ∈ V23 such that W := 〈v0, v1, u〉 ∈ ΘA. We

claim that (3.2.25) has dimension at least 1. Let v ∈ V23 be such that {u, v} is a basis of V23. Let

α ∈ (

2∧
V01 ∧ V23 ⊕

2∧
V01 ∧ V45 ⊕ V01 ∧

2∧
V23).

Then α(v0), α(v1) ⊂ [v] where v ∈ V/W is the class of v; in particular α has non-trivial kernel. By

the second inequality defining BF
F2

we get that (3.2.25) has dimension at least 1, in fact it contains

a line. This concludes the proof.
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3.3 Non-stable strata and plane sextics, II

In the present subsection we will prove the following result.

Proposition 3.3.1. Let A ∈ LG(
∧3

V ) and suppose that it belongs to

BD ∪ BE1 ∪ BE2 ∪ XN3
. (3.3.1)

Then there exists W ∈ ΘA such that CW,A is not a curve with simple singularities; more precisely

the following hold:

(1) If A ∈ BD or A ∈ BE1 then either CW,A = P(W ) or else CW,A has a point of multiplicity at

least 4.

(2) If A is generic in BE2 or in XN3
then CW,A has consecutive triple points.

We will prove Proposition 3.3.1 at the end of the subsection: first we will go through some

preliminaries. We start out by giving a “classical”description of CW,A in a neighborhood of [v0] for

(W,A) ∈ Σ̃ and [v0] ∈ P(W ). For this we will suppose that there exists V0 ∈ Gr(5, V ) such that

v0 /∈ V0,

3∧
V0 t A. (3.3.2)

By (1.0.13) the second requirement (transversality) is equivalent to YδV (A) 6= P(V ∨). Let D be the

direct-sum decomposition

V = [v0]⊕ V0. (3.3.3)

Under the above hypothesis there is a “classical”description of YA in a neighborhood of [v0] as

the discriminant hypersurface of a linear system of quadrics - see Section 1.7 of [20] - that goes as

follows. We have a quadratic form qA = qDA(0) ∈ S2(
∧2

V0)∨ characterized as follows:

q̃A(α) = γ ⇐⇒ (v0 ∧ α− γ) ∈ A. (3.3.4)

Here q̃A :
∧2

V0 →
∧2

V ∨0 is the symmetric map associated to qA and we make the identification∧3
V0

∼−→
∧2

V ∨0
γ 7→ α 7→ vol(v0 ∧ α ∧ γ).

(3.3.5)

For v ∈ V let Let qv ∈ S2(
∧2

V0)∨ be the Plücker quadratic form defined by

qv(α) := vol(v0 ∧ v ∧ α ∧ α). (3.3.6)

Notice that (via the obvious identification) qv = φv0

V0
where φv0

V0
is defined by (3.2.9). Lastly we

make the identification
V0

∼−→ P(V ) \ P(V0)

v 7→ [v0 + v].
(3.3.7)

(Thus 0 ∈ V0 corresponds to [v0].) By [20] we have the following local description of YA:

YA ∩ V0 = V (det(qA + qv)). (3.3.8)

Now suppose that v0 ∈W and let W0 := W ∩ V0; there is a similar description of CW,A ∩ (P(W ) \
P(W0)) which goes as follows. First notice that the restriction of (3.3.7) to W0 may be identified

with (3.1.7). Next notice that
∧2

W0 is in the kernel of qA and also in the kernel of qw for w ∈W0.

Let

qA, qw ∈ S2(

2∧
V0/

2∧
W0)∨, w ∈W0 (3.3.9)

be the induced quadratic forms. Below is our “classical”description of CW,A near [v0].
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Claim 3.3.2. Keep hypotheses and notation as above - in particular assume that (3.3.2) holds.

Then

CW,A ∩ (P(W ) \ P(W0)) = V (det(qA + qw)) (3.3.10)

where w ∈W0 - see (3.1.7).

Proof. We have an isomorphism

ker(qA + qw)
∼−→ A ∩ Fv0+w

α 7→ (v0 + w) ∧ α (3.3.11)

The set-theoretic equality of the two sides of (3.3.10) follows at once from (0.0.9) and (3.3.11). In

order to prove scheme-theoretic equality one may describe CW,A∩(P(W )\P(W0)) as the degeneracy

locus of a family of symmetric maps parametrized by W0 as follows. Let U ⊂ V be complementary

to W . We have a natural identification

(

2∧
W ) ∧ U ⊕W ∧ (

2∧
U)

∼−→ EW . (3.3.12)

Given the above identification we have a direct-sum decomposition into Lagrangian subspaces

EW = ([v0] ∧W0 ∧ U ⊕ [v0] ∧ (

2∧
U))⊕ ((

2∧
W0) ∧ U ⊕W0 ∧ (

2∧
U)). (3.3.13)

(The first and second summand are the intersections of the left-hand side of (3.3.12) and Fv0
and∧3

V0 respectively.) Given the above decomposition the scheme CW,A∩(P(W )\P(W0)) is described

as the degeneracy locus of a family of quadratic forms. One identifies the family of quadratic forms

with {(qA + qw)}w∈W0
and the claim follows.

Remark 3.3.3. Let Gr(2, V0)W0
⊂ P(

∧2
V0/

∧2
W0) be the projection of Gr(2, V0) from

∧2
W0 -

see (3.2.5). Let

ZW0,A := V (qA) ∩Gr(2, V0)W0 ⊂ P(

2∧
V0/

2∧
W0). (3.3.14)

As w varies in W0 the quadrics V (qA + qw) vary in an open affine neighborhood of V (qA) in

|IZW0,A
(2)| - see Claim 3.2.2. Thus the singularity of CW,A at [v0] is determined by ZW0,A.

Proof of Proposition 3.3.1. First we will prove the statement of the proposition for A ∈ BD∪BE1 .

We may suppose that CW,A 6= P(W ). We may assume that there is a basis F = {v0, . . . , v5} of V

such that A is generic in BF
D or in BF

E1 and hence one of the following holds:

(1) dimA ∩ ([v0] ∧
∧2

V14) = 3 and ΘA is a smooth conic parametrizing planes containing [v0],

see Section 2.3 of [20].

(2) A ⊃ [v0] ∧
∧2

V12 and dimA ∩ ([v0] ∧ V12 ∧ V35) = 2.

If (1) holds let W be an arbitrary element of ΘA, if (2) holds let W := V02. We will prove that

CW,A has multiplicity at least 4 at [v0]. Notice that in both cases

dimA ∩ Fv0 ≥ 3. (3.3.15)

Since A is generic in BF
D or in BF

E1 we may assume that (3.3.15) is an equality. Thus mult[v0] CW,A ≥ 2

by Corollary 3.1.3: that is not good enough. We will apply Claim 3.3.2. First we must make sure

that there exists V0 ∈ Gr(5, V ) for which (3.3.2) holds. As is easily checked V15 will do for A generic

in BF
D or in BF

E1 . Next we notice that the line P(ker qA) is contained in Gr(2, V0)W0
(notice that

W0 = V12 if Item (2) holds). In fact if (1) holds the projection µ : Gr(2, V0) 99K Gr(2, V0)W0
maps

the conic ρv0

V0
(ΘA) to P(ker qA). If (2) holds the plane P(ρv0

V0
(A∩Fv0

)) is tangent to Gr(2, V0) at V12

and hence is mapped by µ to Gr(2, V0)W0 ; on the other hand the image by µ is exactly P(ker qA).

Since the line P(ker qA) is contained in Gr(2, V0)W0
every qw (for w ∈ W0) vanishes on P(ker qA)

by Claim 3.2.2; by Corollary 3.1.3 and Proposition A.1.2 we get that mult[v0] CW,A ≥ 4. Next
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we suppose that A ∈ BE2 . Thus we may assume that A is generic in BF
E2 where F = {v0, . . . , v5} is a

basis of V . By Proposition 2.20 of [20] we know that ΘA is a rational normal cubic curve and that

all planes parametrized by ΘA contain [v0]; as W we choose an arbitrary element of ΘA. We will

prove that CW,A has consecutive triple points at [v0]; for the reader’s convenience we notice that

this holds if and only if there exists a basis {x, y} of W∨0 such that

CW,A ∩W0 = V (y3 + c22x
2y2 + c13xy

3 + c04y
4 + c41x

4y + c32x
3y2 + . . .). (3.3.16)

More precisely: the tangent cone to CW,A at [v0] is V (y3) and the coefficients of x4, x3y, x5 (in the

generator of the ideal of CW,A ∩W0) are zero. First we notice that (3.3.2) holds with V0 := V15 (if

A is generic in BF
E2) and hence we may apply Claim 3.3.2. By genericity of A in BF

E2 the inequality

in the definition of BF
E2 is an equality; thus dim(ker qA) = 3. Moreover P(ker qA) ∩ Gr(2, V0)W0

is a (smooth) conic C, namely the projection of ρv0

V0
(ΘA) from W0. Let K := ker qA. By Claim

3.2.2 the intersection with P(K) of the quadrics V (qw) (for w ∈ W0) equals C. Thus there

exists 0 6= w1 ∈ W0 such that qw1
|K = 0. We complete {w1} to a basis {w1, w2} of W0; thus

V (qw2
) ∩ P(K) = C and hence qw2

|K is a non-degenerate quadratic form. In a suitable basis of∧2
V0/

∧2
W0 we have

qA + xqw1
+ yqw2

=



y 0 0 m1,4 · · · m1,9

0 y 0 m2,4 · · · m2,9

0 0 y m3,4 · · · m3,9

m4,1 m4,2 m4,3 1 +m4,4 · · · m4,9

...
...

...
...

. . .
...

m9,1 m9,2 m9,3 m9,4 · · · 1 +m9,9


(3.3.17)

where each mi,j ∈ C[x, y]1 is homogeneous of degree 1. A straightforward computation gives that

det(qA + xqw1
+ yqw2

) = y3 + c22x
2y2 + c13xy

3 + c04y
4 + c41x

4y + c32x
3y2 + . . .

and hence CW,A has consecutive triple points at [v0] - see (3.3.16). It remains to prove the statement

of Proposition 3.3.1 regarding XN3
. We may assume that A is generic in XF

N3
where F =

{v0, v1, . . . , v5} is a basis of V . By genericity all the dimension inequalities defining XF
N3

are in fact

equalities, in particular

dim(A ∩ Fv0) = 3. (3.3.18)

Moreover A contains

v0 ∧ v1 ∧ (av2 + bv3)

v0 ∧ (v1 ∧ (cv2 + dv3) + v1 ∧ v4 + v2 ∧ v3)

v0 ∧ (ev1 ∧ v4 + fv2 ∧ v3 + gv1 ∧ v5 + hv2 ∧ v4 + lv3 ∧ v4)

v0 ∧ (e′v1 ∧ v4 + f ′v2 ∧ v3 + g′v1 ∧ v5 + h′v2 ∧ v4 + l′v3 ∧ v4) + v1 ∧ v2 ∧ v3.

(3.3.19)

(We have rescaled some of the vi’s.) By genericity we also have

a 6= 0 6= (ad− bc). (3.3.20)

Define v′2, v
′
4 ∈ V15 by

v2 = v′2 − a−1bv3,

v4 = −cv′2 + (a−1bc− d)v3 + v′4.

Thus {v0, v1, v
′
2, v3, v

′
4, v5} is a new basis of V . Replacing v2 and v4 by the above expressions we

get that A contains
v0 ∧ v1 ∧ v′2
v0 ∧ (v1 ∧ v′4 + v′2 ∧ v3)

v0 ∧ (v1 ∧ u+ ω)

v0 ∧ (v1 ∧ x+ τ) + v1 ∧ v′2 ∧ v3

(3.3.21)
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Table 11: Matrix of qw|K
α β

α 0 0

β 0 2 vol(v0 ∧ w ∧ w1 ∧ w
′
1 ∧ w

′
2 ∧ u)

where ω, τ ∈
∧2〈v′2, v3, v

′
4〉 and hence are decomposable. By genericity of A we have v′2 /∈ suppω;

thus after a suitable rescaling of v0 ∧ (v1 ∧ u+ ω) we may assume that

ω = (sv3 + v′4) ∧ (v3 + tv′2)

where s, t ∈ C. Let

w1 := v1, w2 := v′2 − sv1, w′1 := sv3 + v′4, w′2 := v3 + tv′2.

By genericity of A the span 〈w1, w2, w
′
1, w

′
2〉 does not contain u; it follows that {v0, w1, w2, w

′
1, w

′
2, u}

is yet another basis of V . Rewriting the elements of (3.3.21) in terms of the last basis we get that

A contains
v0 ∧ w1 ∧ w2

v0 ∧ (w1 ∧ w′1 + w2 ∧ w′2)

v0 ∧ (w1 ∧ u+ w′1 ∧ w′2)

v0 ∧ (w1 ∧ ζ + ξ) + w1 ∧ w2 ∧ w′2

(3.3.22)

where

ξ ∈
2∧
〈w2, w

′
1, w

′
2〉 (3.3.23)

(The last statement holds because τ ∈
∧2〈v′2, v3, v

′
4〉.) Let W := 〈v0, w1, w2〉; clearly W ∈ θA. We

will prove that CW,A has triple consecutive points at [v0]. First notice that there exists V0 ∈ Gr(5, V )

such that (3.3.2) holds; in fact V0 := V15 will do (for generic A ∈ XF
N3

). Thus we may appply Claim

3.3.2. Let W0 := W ∩ V0 and {x, y} be the basis of W∨0 dual to {w1, w2}. By (3.3.18) we have

dim(A ∩ Fv0
) = 3; thus Corollary 3.1.3 gives that

CW,A ∩W0 = V (g2 + g3 + . . .+ g6), gd =
∑
i+j=d

cijx
iyj .

Let K := ker qA = ρv0

V0
(A ∩ Fv0

)/
∧2

(W0). Then K = 〈α, β〉 where

α := (w1 ∧ w′1 + w2 ∧ w′2), β := (w1 ∧ u+ w′1 ∧ w′2). (3.3.24)

Let w ∈W0; the matrix of qw|K with respect to the basis given by (3.3.24) is given by Table (11).

In particular qw|K is degenerate and hence g2 = 0 by (3.1.10) and Claim 3.2.2. Let’s prove that

g3 = c03y
3, c03 6= 0. (3.3.25)

The restriction qw1
|K is zero and hence g3(w1) = 0 by Proposition A.1.3; thus in order to

prove (3.3.25) it suffices to show that

g3(x0, y0) 6= 0 if y0 6= 0. (3.3.26)

Let w = (x0w1 + y0w2) with y0 6= 0; thus ker(qw|K) = 〈(w1 ∧ w′1 + w2 ∧ w′2)〉. The hypotheses

of Claim A.2.1 are satisfied by q∗ := qA and q := qw; it follows that g3(x0, y0) = 0 if and only if

q∨A((x0w1 + y0w2) ∧ (w1 ∧ w′1 + w2 ∧ w′2)) = 0. (3.3.27)

Of course here we are tacitly identifying (
∧2

V0/
∧2

W0)∨ with Ann(
∧2

W0) ⊂
∧3

V0. In order to

compute the left-hand side of (3.3.27) we notice that

q̃
−1

A (w1 ∧ w2 ∧ w′2) = −w1 ∧ ζ − ξ.
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Table 12: Matrix of q∨A restricted to q̃w1
(K)

q̃w1
(α) q̃w1

(β)

q̃w1
(α) vol(v0 ∧ (w1 ∧ ζ + ξ) ∧ w1 ∧ w2 ∧ w

′
2) vol(v0 ∧ γ ∧ w1 ∧ w2 ∧ w

′
2)

q̃w1
(β) vol(v0 ∧ γ ∧ w1 ∧ w2 ∧ w

′
2) vol(v0 ∧ γ ∧ w1 ∧ w2 ∧ w

′
1)

In fact the above equation follows from (3.3.4) and (3.3.22). Let

q̃
−1

A (w1 ∧ w2 ∧ w′1) = γ ∈
2∧
V0/〈w1 ∧ w2, (w1 ∧ w2, w1 ∧ w′1 + w2 ∧ w′2), (w1 ∧ u+ w′1 ∧ w′2)〉.

(Here γ ∈
∧2

V0.) Then - see (3.3.4) - we have

(v0 ∧ γ − w1 ∧ w2 ∧ w′1) ∈ A.

We notice that we have

v0 ∧ γ ∧ w1 ∧ w2 ∧ w′2 = 0 (3.3.28)

In fact the above equality holds because A is a lagrangian subspace containing the element on the

fourth line of (3.3.22) and because (3.3.23) holds. From the above equations we get that

q∨A((x0w1 + y0w2) ∧ (w1 ∧ w′1 + w2 ∧ w′2)) = y2
0 vol(v0 ∧ γ ∧ w1 ∧ w2 ∧ w′1).

Since A is generic

v0 ∧ γ ∧ w1 ∧ w2 ∧ w′1 6= 0 (3.3.29)

and hence we get that (3.3.26) holds. We have proved (3.3.25). Next let’s prove that 0 = c40 = c50

i.e.

g(xw1, 0) ≡ 0 (mod x6). (3.3.30)

First we apply Proposition A.1.3 with q∗ := qA and q := qw1
. Let’s show that q∨A|q̃w1

(K) is

degenerate. By definition the map q̃A defines an isometry between q̃
−1

A ◦ q̃w1
(K) equipped with the

restriction of qA and q̃w1
(K) equipped with the restriction of q∨A. We have

q̃
−1

A (q̃w1
(α)) = q̃

−1

A (w1 ∧ w2 ∧ w′2) = −w1 ∧ ζ − ξ,
q̃
−1

A (q̃w1
(β)) = q̃

−1

A (−w1 ∧ w2 ∧ w′1) = −γ.

From this it follows that the restriction of q∨A to q̃w1
(K) is given by Table (12). By (3.3.23)

and (3.3.28) the entries vanish with the exception of the one on the second line and second column.

Thus q∨A|q̃w1
(K) is degenerate and hence g(xw1, 0) ≡ 0 (mod x5) by Proposition A.1.3. Next we

will apply Proposition A.2.3 in order to finish proving that (3.3.30) holds. By Table (12) we have

ker(q∨A|q̃(K)) 3 q̃w1
(α) = w1 ∧ w2 ∧ w′2 = q̃A(−w1 ∧ ζ − ξ).

Thus v := α satisfies (A.2.5) (one of the hypotheses of Proposition A.2.3) and we may set .

e(qw1
;α) = −(w1 ∧ ζ + ξ) (3.3.31)

By (3.3.23) we get that qw1
(w1 ∧ ζ + ξ) = 0 and hence (3.3.30) holds by Proposition A.2.3. It

remains to prove that c31 = 0. Let’s prove that the hypotheses of Claim A.2.5 are satisfied by

q∗ := qA, r := qw1
and s := qw2

. Item (1) holds by Table (11), moreover the kernel of qw2
|K is

spanned by α and hence v := α in the notation of Claim A.2.5. Next consider Item (2): then

q̃w1
(α) = w1∧w2∧w′2, q̃w2

(α) = −w1∧w2∧w′1, since they are linearly independent the first condition

of that item is satisfied. Table (13) gives the restriction of q∨A to 〈q̃w1
(α), q̃w2

(α)〉. The entry on

the second line and second column is non-zero by (3.3.29), the others are zero by (3.3.23), thus the
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Table 13: Matrix of q∨A restricted to 〈q̃w1
(α), q̃w2

(α)〉
q̃w1

(α) q̃w2
(α)

q̃w1
(α) vol(v0 ∧ (w1 ∧ ζ + ξ) ∧ w1 ∧ w2 ∧ w

′
2) vol(v0 ∧ (w1 ∧ ζ + ξ) ∧ w1 ∧ w2 ∧ w

′
1)

q̃w2
(α) vol(v0 ∧ (w1 ∧ ζ + ξ) ∧ w1 ∧ w2 ∧ w

′
1) vol(v0 ∧ γ ∧ w1 ∧ w2 ∧ w

′
1)

second condition of Item (2) is satisfied. Lastly we checked above that q∨A|q̃w1
(K) is degenerate - see

Table (12) - and hence Item (3) is satisfied. By Claim A.2.5 we get that c31 = 0 if and only if

0 = qw1
(e(qw1

;α)) = qw1
(w1 ∧ ζ + ξ).

(See (3.3.31) for the second equality.) The last term vanishes by (3.3.23) (as noticed above).

We end the subsection by pointing out certain similarities between BE1 , BE∨1 and BF2 . Let F be

a basis of V and A ∈ BF
E1 ∪ BF

E∨1
∪ BF
F2

. Let W ∈ Gr(3, V ) be defined by requiring that

3∧
W =


[v0] ∧

∧2
V12 if A ∈ BF

E1 ,∧3
V02 if A ∈ BF

E∨1
,

A ∩ (
∧2

V01 ∧ V23) if ∈ BF
F2

.

(3.3.32)

Define Ṽ as

Ṽ :=


A ∩ ([v0] ∧ V12 ∧ V35) if A ∈ BE1 ,

A ∩ (
∧2

V02 ∧ V34) if A ∈ BE∨1 ,

A ∩ (
∧2

V01 ∧ V23 ⊕
∧2

V01 ∧ V45 ⊕ V01 ∧
∧2

V23) if A ∈ BF2 .

(3.3.33)

The projection

V := ρW (Ṽ) ⊂ TW ∼= Hom(W,V/W ) (3.3.34)

is 2-dimensional. Let Hom(W,V/W )r ⊂ Hom(W,V/W ) be the subset of maps of rank at most r.

One easily checks that in each of the three cases appearing in (3.3.33) we have V ⊂ Hom(W,V/W )2.

The following observation is easily proved - we leave details to the reader.

Remark 3.3.4. Let A be generic in one of BF
E1 , BF

E∨1
or BF

F2
. Let W be as in (3.3.32), A := A/

∧3
W

and V ⊂ (A ∩ TW ) be given by (3.3.34). Then dimV = 2 and

(V \ {0}) ⊂ (Hom(W,V/W )2 \Hom(W,V/W )1). (3.3.35)

By Proposition A.3.1 V is equivalent modulo the naturalGL(V/W )×GL(W )-action on Gr(2,Hom(W,V/W ))

to one of the susbpaces Vl,Vc,Vp defined by (A.3.3)-(A.3.4)-(A.3.5). Then V is equivalent to
Vp if A ∈ BF

E1 ,

Vc if A ∈ BF
E∨1

,

Vl if A ∈ BF
F2

.

(3.3.36)

Conversely let A ∈ LG(
∧3

V ) and W ∈ ΘA. Let A := A/
∧3

W . Suppose that there exists a

2-dimensional subspace V ⊂ (A ∩ TW ) such that (3.3.35) holds; then A ∈ B∗E1 ∪ B∗E∨1 ∪ B∗F2
. More

precisely A ∈ B∗E1 if V is equivalent to Vp, A ∈ B∗E∨1 if V is equivalent to Vc and A ∈ B∗F2
if V is

equivalent to Vl.

Remark 3.3.5. Suppose that we wish to decide whether a given A ∈ LG(
∧3

V ) is stable or not.

Theorem 2.4.1 provides the following algorithm:

1. Compute dim ΘA: if dim ΘA ≥ 2 then A is not stable, if dim ΘA ≤ 1 go to Step 2 .
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2. If dim ΘA = 1 determine the irreducible components of ΘA and hence determine whether A

belongs to one of the irreducible components of Σ∞ which appear in (2.2.10): if it does then

A is not stable, if it doesn’t (or dim ΘA < 1) go to Step 3.

3. List all of the isolated elements W ∈ ΘA. If dim(A ∩ SW ) ≥ 4 for one such W then A is not

stable, if dim(A ∩ SW ) ≤ 3 for all such W go to Step 4.

4. If there exists an isolated W ∈ ΘA such that dim(A∩SW ) = 3 and all α ∈ TW are degenerate

(as map W → V/W ) then A is not stable, if there exists no such W go to Step 5.

5. If there exists an isolated W ∈ ΘA such that dim(A∩SW ) = 3 and A ∈ XF
N3

for a certain flag

with W = 〈v0, v1, av2 + bv3〉 then A is not stable, if there is no such W then A is stable.
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4 An EPW zoo

In the present section we will analyze certain special elements of LG(
∧3

V ). The first example,

named AIII , is the analogue of the double triangle in the moduli space of sextic curves and of the

cubic V (x0x1x2 +x3x4x5) in the moduli space of cubic four-folds: it is semistable with closed orbit

and the connected component of its stabilizer is a maximal torus in SL(V ). It will occur frequently

when analyzing the GIT boundary of M. After that we will give a closer look at A+ and Ak, Ah,

see (2.2.11) and (3.2.20): we recall that [A+], [Ak], [Ah] ∈ I where I is as in Definition 0.0.4.

In particular we will give an explicit basis of A+: it will be needed in Section 5. We will also

introduce a curve XW containing [A+] and contained in I.

4.1 Preliminaries

We start by stating an important theorem of Luna [13]. Let G be a linearly reductive group and

X̂ an affine variety acted on by G. Let H < G be a linearly reductive subgroup and X̂H ⊂ X̂ be

the closed subset of points fixed by H. Let NG(H) < G be the normalizer of H; then NG(H) acts

on X̂H and we have a natural regular map

X̂H//NG(H) := Spec Γ(X̂H ,OX̂H )NG(H) −→ Spec Γ(X̂,OX̂)G =: X̂//G. (4.1.1)

The following is Corollaire 1, p. 237 of [13].

Theorem 4.1.1 (Luna [13]). Keep notation as above. Map (4.1.1) is finite. If x ∈ X̂H then Gx is

closed if and only if NG(H)x is closed. In particular if NG(H)/H is finite then Gx is closed.

Next suppose that X ⊂ P(U) is a projective and that G is a linearly reductive group acting on

X via a homomorphism G → SL(U). Let X̂ ⊂ U be the affine cone over X; applying Theorem

4.1.1 to the induced action of G on X̂ one gets the following result.

Corollary 4.1.2 (Luna). Keep notation and hypotheses as above. Let H < G be a linearly reductive

subgroup. Let [u] ∈ P(X̂H); then [u] is G-semistable if and only if [u] is NG(H)-semistable, and

in this case G[u] is closed in Xss if and only if NG(H)[u] is closed in the set of NG(H)-semistable

points of P(X̂H). The inclusion P(X̂H) ↪→ X induces a finite map P(X̂H)//NG(H) −→ X//G.

It will be convenient to use Shah’s terminology for the semistable plane sextics with closed orbit:

we recall it below.

Theorem 4.1.3 (Shah [23]). Let C ⊂ P2 be a sextic curve. Then C is PGL(3)-semistable with

minimal orbit (i.e. orbit closed in |OP2(6)|ss) if and only if it belongs to one of the following classes:

I C has simple singularities.

II In suitable coordinates

(1) C = V ((X0X2 + a1X
2
1 )(X0X2 + a2X

2
1 )(X0X2 + a3X

2
1 )) where a1, a2, a3 are distinct.

(2) C = V (X2
0F (X1, X2)) where F has has no multiple factors.

(3) C = V ((X0X2 +X2
1 )2F (X0, X1, X2)) and V (X0X2 +X2

1 ), V (F ) intersect transversely.

(4) C = V (F (X0, X1, X2)2) where V (F (X0, X1, X2) is a smooth cubic curve.

III In suitable coordinates

(1) C = V ((X0X2 +X2
1 )2(X0X2 + aX2

1 )) where a 6= 1.

(2) C = V (X2
0X

2
1X

2
2 ).

IV C = 3D where D is a smooth conic.

Remark 4.1.4. The following will be useful in detecting sextic curves of Type II-1, II-2, III-1, III-2

or IV. Let P ∈ C[X0, X1, X2]6. Suppose that G < SL3(C) and gP = P for all g ∈ G.
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(1) Assume that (in the standard basis) G = {diag(t−2, t, t) | t ∈ C×}. Then P = X2
0F (X1, X2).

(2) Assume that (in the standard basis) G = {diag(t, 1, t−1) | t ∈ C×}. Then

P = (b1X0X2 + a1X
2
1 )(b2X0X2 + a2X

2
1 )(b3X0X2 + a3X

2
1 ). (4.1.2)

(3) Assume that G is the maximal torus diagonal in the standard basis. Then P = cX2
0X

2
1X

2
2 .

Remark 4.1.5. The period map (0.0.10) is regular at C if and only if C is semistable and the unique

semistable sextic with closed orbit PGL(3)-equivalent to C is not of Type IV. Equivalently: C is in

the indeterminacy of (0.0.10) if and only if

(1) there exists p ∈ C such that C has consecutive triple points at p and moreover letting C̃

be the strict transform of C in the blow-up of P2 at p, the tangent cone to C̃ at its unique

singular point lying over p is a triple line, or

(2) there exists p ∈ C such that multp C ≥ 4 and if equality holds the tangent cone to C at p

equals 3l1 + l2 (l1, l2 are lines through p).

4.2 Maximal torus

Let

N :=


1 1 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

1 0 1 0 0 1 0 0 1 1

0 1 0 1 0 0 1 0 1 1

0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1 0 1

 (4.2.1)

The rows of N will be indexed by 0 ≤ i ≤ 5, the columns will be indexed by 1 ≤ j ≤ 10,

i.e. N = (nij) where 0 ≤ i ≤ 5 and 1 ≤ j ≤ 10. Let F = {v0, . . . , v5} be a basis of V . For

j = 1, . . . , 10 let αj , βj ∈
∧3

V be the decomposable vectors given by the wedge-product of the vi’s

such that nij = 1 and nij = 0 respectively (notice that on each column of N there are 3 entries

equal to 1 and 3 equal to 0) in the order dictated by the ordering of the indices:

α1 = v0 ∧ v1 ∧ v2, β1 = v3 ∧ v4 ∧ v5, α2 = v0 ∧ v1 ∧ v3, . . . . . . , β10 = v0 ∧ v1 ∧ v4.

Let AF
III ⊂

∧3
V be the subspace spanned by the αj ’s. Let 1 ≤ j0 ≤ 10. By inspecting the matrix

N we see that βj0 is not a multiple of any of the αj ’s, that it is perpendicular to each αj with j 6= j0
and that αj0 ∧ βj0 6= 0. It follows that AF

III is (, )V -isotropic and that dimAF
III = 10 i.e. AF

III ∈
LG(

∧3
V ). Let 0 6= ω ∈

∧10
AF
III and T < GL(V ) be the maximal torus of automorphism which

are diagonal in the basis F: then

g(ω) = (det g)5ω ∀g ∈ T. (4.2.2)

The above holds because the sum of the entries on each row of N is equal to 5. The following result

will be useful in deciding whether a given A ∈ LG(
∧3

V ) is in the PGL(V )-orbit of AIII .

Claim 4.2.1. Let T be a maximal torus of SL(V ). Suppose that A ∈ LG(
∧3

V ) is fixed by T and

that T acts trivially on
∧10

A. Then the orbit PGL(V )A contains AIII .

Proof. Suppose that T is diagonalized in the basis {v0, . . . , v5}. Since A is left invariant by T it has

a basis B consisting of 10 monomials vi ∧ vj ∧ vk (here 0 ≤ i < j < k ≤ 5). Let T be the family of

“tripletons”of {0, 1, . . . , 5} i.e. subsets of cardinality 3. We let σ : T → T be the involution defined

by σ(I) := Ic := ({0, 1, . . . , 5} \ I). If a ∈ {0, 1, . . . , 5} and S ⊂ T we let Sa := {I ∈ S | a ∈ I}.
By associating to vi ∧ vj ∧ vk the set {i, j, k} ∈ T we get an identification between the family of

monomials and T . With this identification B corresponds to a subset S ⊂ T with the following

properties:

(1) T = S
∐
σ(S), and
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(2) Sa has cardinality 5 for each a ∈ {0, 1, . . . , 5}.

We claim the following:

If a, b ∈ {0, 1, . . . , 5} are distinct then |Sa ∩ Sb| = 2. (4.2.3)

In fact let a, b ∈ {0, 1, . . . , 5}: then |Sa ∩ Sb| = 5− |Sa ∩ (S \ Sb)| and hence we get that

|Sa ∩ Sb| = |(S \ Sa) ∩ (S \ Sb)|, |Sa ∩ (S \ Sb)| = |(S \ Sa) ∩ Sb|. (4.2.4)

Now suppose that a 6= b. The map σ gives inclusions

σ(Sa ∩ Sb) ⊂ (T \ Ta) ∩ (T \ Tb), σ(Sa ∩ (S \ Sb)) ⊂ (T \ Ta) ∩ Tb.

By (4.2.4) and Item (1) we get that

2|Sa ∩ Sb| = |σ(Sa ∩ Sb)|+ |(S \ Sa) ∩ (S \ Sb)| ≤ |(T \ Ta) ∩ (T \ Tb)| = 4,

2|Sa ∩ (S \ Sb)| = |σ(Sa ∩ (S \ Sb))|+ |(S \ Sa) ∩ Sb| ≤ |(T \ Ta) ∩ Tb| = 6. (4.2.5)

Thus |Sa ∩ Sb| ≤ 2 and |Sa ∩ (S \ Sb)| ≤ 3; this proves (4.2.3). Now associate to S a 6× 10-matrix

M whose columns are the characteristic functions of the sets in S. By (4.2.3) and a Sudoku-

like argument we get that after performing a sequence of row and column permutations we may

transform M into N ; that proves the claim.

Proposition 4.2.2. AF
III is semistable and its PGL(V )-orbit is closed in LG(

∧3
V )ss, moreover

YAF
III

= V (X0 ·X1 ·X2 ·X3 ·X4 ·X5) where {X0, . . . , X5} is the basis of V ∨ dual to F.

Proof. Let L̂G(
∧3

V ) ⊂
∧10

(
∧3

V ) be the affine cone over LG(
∧3

V ). Let ω be a generator of∧10
AF
III ; thus ω ∈ L̂G(

∧3
V ). Let T < SL(V ) be the maximal torus of automorphisms which are

diagonal in the basis F. By (4.2.2) we have ω ∈ L̂G(
∧3

V )H . The quotient NSL(V )(T )/T is the

symmetric group S6 and hence is finite. By Theorem 4.1.1 the orbit SL(V )ω is closed; thus A is

semistable by the Hilbert-Mumford criterion, moreover as is well-known closedness of SL(V )ω in

L̂G(
∧3

V ) implies that A is closed in LG(
∧3

V )ss. Let YAF
III

= V (P ) where P ∈ C[X0, . . . , X5]6.

Since AF
III is semistable we get that P 6= 0 by Corollary 2.2.6. Since T fixes P we get that

P = cX0 ·X1 ·X2 ·X3 ·X4 ·X5 for some c 6= 0.

By Proposition 4.2.2 it makes sense to let

z := [AIII ] ∈M. (4.2.6)

Our next goal is to prove that

z /∈ I. (4.2.7)

By (4.2.3) the following holds: given row indices 0 ≤ s < t ≤ 5 there exists exactly one set

{s′, t′} ⊂ {0, . . . , 5} \ {s, t} of two indices such that

vs ∧ vt ∧ vs′ , vs ∧ vt ∧ vt′ ∈ A. (4.2.8)

Thus we get the line

Ls,t := {vs ∧ vt ∧ (λ0vs′ + λ1vt′) | [λ0, λ1] ∈ P1} ⊂ ΘAF
III
. (4.2.9)

Proposition 4.2.3. Keeping notation as above we have

ΘAF
III

=
⋃

0≤s<t≤5

Ls,t. (4.2.10)

Let W ∈ ΘAF
III

and hence W = 〈vs, vt, (λ0vs′ + λ1vt′)〉 for a unique choice of 0 ≤ s < t ≤ 5, s′, t′

as in (4.2.8) and [λ0, λ1] ∈ P1; then

CW,AF
III

= 2〈vs, vt〉+ 2〈vs, (λ0vs′ + λ1vt′)〉+ 2〈vt, (λ0vs′ + λ1vt′)〉. (4.2.11)
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Proof. First we will prove that dim ΘAF
III

= 1. By (4.2.9) we know that dim ΘAF
III
≥ 1. Suppose

that dim ΘAF
III
≥ 2 and let Θ be an irreducible component of ΘAF

III
of dimension at least 2.

Theorem 2.26 and Theorem 2.36 of [20] give the classification of couples (A,Θ) with A ∈ LG(
∧3

V )

and Θ an irreducible component of ΘA such that dim Θ ≥ 2. That classification together with

semistability of AF
III gives that

AF
III ∈ (XY ∪ XW ∪ PGL(V )Ak(L) ∪ PGL(V )Ah(L) ∪ PGL(V )A+(U)). (4.2.12)

(Notation as in [20].) If AF
III ∈ (PGL(V )Ak(L)∪PGL(V )Ah(L)) then YAF

III
is a double discriminant

cubic, if AF
III ∈ (XW∪PGL(V )A+(U)) then YAF

III
contains a quadric hypersurface: in both cases we

contradict Proposition 4.2.2. This proves that dim ΘAF
III

= 1. Let T < SL(V ) be the connected

maximal torus of elements which are diagonal with respect to {v0, . . . , v5}. By (4.2.2) T maps

AF
III to itself and hence it maps each irreducible component of ΘAF

III
to itself. It follows that a

0-dimensional irreducible component of ΘAF
III

must be of the form vi∧vj ∧vk for 0 ≤ i < j < k ≤ 5

and an irreducible 1-dimensional component of ΘAF
III

must be of the form (4.2.9) for some choice

of pairwise distinct s, t, s′, t′; it follows that s′, t′ satisfy (4.2.8). We have proved (4.2.10). Next we

will prove the assertion about CW,A for W ∈ ΘAF
III

. First suppose that W = 〈vi, vj , vk〉. Then

B(W,A) = 〈vi, vj〉 ∪ 〈vi, vk〉 ∪ 〈vj , vk〉. (4.2.13)

In fact it follows from (4.2.10) that the set of [w] ∈ P(W ) such that Item (1) of Definition 3.2.3

holds is equal to the right-hand side of (4.2.13), moreover a straightforward analysis of the matrix

N defining AF
III gives that the set of [w] ∈ P(W ) such that Item (2) of Definition 3.2.3 holds

is again equal to the right-hand side of (4.2.13). By Corollary 3.2.7 we get that (4.2.11) holds

if W = 〈vi, vj , vk〉. Lastly suppose that W = Wλ := 〈vs, vt, (λ0vs′ + λ1vt′)〉 where λ0 6= 0 6= λ1.

Acting by the torus T we get an isomorphism

CWλ,AF
III

∼−→ CWλ′ ,A
F
III

(4.2.14)

where λ′ = [λ′0, λ
′
1] is arbitrary with λ′0 6= 0 6= λ′1. It follows that CWλ,AF

III
6= P(Wλ). In fact if we

had equality then we would have CWλ′ ,A
F
III

= P(Wλ′) whenever λ′0 6= 0 6= λ′1 and by continuity also

for arbitrary [λ′0, λ
′
1]; since W[1,0] = 〈vs, vt, vs′〉 that contradicts what we have proved above. This

proves that CWλ
6= P(Wλ). Let T0 < T be the sub-torus of g such that g(vs′)/vs′ = g(vt′)/vt′ . If

g ∈ T0 then g(Wλ) = Wλ for every λ ∈ P1. Thus we have a homomorphism ρ : T0 −→ GL(Wλ).

For g ∈ T0 let

ρ(g) := ρ(g)(det g)−1/3 ∈ SL(Wλ).

Write CWλ,AF
III

= V (P ) where P ∈ S3W∨λ : by Claim 3.1.4 we get that ρ(g)P = P for every

g ∈ T0. Since {ρ(g) | g ∈ T0} is a maximal torus of SL(Wλ) it follows that (4.2.11) holds for

W = Wλ.

4.3 SL(4) and SO(4)

Choose an isomorphism φ :
∧2

U
∼−→ V . Let A+(U) ∈ LG(

∧3
V ) be defined as in (2.2.12) and

similarly for A−(U): then SL(U) maps A+(U) to itself and it acts trivially on
∧10

A+(U). Of

course the orbits PGL(V )A+(U) and PGL(V )A−(U) are equal.

Proposition 4.3.1. A+(U) is semistable and it has minimal PGL(V )-orbit.

Proof. The subgroup SL(U) < SL(V ) acts trivially on
∧10

A+(U) and the index of SL(U) in the

normalizer NSL(V )(SL(U)) is 2; thus A+(U) is SL(V )-semistable by Corollary 4.1.2.

Thus A+(U), A−(U) are semistable points with minimal orbit stabilized by SL(4). Later on we

will need to have at our disposal explicit bases of A+(U) and A−(U): we define them as follows.

Let {u0, u1, u2, u3} be a basis of U and F = {v0, . . . , v5} be the basis of V given by

v0 = u0 ∧ u1, v1 = u0 ∧ u2, v2 = u0 ∧ u3, v3 = u1 ∧ u2, v4 = u1 ∧ u3, v5 = u2 ∧ u3. (4.3.1)
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Table 14: Bases of A+(U) and A−(U).

I αI βI (αI , βI)V

(2, 0, 0, 0) v0 ∧ v1 ∧ v2 v3 ∧ v4 ∧ v5 1

(0, 2, 0, 0) v0 ∧ v3 ∧ v4 v1 ∧ v2 ∧ v5 1

(0, 0, 2, 0) v1 ∧ v3 ∧ v5 v0 ∧ v2 ∧ v4 1

(0, 0, 0, 2) v2 ∧ v4 ∧ v5 v0 ∧ v1 ∧ v3 1

(1, 1, 0, 0) v0 ∧ (v1 ∧ v4 − v2 ∧ v3) v5 ∧ (v2 ∧ v3 − v1 ∧ v4) 2

(1, 0, 1, 0) −v1 ∧ (v0 ∧ v5 + v2 ∧ v3) −v4 ∧ (v0 ∧ v5 + v2 ∧ v3) 2

(1, 0, 0, 1) v2 ∧ (−v0 ∧ v5 + v1 ∧ v4) v3 ∧ (v0 ∧ v5 − v1 ∧ v4) 2

(0, 1, 1, 0) −v3 ∧ (v0 ∧ v5 + v1 ∧ v4) v2 ∧ (v0 ∧ v5 + v1 ∧ v4) 2

(0, 1, 0, 1) v4 ∧ (−v0 ∧ v5 + v2 ∧ v3) v1 ∧ (−v0 ∧ v5 + v2 ∧ v3) 2

(0, 0, 1, 1) v5 ∧ (v1 ∧ v4 + v2 ∧ v3) −v0 ∧ (v1 ∧ v4 + v2 ∧ v3) 2

(To be precise: v0 = φ(u0 ∧ u1) etc.) A straightforward computation gives that

i+([η0u0 + η1u1 + η2u2 + η3u3]) = [
∑
I

αIη
I ], i−([θ0u

∨
0 + θ1u

∨
1 + θ2u

∨
2 + θ3u

∨
3 ) = [

∑
I

βIθ
I ]

where I = (i0, i1, i2, i3) runs through the set of multi-indices of length 2 and αI , βI are given by

Table (14).

Remark 4.3.2. Let T < GL(U) be the maximal torus which is diagonalized in the basis {u0, . . . , u3}:
thus T = {diag(t0, . . . , t3) | t0t1t2t3 6= 0}. Then T acts on A+(U) and on A−(U) and is diagonalized

in the basis {. . . , αI , . . .} (respectively in the basis {. . . , βI , . . .}); moreover it acts on αI and βI
according to I or −I respectively:

(t0, . . . , t3)αI = ti00 t
i1
1 t

i2
2 t

i3
3 αI , (t0, . . . , t3)βI = t−i00 t−i11 t−i22 t−i33 βI .

By Remark 4.3.2 the product (αI , βJ)V vanishes if I 6= J . The products (αI , βI)V are listed

in Table (14). Next we will define a family of lagrangians which are stabilized by SO(4) - as usual

this means that if A is such a lagrangian then there exists SO(4) < SL(V ) which acts trivially on∧10
A. The corresponding points in M sweep out a curve. Let U be a complex vector-space of

dimension 4 and choose an isomorphism

ϕ : V ∼=
2∧
U. (4.3.2)

Let i+ : P(U) ↪→ Gr(3, V ) be as in (2.2.11).

Definition 4.3.3. Keeping notation as above let X∗W(U) ⊂ LG(
∧3

V ) be the set of A ∈ LG(
∧3

V )

such that P(A) contains i+(Z) where Z ⊂ P(U) is a smooth quadric surface (our notation is

somewhat imprecise: X∗W(U) actually depends on Isomorphism (4.3.2)). Let

X∗W := PGL(V )X∗W(U).

Notice that A+(U) ∈ X∗W(U).

Proposition 4.3.4. Let A ∈ X∗W . Then A is semistable and it has minimal PGL(V )-orbit.
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Proof. We may assume that A ∈ X∗W(U) and that we have chosen Identification (4.3.2). Then

Z = V (q) where q ∈ S2 U∨ is non-degenerate. Let Aq ⊂ S2 U be the annihilator of q. Let

q∨ ∈ S2 U be the dual of q (see Section A); thus we have the decomposition into irreducible

O(q)-representations S2 U = Aq ⊕ [q∨]. We have an isomorphism

P1 ∼−→ X∗W(U)

x := [x0, x1] 7→ Ax := 〈Aq, x0q
∨ + x1q〉

(4.3.3)

We have an embedding SL(U) < SL(V ); composing with the embedding SO(q) < SL(U) we get

an embedding

SO(q) < SL(V ). (4.3.4)

Since SO(q) acts trivially on
∧9

Aq, q
∨, q it acts trivially on

∧10
Ax for every x ∈ P1. The group

NSL(V )(SO(q)) acts on X∗W(U). By Corollary 4.1.2 in order to prove the proposition it suffices to

show that every Ax is NSL(V )(SO(q))-semistable with closed orbit. Choose 2-dimensional vector-

spaces U ′, U ′′ and an isomorphism U ∼= U ′ ⊗ U ′′ such that Z is identified with the projectivization

of the subset of decomposable elements of U ′⊗U ′′. We have an isomorphism of GL(U ′)×GL(U ′′)-

representations

V =

2∧
U =

2∧
(U ′ ⊗ U ′′) ∼= S2 U ′ ⊗

2∧
U ′′︸ ︷︷ ︸

V ′

⊕S2 U ′′ ⊗
2∧
U ′︸ ︷︷ ︸

V ′′

.

Composing the isogeny SL(U ′) × SL(U ′′) −→ SO(q) and Embedding (4.3.4) we get the isogeny

SL(U ′)×SL(U ′′) −→ SO(V ′)×SO(V ′′). Thus it suffices to show that each Ax is NSL(V )(SO(V ′)×
SO(V ′′))-semistable with closed orbit. Let λ : C× → NSL(V )(SO(V ′)× SO(V ′′)) be the 1-PS such

that λ(t)|V ′ = t IdV ′ , λ(t)|V ′′ = t−1 IdV ′′ . The subgroup of NSL(V )(SO(V ′) × SO(V ′′)) generated

by SO(V ′)×SO(V ′′) and imλ is of finite index; since SO(V ′)×SO(V ′′) acts trivially on
∧10

Ax for

each x it follows that it suffices to prove that each Ax is λ-semistable with closed orbit. Identifying

X∗W(U) with P1 via (4.3.3) we get that λ acts on P1 and on OP1(1); let

H0(OP1(1)) = L0 ⊕ L1, dimLi = 1, λ(t)|Li = tai , a0 + a1 = 0 (4.3.5)

be a diagonalization of the action of λ. Of course {x0, x1} is a basis of H0(OP1(1)); we claim that

one may assume that L1 = [x1]. In fact we have A[1,0] = A+(U) and if x 6= [1, 0] then Ax is

not projectively equivalent to A+(U) because dim ΘAx = 3 if and only if x = [1, 0] (this is an easy

exercise); thus x1 is an eigenvalue of λ(t) for every t ∈ C× and hence we may assume that L1 = [x1].

On the other hand A+(U) is SL(V )-semistable by Proposition 4.3.1. Since A[1,0] = A+(U) is

SL(V )-semistable and L1 = [x1] we get that a1 = 0 and hence the λ-action on P1 is trivial; this

proves that each Ax is λ-semistable with minimal orbit.

By Proposition 4.3.4 it makes sense to let

XW := {[A] ∈M | A ∈ X∗W}, y := [A+(U)]. (4.3.6)

Thus y ∈ XW .

Claim 4.3.5. Let A ∈ X∗W and W ∈ ΘA. Then CW,A is in the indeterminacy locus of Map (0.0.10).

In particular XW ⊂ I.

Proof. It suffices to show that if A ∈ X∗W(U) then CW,A is in the indeterminacy locus of Map (0.0.10)

for every W ∈ ΘA. By definition P(A) contains i+(Z) where Z ⊂ P(U) is a smooth quadric. Let F1

and F2 be the two families of lines on Z. The conics ı+(F1) and i+(F2) span planes Λ1,Λ2 ⊂ P(V )

respectively. Let W1,W2 ∈ Gr(3, V ) be the subspaces such that P(Wi) = Λi. Suppose that

A = A+(U): as is easily checked B(W,A) = P(W ) and hence CW,A = P(W ) by Corollary 3.2.7.

Now suppose that A 6= A+(U): then W ∈ i+(Z) ∪ {W1,W2} (for generic A ∈ X∗W(U) we have

ΘA = i+(Z)). Suppose that W ∈ i+(Z). Then there exists a dense set of [v] ∈ P(W ) for which

Item (1) of Definition 3.2.3 holds; thus B(W,A) = P(W ). By Corollary 3.2.7 we get that

CW,A = P(W ). Lastly let i = 1, 2: applying Proposition 3.1.2 one gets that CWi,A = 3D where

D ⊂ Λi is the conic i+(Fi).
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Below we will give a result for two special elements of X∗W(U) - the result will be needed in the

proof of Proposition 5.9.24. Let Z ⊂ P(U) be the smooth quadric of Definition 4.3.3. Let R
be one of the two rulings of Z by lines. We view R as a smooth conic in P(

∧2
U) = P(V ): it spans

a plane P(W ) meeting the Plücker quadric hypersurface Gr(2, U) ⊂ P(V ) in R. Let p ∈ Z: the

unique line of R containing p belongs to P(i+(p)) and hence P(W ) ∩ P(i+(p)) 6= ∅. It follows that

3∧
W ∈ 〈〈i+(Z)〉〉⊥.

Here and in the following we think of Gr(3,
∧2

U) = im i+ as a subset of P(
∧3

V ) via the Pl”ucker

embedding. Byf (2.2.13) we know that
∧3

W /∈ A+(U). Thus

AR := 〈〈i+(Z)〉〉+

3∧
W (4.3.7)

is an element of X∗W(U). By definition we have W ∈ ΘAR .

Claim 4.3.6. Keep notation as above. Then CW,AR
= 3R.

Proof. Clearly R ⊂ suppCW,AR
and hence it suffices to prove the following: if [v] ∈ R then

CW,AR
∩W 0 = V (h3 + g4 + g5 + g6), 0 6= h ∈W∨0 gi ∈ SiW

∨
0 . (4.3.8)

(Notation as in (3.1.8).) Let v = u ∧ u′. We claim that

Fv ∩ 〈〈i+(Z)〉〉 = 〈〈i+(P〈u, u′〉)〉〉. (4.3.9)

It is clear that the left-hand side contains the right-hand side. If the containment is strict then

dim(Fv ∩ 〈〈i+(Z)〉〉) ≥ 4 because the right-hand side of (4.3.9) has dimension 3: a fortiori we

have dim(Fv ∩ A+(U)) ≥ 4. By Proposition 2.3 of [20] we get that either YA+(U) = P(V ) or

mult[v] YA+(U) ≥ 4: that contradicts (2.2.13). This proves (4.3.9). It follows that

Fv ∩AR = 〈〈i+(P〈u, u′〉)〉〉+

3∧
W.

We get (4.3.8) by applying Items (1) and (2) of Proposition 3.1.2. More precisely we may identify

K of Proposition 3.1.2 with 〈〈i+(P〈u, u′〉)〉〉 and (4.3.8) holds because the intersection of P(K)

with Gr(2, V0)W 0
(notation as in Claim 3.2.2) is identified with R.

The following result shows that we will get nothing “new”if the smooth quadric Z of Definition

4.3.3 is replaced by a singular quadric.

Proposition 4.3.7. Let Z ⊂ P(U) be either a plane or a quadric cone. Suppose that A ∈
LG(

∧3
V )ss and that P(A) ⊃ 〈i+(Z)〉. Then A is PGL(V )-equivalent to A+(U).

Proof. Suppose first that Z is the plane P(U0) where U0 ⊂ U is a subspace of codimension 1. Let

u3 ∈ (U \ U0). Let µ be the 1-PS of SL(U) defined by

µ(t)u = tu, u ∈ U0, µ(t)u3 = t−3u3. (4.3.10)

Let λ =
∧2

µ be the 1-PS of SL(V ) corresponding to µ. There is a basis {α1, . . . , α6, (α7 +

β7), . . . , (α10 + β10)} of A where αi ∈ S2 U for all i, {α1, . . . , α6} is a basis of S2 U0 and βj ∈
(S2 U∨ ∩ (S2 U0)⊥) i.e. βj = x3φj where x3 ∈ U∨ spans AnnU0 and φj ∈ U∨. Let ω := α1 ∧ . . . ∧
α6 ∧ (α7 + β7) ∧ . . . ∧ (α10 + β10). A straightforward computation gives that

lim
t→0

λ(t)ω = α1 ∧ . . . ∧ α10. (4.3.11)

This proves that A is PGL(V )-equivalent to A+(U). Now suppose that Z is a quadric cone. Let

B∨ := {x0, x1, x2, x3} be a basis of U∨ such that Z = V (x0x2 + x2
1). Let B := {u0, u1, u2, u3} be

the basis of U dual to B. Let µ be the 1-PS of SL(U) defined by

µ(t)u0 = t−2u0, µ(t)u1 = t−1u1, µ(t)u2 = u2, µ(t)u3 = t3u3. (4.3.12)
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Let λ =
∧2

µ be the 1-PS of SL(V ) corresponding to µ. There is a basis {α1, . . . , α9, (α10 +β10)} of

A where αi ∈ S2 U for all i, {α1, . . . , α9} is a basis of S2 U ∩ (x0x2 + x2
1)⊥ and β10 ∈ 〈(x0x2 + x2

1)〉.
Let ω := α1 ∧ . . . ∧ α9 ∧ (α10 + β10). A straightforward computation gives that (4.3.11) holds in

this case as well and hence A is PGL(V )-equivalent to A+(U).

4.4 SL(3)

Let k and h be given by (3.2.20). By (3.2.22) and surjectivity of H0(k∗) and H0(h∗) we get that

im(k), im(h) span 9-dimensional subspaces of P(
∧3

V ).

Definition 4.4.1. Let Ak(L), Ah(L) ⊂
∧3

V be the affine cones over im(k), im(h) respectively.

Any two planes in im(k) are incident and similarly for im(h): it follows that Ak(L), Ah(L) ∈
LG(

∧3
V ). The PGL(V )-orbit of Ak(L) (or of Ah(L)) is independent of L: often we will de-

note Ak(L), Ah(L) by Ak and Ah respectively. The two surjections H0(k) and H0(h) provide an

isomorphism of GL(L)-modules

3∧
(S2 L) ∼= S3 L⊗ detL⊕ S3 L∨ ⊗ (detL)3, Ak(L) = S3 L⊗ detL, Ah(L) = S3 L∨ ⊗ (detL)3.

(4.4.1)

For i = 1, 2 let Vi ⊂ P(S2 L) be the closed subset of quadrics of rank at most i modulo scalars; thus

V1 is a Veronese surface and V2 is a (discriminant) cubic hypersurface. In Section 1.5 of [20] we

proved that

YAk(L) = YAh(L) = 2V2. (4.4.2)

Proposition 4.4.2. Ak and Ah are semistable with minimal PGL(V )-orbits.

Proof. Let L̂G(
∧3

V ) ⊂
∧10

(
∧3

V ) be the affine cone over LG(
∧3

V ). Let A be one of Ak(L),

Ah(L), and ω be a generator of
∧10

A; thus ω ∈ L̂G(
∧3

V ). Let H := im(SL(L)→ SL(V )). Then

ω ∈ L̂G(
∧3

V )H . We have NSL(V )(H) = Aut(V2): in fact the equality follow from (4.4.2). It

follows that NSL(V )(H)/H is trivial. By Theorem 4.1.1 the orbit SL(V )ω is closed; thus A is

semistable by the Hilbert-Mumford criterion, moreover as is well-known closedness of SL(V )ω in

L̂G(
∧3

V ) implies that A is closed in LG(
∧3

V )ss.

By Proposition 4.4.2 it makes sense to let

x := [Ak], x∨ := [Ah]. (4.4.3)

We claim that

x 6= x∨, x, x∨ ∈ I. (4.4.4)

First we recall [20] that

ΘAk(L) = im(k), ΘAh(L) = im(h). (4.4.5)

Let W ∈ ΘAk(L); by (4.4.5) there exists [l0] ∈ P(L) such that W is given by (3.2.20). Let [l · l0] ∈
(P(W ) \ {[l20]}). Then [l · l0] ∈ P(W ′) where W ′ := {l · l′ | l′ ∈ L}. Since W ′ 6= W it follows that

(P(W ) \ {[l20]}) ⊂ B(W,A): by Corollary 3.2.7 we get that

CW,A = P(W ) ∀ W ∈ ΘAk . (4.4.6)

Next let W ∈ ΘAh(L); by (4.4.5) there exists f0 ∈ L∨ such that W is given by (3.2.20). Let DW :=

{[l2] | [l] ∈ P(L), l(f0) = 0}; thus DW ⊂ P(W ). Let [l2] ∈ DW : then [l2] ∈ h([f ]) for every [f ] ∈
P(Ann(l)). It follows that the (smooth) conic DW is contained in CW,A. Applying Proposition

A.1.2 we get that

CW,A = 3DW ∀ W ∈ ΘAh . (4.4.7)

Equations (4.4.6) and (4.4.7) show that z, z∨ ∈ I and that the orbits PGL(V )Ak, PGL(V )Ah are

distinct: since the orbits are minimal it follows that z 6= z∨. We have proved (4.4.4).
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Table 15: Dimension of irreducible components of ∂M.

BA BC1 BD BE1 BE∨1 BF1 BF2 XN3

1 2 3 2 2 1 5 3

5 The GIT-boundary

Let Mst ⊂M be the (open) subset parametrizing PGL(V )-orbits of stable points; the GIT-boundary

of M is ∂M := (M \Mst). Let BA,BA∨ , . . . ,XF
N3

be as in (2.2.8); we let X be the corresponding

subscript. Let BX := BX //PGL(V ) if X 6= N3 and XN3
:= XN3

//PGL(V ). The first main result

of the present section is the following.

Theorem 5.0.3. The irreducible irredundant decomposition of ∂M is the following:

∂M = BA ∪BC1 ∪BD ∪BE1 ∪BE∨1 ∪BF1
∪BF2

∪ XN3
. (5.0.1)

The dimensions of the irreducible components are given by Table (15).

The other main result of the section is an explicit description of ∂M ∩ I. We will show that

∂M ∩ I = XV ∪ XZ (5.0.2)

where XV is an irreducible closed set of dimension 3 and XZ is an irreducible closed set of dimension

1 not contained in XV . The first set is defined in Subsection 5.9, the second set is defined

in Subsection 5.11: they are contained in BF2
and XN3

repectively. The intersection of any

other component of ∂M with I is one of {y}, {x}, {x∨} or XW (we should add that x, x∨ ∈ XZ and

XW ⊂ XV).

5.1 Strategy of proof and preliminaries

Decomposition (5.0.1). By Theorem 2.4.1 we have the equality

∂M = BA ∪BA∨ ∪BC1 ∪BC2 ∪BD ∪BE1 ∪BE2 ∪BE∨1 ∪BE∨2 ∪BF1
∪BF2

∪ XN3
. (5.1.1)

By applying the results of Subsection 2.2 we will get equalities among some of the above sets.

Let F = {v0, . . . , v5} be a basis of V . Given a subscript X as above we let BF
X be the corresponding

Schubert varieties appearing in Table (1) (if X = N3 the Schubert variety is denoted XF
N3

). Let

λX : C× −→ SL(V ) (5.1.2)

be the standard ordering 1-PS which is diagonal in the basis F and whose weights appear on the first

column of the (wide) row of Table (1) that contains BF
X (or XN3

). Let Ue0 , . . . , Uei , . . . , Ues be the

isotypical summands of
∧3

λX as in (2.2.3), with weights in decreasing order: e0 > e1 > . . . > es.

We have a λX -type

dX = (d0, d1, . . . , d[(s−1)/2]). (5.1.3)

which appears in the third column of the (wide) row of Table (1) that contains BF
X (or XN3

) . Let

SFX ⊂ LG(
∧3

V ) be the set of A which are λX -split of type dX . By Claim 2.1.4 every point of

BX is represented by a point of SFX and similarly every point of XN3 is represented by a point of

SFN3
. Clearly SFX ⊂ LG(

∧3
V ) is a closed subset of a product of factors each of which is either a

Grassmannian or a symplectic Grassmannian. More precisely

SFX ⊂ Gr(d0, Ue0)×Gr(d1, Ue1)× . . .× LG(U0)×Gr(d1, Ue[(s+2)/2]
)× . . .×Gr(ds, Ues). (5.1.4)

is the set of (A0, A1, . . . , As) such that for all i we have As−i = A⊥i (recall that the symplectic

form on
∧3

V defines a perfect pairing between Uei and Ues−i). Of course the corresponding

A ∈ SFX ⊂ LG(
∧3

V ) is given by

A = A0 +A1 + . . .+As. (5.1.5)
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Table 16: Parameter spaces for split non-stable lagrangians and the corresponding groups.

X SFX GX

A Gr(5, [v0] ⊗
∧2 V15) SL(V15)

C1 Gr(3,
∧2 V02 ⊗ V35) SL(V02) × SL(V35)

D Gr(3, [v0] ⊗
∧2 V14) × LG([v0] ⊗ V14 ⊗ [v5] ⊕

∧3 V14) C× × SL(V14)

E1 Gr(2, [v0] ⊗ V12 ⊗ V35) × LG([v0] ⊗
∧2 V35 ⊕

∧2 V12 ⊗ V35) C× × SL(V12) × SL(V35)

E∨1 Gr(2,
∧2 V02 ⊗ V34) × LG(

∧2 V02 ⊗ [v5] ⊕ V02 ⊗
∧2 V34) C× × SL(V02) × SL(V34)

F1 LG(V01 ⊗ V23 ⊗ V45) SL(V01) × SL(V23) × SL(V45)

F2 P(
∧2 V01 ⊗ V23) × Gr(2,

∧2 V01 ⊗ V45 ⊕ V01 ⊗
∧2 V23) × LG(V01 ⊗ V23 ⊗ V45) C× × SL(V01) × SL(V23) × SL(V45)

N3

P([v0 ∧ v1] ⊗ V23) × P([v0 ∧ v1 ∧ v4] ⊕ [v0] ⊗
∧2 V23)×

(C×)3 × SL(V23)×Gr(2, [v1] ⊗
∧2 V23 ⊕ [v0 ∧ v4] ⊗ V23 ⊕ [v0 ∧ v1 ∧ v5])×

×LG([v0 ∧ v5] ⊗ V23 ⊕ [v1 ∧ v5] ⊗ V23)

Notice that U0 = {0} (i.e. the central factor in (5.1.4) is missing) unless X ∈ {D, Ei, E∨i ,Fj ,N3}.
Next we notice that among some of the SFX ’s there exist equalities up to projectivities. Let F′ be

the basis of V obtained by reading the vectors in F in reverse order: F′ := {v5, v4, v3, v2, v1, v0}. As

is easily checked we have

SFA = SF
′

A∨ , SFC1 = SF
′

C2 , SFE1 = SF
′

E∨2
, SFE∨1 = SF

′

E2 (5.1.6)

and hence BA = BA∨ , BC1 = BC2 , BE1 = BE∨2 and BE∨1 = BE2 . Thus (5.0.1) follows from (5.1.1)

and the above equalities. Since each SFX is irreducible we also get that each set in the right-hand

side of (5.0.1) is irreducible.

Dimension of each boundary stratum. We will explain how to get the dimensions of Table (15). Let

X ∈ {A, C1,D, E1, E∨1 ,F1,F2,N3} i.e. one of the subscripts appearing in (5.0.1): Table (16) lists SFX
and a group GX for each such X . We define a homomorphism

ρX : GX −→ CSL(V )(λX ) (5.1.7)

as follows. The group GX is defined as a direct product of factors and hence it suffices to define a

homomorphism from each factor to CSL(V )(λX ). Each factor of GX is either SL(Vij) where Vij is

one of the isotypical summands of λX or else a torus. The restriction of ρX to an SL(Vij)-factor is

the obvious one. The restriction of ρX to a torus factor is as follows. Let X = D; for s ∈ C× we let

ρD(s) = (s2 Id[v0], s
−1 IdV14

, s2 Id[v5]). (5.1.8)

Let X = E1, E∨1 ; for s ∈ C× we let

ρE1(s) = (s Id[v0], s
−2 IdV12

, s IdV35
), ρE∨1 (s) = (s IdV02

, s−2 IdV34
, s Id[v5]). (5.1.9)

Let X = F2; for s ∈ C× we let

ρF2
(s) = (s IdV01

, s−2 IdV23
, s IdV45

). (5.1.10)

Let X = N3; for (s0, s1, s2) ∈ (C×)3 we let

ρN3(s0, s1, s2) = (s0 Id[v0], s
2
1 Id[v1], (s−1

0 s−1
1 s−1

2 ) IdV23 , s
2
2 Id[v4], s0 Id[v5]). (5.1.11)

We have completed the definition of (5.1.7). Composing homomorphism CSL(V )(λX ) → Aut(SFX )

with ρX we get an action of GX on SFX . The GX -action is naturally linearized by the embedding of

SFX in LG(
∧3

V ).

Claim 5.1.1. Let A ∈ SFX . Then A is SL(V )-semistable if and only if it is GX -semistable, moreover

SL(V )A is closed in LG(
∧3

V )ss if and only if GXA is closed in SF,ssX . Lastly the inclusion SFX ↪→
LG(

∧3
V ) induces a finite surjective map SFX //GX � BX for X 6= N3 and a finite surjective

map SFN3
//GN3

� XN3
for X = N3.
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Proof. Let λ be a 1-PS which is diagonal in the basis F and whose set of weights appears in the first

column of Table (1): by Remark 2.1.3 the fixed locus P(L̂G(
∧3

V )λ) is the disjoint union of the

SFX such that λX = λ. As is easily checked the centralizer CSL(V )(λ) has finite index in NSL(V )(λ).

By Corollary 4.1.2 we get that inclusion induces a finite surjective map

SFX //CSL(V )(λX )� BX (5.1.12)

for every X and that if A ∈ SFX then SL(V )A is closed in LG(
∧3

V )ss if and only if CSL(V )(λX )A is

closed in SF,ssX . We claim that for our purposes the action of GX is equivalent to that of CSL(V )(λX ).

Suppose first that X 6= F1. Then the restriction to GX of the quotient map

CSL(V )(λX ) −→ CSL(V )(λX )/λX

is surjective with finite kernel; since λX acts trivially on SF,ssX we get the claim (for X 6= F1). On

the other hand if X = F1 the subgroup

HF1 := {(α IdV01 , β IdV23 , γ IdV45) | αβγ = 1} (5.1.13)

of CSL(V )(λF1) acts trivially on SFF1
: since the restriction to GF1 of the quotient map

CSL(V )(λF1
) −→ CSL(V )(λX )/HF1

is surjective with finite kernel the claim follows for X = F1 as well.

Granting the results that we will prove in the present section the dimensions appearing in

Table (15) are obtained as follows. We will prove that for each X as above the generic point of SFX
is GX -stable. By Claim 5.1.1 we get that

dimBX = dim(SF//GX ) = dim SFX − dimGX . (5.1.14)

The dimensions of SFX and dimGX are easily computed from Table (16): plugging the dimensions

in (5.1.14) we get Table (15).

No inclusion relations. Granting the results that we will prove in the present section we will show

that (5.0.1) is the irreducible irredundant decomposition of ∂M i.e. no set appearing in the right-

hand side of (5.0.1) is contained in another set on the right-hand side of (5.0.1). Let X belong to

the set

{A, C1,D, E1, E∨1 }. (5.1.15)

In the subsection devoted to BX we will prove that if A ∈ SFX is GX -stable the connected component

of Id in Stab(A) < SL(V ) is equal to imλX . Now suppose that

BX ⊂ BY (or BX ⊂ XN3
) for X in the set of (5.1.15). (5.1.16)

We will reach a contradiction. Let A ∈ SFX be GX -stable. Then the orbit PGL(V )A is closed

in LG(
∧3

V )ss by Claim 5.1.1. By (5.1.16) it follows that there exists A′ ∈ PGL(V )A which

belongs to SFY . Since λY acts trivially on
∧10

A′ the connected component of Id in Stab(A′) <

SL(V ) contains imλY : by the quoted result we get that the subgroups imλX , imλY < SL(V ) are

conjugated. Looking at Table (1) we get at once that {X ,Y} = {E1, E∨1 } and hence BE1 = BE∨1 .

That is absurd because by Proposition 5.2.1 and Proposition 5.6.1 we have

BE1 ∩ I = {x} 6= {x∨} = BE∨1 ∩ I. (5.1.17)

This proves that (5.1.16) does not hold. Now consider the remaining X i.e. X ∈ {F1,F2,N3}. Since

BF2 has dimension strictly bigger than any other set on the right-hand side of (5.0.1) we do not

need to take it into consideration. Since dimXN3
= 3 we might have XN3

= BD or XN3
⊂ BF2

.

The former implies that BD ⊂ XN3
and we have proved that this is impossible. On the other hand

XN3
⊂ BF2

cannot hold because by Proposition 5.9.26 and Proposition 5.11.22 we have

BF2
∩ I = XV , XN3

∩ I = (XW ∪ XZ)
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and XZ 6⊂ XV . It remains to show that BF1
is not contained in any other set on the right-hand side

of (5.0.1). We will prove - see Proposition 5.7.1 - the following result: If A ∈ SFF1
is GF1

-stable

the connected component of Id in Stab(A) < SL(V ) is equal to HF1 . Now suppose that BF1 ⊂ BY
where Y 6= F1 or BF1

⊂ XN3
. Let A ∈ SFF1

be GF1
-stable. Then the orbit PGL(V )A is closed

in LG(
∧3

V )ss by Claim 5.1.1. It follows that there exists A′ ∈ PGL(V )A which belongs to SFY .

Thus
∧10

A′ is left invariant by imλY and hence
∧10

A is left invariant by a subgroup G < SL(V )

conjugated to imλY . Going through Table (1) we see that we must have Y = F2 (so that λY = λF1).

However if G < HF1 is a subgroup conjugated to imλF2 = imλF1 then the reduced G-type of A is

(2, 0) and not (1, 2) as it would be if we had A′ ∈ SFF2
.

Comments. For each X we will give a list of flag conditions which are equivalent to A ∈ SFX being

GX -stable. In some cases namely X ∈ {A, C1, E1, E∨1 ,F1} we will show that the flag conditions have a

nice translation into a simple geometric condition, usually of the type “a certain curve of arithmetic

genus 1 associated to A is non-singular”- this it to be expected because the Baily-Borel boundary

components of Type II are parametrized by the upper half-space H1 modulo an arithemtic group.

We will not list all the closed orbits of properly GX -semistable points except for X ∈ {A, C1,F1}:
the analysis could be carried out but is beyond what we wish to do - we beleive that it is more

interesting to determine ∂M ∩ I in order to understand the period map p : M 99K DBB .

Notation. Let X ∈ {A, C1,D, E1, E∨1 ,F1,F2,N3}. The action of GX on SFX is of the kind discussed

in Subsection 2.1. Let λ : C× → GX be a 1-PS of GX and A ∈ SFX : below we will make a few

comments on the numerical function µ(A, λ). We may write

3∧
λ = (α0, α1, . . . , αs), αi : C× −→ GL(Uei). (5.1.18)

Abusing notation we will set

µ(Ai, λ) := µ(Ai, αi). (5.1.19)

Definition 5.1.2. Keeping notation and hypotheses as above let I+(λ) ⊂ {0, . . . , s} be the set of

i such that

imαi ⊂ SL(Uei). (5.1.20)

Let I−(λ) := {0, . . . , s} \ I+(λ).

Claim 5.1.3. Keep notation and hypotheses as above. Suppose that i ∈ I+(λ). Then

µ(Ai, λ) = µ(As−i, λ). (5.1.21)

Proof. A straightforward computation similar to that which proves Claim 2.1.7.

Claim 5.1.3 and (2.1.4) give that

µ(A, λ) =
∑

I+(λ)3i<s/2

2µ(Ai, λ) +
∑

i∈I−(λ)

µ(Ai, λ). (5.1.22)

5.2 BC1

Let A ∈ SFC1 ; by definition

A =

3∧
V02 ⊕A′ ⊕A′′, A′ ∈ Gr(3,

2∧
V02 ∧ V35), A′′ = (A′)⊥ ∩ (V02 ∧

2∧
V35). (5.2.1)

Thus A′, A′′ are the summands of A which were named A1, A2 in Subsection 5.1. We choose

a volume-form on V02 in order to have an identification
∧2

V02 ∧ V35
∼−→ Hom(V02, V35). Let

A′ ∈ Gr(3,
∧2

V02 ∧ V35). We let

EA′ := {[α] ∈ P(A′) | rkα ≤ 2}

with its obvious scheme structure; thus EA′ is either all of P(A′) or a cubic curve. Below is the

main result of the present subsection.
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Proposition 5.2.1. The following hold:

(1) A ∈ SFC1 is GC1-stable if and only if EA′ is a smooth curve.

(2) The generic A ∈ SFC1 is GC1-stable.

(3) If A ∈ SFC1 is GC1-stable the connected component of Id in Stab(A) < SL(V ) is equal to imλC1 .

(4) BC1 ∩ I = {y}.

The proof of Proposition 5.2.1 is given in Subsubsection 5.2.5.

5.2.1 First results

Let y ∈M be defined by (4.3.6). We claim that

y ∈ BC1 . (5.2.2)

By definition it suffices to show that A+ ∈ BC1 . Let U be a complex vector-space of dimension

4 and choose an isomorphism V ∼=
∧2

U . Let W ∈ ΘA+(U). The affine cone over the projective

tangent space to ΘA+(U) at W is contained in A+(U) ∩ SW . It follows that dim(A+(U) ∩ SW ) ≥ 4

(equality holds because otherwise A+(U) is unstable by Table (2)): thus A+ ∈ BC1 . Next we notice

that there are subschemes of P(V02) and P(V ∨35) which are related to EA′ . First A′ defines a map

ϕA′ : A
′ ⊗ OP(V02)(−1) −→ V35 ⊗ OP(V02) of locally-free sheaves. Similarly taking the transpose of

elements of A′ we get a map ψA′ : A
′ ⊗OP(V ∨35)(−1) −→ V02 ⊗OP(V02). Let

EV02
:= div(detϕA′), EV ∨35

:= div(detψA′).

Thus EV02
is either all of P(V02) or a cubic curve and similarly for EV ∨35

. If EA′ is smooth then it

is isomorphic to EV02 and to EV ∨35
. By Corollary 3.2.7 we have the following:

CV02,A is either P(V02) or 2EV02 (5.2.3)

Claim 5.2.2. Let A ∈ SFC1 . Let A′ be as in (5.2.1) and suppose that EA′ is a smooth curve. Then

A is GC1-stable. In particular the generic A ∈ SFC1 is GC1-stable.

Proof. Recall that GC1 = SL(V02)×SL(V35). Consider the SL(V02)×SL(V35)-equivariant rational

map

Gr(3,
∧2

V02 ∧ V35)
f
99K |OP(V02)(3)| × |OP(V ∨35)(3)|

A′ 7→ (EV02
, EV ∨35

)

Since EA′ is a smooth curve so are EV02
and EV ∨35

. Thus f is regular at EA′ and it maps to a stable

point for the SL(V02)×SL(V35)-action linearized on L1�L2 where L1, L2 are the ample generators

of Pic(|OP(V02)(3)|) and Pic(|OP(V ∨35)(3)|) respectively. It follows that EA′ is SL(V02) × SL(V35)-

stable, say by Proposition 1.18, p. 44 of [17] applied to the complement of the indeterminacy locus

of f . It is clear that for A generic EA′ is a smooth curve and hence A is GC1 -stable.

5.2.2 Properly semistable points of SFC1
Let λ be a 1-PS of GC1 ; since GC1 is identified with SL(V02) × SL(V35) it follows that I−(λ) = ∅,
see Definition 5.1.2. Let e′0 > . . . > e′j be the weights of the action of C× on

∧2
V02 ∧ V35 defined

by λ. Let A ∈ SFC1 : by (5.1.22) and (2.1.9) we have

µ(A, λ) = 2µ′(A′, λ) = 2

j∑
i=0

dλi (A′)e′i. (5.2.4)

Let T ′ < SL(V02) and T ′′ < SL(V35) be the maximal tori which are diagonalized in the bases

{v0, v1, v2} and {v3, v4, v5} respectively. (We recall that λC1 is diagonal in the basis F = {v0, . . . , v5}.)
Let T? < T ′ × T ′′ be the torus

T? := {(g, h) ∈ T ′ × T ′′ | g(vi) = sivi, 0 ≤ i ≤ 2, h(vj) = s−1
j−3vj , 3 ≤ j ≤ 5} (5.2.5)
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Let Ĝr(3,
∧2

V02 ∧ V35) ⊂
∧10

(
∧3

V ) be the affine cone over Gr(3,
∧2

V02 ∧ V35) embedded in

P(
∧10

(
∧3

V )) by Plücker. We will examine P(Ĝr(3,
∧2

V02 ∧ V35)T?) ⊂ Gr(3,
∧2

V02 ∧ V35) i.e. the

subset of A′ such that T? acts trivially on
∧3

A′. An explicit parametrization of such A′ is as

follows. Given p = (p1, p2, p3) ∈ P1 × P1 × P1 with pi = [ai, bi] we let

A′p := 〈a1v0∧v2∧v3+b1v1∧v2∧v4, a2v1∧v2∧v5+b2v0∧v1∧v3, a3v0∧v1∧v4+b3v0∧v2∧v5〉 (5.2.6)

Let

MF
C1 := {A′p | p ∈ P1 × P1 × P1} ⊂ Gr(3,

2∧
V02 ∧ V35). (5.2.7)

A straightforward computation gives that MF
C1 ⊂ P(Ĝr(3,

∧2
V02 ∧ V35)T?) and moreover

P(Ĝr(3,

2∧
V02 ∧ V35)T?) = MF

C1

∐
{〈v0 ∧ v1 ∧ v5, v0 ∧ v2 ∧ v4, v1 ∧ v2 ∧ v3〉}

Given p ∈ P1 × P1 × P1 as above we let A′′p := (A′p)⊥ ∩ (V02 ∧
∧2

V35). Explicitly

A′′p=〈v0∧v4∧v5,v1∧v3∧v5,v2∧v3∧v4,(b1v1∧v4−a1v0∧v3)∧v5,(b2v0∧v3+a2v2∧v5)∧v4,(b3v2∧v5−a3v1∧v4)∧v3〉 (5.2.8)

We have a natural embedding

MF
C1 ↪→ SFC1

A′p 7→ Ap := (
∧3

V02 ⊕A′p ⊕A′′p)
(5.2.9)

The product T ′×T ′′ is of finite index in the normalizer of T? in SL(V02)×SL(V35); by Corollary

4.1.2 we get that Embedding (5.2.9) induces a finite map

MF
C1//T

′ −→ SFC1//SL(V02 × SL(V35). (5.2.10)

Let g ∈ T ′ be given by g(vi) = sivi for 0 ≤ i ≤ 2; then

g([a1, b1], [a2, b2], [a3, b3]) = [s−1
1 a1, s

−1
0 b1], [s−1

0 a2, s
−1
2 b2], [s−1

2 a3, s
−1
1 b3]) (5.2.11)

where ([a1, b1], [a2, b2], [a3, b3]) are as in (5.2.6). It follows that the quotient MF
C1//T

′ is given by

MF
C1 −→ MF

C1//T
′ ∼= P1

([a1, b1], [a2, b2], [a3, b3]) 7→ [a1a2a3, b1b2b3]
(5.2.12)

Let A′p ∈ MF
C1 be as in (5.2.6) and let {f, g, h} be the basis of A′p given by the elements on the

right-hand side of (5.2.6); then

EA′ = V (det(xf + yg + zh)) = V ((a1a2a3 + b1b2b3)xyz). (5.2.13)

For future reference we record the following:

EV02
= 〈v0, v1〉+ 〈v0, v2〉+ 〈v1, v2〉 if (a1a2a3 + b1b2b3) 6= 0. (5.2.14)

Claim 5.2.3. If p = ([1, 0], [1, 0], [1, 0]) or p = ([0, 1], [0, 1], [0, 1]) then Ap ∈ PGL(V )AIII .

Proof. A straighforward computation gives a monomial basis of Ap. Let ω be a generator of
∧10

Ap.

Let T < SL(V ) be the maximal torus diagonalized in the basis F. One checks that gω = ω for

every g ∈ T and hence the result follows from Claim 4.2.1.

Proposition 5.2.4. Let A ∈ SFC1 be semistable. Let A′ be as in (5.2.1) and suppose that EA′ is not

a smooth curve. Then A is not GC1-stable (i.e. properly semistable) and there exists p ∈ P1×P1×P1

such that Ap is PGL(V )-equivalent to A.
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Proof. Suppose first that A′ contains a non-zero decomposable element (and hence EA′ is not a

smooth curve). Then there exist a subspace U ⊂ V02 of dimension 2 and 0 6= z0 ∈ V35 such that∧2
U ∧ [z0] ⊂ A′. Choose direct-sum decompositions

V02 = [u0]⊕ U, V35 = [z0]⊕ Z. (5.2.15)

Let λ be the 1-PS of GC1 defined by

λ(t)u0 = t−2u0, λ(t)|U = t IdU , λ(t)z0 = t2z0, λ(t)|Z = t−1 IdZ . (5.2.16)

The isotypical summands of the action of λ on
∧2

V02 ∧ V35 are the following:∧2
U ∧ [z0] ([u0] ∧ U ∧ [z0]⊕

∧2
U ∧ Z) [u0] ∧ U ∧ Z

t4 t t−2 (5.2.17)

The λ-type of A′ is (1, d′1, d
′
2) with d′1 + d′2 = 2. Thus µ(A′, λ) = 6− 3d′2. By (5.2.4) we get that A′

is not GC1-stable and that d′2 = 2 (because by hypothesis A is semistable). Moreover Claim 2.1.4

gives that A is GC1-equivalent to

A0 =

3∧
V02 ⊕ (

2∧
U ∧ [z0]⊕H)⊕ (

2∧
U ∧ [z0]⊕H)⊥ ∩ (V02 ∧

2∧
V35), H ∈ Gr(2, [u0] ∧ U ∧ Z).

The intersection Gr(3, [u0]⊕U ⊕Z)∩ P([u0]∧U ∧Z) is a quadric hypersurface: it follows that the

intersection P(H) ∩Gr(3, [u0]⊕ U ⊕ Z) is one of the following:

(1) a set with exactly two elements,

(2) a set with exactly one element,

(3) a line.

Suppose that (1) holds: there exist bases {u1, u2}, {z1, z2} of U and Z respectively such that

H = 〈u0 ∧u1 ∧ z1, u0 ∧u2 ∧ z2〉. A straightforward computation gives that A is AF′

III for some basis

F′ of V - see Claim 4.2.1. By Claim 5.2.3 we get that A is PGL(V )-equivalent to Ap for p equal

to ([1, 0], [1, 0], [1, 0]) or ([0, 1], [0, 1], [0, 1]). If (2) or (3) above hold then A0 is in the closure of the

set of A’s for which Item (1) holds and hence it belongs to the orbit SL(V )AF
III by Proposition

4.2.2. This settles the case of A′ containing a non-zero decomposable element. Now assume that

EA′ is not a smooth curve but it does not contain non-zero decomposable elements. Then there

exists [α] ∈ EA′ such that

dimT[α]EA′ = 2. (5.2.18)

In what follows we will identify
∧2

V02 ∧ V35 with Hom(V02, V35). By hypothesis rkα = 2; let

[u0] = kerα. Equation (5.2.18) is equivalent to β(u0) ∈ imα for all β ∈ A′. Let Z := imα; by

hypothesis dimZ = 2. Choose direct-sum decompositions as in (5.2.15). Let λ be the 1-PS of

GC1 defined by (5.2.16) and λ−1 its inverse: λ−1(t) := λ(t−1). Replacing each weight appearing

in (5.2.17) by its opposite we get the isotypical decomposition of the representation of λ−1 on∧2
V02 ∧ V35. Notice that α ∈ [u0] ∧ U ∧ Z and that A′ is contained in the second term of the

λ−1-weight filtration of
∧2

V02 ∧ V35. It follows that the λ−1-type of A′ is (d′0, 3 − d′0, 0) where

d′0 ≥ 1 and hence µ(A′, λ−1) = 3d′0 − 3 ≥ 0. By (5.2.4) we get that A is not GC1 -stable and that

its λ−1-type is (1, 2, 0) (because it is semistable by hypothesis). Moreover Claim 2.1.4 gives that

if A is GC1 -equivalent to

A0 =

3∧
V02 ⊕A′0 ⊕ (A′0)⊥ ∩ V02 ∧

2∧
V35 where A′0 is λ−1-split of type (1, 2, 0).

Let α0 be a generator of A′0∩ [u0]∧U ∧Z and {β0, γ0} be a basis of A′0∩ ([u0]∧U ∧ [z0]⊕
∧2

U ∧Z);

a straightforward computation gives that det(xα0 + yβ0 + wγ0) = xφ(y, w) where φ ∈ C[y, w]2.

Suppose first that the zero-locus V (φ) is either all of C2 or the union of two distinct lines. Let
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(y1, w1) and (y2, w2) be linearly independent solutions of φ(y, w) = 0. We let δi := yiβ0 + wiγ0 for

i = 1, 2. We may choose bases {u1, u2}, {z1, z2} of U and Z respectively such that

α0 = u0∧u2∧z1 +u0∧u1∧z2, δ1 = u1∧u2∧z1 +au0∧u1∧z0, δ2 = u1∧u2∧z2 + bu0∧u2∧z0.

(5.2.19)

It follows at once that there exists p ∈ P1×P1×P1 such that Ap is SL(V )-equivalent to A. Lastly

suppose that the zero-locus V (φ) is a single line (with multiplicity 2). Arguing as above we get a

basis of A′0 given by

u0∧u2∧ z1 +u0∧u1∧ z2, u1∧u2∧ z1 +au0∧u1∧ z0, u1∧u2∧ z2 + bu0∧u2∧ z0 + cu0∧u1∧ z0.

Let g ∈ GL(V ) be defined by g(ui) = v2−i, g(z0) = v5, g(z1) = v3 and g(z2) = v4. Consider the

torus g−1T?g where T? is defined by (5.2.5); applying it to A′0 we get as limit a subspace generated

by α0, δ1, δ2 given by (5.2.19) and hence we are done again.

Corollary 5.2.5. If p = ([1, 1], [1,−1], [1, 1]) then Ap ∈ PGL(V )A+.

Proof. By (5.2.2) we know that A+ ∈ SFC1 , moreover the proof of (5.2.2) shows that the “special”V02

may be taken to be any element of ΘA+
. We claim that EA′+ = P(A′+); in fact one may easily

give an isomorphism V35
∼= V ∨02 such that A′+ ⊂ Hom(V02, V35) consists of the subspace of skew-

symmetric maps. By Proposition 5.2.4 it follows that there exists p0 ∈ P1 × P1 × P1 such

that Ap0 ∈ PGL(V )A+. Since EA′+ = P(A′+) Equation (5.2.13) gives that p0 is T ′-equivalent to

p = ([1, 1], [1,−1], [1, 1]). On the other hand by Proposition 4.3.4 and Corollary 4.1.2 the

T ′-orbit of Ap0 is closed in P1 × P1 × P1; it follows that ([1, 1], [1,−1], [1, 1]) ∈ T ′p0.

5.2.3 Semistable lagrangians A with dim ΘA ≥ 2 or CW,A = P(W ).

We will prove results that will be used several times in order to describe CW,A.

Lemma 5.2.6. Let A ∈ LG(
∧3

V )ss and suppose that dim ΘA ≥ 2. Then A is PGL(V )-equivalent

to an element of

X∗W ∪ PGL(V )Ak ∪ PGL(V )Ah. (5.2.20)

On the other hand if A belongs to (5.2.20) then dim ΘA ≥ 2.

Proof. Suppose that A ∈ LG(
∧3

V )ss and that dim ΘA ≥ 2. By Theorem 2.26 and Theorem 2.36

of [20] it follows that either A itself belongs to (5.2.20) or else there exist an isomorphism V ∼=
∧2

U

and a singular quadric Z ⊂ P(U) such that P(A) ⊃ 〈i+(Z)〉. By Proposition 4.3.7 we get

that A is PGL(V )-equivalent to an element of (5.2.20). Now suppose that A belongs to (5.2.20).

If A ∈ X∗W then ΘA contains i+(Z) where Z ∼= P1 × P1 (notation as in Definition 4.3.3), if

A ∈ (PGL(V )Ak ∪ PGL(V )Ah) then ΘA contains k(P(L)) or h(P(L∨)) i.e. a Veronese surfaces (of

degree 9): in both cases we get that dim ΘA ≥ 2.

Proposition 5.2.7. Let A ∈ LG(
∧3

V )ss and suppose that there exists W ∈ ΘA such that CW,A =

P(W ). Then A is PGL(V )-equivalent to an element of X∗W ∪ PGL(V )Ak.

Proof. By Corollary 3.2.7 we have B(W,A) = P(W ) i.e. one of the following holds:

(a) For generic [w] ∈ P(W ) there exists W ′ ∈ (ΘA \ {W}) with [w] ∈W ′.

(b) For all [w] ∈ P(W ) there exists 0 6= α ∈ TW such that α(w) = 0. (Recall (3.2.18).)

Suppose that (a) holds. It follows that dim ΘA ≥ 2. By Lemma 5.2.6 we get that A is PGL(V )-

equivalent to an element of X∗W ∪ PGL(V )Ak ∪ PGL(V )Ah. On the other hand if W ∈ ΘAh then

CW,Ah 6= P(W ) (it is a triple conic) and hence A is not PGL(V )-equivalent to Ah. Now suppose

that (b) holds. We may suppose that (a) does not hold. Then necessarily dim(A ∩ SW ) ≥ 4. By

Table (1) it follows that A is PGL(V )-equivalent to an element A0 ∈ SFC1 such that EA′0 = P(V02).

By Proposition 5.2.4 it follows that A0 is GC1-equivalent to an element Ap ∈ MF
C1 such that

EA′p = P(V02). Looking at (5.2.13) we get that Ap is GC1-equivalent to A+: since PGL(V )A+ ⊂ X∗W
we are done.
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Corollary 5.2.8. Let A ∈ LG(
∧3

V )ss. Suppose that dim ΘA ≤ 1 and A has minimal PGL(V )-

orbit. Let W ∈ ΘA: then CW,A 6= P(W ).

Proof. Suppose that CW,A = P(W ). By Proposition 5.2.7 we get that A is PGL(V )-equivalent

to an element A0 ∈ (X∗W ∪ PGL(V )Ak). By Proposition 4.3.4 and Proposition 4.4.2 A0

has minimal PGL(V )-orbit: by our hypothesis PGL(V )A = PGL(V )A0 i.e. we may assume that

A0 = A: that is a contradiction because by Lemma 5.2.6 we know that dim ΘA ≥ 2 for all

A ∈ (X∗W ∪ PGL(V )Ak).

5.2.4 Analysis of ΘA and CW,A

Let A ∈ SFC1 and A′′ be as in (5.2.1); then

ΘA ⊃ {V02}
∐

ΘA′′ . (5.2.21)

Now suppose that p ∈ P1×P1×P1: we will describe curves in ΘAp which are not contained in the

right-hand side of (5.2.21). Let Cp,i ⊂ Gr(3, V ) for i = 0, 1, 2 be the conics given by

Cp,0 := {〈v0, (λv1 − b3µv5), (λv2 + a3µv4)〉 | [λ, µ] ∈ P1}
Cp,1 := {〈v1, (λv0 + a2µv5), (λv2 + b2µv3)〉 | [λ, µ] ∈ P1}
Cp,2 := {〈v2, (λv0 + b1µv4), (λv1 − a1µv3)〉 | [λ, µ] ∈ P1}.

(5.2.22)

A straightforward computation (use (5.2.8)) shows that Cp,i ⊂ ΘAp for i = 0, 1, 2.

Proposition 5.2.9. Let A ∈ SFC1 be semistable (and hence by Proposition 5.2.4 either EA′ is

smooth or else there exist g ∈ PGL(V ) and p ∈ P1 × P1 × P1 such that gA = Ap) with minimal

orbit, not equal to that of AIII nor to that of A+.

(1) If EA′ is a smooth curve then ΘA′′ is a smooth curve and moreover (5.2.21) is an equality.

(2) Suppose that gA = Ap where g ∈ PGL(V ) and p ∈ P1 × P1 × P1. Then

gΘA = {V02} ∪ΘA′′ ∪ Cp,0 ∪ Cp,1 ∪ Cp,2.

(3) dim ΘA = 1.

Proof. Let’s show that

EA′ 6= P(A′). (5.2.23)

In fact suppose that EA′ = P(A′). By Proposition 5.2.4 there exist g ∈ PGL(V ) and p ∈ P1 ×
P1×P1 such that gA = Ap. By (5.2.13) we get that A′p is T ′-equivalent to ([1, 1], [1,−1], [1, 1]). By

hypothesis Ap has minimal orbit: it follows that p ∈ T ′([1, 1], [1,−1], [1, 1]) and by Corollary 5.2.5

that contradicts the hypothesis that gA 6= gA+. We have proved (5.2.23). Let W ∈ (ΘA \ {V02}).
Let 0 6= ω ∈

∧3
W ; then

ω = α+ β + γ, α ∈
3∧
V02, β ∈ A′, γ ∈ A′′, β + γ 6= 0. (5.2.24)

Since V02 ∈ ΘA we know that dimW ∩ V02 > 0. Let ξ ∈ W ∩ V02; multiplying both sides of

the equality of (5.2.24) by ξ we get that 0 = ξ ∧ β = ξ ∧ γ. It follows that if dimW ∩ V02 = 2

then γ = 0 and β is non-zero decomposable. Thus [β] ∈ EA′ : by (5.2.23) it follows that EA′ is

singular at [β]. By Proposition 5.2.4 it follows that the orbt PGL(V )A intersects MF
C1 and hence

we might as well assume that A ∈ MF
C1 . In the proof of Proposition 5.2.4 we showed that if

there exists [β] ∈ EA′ with β decomposable then the T ′-orbit of A′ contains A′p where p is either

([1, 0], [1, 0], [1, 0]) or ([0, 1], [0, 1], [0, 1]); by Claim 5.2.3 it follows that PGL(V )A contains AIII ,

that contradicts our hypothesis. This proves that if W ∈ (ΘA \ {V02}) then dimW ∩ V02 = 1. We

claim that either W ∈ ΘA′′ or else W ∩ V35 = {0}. In fact if W ∩ V35 6= {0} let 0 6= η ∈ W ∩ V35;

then 0 = η ∧ α = η ∧ β = η ∧ γ. Thus α = 0 and β is decomposable (it is a multiple of ξ ∧ η where
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0 6= ξ ∈ W ∩ V02), if β 6= 0 we get a contradiction as above, if β = 0 then W ∈ ΘA′′ . Thus from

now on we may assume that W ∩ V35 = {0}. It follows that there exist a basis {ξ0, ξ1, ξ2} of V02

and linearly independent η1, η2 ∈ V35 such that

W = 〈ξ0, ξ1 + η1, ξ2 + η2〉.

Thus ω := ξ0∧ (ξ1 +η1)∧ (ξ2 +η2) ∈ A. Decomposing ω according to the direct-sum decomposition∧3
V =

⊕
i

∧3−i
V02 ∧

∧i
V35 we get that

(ξ0 ∧ (ξ1 ∧ η2 − ξ2 ∧ η1) ∈ A′, ξ0 ∧ η1 ∧ η2 ∈ A′′.

In particular [ξ0 ∧ (ξ1 ∧ η2− ξ2 ∧ η1)] ∈ EA′ . Since ξ0 ∧ η1 ∧ η2 ∈ A′′ we have A′ ⊂ (ξ0 ∧ η1 ∧ η2)⊥; it

follows that [ξ0∧ (ξ1∧η2−ξ2∧η1)] is a singular point of EA′ (recall that EA′ is a curve by (5.2.23)).

This proves Item (1). Next let A = Ap. Let W ∈ (ΘA \ {V02} \ ΘA′′); the argument above shows

that W ∈ (Cp,0 ∪Cp,1 ∪Cp,2). This proves Item (2). Let’s prove Item (3). By Items (1) and (2) it

suffices to show that dim ΘA′′ = 1. We have

ΘA′′ = P(A′′) ∩ (P(V02)× P(

2∧
V35)) ⊂ P(V02 ∧

2∧
V35) (5.2.25)

and hence the expected dimension of ΘA′′ is 1. Suppose that W ∈ ΘA′′ and dimTWΘA′′ > 1. Let

W = 〈[ξ0], U〉 where ξ0 ∈ V02 and U ∈ Gr(2, V35). Since A′ = (A′′)⊥ we get that for every α ∈ A′
we have α(ξ0) ⊂ U (we view α as an element of Hom(V02, V35)). Since dimTWΘA′′ > 1 we have

dim(A′′ ∩ ([ξ0] ∧
2∧
V35 + V02 ∧

2∧
U)) ≥ 3. (5.2.26)

Let Z ⊂ V02 be a subspace complementary to [ξ0]. Then

([ξ0] ∧
2∧
V35 + V02 ∧

2∧
U)⊥ = [ξ0] ∧ Z ∧ U.

By (5.2.26) we get that 0 6= α0 ∈ (A′ ∩ [ξ0]∧Z ∧U) (recall that A′ = (A′′)⊥). Then [α0] ∈ EA′ and

EA′ is singular at [α0] because α(ξ0) ⊂ U for every α ∈ A′. Moreover we get that [ξ0]∧
∧2

U =
∧3

W

i.e. W is determined by α0. This proves that if EA′ is a smooth curve then ΘA′′ is a smooth

(irreducible) curve of genus 1 and that if A = Ap is as in Item (2) then there are exactly 3 singular

points of ΘA′′ (they are in one-to-one correspondence with the singular points of EA′) and hence

dim ΘA′′ = 1. It follows that in both cases dim ΘA = 1.

Corollary 5.2.10. Let Ap be as in Item (2) of Proposition 5.2.9. Then

ΘA′′p
={〈v3,xv1+yv2,a3yv4−b3xv5|[x,y]∈P1〉}∪{〈v4,xv0+yv2,b2yv3+a2xv5|[x,y]∈P1〉}∪{〈v5,xv0+yv1,a1yv3−b1xv4〉|[x,y]∈P1}.

(5.2.27)

Proof. A computation gives that ΘA′′p
contains the three conics appearing in the right-hand side

of (5.2.27). By Proposition 5.2.9 we know that ΘA′′p
is a curve of degree 6: the corollary follows.

Corollary 5.2.11. Let A ∈ SFC1 be semistable with minimal orbit. Suppose that PGL(V )A does not

contain A+. Then one of the following holds:

(1) EA′ is a smooth curve and CV02,A is a semistable sextic curve of Type II-4.

(2) EA′ is a triangle (the union of 3 non concurrent lines) and CV02,A is a semistable sextic curve

of Type III-2.

Proof. By Claim 5.1.1 we know that A is PGL(V )-semistable with minimal orbit. Suppose first

that PGL(V )A contains AIII : then Item (2) holds by (4.2.11) and (5.2.3). Next suppose that

PGL(V )A does not contain AIII . By Proposition 5.2.9 we have dim ΘA = 1 and hence CV02,A 6=
P(V02) by Corollary 5.2.8. We have proved that CV02,A 6= P(V02): by (5.2.3) we get that CV02,A =

2EV02
and that dimEV02

= 1. Suppose that EA′ is a smooth curve: it follows that EV02
∼= EA′ and

hence Item (1) holds. Now suppose that EA′ is not a smooth curve: by Proposition 5.2.4 we may

assume that A = Ap and hence Item (2) holds by (5.2.13) and (5.2.14).
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Proposition 5.2.12. Let A ∈ SFC1 and suppose that EA′ is a smooth curve. Let W ∈ ΘA′′ : then

CW,A is a semistable sextic curve of Type II-2.

Proof. By Claim 5.2.2 and Claim 5.1.1 we know that A is PGL(V )-semistable with minimal orbit.

By Proposition 5.2.9 we have dim ΘA = 1 and hence we get that CW,A 6= P(W ) by Corollary

5.2.8. Let {ξ0, ξ1, ξ2} be a basis of W with ξ0 ∈ V02 and ξ1, ξ2 ∈ V35. Let {X0, X1, X2} be

the dual basis of W∨; then CW,A = V (P ) where 0 6= P ∈ C[X0, X1, X2]6. Let t ∈ C×: then

diag(t, t, t, t−1, t−1, t−1) ∈ SL(V ) (the basis is F) acts trivially on
∧10

A and moreover it sends W

to itself. By Claim 3.1.4 we get that diag(s2, s−1, s−1) ∈ SL(W ) acts trivially on P : by Remark

4.1.4 we get that P = X2
0F (X1, X2). It remains to prove that F has no multiple factors. Let

Z ⊂ P(V ∨35) be the image of the intersection map

ΘA′′
τ−→ P(V ∨35)

W ′ 7→ P(W ′ ∩ V35).

By Proposition 5.2.9 we get that Z is a smooth cubic. Let L = W ∩ V35 = V (X0); then L ∈ Z.

We have a regular map f0 : (Z \ {L}) → P(L) given by intersection with L: since Z is smooth it

extends to a regular map f : Z → P(L). Let [η1], . . . , [η4] ∈ L be the branch points of f . We claim

that

mult[ηi] CW,A ≥ 3 (5.2.28)

and hence the (X1, X2)-coordinates of [η1], . . . , [η4] are zeroes of F ; since degF = 4 it will follow

that F has no multiple factors. First notice that if [η] ∈ P(V35) then dim(Fη ∩ A) ≥ 3: in fact

cod(Fη ∩ V02 ∧
∧2

V35, V02 ∧
∧2

V35) = 3 and hence dim(Fη ∩ A′′) ≥ 3 because dimA′′ = 6. Now

let i = 1, . . . , 4. If dim(Fηi ∩ A) > 3 then (5.2.28) holds by Corollary 3.1.3 (in fact one can

show that dim(Fη ∩ A) = 3 for all [η] ∈ V35). Thus we may suppose that dim(Fηi ∩ A) = 3. We

will apply Proposition 3.1.2 in order to compute the term g2 of the Taylor expansion (3.1.8) of

CW,A near [ηi]. Let K be as in Proposition 3.1.2; the projection µ̃ of (3.2.4) realizes P(K) as a

1-dimensional linear subspace of P(
∧2

V0/
∧2

W0) which intersects Gr(2, V0)W0 in one point with

multiplicity 2. By (3.1.10) and (3.2.8) we get that g2 = 0 and hence (5.2.28) holds.

Proposition 5.2.13. Let A′p ∈ MF
C1 be T ′-semistable with minimal orbit. Suppose that Ap /∈

PGL(V )A+. Let W ∈ ΘAp : then CW,A is a semistable sextic curve of Type III-2.

Proof. If Ap ∈ PGL(V )AIII then CW,A is a semistable sextic curve of Type III-2 by Proposition

4.2.3. Thus we may assume that Ap /∈ PGL(V )AIII . By Proposition 5.2.9 we know that

dim ΘA = 1 and by Theorem 4.1.1 Ap is PGL(V )-semistable with minimal orbit: it follows

from Corollary 5.2.8 that CW,A 6= P(W ). Thus CW,A = V (P ) where 0 6= P ∈ S6W∨. Looking

at the explicit description of CP,i and ΘA′′ provided by (5.2.22) and Corollary 5.2.10 we get

that there is a 2-dimensional torus Tp < T? which sends W to itself. Applying Claim 3.1.4 one

gets that P is fixed by a maximal torus in SL(W ) and hence CW,A is of Type III-2 by Remark

4.1.4.

5.2.5 Wrapping it up

We will prove Proposition 5.2.1. Item (1) and Item (2) are gotten by putting together the

statements of Claim 5.2.2 and Proposition 5.2.4. Let’s prove Item (3). Since A is GC1 -stable

the stabilizer of A in GC1 is a finite group. Thus it suffices to show that if g ∈ Stab(A) then g

belongs to the centralizer CSL(V )(λC1) of λC1 in SL(V ). EA′ is a smooth curve because A is GC1-

stable. By Proposition 5.2.9 we get that ΘA = {V02} ∪ ΘA′′ , moreover ΘA′′ is a smooth curve.

It follows that V35 is the unique 3-dimensional vector subspace of V intersecting every W ∈ ΘA′′

in a subspace of dimension 2. From these facts we get that if g ∈ Stab(A) then g(V02) = V02 and

g(V35) = V35 i.e. g ∈ CSL(V )(λC1). We have proved Item (3). Lastly let’s prove Item (4). First we

notice that y ∈ BC1 by (5.2.2) and y ∈ I by Claim 4.3.5: thus {y} ⊂ BC1∩I. The proof that there

are no other points in BC1 ∩ I goes as follows. Let A ∈ SFC1 and suppose that the orbit PGL(V )A
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is closed in LG(
∧3

V )ss and not equal to that of A+: we must prove that if W ∈ ΘA then CW,A is

a sextic curve which is not in the indeterminacy locus of the period map

|OP(W )(6)| 99K DBB2 (5.2.29)

for K3-surfaces of degree 2. By Claim 5.2.2 and Proposition 5.2.4 either EA′ is smooth or else

we may assume that A = Ap where p ∈ P1 × P1 × P1. By (4.2.7) we may assume from now on

that SL(V )A 6= SL(V )AIII . Suppose that EA′ is smooth: by Proposition 5.2.9 either W = V02

or W ∈ ΘA′′ . If W = V02 then CW,A is a sextic curve of Type II-4 by Corollary 5.2.11 and

if W ∈ ΘA′′ then CW,A is a sextic curve of Type II-2 by Proposition 5.2.12; it follows that

in both cases CW,A is not in the indeterminacy locus of (5.2.29). Suppose that A = Ap (and

A+ /∈ PGL(V )A): if W ∈ ΘA then CW,A is a sextic curve which is not in the indeterminacy locus

of (5.2.29) by Proposition 5.2.13.

5.3 BA

Let A ∈ SFA; by definition

A = A′ ⊕A′′, A′ ∈ Gr(5, [v0] ∧
2∧
V15), A′′ = (A′)⊥ ∩ (

3∧
V15). (5.3.1)

In other words A′, A′′ are the summands denoted A0, A1 in Subsection 5.1. Notice that ΘA′ and

ΘA′′ both have expected dimension 1. The following is the main result of the present subsection.

Proposition 5.3.1. The following hold:

(1) A ∈ SFA is GA-stable if and only if ΘA′ is a smooth curve.

(2) The generic A ∈ SFA is GA-stable.

(3) If A ∈ SFA is GA-stable the connected component of Id in Stab(A) < SL(V ) is equal to imλA.

(4) BA ∩ I = ∅.

The proof of Proposition 5.3.1 will be given in Subsubsection 5.3.3.

5.3.1 The GIT analysis

Let λ be a 1-PS of GA. By definition GA is identified with SL(V15): it follows that I−(λ) = ∅,
see Definition 5.1.2. The 1-PS λ defines an action of C× on [v0] ∧

∧2
V15: let e′0 > . . . > e′j be

the weights of the action. Now let A ∈ SFA: by (5.1.22) and (2.1.9) we have

µ(A, λ) = 2µ(A′, λ) = 2

j∑
i=0

d′i(A
′)e′i. (5.3.2)

Next we notice that AF
III ∈ SFA, see (4.2.1).

Proposition 5.3.2. Suppose that A ∈ SFA is semistable and that ΘA′ is not a smooth curve. Then

A is not GA-stable and it is GA-equivalent to AF
III .

Proof. Every irreducible component of ΘA′ has dimension at least 1: it follows that ΘA′ contains a

point W whose tangent space has dimension greater than 1. Let W := W ∩ V15 (thus dimW = 2)

and choose a direct-sum decomposition V15 = W ⊕ U . Let λ be the 1-PS of GA such that

λ(t)|W = t3 IdW , λ(t)|U = t−2 IdU . (5.3.3)

The λ-type of A′ is (1, d′1(A′), 4 − d′1(A′)) and hence µ(A′, λ) = 5d′1(A′) − 10. Since the tangent

space to ΘA′ at W has dimension greater than 1 we have d′1(A′) = dim(A′ ∩W ∧ U) ≥ 2 and thus

µ(A′, λ) ≥ 0. By (5.3.2) and semistability of A it follows that µ(A′, λ) = 0 i.e. d′1(A′) = 2. By Claim
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2.1.4 we get that A is GA-equivalent to A0 := supp(ω0) = A′0⊕A′′0 where A′0 ∈ Gr(5, [v0]∧
∧2

V15)

and A′′0 ∈ Gr(5,
∧3

V15) are λ-split of types (1, 2, 2) and (1, 4, 0) respectively. There exists a basis

{u1, u2, u3, w1, w2} of V15 such that ui ∈ U , wj ∈ W and A′0 ∩
∧2

U = 〈u1 ∧ u2, u1 ∧ u3〉. Let

U23 := 〈u2, u3〉. We let λ0 be the 1-PS of GA defined by

λ0(t)u1 = t2u1, λ0(t)|U23 = IdU23 , λ0(t)|W = t−1 IdW .

The λ0-type of A′0 is (2, d′1(A′0), 0, d′3(A′0), 1) and d′1(A′0) + d′3(A′0) = 2; it follows that µ(A′0, λ0) =

d′1(A′0)− d′3(A′0) + 2 ≥ 0. By (5.3.2) and semistability of A we get that d′1(A′) = 0 and d′3(A′) = 2.

By Claim 2.1.4 we get that A0 is GA-equivalent to A00 = A′00⊕A′′00 where A′00 is λ0-split of type

(2, 0, 0, 2, 1). In particular we have dim(A′00 ∩ (U23 ∧W )) = 2. The Grassmannian Gr(2, U23 ⊕W )

is a quadric hypersurface in P(
∧2

(U23 ⊕W )): it follows that the intersection R := P(A′00 ∩ (U23 ∧
W )) ∩Gr(2, U23 ⊕W ) is one of the following:

(1) a set with exactly two elements,

(2) a set with exactly one element,

(3) a line.

Suppose that (1) holds: then there exist bases {u′2, u′3}, {w′1, w′2} of U23 and W respectively such

that R = {u′2 ∧ w′1, u′3 ∧ w′2}. Let F′ := {u1, u
′
2, u
′
3, w

′
1, w

′
2}; as is easily checked A00 = AF′

III .

Now suppose that (2) or (3) holds: such an A00 is in the closure of the set of A00’s for which

Item (1) holds, since they are in the orbit SL(V )AF′

III we get that A00 itself belongs to that orbit

by Proposition 4.2.2.

Proposition 5.3.3. Suppose that A ∈ SFA and that ΘA′ is a smooth curve. Then A is GA-stable.

Moreover the generic A ∈ SFA is GA-stable.

Proof. Let Gr(5,
∧2

V15)0 ⊂ Gr(5,
∧2

V15) be the open dense subset of B′ such that Θ[v0]∧B′ is a

smooth curve. The j-invariant provides a regular SL(V15)-invariant map j : Gr(5,
∧2

V15)0 → A1.

Let p ∈ (A1 \ j(A′)) and D ⊂ Gr(5,
∧2

V15) be the closure of j−1(p). Then D is SL(V15)-invariant

and does not contain A′; it follows that A′ is SL(V15)-semistable. Now suppose that A′ is not

stable. Then there exists a minimal orbit SL(V15)A′0 contained in SL(V15A′) ∩ Gr(5,
∧2

V15)ss

and SL(V15)A′0 6= SL(V15)A′. In particular dimSL(V15)A′0 < dimSL(V15)A′; it follows that A′0 /∈
Gr(5,

∧2
V15)0. By Proposition 5.3.2 we get that A′0 = A′III and hence ΘA′0

is a curve whose

singularities are nodes - in fact a cycle of 5 lines; by monodromy considerations that contradicts

the hypothesis that A′0 is in the closure of SL(V15)A′.

The result below follows at once from Proposition 5.3.3.

Corollary 5.3.4. The generic A ∈ SFA is GA-stable.

5.3.2 Analysis of ΘA and CW,A

Let A ∈ SFA: we have an embedding

ΘA′
ι
↪→ Gr(2, V15)

W 7→ W ∩ V15

(5.3.4)

We will often identify ΘA′ with its image via ι.

Proposition 5.3.5. Let A ∈ SFA. Then ΘA′ is a smooth curve if and only if ΘA′′ is a smooth

curve. If this is the case then ΘA′
∼= ΘA′′ and ΘA = ΘA′

∐
ΘA′′ .

Proof. Suppose that ΘA′ is a smooth curve. Let’s prove the following:

if W1 ∈ ΘA′ and W2 ∈ ΘA′′ then dim(W1 ∩W2) = 1. (5.3.5)
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We know that dim(W1 ∩ W2) ≥ 1; the point is to show that we can not have strict inequality.

Suppose that dim(W1 ∩ W2) = 2. Let U := W1 ∩ V15; thus U = W1 ∩ W2 = ρv0

V15
(W1) where

ρv0

V15
is given by (3.2.12) (with V0 replaced by V15). Choose bases {u1, u2}, {u1, u2, v} of U and

W2 respectively. Since A′ = (A′′)⊥ we get that A′ ⊂ (u1 ∧ u2 ∧ v)⊥. Since the projective tangent

space to Gr(2, V15) at U is contained in P((u1 ∧ u2 ∧ v)⊥) it follows that the tangent space to

ι(ΘA′) = P(ρv0

V15
(A′)) ∩ Gr(2, V15) at U has dimension at least 2: that contradicts the hypothesis

that ΘA′ is a smooth curve. This proves (5.3.5). Let’s define a morphism

ϕ : Pic−3 ΘA′ −→ ΘA′′ . (5.3.6)

Let E be the restriction to ΘA′ of the tautological rank-2 vector-bundle on Gr(2, V15). Let

ε : P(E)→ P(V15) (5.3.7)

be the natural morphism and RE := im ε. We notice that ε is injective: in fact if U1, U2 ∈ ρ(ΘA′)

are distinct then U1 ∩U1 = {0} because ΘA′ does not contain lines. Clearly deg E = −5. We claim

that E is stable. In fact E∨ is globally generated and hence if it is not stable then E ∼= L1⊕L2 where

degL1 = 3 and degL2 = 2; that contradicts injectivity of ε. Let L ∈ Pic−3 ΘA′ ; since E is stable

dim Hom(L, E) = 1. Let τ ∈ Hom(L, E) be non-zero; then τ does not vanish anywhere and hence

ε(im τ) is a cubic curve (recall that ε is injective) spanning a plane P(W ) such that W ∩ U 6= {0}
for every U ∈ ΘA′ . Since ΘA′ spans P(A′) and A′′ = (A′)⊥ it follows that W ∈ ΘA′′ . We define the

morphism ϕ of (5.3.6) by setting ϕ([L]) := W . The morphism ϕ is injective because ε is injective.

Using (5.3.5) one proves easily that ϕ is surjective. Thus ΘA′′ has the expected dimension 1 and

hence it is an irreducible curve of arithmetic genus 1: it follows that ϕ is an isomorphism. We have

proved that if ΘA′ is a smooth curve then ΘA′′ is isomorphic to ΘA′ , in particular it is a smooth

curve. By duality it follows that if ΘA′′ is a smooth curve then ΘA′
∼= ΘA′′ , in particular it is a

smooth curve. Now assume that ΘA′′ is a smooth curve: we must prove that ΘA = ΘA′
∐

ΘA′′ .

Suppose that α ∈ A is non-zero decomposable and that supp(α) /∈ (ΘA′
∐

ΘA′′). Then there exist

linearly independent u1, u2, v ∈ V15 such that α = v0 ∧u1 ∧u2 +u1 ∧u2 ∧ v. Thus v0 ∧u1 ∧u2 ∈ A′
and u1 ∧ u2 ∧ v ∈ A′′ and hence 〈v0, u1, u2〉 ∈ ΘA′ , 〈u1, u2 ∧ v〉 ∈ ΘA′ ; that contradicts (5.3.5).

Proposition 5.3.6. Let A ∈ SFA. Suppose that ΘA′ is a smooth curve. If W ∈ ΘA′ or W ∈ ΘA′′

then CW,A is a sextic curve of Type II-2 or II-4 respectively.

Proof. By Proposition 5.3.5 we have dim ΘA = 1. By Proposition 5.3.3 we know that A is

GA-stable and hence A is PGL(V )-semistable with closed orbit by Claim 5.1.1. Let W ∈ ΘA:

since dim ΘA < 2 it follows from Corollary 5.2.8 that CW,A 6= P(W ). Let W ∈ ΘA′ . Let

{v0, u1, u2} be a basis of W where u1, u2 ∈ V15, and {X0, X1, X2} be the dual basis of W∨. For

t ∈ C× let g(t) := diag(t5, t−1, . . . , t−1) ∈ SL(V ). Then g(t) acts trivially on
∧10

A and it maps

W to itself. Applying Claim 3.1.4 we get that CW,A = V (P ) where P = X2
0F (X1, X4) - and we

know that F 6= 0. It remains to prove that F does not have multiple factors. Let’s examine CW,A
in a neighborhood of [v0]. We identify U := W ∩ V15 with an open affine neighborhood of [v0] in

P(W ) via (3.1.7). We have CW,A ∩ U = V (g4) where g4 = F/X4
0 . Let ZU,A ⊂ P(

∧2
V15/

∧2
U)

be the projection of ι(ΘA′) from
∧2

U - notation as in Remark 3.3.3. By (3.1.10) the set of

zeroes (up to scalars) of g4 is in one-to-one correspondence with the set of singular quadrics in

P(ρv0

V15
(A′)/

∧2
U) containing ZU,A. Since ZU,A is a linearly normal quartic elliptic curve in the

3-dimensional projective space P(ρv0

V15
(A′)/

∧2
U) there are exactly 4 singular quadrics containing

it; thus F does not have multiple factors. Now let W ∈ ΘA′′ . If W ′ ∈ ΘA′ then dimW ′ ∩W = 1

by (5.3.5). As W ′ varies in ΘA′ the intersection W ′ ∩W describes a curve EW ⊂ P(W ) (recall that

ε is injective). One checks easily that EW = ε(P(L)) where L ↪→ E is a sub-line-bundle of degree

−3 (a sub-line-bundle of E of degree less than −3 will give a non-planar curve in P(V15)); it follows

that EW is a smooth cubic curve in P(W ). By Corollary 3.2.7 we get that CW,A = 2EW (recall

that CW,A 6= P(W )) and hence CW,A is of Type II-4.
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5.3.3 Wrapping it up

We will prove Proposition 5.3.1. Item (1) and Item (2) are gotten by putting together the

statements of Proposition 5.3.2, Proposition 5.3.3 and Corollary 5.3.4. Let’s prove Item (3).

Since A is GA-stable the stabilizer of A in GA is a finite group. Thus it suffices to show that

if g ∈ Stab(A) then g belongs to the centralizer CSL(V )(λA) of λA in SL(V ). By Item (1) and

GA-stability of A we know that ΘA′ is a smooth curve. By Proposition 5.3.5 we get that

ΘA = ΘA′ ∪ΘA′′ and ΘA′′ is a smooth elliptic curve of degree 5. It follows that [v0] is the unique 1-

dimensional vector subspace of V contained in every W ∈ ΘA′ and V15 is the unique 5-dimensional

vector subspace of V containing every W ∈ ΘA′′ (and there is no 1-dimensional subspace of V

contained in every W ∈ ΘA′′ and no proper subspace of V containing all W ∈ ΘA′). From these

facts we get that if g ∈ Stab(A) then g([v0]) = [v0] and g(V15) = V15 i.e. g ∈ CSL(V )(λA). We

have proved Item (3). Lastly we prove Item (4). Let A ∈ SFA be GA-semistable with minimal orbit.

Suppose that ΘA′ is a smooth curve: then [A] /∈ I by Proposition 5.3.5 and Proposition 5.3.6.

Suppose that ΘA′ is not a smooth curve: then A ∈ PGL(V )AIII by Proposition 5.3.2 and hence

[A] /∈ I by (4.2.7).

5.4 BD

Below is the main result of the present subsection.

Proposition 5.4.1. The following hold:

(1) The generic A ∈ SFD is GD-stable.

(2) If A ∈ SFD is GD-stable the connected component of Id in Stab(A) < SL(V ) is equal to imλD.

(3) BD ∩ I = XW , where XW is as in (4.3.6).

The proof of Proposition 5.4.1 will be given in Subsubsection 5.4.4.

5.4.1 Quadrics associated to A ∈ SFD

Let A ∈ SFD; by definition A = A′ ⊕A′′ ⊕A′′′ where

A′∈Gr(3,[v0]∧
∧2 V14), A′′∈LG([v0]∧V14∧[v5]⊕

∧3 V14), A′′′=(A′)⊥∩(
∧2 V14∧[v5]). (5.4.1)

In other words A′, A′′, A′′′ are the summands named A0, A1, A2 in Subsection 5.1. We define

closed subsets QA′ , QA′′ , QA′′′ ⊂ P(V14) as follows:

QA′ := {[ξ] ∈ P(V14) | dim(A′ ∩ Fξ) > 0},
QA′′ := {[ξ] ∈ P(V14) | dim(A′′ ∩ Fξ) > 0},
QA′′′ := {[ξ] ∈ P(V14) | dim(A′′′ ∩ Fξ) > 0}.

Thus QA′ is swept out by the lines P(W ∩ V14) for W varying in ΘA′ and similarly for QA′′′ .

In particular each of QA′ , QA′′′ is either a quadric or P(V14), moreover QA′′′ = QA′ because

A′′′ = (A′)⊥. Similarly QA′′ is either a quadric or P(V14). Suppose that A′′ ∩
∧3

V14 = {0}; a

simpler description of QA′′ goes as follows. We have an isomorphism
∧3

V14
∼= ([v0] ∧ V14 ∧ [v5])∨

given by wedge-product followed by vol and A′′ is the graph of a map qA′′ : [v0]∧V14∧ [v5]→
∧3

V14

which is symmetric because A′′ is lagrangian. As is easily checked QA′′ = V (qA′′). The intersection

YA ∩ P(V14) is supported on QA′ ∪QA′′ and it has multiplicity at least 2 along QA′ : it follows that

either P(V14) ⊂ YA or YA ∩ P(V14) = 2QA′ +QA′′ . In the following subsubsection we will compare

GD-(semi)stability of A with geometric properties of QA′ and QA′′ : for example we will show that

if QA′ ∩QA′′ is a smooth curve (the generic case) then A is GD-stable. In the present subsubsection

we will go through basic results about QA′′ and the computation of QA′ for one explicit A′.

Proposition 5.4.2. Let A′′ be as in (5.4.1) and [ξ0] ∈ QA′′ . Then dimT[ξ0]QA′′ = 3 (i.e. either

QA′′ is a quadric singular at [ξ0] or it is equal to P(V14)) if and only if one of the following holds:
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(a) A′′ ∩ Fξ0 ∩ ([v0] ∧ V14 ∧ [v5]) 6= {0}.

(b) A′′ ∩ Fξ0 ∩
∧3

V14 6= {0}.

On the other hand suppose that

A′′ ∩ Fξ0 = 〈v0 ∧ ξ0 ∧ v5 + α〉, 0 6= α ∈
3∧
V14.

Then the embedded projective tangent space of QA′′ at [ξ0] is

T[ξ0]QA′′ = P(suppα).

Proof. In order to simplify notation we let S := ([v0] ∧ V14 ∧ [v5] ⊕
∧3

V14). Let B ∈ LG(S) be

transversal both to A′′ and Fξ0 . The symplectic form on S defines an isomorphism B ∼= (A′′)∨.

Choose a subspace U ⊂ V14 complementary to [ξ0]. We have an isomorphism

U
∼−→ P(V14) \ P(U)

ξ 7→ [ξ0 + ξ]

onto a neighborhood of [ξ0]. There is an open U0 ⊂ U containing 0 such that Fξ0+ξ is transverse

to B for all ξ ∈ U0. Let ξ ∈ U0: then Fξ0+ξ is the graph of a linear map ψ(ξ) : A′′ → B = (A′′)∨.

Since Fξ0+ξ is lagrangian the map ψ(ξ) is symmetric. Clearly we have

QA′′ ∩ U0 = V (detψ), kerψ(0) = A′′ ∩ Fξ0 . (5.4.2)

Now suppose that dim(A′′∩Fξ0) ≥ 2. Then ψ(0) has corank at least 2 and hence dimT[ξ0]QA′′ = 3.

On the other hand one checks at once that Item (b) holds. Thus from now on we may suppose that

dim(A′′ ∩ Fξ0) = 1. Let

A′′ ∩ Fξ0 = 〈ξ0 ∧ (xv0 ∧ v5 + α0)〉, α0 ∈
2∧
V14.

Given τ ∈ U0 = T[ξ0]P(V14) we have

τ ∈ T[ξ0]QA′′ ⇐⇒
dψ

dτ
(ξ0 ∧ (xv0 ∧ v5 + α0)) = 0.

(Here we view dψ
dτ as a quadratic form on A′′.) Equation (2.26) of [18] (warning: the v0 of [18] is

our ξ0!) gives that

dψ

dτ
(ξ0∧(xv0∧v5 +α0)) = vol(τ ∧ξ0∧(xv0∧v5 +α0)∧(xv0∧v5 +α0)) = 2x vol(τ ∧ξ0∧v0∧v5∧α0).

(Notice that α0 is decomposable and hence α0 ∧ α0 = 0.) The proposition follows.

In Subsubsection 5.4.3 we will need the following explicit computation. Let {η0, η1, η2, η3}
be a basis of V14 and {T0, T1, T2, T3} be the dual basis of V ∨14. Let

A′ = [v0] ∧ 〈η0 ∧ η1 + η2 ∧ η3, η0 ∧ η2 − η1 ∧ η3, η0 ∧ η3 + η1 ∧ η2〉 ∈ Gr(3, [v0] ∧
2∧
V14). (5.4.3)

A straightforward computation gives that

QA′ = V (T 2
0 + T 2

1 + T 2
2 + T 2

3 ). (5.4.4)

Notice that

A′′′ = (A′)⊥ = [v0]∧〈η0∧η1−η2∧η3, η0∧η2 +η1∧η3, η0∧η3−η1∧η2〉 ∈ Gr(3, [v0]∧
2∧
V14). (5.4.5)
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5.4.2 The GIT analysis

Let λ be a 1-PS of GD. We claim that I−(λ) = ∅, see Definition 5.1.2. In fact GD = C××SL(V14)

and hence it suffices to check that (5.1.20) holds for λ with image in the C×-factor: now look

at (5.1.8). The 1-PS λ defines actions of C× on [v0]∧
∧2

V14 and ([v0]∧ V14 ∧ [v5]⊕
∧3

V14): we let

e′0 > . . . > e′j(0) and e′′0 > . . . > e′′j(1) be the corresponding weights. Now let A ∈ SFD. By (5.1.22)

and (2.1.9) we have

µ(A, λ) = 2µ(A′, λ) + µ(A′′, λ) = 2

j(0)∑
i=0

e′id
λ
i (A′) +

j(1)∑
i=0

e′′i d
λ
i (A′′). (5.4.6)

Proposition 5.4.3. Let A ∈ SFD. Then A is not GD-stable if and only if one of the following holds:

(1) dim(A′′ ∩ [v0] ∧ V14 ∧ [v5]) ≥ 2.

(2) dim(A′′ ∩
∧3

V14) ≥ 2.

(3) There exists a basis {ξ0, ξ1, ξ2, ξ3} of V14 such that one of the following holds:

(3a) A′ 3 v0 ∧ ξ0 ∧ ξ1 and A′′ ⊃ 〈v0 ∧ ξ0 ∧ v5, ξ0 ∧ ξ1 ∧ ξ2〉.

(3b) A′ ⊃ 〈v0 ∧ ξ0 ∧ ξ1, v0 ∧ ξ0 ∧ ξ2〉.

(3c) A′ ⊃ 〈v0∧ξ0∧ξ1, v0∧(ξ0∧ξ3+ξ1∧ξ2)〉 and there exists 0 6= (av0∧ξ0∧v5+bξ0∧ξ1∧ξ2) ∈ A′′.

Proof. Let λ0 : C× → GD be the 1-PS of GD mapping identically to the C×-factor and trivially to

the SL(V14)-factor. We let λ−1
0 (t) := λ0(t−1) be the inverse. We notice that λ0 acts trivially on

[v0] ∧
∧2

V14 and the weight-decomposition of the λ0-action on ([v0] ∧ V14 ∧ [v5]) ⊕
∧3

V14 is the

following:

[v0] ∧ V14 ∧ [v5]︸ ︷︷ ︸
t3

⊕
3∧
V14︸ ︷︷ ︸

t−3

. (5.4.7)

Let

B = {ξ0, ξ1, ξ2, ξ3} (5.4.8)

be a basis of V14. Let λ1 : C× → SL(V14) be defined by

λ1(t)ξ0 = tξ0, λ1(t)ξ1 = ξ1, λ1(t)ξ2 = ξ2, λ1(t)ξ3 = t−1ξ3. (5.4.9)

We view λ1 as a 1-PS of GD. The weight-decomposition of the λ1-action on [v0] ∧
∧2

V14 is the

following:

[v0 ∧ ξ0] ∧ 〈ξ1, ξ2〉︸ ︷︷ ︸
t

⊕〈v0 ∧ ξ0 ∧ ξ3, v0 ∧ ξ1 ∧ ξ2〉︸ ︷︷ ︸
1

⊕ [v0 ∧ ξ3] ∧ 〈ξ1, ξ2〉︸ ︷︷ ︸
t−1

. (5.4.10)

The weight-decomposition of the λ1-action on ([v0] ∧ V14 ∧ [v5])⊕
∧3

V14 is the following:

〈v0 ∧ ξ0 ∧ v5, ξ0 ∧ ξ1 ∧ ξ2〉︸ ︷︷ ︸
t

⊕〈v0 ∧ ξ1 ∧ v5, v0 ∧ ξ2 ∧ v5, ξ0 ∧ ξ1 ∧ ξ3, ξ0 ∧ ξ2 ∧ ξ3〉︸ ︷︷ ︸
1

⊕〈v0 ∧ ξ3 ∧ v5, ξ1 ∧ ξ2 ∧ ξ3〉︸ ︷︷ ︸
t−1

. (5.4.11)

A straightforward computation gives the following:

(1′) If A satisfies Item (1) then µ(A, λ0) ≥ 0.

(2′) If A satisfies Item (2) then µ(A, λ−1
0 ) ≥ 0.

(3a′) If A satisfies Item (3a) then dλ1(A′) � (1, 0, 2) and dλ1(A′′) � (2, 2, 0) thus µ(A, λ1) ≥ 0.

(3b′) If A satisfies Item (3b) then dλ1(A′) � (2, 0, 1) and dλ1(A′′) � (0, 2, 2) thus µ(A, λ1) ≥ 0.

(3c′) If A satisfies Item (3c) then dλ1(A′) � (1, 1, 1) and dλ1(A′′) � (1, 2, 1) thus µ(A, λ1) ≥ 0.
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(The relation � is defined as in Definition 2.2.1.) This proves that if one of Items (1)-(3c) holds

then A is not GD-stable. We will prove the converse by applying the Cone Decomposition Algorithm

of Subsection 2.3. We choose the maximal torus T < GD to be T = C× × {diag(t0, t1, t2, t3) |
t0 · . . . · t4 = 1} where the matrices are diagonal with respect to the basis B. We let C ⊂ X̌(T )R be

the standard cone. Thus

X̌(T )R := {(n, r0, . . . , r3) ∈ R5 | r0+. . .+r3 = 0}, C := {(n, r0, . . . , r3) ∈ R5 | r0 ≥ r1 ≥ . . . ≥ r3}.

Let

xi := ri−1 − ri, i = 1, 2, 3.

In the new coordinates (n, x1, x2, x3) we have

C := {(n, x1, . . . , x3) | x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}.

The linear functions r0, . . . , r3 (restricted to X̌(T )R) are expressed as follows in terms of the coor-

dinates x1, . . . , x3: 
r0
r1
r2
r3

 =


3/4 1/2 1/4

−1/4 1/2 1/4

−1/4 −1/2 1/4

−1/4 −1/2 −3/4

 ·
x1

x2

x3

 (5.4.12)

A hyperplane H ⊂ X̌(T )R is an ordering hyperplane if and ony if it is the kernel of one of the

following linear functions:

x1, x2, x3, x1 − x3, x1 + x3 ± 12n, x1 − x3 ± 12n, x1 + 2x2 + x3 ± 12n. (5.4.13)

Thus the hypotheses of Proposition 2.3.4 are satisfied. An easy computation gives that the

ordering rays in the (n, x1, x2, x3)-coordinates are generated by the vectors

(±1, 0, 0, 0), (0, 1, 0, 1), (0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0).

Switching to (n, r0, r1, r2, r3)-coordinates via (5.4.12) we get the 1-PS’s

λ±1
0 , λ1, (1,diag(t3, t−1, t−1, t−1)), (1,diag(t, t, t, t−3)), (1,diag(t, t, t−1, t−1)).

A straightforward case-by-case analysis gives that if µ(A, λ) ≥ 0 for one of the last three 1-PS’s

then one of Items (1)-(3c) holds.

Corollary 5.4.4. Let A ∈ SFD and let A′, A′′ be as in (5.4.1). Suppose that A′′ ∩
∧3

V14 = {0}.
Then A is GD-stable if and only if QA′ ∩QA′′ is a smooth curve. In particular the generic A ∈ SFD
is GD-stable.

Proof. Let [ξ0] ∈ QA′′ : then dim(A′′ ∩ Fξ0) = 1 because A′′ ∩
∧3

V14 = {0}. Let

A′′ ∩ Fξ0 = [v0 ∧ ξ0 ∧ v5 + α], α ∈
3∧
V14.

By Proposition 5.4.2 the projective tangent space to QA′′ at [ξ0] is equal to P(suppα). Now

assume that dim(A′′ ∩ [v0]∧V14 ∧ [v5]) ≥ 2. Then on one hand A is not GD-stable by Proposition

5.4.3, on the other hand QA′′ is either P(V14) or a quadric whose singular locus has dimension

at least 1 and hence QA′ ∩ QA′′ is not a smooth curve. Thus from now on we may assume that

dim(A′′∩[v0]∧V14∧[v5]) ≤ 1. Notice that since A′′∩
∧3

V14 = {0} we get that neither (1), (2) or (3a)

of Proposition 5.4.3 holds. Next notice that (3b) of Proposition 5.4.3 holds if and only if ΘA′

is not a smooth conic i.e. QA′ is either all of P(V14) or a quadric of rank at most 2: it follows that

we may suppose that QA′ is a smooth quadric. With these hypotheses QA′ ∩QA′′ is not transverse

at [ξ0] if and only if there exists a basis {ξ0, ξ1, ξ2, ξ3} of V14 such that (3c) of Proposition 5.4.3

holds.

Proposition 5.4.5. Let A ∈ SFD and suppose that A is GD-semistable. Suppose in addition that

one of Items (1), (2), (3a), (3b) of Proposition 5.4.3 holds. Then A is PGL(V )-equivalent to

AIII .
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Proof. Suppose that Item (1) or (2) holds. Taking limt→0 λ0(t)A (respectively limt→0 λ
−1
0 (t)A) and

applying Claim 2.1.4 we get that A is GD-equivalent to

A0 = A′ ⊕B ⊕ C ⊕A′′′, B ∈ Gr(2, [v0] ∧ V14 ∧ [v5]), C = B⊥ ∩
∧
V14.

It follows easily that A0 satisfies Item (3a) in the statement of Proposition 5.4.3. Thus we may

assume from the start that one of Items (3a), (3b) holds. Suppose that Item (3a) holds. As shown

in the proof of Proposition 5.4.3 it follows that dλ1(A′) � (1, 0, 2) and dλ1(A′′) � (2, 2, 0). Taking

limt→0 λ1(t)A we get that A is GD-equivalent to a λ1-split A0 ∈ SFD with

A′0 = 〈v0 ∧ ξ0 ∧ ξ1, v0 ∧ ξ1 ∧ ξ3, v0 ∧ ξ2 ∧ ξ3〉, A′′0 ⊃ 〈v0 ∧ ξ0 ∧ v5, ξ0 ∧ ξ1 ∧ ξ2〉.

Let λ2 be the 1-PS of SL(V14) defined by

λ2(t)ξ1 = tξ1, λ2(t)ξ3 = tξ3, λ2(t)ξ0 = t−1ξ0, λ2(t)ξ2 = t−1ξ2.

One checks easily that µ(A0, λ2) = 0 and that A00 = limt→0 λ2(t)A0 has a monomial basis.

By Claim 4.2.1 we get that A00 ∈ PGL(V )AIII and hence A00 is GD-equivalent to an element of

MF
D by (5.4.14). It follows by duality that if Item (3b) holds then A is GD-equivalent to an element

of MF
D.

Corollary 5.4.6. Let A ∈ SFD be semistable and suppose that A is not PGL(V )-equivalent to AIII .

Then QA′ is a smooth quadric.

Proof. Suppose that QA′ is not a smooth quadric: then Item (3b) of Proposition 5.4.3 holds and

hence we get a contradiction by Proposition 5.4.5.

Remark 5.4.7. Let

A := 〈v0∧ξ0∧ξ1, v0∧ξ0∧ξ3, v0∧ξ2∧ξ3, v0∧ξ1∧v5, v0∧ξ2∧v5, ξ0∧ξ1∧ξ2, ξ1∧ξ2∧ξ3, ξ0∧ξ2∧v5, ξ0∧ξ3∧v5, ξ1∧ξ3∧v5〉.
(5.4.14)

Then A ∈ SFD. Applying Claim 4.2.1 we get that the left-hand side belongs to PGL(V )AIII . Thus

PGL(V )AIII ∩ SFD is not empty.

Let B be the basis of V14 appearing in the proof of Proposition 5.4.3 - see (5.4.8). Let λ1 be

the 1-PS of GD defined by (5.4.9). Let ŜFD be the affine cone over SFD; then GD acts on ŜFD. The

fixed locus ŜFD)λ1 is the set of A which are mapped to themselves by ∧3λ1(t) and such that ∧3λ1(t)

acts trivially on
∧10

A.

Definition 5.4.8. Let MB
D ⊂ P((ŜFD)λ1) be the set of A such that ∧3λ1(t) acts trivially on

∧3
A′,∧4

A′′, and
∧3

A′′′ (as usual A′, A′′, A′′′ are as in (5.4.1)).

Remark 5.4.9. Let’s adopt the notation introduced in the proof of Proposition 5.4.3. Suppose

that A ∈ SFD; then A ∈ MB
D if and only if A′, A′′ are λ1-split of types dλ1(A′) = (1, 1, 1) and

dλ1(A′′) = (1, 2, 1). Moreover MB
D is an irreducible component of P((ŜFD)λ1).

Proposition 5.4.10. Suppose that A is properly GD-semistable i.e. GD-semistable but not GD-

stable. Then there exists A0 ∈MB
D which is GD-equivalent to A.

Proof. By Proposition 5.4.3 one of Items (1), (2), (3a), (3b) or (3c) of that proposition holds.

We will adopt the notation introduced in the proof of Proposition 5.4.3. If Item (3c) holds then

by Remark 5.4.9 there exists A0 ∈MB
D which is GD-equivalent to A. Now suppose that Item (1)

or (2) holds. Taking limt→0 λ0(t)A (respectively limt→0 λ
−1
0 (t)A) and applying Claim 2.1.4 we

get that A is GD-equivalent to

A0 = A′ ⊕B ⊕ C ⊕A′′′, B ∈ Gr(2, [v0] ∧ V14 ∧ [v5]), C = B⊥ ∩
∧
V14.

It follows easily that A0 satisfies Item (3a) in the statement of Proposition 5.4.3. Thus we may

assume from the start that one of Items (3a), (3b) holds. Suppose that Item (3a) holds. As shown

in the proof of Proposition 5.4.3 it follows that dλ1(A′) � (1, 0, 2) and dλ1(A′′) � (2, 2, 0). Taking
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limt→0 λ1(t)A and applying Claim 2.1.4 we get that A is GD-equivalent to a λ1-split A0 ∈ SFD
with

A′0 = 〈v0 ∧ ξ0 ∧ ξ1, v0 ∧ ξ1 ∧ ξ3, v0 ∧ ξ2 ∧ ξ3〉, A′′ ⊃ 〈v0 ∧ ξ0 ∧ v5, ξ0 ∧ ξ1 ∧ ξ2〉.

Let λ2 be the 1-PS of SL(V14) defined by

λ2(t)ξ1 = tξ1, λ2(t)ξ3 = tξ3, λ2(t)ξ0 = t−1ξ0, λ2(t)ξ2 = t−1ξ2.

One checks easily that µ(A0, λ2) = 0 and that A00 = limt→0 λ2(t)A0 has a monomial basis.

By Claim 4.2.1 we get that A00 ∈ PGL(V )AIII and hence A00 is GD-equivalent to an element of

MF
D by (5.4.14). This proves that if Item (3a) holds then A is GD-equivalent to an element of MF

D.

It follows by duality that if Item (3b) holds then A is GD-equivalent to an element of MF
D.

5.4.3 Analysis of ΘA and CW,A

Proposition 5.4.11. Let A ∈ SFD be GD-semistable and suppose that it is not PGL(V )-equivalent

to AIII . Let W ∈ ΘA. Then one of the following holds:

(1) dim(W ∩ V14) = 1 and W = 〈η0, v0 + η2, η1 + v5〉 where η0, η1, η2 ∈ V14. Moreover we may

assume that one of the following holds:

(1a) v0 ∧ η0 ∧ v5 ∈ A′′ and η1 = 0 or η2 = 0.

(1b) T[η0]QA′ ⊂ T[η0]QA′′ and A is not GD-stable.

(2) dim(W ∩ V14) = 2 and

(2a) W ∈ (ΘA′ ∪ΘA′′′) or

(2b) W = 〈v0 + η2, η0, η1〉 where η0, η1, η2 ∈ V14 are linearly independent.

(2c) W = 〈v5 + η2, η0, η1〉 where η0, η1, η2 ∈ V14 are linearly independent.

If either one of (2b), (2c) holds then A is not GD-stable.

(3) W ⊂ V14.

Proof. First notice that QA′ is a smooth quadric by Corollary 5.4.6. Clearly dim(W ∩ V14) ≥ 1.

We proceed to a case-by-case analysis according to the dimension of W ∩ V14.

dim(W ∩ V14) = 1 Then W is necessarily as in Item (1). It remains to show that we may assume

that (1a) or (1b) holds. We have

A 3 η0 ∧ (v0 + η2) ∧ (η1 + v5) = −v0 ∧ η0 ∧ η1 − (v0 ∧ η0 ∧ v5 + η0 ∧ η1 ∧ η2) + η0 ∧ η2 ∧ v5.

It follows that

v0 ∧ η0 ∧ η1 ∈ A′, (v0 ∧ η0 ∧ v5 + η0 ∧ η1 ∧ η2) ∈ A′′, η0 ∧ η2 ∧ v5 ∈ A′′′. (5.4.15)

If one (at least) among η0∧η1, η0∧η2 vanishes then we may rename η1, η2 so that (1a) holds. Thus

we may assume that η0 ∧ η1 6= 0 6= η0 ∧ η2. By (5.4.15) we get that the lines P〈η0, η1〉 and P〈η0, η2〉
are lines on the smooth quadric QA′ belonging to different rulings: it follows that T[η0]QA′ =

P(〈η0, η1, η2〉). On the other hand P(〈η0, η1, η2〉) ⊂ T[η0]QA′′ by (5.4.15) and Proposition 5.4.2.

This proves that T[η0]QA′ ⊂ T[η0]QA′′ , moreover we get that Item (3c) of Proposition 5.4.3

holds with ξi = ηi for i = 0, 1, 2 and ξ3 such that T[η1]QA′ = P(〈η0, η1, ξ3〉): it follows that A is not

GD-stable. Thus Item (1b) holds.

dim(W ∩ V14) = 2 Let {η0, η1} be a basis of W ∩ V14. Let 0 6= α ∈
∧3

W : then α = α′ +α′′ +α′′′

where α′ ∈ A′ etc. Multiplying α by η0 or η1 we get that

α = xv0 ∧ η0 ∧ η1 + η0 ∧ η1 ∧ η2 + yη0 ∧ η1 ∧ v5, x, y ∈ C, η2 ∈ V14.
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Since QA′ is a smooth quadric it follows that one at least among x, y vanishes. On the other hand

x, y do not both vanish because W 6⊂ V14. If η0 ∧ η1 ∧ η2 = 0 then W ∈ (ΘA′ ∪ΘA′′′) i.e. Item(2a)

holds. Assume that η0 ∧ η1 ∧ η2 6= 0: rescaling the ηi’s we get that W is as in Item (2b) if x 6= 0, as

in Item (2c) if y 6= 0. It remains to prove that if Item (2b) or (2c) holds then A is not GD-stable.

By symmetry it suffices to assume that (2b) holds. Thus v0 ∧ η0 ∧ η1 ∈ A′ and η0 ∧ η1 ∧ η2 ∈ A′′.
In particular the smooth quadric QA′ contains the line L := P〈η0, η1〉. Let P := P〈η0, η1, η2〉. Since

QA′ is a smooth quadric P ∩QA′ = L+L′ where L′ is line distinct from L. We may choose a basis

of 〈η0, η1〉 and rename its elements η0, η1 so that L ∩ L′ = [η0]. Then T[η0] = P = P(〈η0, η1, η2〉);
it follows that Item (3c) of Proposition 5.4.3 holds with ξi replaced by ηi for i = 0, 1, 2 and a

suitable ξ3 (up to a scalar ξ3 is determined by requiring that T[η1] = P = P(〈η0, η1, ξ3〉)). Thus A

is not GD-stable.

dim(W ∩ V14) = 3 Then Item (3) holds.

Corollary 5.4.12. Let A ∈ SFD be GD-stable. Then ΘA = ΘA′ ∪ ΘA′′′ ∪ ZA where ZA is a finite

set. Moreover each of ΘA′ , ΘA′′′ is a smooth conic.

Proof. Each of ΘA′ , ΘA′′′ is a smooth conic by Corollary 5.4.6. Let W ∈ ΘA and suppose that

W /∈ (ΘA′ ∪ ΘA′′′). Then either Item (1a) or Item (3) of Proposition 5.4.11 holds. Suppose

that Item (1a) holds. By Item (1) of Proposition 5.4.3 we get that [η0] ∈ P(V14) is unique.

If 0 = η1 = η2 there are no other choices involved and hence W is uniquely determined. Next

suppose that one of η0 ∧ η1 or η0 ∧ η2 is non-zero (if they both vanish we may rename η1, η2 so

that 0 = η1 = η2). Since QA′ = QA′′′ is a smooth quadric (by Corollary 5.4.6) we get that either

η2 = 0 and 〈η0, η1〉 is the unique line of QA′ through [η0] or else η1 = 0 and 〈η0, η2〉 is the unique

line of QA′′′ through [η0]. This shows that there is at most a finite set of choices for W such that

Item (1a) of Proposition 5.4.11 holds. By Item (2) of Proposition 5.4.3 there is at most one

choice for W such that Item (3) of Proposition 5.4.11 holds.

Definition 5.4.13. Suppose that Item (3) of Proposition 5.4.11 holds. Let

C ′W := {[η] ∈ P(W ) | dim(A′ ∩ Fη) > 0}, C ′′W := {[η] ∈ P(W ) | dim(A′′ ∩ Fη) > 1}.

Remark 5.4.14. Suppose that Item (3) of Proposition 5.4.11 holds. Then

C ′W = P(W ) ∩QA′ = P(W ) ∩QA′′′ = {[η] ∈ P(W ) | dim(A′′′ ∩ Fη) > 0}. (5.4.16)

(Recall that QA′ is a smooth quadric - see the proof of Proposition 5.4.11.) It follows that either

CW,A = 2C ′W + C ′′W or CW,A = P(W ).

We continue to assume that Item (3) of Proposition 5.4.11 holds. Let W = 〈η0, η1, η2〉. By

hypothesis A is not PGL(V )-equivalent to AIII : thus Proposition 5.4.5 gives that

A′′ = 〈η0 ∧ η1 ∧ η2, v0 ∧ η0 ∧ v5 + α0, v0 ∧ η1 ∧ v5 + α1, v0 ∧ η2 ∧ v5 + α2, 〉, αi ∈
3∧
V14. (5.4.17)

The condition that A′′ be lagrangian translates into

ηi ∧ αj = ηj ∧ αi, 0 ≤ i, j ≤ 2. (5.4.18)

It follows that

C ′′W =


[

2∑
i=0

Xiηi

]
|
∑

0≤i,j≤2

ηi ∧ αjXiXj = 0

 . (5.4.19)

Lemma 5.4.15. Let A ∈ SFD be GD-stable. Suppose that W ∈ ΘA and that W ⊂ V14. Then

CW,A = 2C ′W + C ′′W and C ′W is a smooth conic intersecting transversely C ′′W .
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Proof. First we claim that CW,A 6= P(W ). In fact A has minimal PGL(V )-orbit by Claim 5.1.1,

moreover it follows from Proposition 5.4.11 that dim ΘA = 1. Thus CW,A 6= P(W ) by Corollary

5.2.8. By Remark 5.4.14 we get that CW,A = 2C ′W +C ′′W . Suppose that C ′W is a singular conic.

Then Item (3c) of Proposition 5.4.3 is satisfied with a = 0 and W = 〈ξ0, ξ1, ξ2〉: by Proposition

5.4.3 that contradicts the hypothesis that A is GD-stable. This proves that C ′W is a smooth conic.

Now suppose that there is a point p ∈ C ′W ∩C ′′W such that TpC
′
W ⊂ TpC

′′
W . We may choose a basis

{η0, η1, η2} of W such that p = [η0] and TpC
′
W = P〈η0, η1〉. We let α0, α1, α2 be as in (5.4.17). The

explicit equation (5.4.19) gives that η0 ∧ α0 = 0 and allows us to compute TpC
′′
W : it follows that

η0 ∧ α1 = 0. By (5.4.18) we get that η1 ∧ α0 = 0; thus α0 = η0 ∧ η1 ∧ η. Since TpC
′
W ⊂ TpQA′

and P(W ) is not tangent to QA′ we may extend {η0, η1} to a basis {η0, η1, η3, η4} (notice that η2

does not belong to the chosen basis)) so that v0 ∧ η0 ∧ η3 ∈ A′ (i.e. P〈η0, η3〉 is a line of the ruling

of QA′ corresponding to A′) and v0 ∧ (η0 ∧ η4 + η3 ∧ η1) ∈ A′. Suppose first that η0 ∧ η1 ∧ η and

η0∧η1∧η2 are linearly dependent. Then v0∧η0∧v5 ∈ A′′ and hence A is not GD-stable by Item (3c)

of Proposition 5.4.3, that is a contradiction. Next suppose that η0 ∧ η1 ∧ η and η0 ∧ η1 ∧ η2 are

linearly independent: then there exist x, y ∈ C such that xη0∧η1∧η+yη0∧η1∧η2 = −η0∧η1∧η3.

It follows that (xv0 ∧ η0 ∧ v5 + η0 ∧ η1 ∧ η3) ∈ A′′. Set ξ0 = η0, ξ1 = η3, ξ2 = η1 and ξ3 = η4; then A

satisfies Item (3c) of Proposition 5.4.3 and hence A is not GD-stable, that is a contradiction.

Lemma 5.4.16. Let A ∈ SFD be GD-stable. Suppose that W ∈ ΘA and that Item (1) of Proposi-

tion 5.4.11 holds. Then CW,A is a semistable sextic of Type II-1.

Proof. By Proposition 5.4.11 there exists 0 6= η0 ∈ V14 such that W = 〈v0, η0, v5〉. Arguing as in

the proof of Lemma 5.4.15 we get that CW,A 6= P(W ): thus CW,A = V (P ) where 0 6= P ∈ S6W∨.

Let λD be the 1 PS of SL(V ) defined in Subsection 5.1 i.e. λD(t) = diag(t, 1, 1, 1, 1, t−1) in the

basis F. Then λD(t)W = W for all t ∈ C×. Now apply Claim 3.1.4 to λD(t) and P : by Remark

4.1.4 we get that P is given by (4.1.2) i.e. CW,A is the “union”of 3 conics tangent at [v0] and [v5]

(because P 6= 0). It remains to prove that the 3 conics are distinct. The proof is achieved by a brutal

computation. By Corollary 5.4.6 we know that QA′ is a smooth quadric, moreover [η0] /∈ QA′
because if [η0] ∈ QA′ then Item (3c) of Proposition 5.4.3 holds and hence A is not GD-stable.

Since [η0] is outside the smooth quadric QA′ we may complete η0 to a basis {η0, η1, η2, η3} of V14

such that A′ is given by (5.4.3). Then A′ and A′′′ are transverse to 〈η1, η2, η3〉: thus there are linear

maps f, g :
∧2〈η1, η2, η3〉 → 〈η1, η2, η3〉 such that

A′ = {v0∧(η0∧f(β′)+β′) | β′ ∈
2∧
〈η1, η2, η3〉}, A′′′ = {[v5]∧(η0∧g(β′′′)+β′′′) | β′′′ ∈

2∧
〈η1, η2, η3〉}.

Choose the basis B = {η1, η2, η3} of 〈η1, η2, η3〉 and let B∨ = {η2∧η3, η3∧η1, η1∧η2} be the dual basis

of
∧2〈η1, η2, η3〉: the matrices associated to f and g are the unit matrix 13 and −13 respectively:

in particular we have g = −f . By Proposition 5.4.3 we have A∩ [v0]∧ V14 ∧ [v5] = [v0 ∧ η0 ∧ v5]:

it follows that there exists a linear map h :
∧2〈η1, η2, η3〉 → 〈η1, η2, η3〉 such that

A′′ = [v0 ∧ η0 ∧ v5]⊕ {(v0 ∧ h(β′′) ∧ v5 + η0 ∧ β′′) | β′′ ∈
2∧
〈η1, η2, η3〉}.

By definition [xv0 + η0 + yv5] ∈ CW,A if and only if dim(A ∩ Fxv0+η0+yv5
) ≥ 2 i.e. there exists

(0, 0, 0) 6= (β′, β′′, β′′′) ∈
2∧
〈η1, η2, η3〉 ×

2∧
〈η1, η2, η3〉 ×

2∧
〈η1, η2, η3〉

such that

0 = (xv0+η0+yv5)∧(v0∧(η0∧f(β′)+β′)+(v0∧h(β′′)∧v5+η0∧β′′)+v5∧(η0∧g(β′′′)+β′′′). (5.4.20)

We may write out the right-hand side as the sum of 3 elements respectively in [v0] ∧
∧3

V14,

[v5] ∧
∧3

V14 and [v0] ∧
∧2

V14 ∧ [v5]: we get that

0 = β′ − xβ′′ = β′′′ − yβ′′ = xg(β′′′)− yf(β′)− h(β′′) = xβ′′ − yβ′. (5.4.21)
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Thus (recall that g = −f)

[xv0 + η0 + yv5] ∈ CW,A if and only if (h+ 2xyf) is singular. (5.4.22)

To finish the proof we distinguish between the two cases:

(a) A′′ ∩
∧3

V14 = {0} or

(b) A′′ ∩
∧3

V14 6= {0}.

Item (a) holds Then QA′′ is a quadric with singQA′′ = {[η0]} and QA′ ∩ QA′′ is a smooth curve

of genus 1 (by Proposition 5.4.3 it cannot have singular points). Let QA′ = V (qA′) and QA′′ =

V (qA′′). Since QA′ ∩QA′′ is smooth there are exactly 4 singular quadrics in the pencil spanned by

QA′ and QA′′ : since QA′ is smooth and QA′′ is singular it follows that

|{r 6= 0 | det(qA′ + rqA′′) = 0}| = 3. (5.4.23)

Now let M(qA′) and M(qA′′) be the symmetric matrices associated to qA′ and qA′′ by the choice of

the basis {η0, η1, η2, η3} of V14 and the dual basis {η1 ∧ η2 ∧ η3, η0 ∧ η2 ∧ η3, η0 ∧ η3 ∧ η1, η0 ∧ η1 ∧ η2}
of
∧3

V14. Then M(qA′′) has first row and first column equal to zero. Let N be the 3 × 3-

matrix obtained by deleting first row and first column of M(qA′′): thus N is the matrix MBB∨(h−1)

associated to h−1 by the choice of bases B, B∨ given above. By (5.4.4) we know that M(qA′) is the

unit matrix: thus (5.4.23) gives that N has exactly 3 distinct (non-zero) eigenvalues and hence so

does MB
∨

B (h). Since MB
∨

B (f) = 13 we get that (h+ 2sf) is singular for exactly 3 distinct non-zero

values of s, say s1, s2, s3. Now look at (4.1.2): we get that ai/bi = −si and hence the 3 conics are

indeed distinct.

Item (b) holds Then dim(A′′ ∩
∧3

V14) = 1 by Proposition 5.4.3. By an orthogonal change

of basis in 〈η1, η2, η3〉 we may assume that A′′ ∩
∧3

V14 = [η0 ∧ η1 ∧ η2] and moreover (5.4.4)

continues to hold (recall that C ′W0
is smooth by Lemma 5.4.15). Thus A′′ is given by (5.4.17)

with α0 = 0. Let W0 := 〈η0, η1, η2〉: then W ∈ ΘA and we have the conics C ′W0
, C ′′W0

⊂ P(W0),

see Definition 5.4.13. By (5.4.19) we know that C ′′W0
is singular at [η0] (recall (5.4.18)); in order

to be coherent with our current use of coordinates (see (5.4.4)) we replace the Xi’s in (5.4.19) by

Ti’s. Let C ′W0
= V (c′W0

) and C ′′W0
= V (c′′W0

): by Lemma 5.4.15 we have

|{r 6= 0 | det(c′W0
+ rc′′W0

) = 0}| = 2. (5.4.24)

The matrix MB
∨

B (h) has third row and third column equal to zero: let P be the 2 × 2-matrix

obtained by deleting third row and third column, it is invertible because dim(A′′ ∩
∧3

V14) = 1.

Let R be the 3× 3-matrix with vanishing first row and first column and with P−1 in the remaining

space. Then R is the symmetric matrix giving c′′W0
: since (5.4.4) continues to hold (5.4.24) gives

that P−1 has exactly 2 distinct eigenvalues. Thus P has exactly 2 distinct eigenvalues as well: it

follows that (h+ 2sf) is singular for exactly 2 distinct non-zero values of s, say s1, s2. Moreover h

is singular because Item (b) holds. Now look at (4.1.2): we get that ai/bi = −si for i = 1, 2 and

a3 = 0, thus the 3 conics are indeed distinct.

Proposition 5.4.17. Let A ∈ SFD be GD-stable. Let W ∈ ΘA. Then

(i) If Item (1) of Proposition 5.4.11 holds then CW,A is a semistable sextic of Type II-1.

(ii) If Item (2) of Proposition 5.4.11 holds then CW,A is a semistable sextic of Type II-2.

(iii) If Item (3) of Proposition 5.4.11 holds then CW,A is a semistable sextic of Type II-3.

In particular [A] /∈ I.
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Proof. Item (i) is the content of Lemma 5.4.16 and Item (iii) is the content of Lemma 5.4.15.

Thus it remains to prove Item (ii). First we claim that CW,A 6= P(W ). In fact A has minimal

PGL(V )-orbit by Claim 5.1.1, moreover it follows from Proposition 5.4.11 that dim ΘA = 1.

Thus CW,A 6= P(W ) by Corollary 5.2.8. Since A is GD-stable we have W ∈ (ΘA′ ∪ΘA′′′). We will

give the proof for W ∈ ΘA′ ; if W ∈ ΘA′′′ the proof is analogous. There exist η1, η2 ∈ V14 such that

W = 〈v0, η1, η2〉. Let {X0, X1, X2} be the dual basis of W∨ and 0 6= P ∈ C[X0, X1, X2]6 be the

homogeneous . The 1 PS λD defined in Subsection 5.1 maps W to itself: by applying Claim 3.1.4

to λD(t) and P we get that P = X2
0F where 0 6= F ∈ C[X1, X2]4. It remains to prove that F has no

multiple roots. Let L := P(W ∩V14). The line L is contained in QA′ (by definition). By Corollary

5.4.6 we know that QA′ is a smooth quadric and hence there is a projection π : QA′ → L. The line

L has equation X0 = 0 in P(W ) and the roots of F give 4 points p1, p2, p3, p4 ∈ L: we must show

that the pi’s are distinct. In order to describe the pi’s we distinguish between the two cases:

(a) There is no W0 ∈ ΘA contained in V14.

(b) There exists W0 ∈ ΘA contained in V14.

Item (a) holds Then E := QA′∩QA′′ is a smooth elliptic curve by Proposition 5.4.3. Restricting

the projection π to E we get a degree-2 map f : E → L. Since E is smooth of genus 1 there are

4 (distinct) ramification points q1, . . . , q4 of f : we will show that {p1, . . . , p4} = {π(q1), . . . , π(q4)}.
Let [η2] ∈ E be a ramification point of f and let π([η2]) = [η0]. We must prove that

P(〈v0, η0〉) ⊂ CW,A. (5.4.25)

By hypothesis the line P(〈η0, η2〉) is contained in QA′ and it belongs to the ruling parametrized by

A′′′ i.e. η0∧η2∧v5 ∈ A′′′. We may extend {η0, η2} to a basis {η0, η1, η2, η3} (we may need to rescale

η0) of V14 so that

A′ = 〈v0 ∧ η0 ∧ η1, v0 ∧ (η0 ∧ η3 + η1 ∧ η2), v0 ∧ η2 ∧ η3〉. (5.4.26)

Since [η2] is a ramification point of f the line P(〈η0, η2〉) is tangent to QA′′ at [η2]: by Proposition

5.4.2 it follows that there exists γ ∈ 〈η1, η3〉 such that

(v0 ∧ η2 ∧ v5 + η0 ∧ η2 ∧ γ) ∈ A′′. (5.4.27)

Thus γ = sη1 + tη3. A straightforward computation gives that

(−sv0∧(η0∧η3+η1∧η2)+tv0∧η2∧η3+x2η0∧η2∧v5+x(v0∧η2∧v5+sη0∧η2∧η1+tη0∧η2∧η3))∈A∩Fv0+xη0
. (5.4.28)

Since (v0 ∧ η0 ∧ η1) ∈ A ∩ Fv0+xη0
it follows that dim(A ∩ Fv0+xη0

) ≥ 2. This shows that (5.4.25)

holds and hence that CW,A is a semistable sextic of Type II-2.

Item (b) holds Let C ′W0
, C ′′W0

⊂ P(W0) be as in Definition 5.4.13: by Lemma 5.4.15 we know

that C ′W0
∩C ′′W0

consists of 4 distinct points, say q1, . . . , q4: moreover no two of the points q1, . . . , q4

belong to the same line on QA′ because C ′W0
is a smooth conic (see Lemma 5.4.15). Let’s show

that {p1, . . . , p4} = {π(q1), . . . , π(q4)}. Let qi = [η2]. By hypothesis [η2] ∈ QA′ : it follows that

we may complete η2 to a basis {η0, . . . , η3} of V14 so that η0 ∧ η2 ∧ v5 ∈ A′′′ and (5.4.26) holds.

By definition of the qi’s there exists 0 6= η2 ∧ β ∈ A′′ ∩
∧3

V14 and moreover dim(A′′ ∩ Fη2
) ≥ 2:

since A is GD-stable dim(A′′ ∩
∧3

V14) = 1 and hence there exists (v0 ∧ η2 ∧ v5 + η2 ∧ δ) ∈ A′′.
Moreover η2 ∧ δ 6= 0 because otherwise [η2] is a singular point of C ′′W0

(see (5.4.19)) and that would

contradict Lemma 5.4.15. Now notice that η0 ∧ η2 ∧ β 6= 0 because by Lemma 5.4.15 we know

that C ′W0
is smooth. Thus there exists x ∈ C such that η0∧ (η2∧δ+xη2∧β) = 0 and hence (5.4.27)

holds for a suitable γ ∈ 〈η1, η3〉. It follows that (5.4.28) holds in this case as well and we are done

again.

Proposition 5.4.18. Let A ∈ SFD. Suppose that A is properly GD-semistable with minimal

PGL(V )-orbit (equivalently minimal GD-orbit by Claim 5.1.1) and that [A] /∈ XW . If W ∈ ΘA

then CW,A is a PGL(W )-semistable sextic curve PGL(W )-equivalent to a sextic of Type III-2, in

particular [A] /∈ I.
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Proof. First we notice that CW,A 6= P(W ). In fact suppose the contrary. By Corollary 5.2.8 we get

that A is PGL(V )-equivalent to a lagrangian in (X∗W ∪PGL(V )Ak). Since A has minimal PGL(V )-

orbit it follows that A ∈ (X∗W ∪ PGL(V )Ak). Since [A] /∈ XW we must have A ∈ PGL(V )Ak. As is

easily checked ΘAk = k(P(L)) and hence ΘAk is a Veronese surface of degree 9: thus ΘAk does not

contain any conic and therefore Ak /∈ BD, that is a contradiction. This proves that CW,A 6= P(W ).

Next we may suppose that A /∈ PGL(V )AIII because in that case CW,A is a sextic of Type III-2

by Proposition 4.2.3: thus QA′ is a smooth quadric by Corollary 5.4.6. Let λD, λ1 be the

1-PS’s of SL(V ) defined in Subsection 5.1 and (5.4.9) respectively: notice that they commute

and hence they define a homomorphism

(C×)2 ρ−→ SL(V )

(s, t) 7→ λD(s) · λ1(t)

Both λD and λ1 act trivially on
∧10

A: thus ρ(s, t) acts on ΘA and hence we get an action of (C×)2

on ΘA. Suppose first that W is fixed by ρ(s, t) for every (s, t) ∈ (C×)2: we will prove that CW,A
is a sextic of Type III-2. Let {ξ0, . . . , ξ3} be the basis of V14 appearing in the definition of λ1,

see (5.4.9). We claim that W is one of the following:

〈v0, ξ0, a1ξ1+a2ξ2〉, 〈v0, a1ξ1+a2ξ2, ξ3〉, 〈ξ0, a1ξ1+a2ξ2, v5〉, 〈a1ξ1+a2ξ2, ξ3, v5〉, 〈ξ0, ξ1, ξ2〉, 〈ξ1, ξ2, ξ3〉.

In fact this is a simple consequence of Proposition 5.4.11: one invokes the hypothesis that QA′

is smooth (recall that a polynomial defining QA′ is left invariant by λD) in order to exclude the

cases W = 〈v0, ξ1, ξ2〉 or W = 〈ξ1, ξ2, v5〉. In each of the cases above the image of (C×)2 → GL(W )

is a 2-dimensional torus. Let CW,A = V (P ), thus P 6= 0: applying Claim 3.1.4 we get that P is

left invariant by a maximal torus of SL(W ) and hence CW,A is a sextic of Type III-2 by Remark

4.1.4. Now let W ∈ ΘA be arbitrary. Then the closure of {ρ(s, t)W} contains a W0 ∈ ΘA which is

fixed by ρ(s, t) for every (s, t) ∈ (C×)2. It follows that CW,A is PGL(W )-equivalent to CW0,A: we

have proved that CW0,A is a sextic of Type III-2 and hence we are done.

5.4.4 Wrapping it up

We will prove Proposition 5.4.1. Item (1) is the content of Corollary 5.4.4. Let’s prove Item (2).

By Corollary 5.4.12 we have ΘA = ΘA′ ∪ ΘA′′′ ∪ ZA where ΘA′ , ΘA′′′ are smooth conics, ZA
is a finite set, every W ∈ ΘA′ contains [v0] and every W ∈ ΘA′′′ contains [v5]. It follows that

[v0] is the unique 1-dimensional vector subspace of V contained in every W ∈ ΘA′ and [v5] is the

unique 1-dimensional vector subspace of V contained in every W ∈ ΘA′′′ . From these facts we

get that if g ∈ Stab(A) then g preserves the set {[v0], [v5]} and maps V14 to itself. Thus the the

connected component of Id in Stab(A) belongs to the centralizer CSL(V )(λD). Since A is GD-stable

the stabilizer of A in GD is a finite group and hence Item (2) follows. Lastly let’s prove Item (3). Let

A ∈ SFD be GD-stable with minimal orbit: then [A] /∈ I by Proposition 5.4.17. Next suppose that

A ∈ SFD is properly GD-semistable with minimal orbit and [A] /∈ XW : then [A] /∈ I by Proposition

5.4.18. It remains to prove that

XW ⊂ BD. (5.4.29)

In fact let U be a 4-dimensional vector-space and ϕ : V ∼=
∧2

U be an isomorphism as in (4.3.2). It

suffices to prove that X∗W(U) ⊂ B∗D. Let A ∈ X∗W(U). By Definition 4.3.3 there exists a smooth

quadric Z ⊂ P(U) such that A ⊃ i+(Z). Let L ⊂ Z be a line. Then i+(L) is a smooth conic

contained in ΘA; we claim that the intersection of Gr(3, V ) and the linear span 〈i+(L)〉 ⊂ P(
∧3

V )

is equal to i+(L). In fact if it is not then the plane 〈i+(L)〉 is contained in ΘA (because Gr(3, V ) is

cut out by quadrics) and hence A ∈ X∗F1,+
; thus A is unstable and that contradicts Proposition

4.3.4. Since the intersection of Gr(3, V ) and the linear span 〈i+(L)〉 is equal to the smooth conic

i+(L) it follows by [20] that A ∈ B∗D. This proves (5.4.29).
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5.5 BE1

The isotypical decomposition of
∧3

λE1 with decreasing weights is

3∧
V =

3∧
V02 ⊕ [v0] ∧ V12 ∧ V35 ⊕

(
[v0] ∧

2∧
V35 ⊕

2∧
V12 ∧ V35

)
⊕ V12 ∧

2∧
V35 ⊕

3∧
V35. (5.5.1)

Let A ∈ SFE1 . By definition A = A0 ⊕A1 ⊕A2 ⊕A3 where

A0=
∧3 V02, A1∈Gr(2,[v0]∧V12∧V35), A2∈LG([v0]∧

∧2 V35⊕
∧2 V12∧V35), A3=A⊥1 ∩(V12∧

∧2 V35).

We will associate to A two closed subsets of P(
∧2

V35) that will be conics for A generic. First we

notice that P(V12 ∧
∧2

V35)∩G(3, V ) is isomorphic to P(V12)×P(V35) embedded by the Segre map.

Since P(A3) has codimension 2 in P(V12 ∧
∧2

V35) it follows that ΘA3 has dimension at least 1 and

that generically it is a twisted rational cubic curve. The projection P(V12)×P(
∧2

V35)→ P(
∧2

V35)

defines a regular map π : ΘA3
→ P(

∧2
V35). Let DA3

:= imπ. If ΘA3
is a twisted rational cubic

curve then DA3
is a smooth conic. On the other hand let

DA2
:= {[γ] ∈ P(

2∧
V35) | A2 ∩ ([v0 ∧ γ]⊕

2∧
V12 ∧ 〈supp γ〉) 6= {0}}. (5.5.2)

Then DA2
is a lagrangian degeneracy locus and either it is a conic or all of P(

∧2
V35).

Remark 5.5.1. If A2 ∩
∧2

V12 ∧ V35 = {0} we may describe DA2
as follows. By our assumption

A2 is the graph of a linear map [v0] ∧
∧2

V35 −→
∧2

V12 ∧ V35 which is symmetric because A2 is

lagrangian: let qA2 be the associated quadratic form. Then DA2 = V (qA2).

If A ∈ SFE1 is generic then DA2
, DA3

are conics intersecting transversely. Below is the main

result of the present subsection.

Proposition 5.5.2. The following hold:

(1) Let A ∈ SFE1 . Then A is GE1-stable if and only if DA3
is a a smooth conic and DA2

is a conic

intersecting DA3 transversely.

(2) The generic A ∈ SFE1 is GE1-stable.

(3) If A ∈ SFE1 is GE1-stable the connected component of Id in Stab(A) < SL(V ) is equal to imλE1 .

(4) BE1 ∩ I = {x} where x ∈M is as in (4.4.3) .

The proof of Proposition 5.5.2 is given in Subsubsection 5.5.3.

5.5.1 The GIT analysis

Let λ be a 1-PS of GE1 . By definition GE1 = C× × SL(V12) × SL(V35). Thus there exist bases

{ξ1, ξ2}, {β1, β2, β3} of V12 and V35 respectively such that

λ(t) = (tm,diag(tr, t−r),diag(ts1 , ts2 , ts3)). (5.5.3)

and

m, s1, s2, s3 ∈ Z, r ∈ N, s1 ≥ s2 ≥ s3, (m, r, s1, s2, s3) 6= (0, 0, 0, 0, 0),
∑

si = 0. (5.5.4)

We recall that the action of the C×-factor on V is given by (5.1.9). We write below the action of∧3
λ on the second and third summands of (5.5.1):

[v0] ∧ V12 ∧ V35 = [v0 ∧ ξ1 ∧ β1]︸ ︷︷ ︸
tr+s1

+ [v0 ∧ ξ1 ∧ β2]︸ ︷︷ ︸
tr+s2

+ [v0 ∧ ξ1 ∧ β3]︸ ︷︷ ︸
tr+s3

+ [v0 ∧ ξ2 ∧ β1]︸ ︷︷ ︸
t−r+s1

+ [v0 ∧ ξ2 ∧ β2]︸ ︷︷ ︸
t−r+s2

+ [v0 ∧ ξ2 ∧ β3]︸ ︷︷ ︸
t−r+s3

. (5.5.5)

[v0]∧
2∧
V35⊕

2∧
V12∧V35 = [v0 ∧ β1 ∧ β2]︸ ︷︷ ︸

t3m−s3

+ [v0 ∧ β1 ∧ β3]︸ ︷︷ ︸
t3m−s2

+ [v0 ∧ β2 ∧ β3]︸ ︷︷ ︸
t3m−s1

+ [ξ1 ∧ ξ2 ∧ β1]︸ ︷︷ ︸
ts1−3m

+ [ξ1 ∧ ξ2 ∧ β2]︸ ︷︷ ︸
ts2−3m

+ [ξ1 ∧ ξ2 ∧ β3]︸ ︷︷ ︸
ts3−3m

.

(5.5.6)
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In particular I−(λ) ⊂ {0, 4}, see Definition 5.1.2. We let e1
0 > . . . > e1

j(1) and e2
0 > . . . > e2

j(2) be

the weights (in decreasing order) of the action of
∧3

λ on the second and third summands of (5.5.1).

By (5.1.22) and (2.1.9) we have

µ(A, λ) = −3m+ 2µ(A1, λ) + µ(A2, λ) = −3m+ 2

j(1)∑
i=0

dλi (A1)e1
i +

j(2)∑
i=0

dλi (A2)e2
i . (5.5.7)

Proposition 5.5.3. A ∈ SFE1 is not GE1-stable if and only if one of the following holds:

(1) There exists a non-zero decomposable element of A1.

(2) dim(A2 ∩
∧2

V12 ∧ V35) ≥ 1.

(3) There exist bases {ξ1, ξ2} of V12, {β1, β2, β3} of V35 and x, y ∈ C not both zero such that

〈ξ1 ∧ β1 ∧ β2, (xξ1 ∧ β1 ∧ β3 + yξ2 ∧ β1 ∧ β2)〉 ⊂ A3 (5.5.8)

and

dim(A2 ∩ 〈v0 ∧ β1 ∧ β2, ξ1 ∧ ξ2 ∧ β1〉) ≥ 1. (5.5.9)

Proof. We will use the data displayed in Tables (17), (18) and (19). The first two tables give

for each of a series of 1-PS’s of GE1 the weights of the action on the second and third summands

of (5.5.1). Each such 1-PS is diagonalized as in (5.5.3) and we denote it by the corresponding

string of weights (m, r, s1, s2, s3). One computes the numerical function µ(A, λ) of such a 1-PS

by plugging the data in Formula (5.5.7): the results are listed in Table (19). The 1-PS’s will be

obtained by applying the Cone Decomposition Algorithm of Subsection 2.3: below we will give

the details. First let’s prove that if one of Items (1), (2), (3) above holds then A is not GE1-stable.

Suppose that Item (1) holds. There exist bases {ξ1, ξ2} of V12 and {β1, β2, β3} of V35 such that

v0∧ξ1∧β1 ∈ A1. Let λ be the 1-PS which is diagonal in the basis {v0, ξ1, ξ2, β1, β2, β3} and which is

denoted by (0, 1, 0, 0, 0): then µ(A, λ) ≥ 0 (see Tables (17) and (19)) and hence A is not GE1 -stable.

Next suppose that Item (2) holds. There exist bases {ξ1, ξ2} of V12 and {β1, β2, β3} of V35 such

that ξ1 ∧ ξ2 ∧ β1 ∈ A2. Let λ be the 1-PS which is diagonal in the basis {v0, ξ1, ξ2, β1, β2, β3} and

which is denoted by (−1, 0, 0, 0, 0): then µ(A, λ) ≥ 0 (see Tables (17) and (19)) and hence A is not

GE1-stable. Before dealing with Item (3) we notice that the equality A1 = A⊥3 ∩ (
∧2

V12∧V35) gives

the following

Remark 5.5.4. (5.5.8) holds (for some x, y ∈ C not both zero) if and only if there exist w1, w2, z ∈ C
not all zero such that

[v0] ∧ [w1ξ1 ∧ β1 + w2ξ1 ∧ β2 + zξ2 ∧ β1] ⊂ A1 ⊂ [v0] ∧ ([ξ1] ∧ V35 ⊕ 〈ξ2 ∧ β1, ξ2 ∧ β2〉). (5.5.10)

Now suppose that Item (3) holds. Thus we have the bases {ξ1, ξ2} of V12 and {β1, β2, β3} of

V35 which appear in the statement of Item (3). Let λ be the 1-PS of GE1 which corresponds to

(0, 3, 6, 0,−6) (with respect to the given basis of V ). By Remark 5.5.4 we know that (5.5.10)

holds, and of course (5.5.9) holds: it follows that µ(A, λ) ≥ 0 (see Tables (17) and (19)) and hence

A is not GE1-stable. It remains to prove the converse i.e. that if A is not GE1 -stable then one of

Items (1), (2), (3) holds. We will apply the Cone Decomposition Algorithm of Subsection 2.3.

We choose the maximal torus T < GE1 to be

T = {(u,diag(t, t−1),diag(t1, t2, t3)) | u, t, ti ∈ C×, t1 · t2 · t3 = 1}. (5.5.11)

(The maps are diagonal with respect to the bases {ξ1, ξ2} and {β1, β2, β3}.) Thus

X̌(T )R := {(m, r, s1, s2, s3) ∈ R5 | s1 + s2 + s3 = 0}

We let C ⊂ X̌(T )R be the standard cone:

C := {(m, r, s1, s2, s3) ∈ R5 | r ≥ s1 ≥ s2 ≥ s3}.
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Table 19: Numerical functions of ordering 1-PS’ for GE1 .

(m, r, s1, s2, s3) µ(A, λ)

(1, 0, 0, 0, 0) 6(d0(A2)− 2)

(−1, 0, 0, 0, 0) 6(d0(A2)− 1)

(0, 1, 0, 0, 0) 4(d0(A1)− 1)

(0, 0, 6, 0,−6) 12(2d0(A1) + d1(A1) + d0(A2)− 3)

(0, 3, 6, 0,−6) 12(3d0(A1) + 2d1(A1) + d2(A1) + d0(A2)− 4)

(1, 3, 6, 0,−6) 6(6d0(A1) + 4d1(A1) + 2d2(A1) + 3d0(A2) + d1(A2)− 9)

(2, 3, 6, 0,−6) 12(3d0(A1) + 2d1(A1) + d2(A1) + 2d0(A2) + d1(A2)− 5)

(0, 0, 12,−6,−6) 12(3d0(A1) + 2d0(A2) + d1(A2)− 4)

(1, 0, 12,−6,−6) 6(6d0(A1) + 3d0(A2)− 9)

(1, 9, 12,−6,−6) 6(12d0(A1) + 6d1(A1) + 3d0(A2)− 15)

(4, 0, 12,−6,−6) 12(3d0(A1) + 3d0(A2)− 6)

(4, 9, 12,−6,−6) 12(6d0(A1) + 3d1(A1) + 3d0(A2)− 9)

(−2, 0, 12,−6,−6) 12(3d0(A1) + 3d0(A2)− 3)

(−2, 9, 12,−6,−6) 36(2d0(A1) + d1(A1) + d0(A2)− 2)

(0, 0, 6, 6,−12) 12(3d0(A1) + 2d0(A2) + d1(A2)− 6)

(−1, 0, 6, 6,−12) 18(2d0(A1) + d0(A2)− 4)

(−1, 9, 6, 6,−12) 18(4d0(A1) + 2d1(A1) + d0(A2)− 6)

(−4, 0, 6, 6,−12) 36(d0(A1) + d0(A2)− 2)

(−4, 9, 6, 6,−12) 36(2d0(A1) + d1(A1) + d0(A2)− 3)

(2, 0, 6, 6,−12) 36(d0(A1) + d0(A2)− 2)

(2, 9, 6, 6,−12) 36(2d0(A1) + d1(A1) + d0(A2)− 3)
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H ⊂ X̌(T )R is an ordering hyperplane if and only if is equal to the kernel of one the following linear

functions:

si − sj , r, 2r − si + sj , si + 6m, si − 3m.

In particular the hypotheses of Proposition 2.3.4 are satisfied. One computes the ordering rays

by passing to coordinates (m, r, x1, x2) where

xi := si − si+1, i = 1, 2. (5.5.12)

In the above coordinates

C = {(n, r, x1, x2) | r ≥ 0, x1 ≥ 0, x2 ≥ 0}.

The linear functions s1, s2, s3 on W are expressed as follows in terms of the coordinates x1, x2:

s1s2
s3

 =

 2/3 1/3

−1/3 1/3

−1/3 −2/3

 · (x1

x2

)
(5.5.13)

It follows that H ⊂ X̌(T )R is an ordering hyperplane if and only if, in the (m, r, x1, x2)-coordinates,

it is equal to the kernel of one of the following linear functions:

x1, x2, r, 2r−x1, 2r−x2, 2r−x1−x2, 2x1+x2+18m, x1−x2−18m, x1+2x2−18m, 2x1+x2−9m, x1−x2+9m, x1+2x2+9m.

An easy computation gives the ordering rays in the (m, r, x1, x2)-coordinates. Switching back to

(m, r, s1, s2, s3)-coordinates we get the following generators for ordering rays. First we get the

vectors

(±1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (m, r, 6, 0,−6) (m, r) ∈ {(0, 0), (0, 3), (1, 3), (2, 3)}. (5.5.14)

Secondly we get the vectors

(m, r, 12,−6,−6), m = r = 0 or m ∈ {1, 4,−2} and r ∈ {0, 9}. (5.5.15)

and lastly the vectors

(m, r, 6, 6,−12), m = r = 0 or m ∈ {−1,−4, 2} and r ∈ {0, 9}. (5.5.16)

Thus we get exactly the 1-PS’s that appear in Tables (17), (18) and (19). As is easily checked the

following hold:

(a) Let λ be the 1-PS indicized by (0, 1, 0, 0, 0) and suppose that µ(A, λ) ≥ 0. Then Item (1)

of Proposition 5.5.3 holds.

(b) Let λ be the 1-PS indicized by (−1, 0, 0, 0, 0) and suppose that µ(A, λ) ≥ 0. Then Item (2)

of Proposition 5.5.3 holds.

(c) Let λ be the 1-PS indicized by (0, 3, 6, 0,−6) and suppose that µ(A, λ) ≥ 0. Suppose in

addition that neither Item (1) nor Item (2) of Proposition 5.5.3 holds: then Item (3)

of Proposition 5.5.3 holds (use Remark 5.5.4).

In order to finish the proof it suffices to show that if µ(A, λ) ≥ 0 for one of the remaining ordering

1-PS’s (i.e. different from those appearing in Items (a), (b) and (c) above) then one of Items (1),

(2) or (3) holds. This consists of a series of routine checks. We summarize the main points. First

consider the 1-PS λ indicized by (1, 0, 0, 0, 0) and suppose that µ(A, λ) ≥ 0. By Table (17) we get

that

dim(A2 ∩ [v0] ∧
2∧
V35) ≥ 2. (5.5.17)

Let’s show that if (5.5.17) holds there exist bases {ξ1, ξ2} of V12, {β1, β2, β3} of V35 and w1, w2, z ∈ C
not all zero such that (5.5.9) and (5.5.10) hold. It will be convenient to identify [v0] ∧ V12 ∧ V35
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with Hom(V12, V35) via the perfect pairing V12 × V12 →
∧2

V12 given by wedge product. First one

shows that there exist

0 6= α1 ∈ A1, 0 6= v0 ∧ θ ∈ A2, θ ∈
2∧
V35

such that the following holds. Let f1 : V12 → V35 be the map associated to α1: then im f1 ⊂ supp θ.

Now complete α1 to basis {α1, α2} of A1 and let f2 : V12 → V35 be the map associated to α2. Since

dim f−1
2 (supp θ) ≥ 1 there exists a basis {ξ1, ξ2} of V12 such that f2(ξ1) ∈ supp θ. Let 0 6= β1

such that f1(ξ1) ∈ [β1]: thus β1 ∈ supp θ. Now complete β1 to basis {β1, β2, β3} of V35 such

that supp θ = 〈β1, β2〉. Then (5.5.9) and (5.5.10) hold: by Remark 5.5.4 we get that Item (3)

of Proposition 5.5.3 holds. Next one examines the other ordering 1-PS’s, i.e. those indicized

by (m, r, 6, 0 − 6), (m, r, 6, 0 − 6), (m, r, 12,−6,−6) and (m, r, 6, 6,−12). Suppose that λ is one

such 1-PS and that µ(A, λ) ≥ 0. We may assume that neither Item (1) nor Item (2) nor Item (3)

of Proposition 5.5.3 holds (with respect to arbitrary bases {ξ1, ξ2} of V12, {β1, β2, β3} of V35):

then one must check that µ(A, λ) < 0. This is time-consuming but straightforward.

Corollary 5.5.5. A ∈ SFE1 is GE1-stable if and only if DA3 is a smooth conic (equivalently ΘA3 is

a smooth curve) and DA2 is a conic intersecting DA3 transversely.

Proof. First notice the following:

(A) The equality A3 = A⊥1 ∩ (V12 ∧
∧2

V35) gives: Item (1) of Proposition 5.5.3 holds if and

only if the intersection

P(A3) ∩

(
P(V12)× P(

2∧
V35)

)
(5.5.18)

in P(V12 ∧
∧2

V35) is not transverse.

(B) DA2
is a double line or all of P(

∧2
V35) if and only if either Item (2) of Proposition 5.5.3

holds or (5.5.17) holds.

Let’s prove that if DA3 is not a smooth conic or if DA3 is a smooth conic but DA2 is not a conic

intersecting DA3
transversely then A is not GE1 -stable. If DA3

is not a smooth conic then ΘA3
is

not a smooth curve i.e. the intersection (5.5.18) is not transverse. By Item (A) above it follows that

Item (1) of Proposition 5.5.3 holds and thus A is not GE1-stable by Proposition 5.5.3. Now

let’s assume that DA3 is a smooth conic but DA2 is not a conic intersecting DA3 transversely. In

order to prove that A is not GE1 -stable we need first to write out the tangent space to DA3 at a

point [θ] (here 0 6= θ ∈
∧2

V35). Since [θ] ∈ DA3
there exists 0 6= ξ1 ∈ V12 such that [ξ1 ∧ θ] belongs

to (5.5.18). By the assumption that DA3
is a smooth conic we get that the intersection (5.5.18)

is transverse at [ξ1 ∧ θ] (as intersection in P(V12 ∧
∧2

V35)). Let M : A3 →
∧2

V12 ∧
∧2

V35 be

multiplication by ξ1. Then kerM = [ξ1∧θ] because the intersection (5.5.18) is transverse at [ξ1∧θ].
Thus M is surjective and hence

M−1(

2∧
V12 ∧ [θ]) = 〈ξ1 ∧ θ, ξ1 ∧ γ + ξ2 ∧ θ〉, γ ∈

2∧
V35. (5.5.19)

Moreover γ, θ are linearly independent because the intersection (5.5.18) is transverse at [ξ1 ∧ θ];
thus there exists 0 6= β1 ∈ V35 such that supp γ ∩ supp θ = [β1]. The projective tangent space to

DA3 at [θ] is given by

T[θ]DA3
= P〈Annβ1〉. (5.5.20)

Here we make the identification P(
∧2

V ∨35) = P(V35). We may complete β1 to a basis {β1, β2, β3} of

V35 such that θ = β1 ∧ β2 and γ = β1 ∧ β3. Thus (5.5.19) gives that

A3 ⊃ 〈ξ1 ∧ β1 ∧ β2, ξ1 ∧ β1 ∧ β3 + ξ2 ∧ β1 ∧ β2〉. (5.5.21)

Now suppose that [θ] = [β1 ∧ β2] ∈ DA2 i.e.

(v0 ∧ β1 ∧ β2 + ξ1 ∧ ξ2 ∧ β) ∈ A2, β ∈ 〈β1, β2〉 (5.5.22)
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and that either DA2
is all of P(

∧2
V35) or a conic which does not intersect DA3

transversely at [θ]. If

DA2
is all of P(

∧2
V35) or a a double line then by Item (B) above we get that Item (2) of Proposition

5.5.3 holds, thus A is not GE1 -stable by Proposition 5.5.3. Next we assume that DA2 is a conic

of rank at least 2. By Item (B) above it follows that Item (2) of Proposition 5.5.3 does not hold.

Thus DA2
is described as in Remark 5.5.1: it follows that T[β1∧β2]DA2

= P〈Annβ〉. Since DA2

and the smooth conic DA3
do not intersect transversely at [β1∧β2] we get that β ∈ [β1]. By (5.5.21)

and (5.5.22) we get that Item (3) of Proposition 5.5.3 holds and hence A is not GE1-stable. We

have proved that if DA3 is not a smooth conic or if DA3 is a smooth conic but DA2 is not a conic

intersecting DA3
transversely then A is not GE1 -stable. Now suppose that A is not GE1 -stable and

hence one of Items (1), (2), (3) of Proposition 5.5.3 holds. If Item (1) holds then by Item (A)

above we get that DA3
is not a smooth conic. If Item (2) holds then by Item (B) above DA2

is

all of P(
∧2

V35) or else a double line (and hence it cannot intersect transversely a conic). Lastly

suppose that Item (3) holds. We may assume that neither Item (1) nor Item (2) hold: thus (5.5.8)

and (5.5.9) give (after a rescaling of β3) that

ξ1 ∧ β1 ∧ β2, (ξ1 ∧ β1 ∧ β3 + ξ2 ∧ β1 ∧ β2) ∈ A3, (v0 ∧ β1 ∧ β2 + zξ1 ∧ ξ2 ∧ β1) ∈ A2. (5.5.23)

Since Item (1) of Proposition 5.5.3 does not hold the conic DA3
is smooth. By (5.5.23) we have

that [β1 ∧ β2] ∈ DA3
∩ DA2

and the analysis carried out above shows that the intersection is not

transverse at [β1 ∧ β2].

Let B = {v0, ξ1, ξ2, β1, β2, β3} be a basis of V with {ξ1, ξ2} a basis of V12 and {β1, β2, β3} a basis

of V35. Let λ1 be the 1-PS of GE1 indicized by (0, 3, 6, 0,−6) (given the choice of the basis B) i.e. the

1-PS that intervenes in the proof that if Item (3) of Proposition 5.5.3 holds for A then A is not

GE1-stable. Let ŜFE1 be the affine cone over SFE1 ; then GE1 acts on ŜFE1 . The fixed locus (ŜFE1)λ1 is the

set of A which are mapped to themselves by ∧3λ1(t) and such that ∧3λ1(t) acts trivially on
∧10

A.

Definition 5.5.6. Let MB
E1 ⊂ P((ŜFE1)λ1) be the set of A such that ∧3λ1(t) acts trivially on

∧2
A1,∧3

A2 and
∧4

A3.

Remark 5.5.7. Suppose that A ∈ SFE1 ; then A ∈MB
E1 if and only if it is λ1-split of types dλ1(A1) =

(0, 1, 1, 0) and dλ1(A2) = (1, 1, 1). Moreover MB
E1 is an irreducible component of P((ŜFE1)λ1).

Proposition 5.5.8. Suppose that A is properly GE1-semistable. Then there exists a semistable

A0 ∈MB
E1 which is GE1-equivalent to A.

Proof. One of Items (1), (2), (3) of Proposition 5.5.3 holds. Suppose that Item (3) holds. We

showed in the proof of Proposition 5.5.3 that there exists a semistable A0 ∈ MB
E1 which is GE1-

equivalent to A, namely the limit limt→0 λ1(t)A. We will finish the proof by showing that if one

of Items (1), (2) of Proposition 5.5.3 holds then there exists A0 ∈ SFE1 which is GE1-equivalent

to A and for which Item (3) of Proposition 5.5.3 holds. Suppose that Item (2) holds. We will

refer to the notation introduced in the proof that if Item (2) of Proposition 5.5.3 holds then

A is not GE1-stable. Let λ2 be the 1-PS of GE1 indicized by (−1, 0, 0, 0, 0). We showed in the

proof of Proposition 5.5.3 that µ(A, λ2) = 0. Thus limt→0 λ2(t)A is a semistable lagrangian A′

which is GE1-equivalent to A and which is λ2-split with d0(A′2) = 1 (and hence d1(A′2) = 2). It

follows that dim(A′2 ∩ [v0] ∧
∧2

V35) = 2: as shown in the proof of Proposition 5.5.3 (see the

text right below (5.5.17)) it follows that Item (3) holds for A′. This proves the result if Item (2)

holds. Lastly suppose that Item (1) of Proposition 5.5.3 holds. Let λ = (0, 1, 0, 0, 0). As shown

in the proof of Proposition 5.5.3 we have µ(A, λ) ≥ 0. Since A is GE1-semistable µ(A, λ) = 0

and hence A is GE1 -equivalent to a λ-split A′ with type dλ(A1) = (1, 1). It follows that there exist

bases {ξ1, ξ2} of V12 and {β1, β2, β3} of V35 such that either A′1 = 〈v0 ∧ ξ1 ∧ β1, v0 ∧ ξ2 ∧ β2〉 or

A′1 = 〈v0∧ξ1∧β1, v0∧ξ2∧β1〉. Suppose that the latter holds. Let λ′ be the 1-PS of SL(V35) defined

by λ′(t) = diag(t, 1, t−1) (the basis is {β1, β2, β3}): then µ(A′, λ′) > 0, that is a contradiction. Thus

A′1 = 〈v0 ∧ ξ1 ∧ β1, v0 ∧ ξ2 ∧ β2〉. Let λ′′ be the 1-PS of SL(V35) defined by λ′′(t) = diag(t, t, t−2):

then µ(A′, λ′′) ≥ 0 and hence it is zero by semistability of A′. Let A′′ := limt→0 λ
′′(t)A′. As is

easily checked A′′2 3 ξ1 ∧ ξ2 ∧ β3 and hence A′′ satisfies Item (2) of Proposition 5.5.3.
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5.5.2 Analysis of ΘA and CW,A

Proposition 5.5.9. Let A ∈ SFE1 be GE1-stable and W ∈ ΘA. Then one of the following holds:

(a) W = V02.

(b) W ∈ ΘA3 .

(c) W = 〈v0, β1, β2〉 where β1, β2 ∈ V35.

Proof. Let W ∈ ΘA. We distinguish between the three cases:

(I) W ⊃ V12.

(II) dim(W ∩ V12) = 1.

(III) W ∩ V12 = {0}.

One checks easily that if (I) holds then W = V02 and that if (II) holds then W ∈ ΘA3
. Suppose

that (III) holds. Since V02 ∈ ΘA we have W ∩ V02 6= {0}: it follows that W is not contained in V15

and hence dim(W ∩ V15) = 2. Thus there exist linearly independent β1, β2 ∈ V35 and ξ1, ξ2, ξ ∈ V12

such that

W = 〈v0 + ξ, ξ1 − β1, ξ2 − β2〉.

Thus

A3(v0+cξ1)∧(ξ1−β1)∧(ξ2−β2)=v0∧ξ1∧ξ2+v0∧(−ξ1∧β2+ξ2∧β1)+(v0∧β1∧β2−ξ∧ξ1∧β2+ξ∧ξ2∧β1)+ξ∧β1∧β2.

(5.5.24)

The addends of (5.5.24) belong to different summands of the isotypycal decomposition of
∧3

λE1 -

see (5.5.1) - hence each addend belongs to A. One checks easily that unless 0 = ξ1 = ξ2 = ξ one of

Items (1) or (3) of Proposition 5.5.3 holds and hence A is not GE1-stable, that is a contradiction.

Thus 0 = ξ1 = ξ2 = ξ.

Corollary 5.5.10. Let A ∈ SFE1 be GE1-stable. Then ΘA = {V02} ∪ΘA3
∪ ZA where ZA is a finite

set.

Proof. It suffices to prove that there is at most one W ∈ ΘA such that Item (c) of Proposition

5.5.9 holds. Let W = 〈v0, β1, β2〉. By Item (2) of Proposition 5.5.3 we may describe DA2
as

in Remark 5.5.1; it follows that [β1 ∧ β2] is a singular point of the conic DA2 . On the other hand

DA2
is a conic with at most one singular point by Corollary 5.5.5: thus there is at most one

choice for 〈β1, β2〉 and hence for W as well.

Proposition 5.5.11. Let A ∈ SFE1 be GE1-stable and W ∈ ΘA. Then CW,A is a sextic curve of

Type II-2.

Proof. The orbit PGL(V )A is minimal because A is GE1-stable (see Claim 5.1.1) and dim ΘA = 1

by Proposition 5.5.9: thus CW,A 6= P(W ) by Corollary 5.2.8. One of Items (a), (b), (c)

of Proposition 5.5.9 holds. Let {X0, X1, X2} be a basis of W∨ such that

(a’) [X0] = Ann〈v1, v2〉 and [v0] = Ann〈X1, X2〉 if (a) holds.

(b’) [X0] = Ann(W ∩ V35) and W ∩ V12 = Ann〈X1, X2〉 if (b) holds.

(c’) [X0] = Ann(W ∩ V35) and [v0] = Ann〈X1, X2〉 if (c) holds.

The 1-PS λE1 maps W to itself. Now we look at the action of λE1 on W : by Claim 3.1.4

and Remark 4.1.4 we get that

CW,A = X2
0F (X1, X2), 0 6= F ∈ C[X1, X2]4. (5.5.25)

It remains to prove that F does not have multiple roots. We will carry out a case-by-case analysis.
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W = V02 Let 0 6= ξ ∈ V12. Let

ρ : A ∩ F(v0−ξ) −→ V12 ∧
2∧
V35 (5.5.26)

be the projection determined by Decomposition (5.5.1). Let’s prove that

ker ρ =

3∧
V02, dim(im ρ) ≤ 1. (5.5.27)

Let α ∈ (A ∩ F(v0−ξ)) and write α =
∑3
i=0 αi where αi belongs to the (i + 1)-th summand of

Decomposition (5.5.1) (we start from the left of course). Then v0 ∧ α = ξ ∧ α. Decomposing

v0 ∧ α and ξ ∧ α according to Decomposition (5.5.1) we get that ξ ∧ α3 = 0, in particular α3 is

decomposable i.e. [α3] ∈ ΘA3 . By Corollary 5.5.5 we know that ΘA3 is a smooth curve: it follows

that the projection ΘA3
→ P(V12) is an isomorphism. This proves that dim im ρ ≤ 1. Next suppose

that α3 = 0. From 0 = v0 ∧ α3 = ξ ∧ α2 we get that α2 = 0 (recall that A ∩ (
∧2

V12 ∧ V35) = {0}
by GE1 -stability of A). We also have ξ ∧ α1 = 0: since A is GE1-stable A1 contains no non-

zero decomposables and thus α1 = 0. This finishes the proof of (5.5.27). Now suppose that

[v0 − ξ] ∈ CW,A. By (5.5.27) we have dim((A ∩ F(v0−ξ)) = 2. We claim that [v0 − ξ] /∈ B(W,A).

First there is no W ′ ∈ (ΘA\{W}) containing [v0−ξ] by Proposition 5.5.9. Secondly suppose that

α ∈ (A∩F(v0−ξ)) and α3 = ρ(α) 6= 0: if ξ′ ∈ V12 is not a multiple of ξ then 0 6= v0∧ξ′∧α3 = v0∧ξ′∧α,

this proves that A∩F(v0−ξ)∩SW =
∧3

W and hence we get that [v0−ξ] /∈ B(W,A). By Proposition

3.2.6 it follows that F has no multiple roots.

W ∈ ΘA3 Let W ∩ V12 = [ξ] and 6= β ∈W ∩ V35. Let

π : A ∩ F(ξ+β) −→
3∧
V02 (5.5.28)

be the projection determined by Decomposition (5.5.1). Arguing as in the previous case one checks

that ker(π) = [ξ ∧ β1 ∧ β2] where ξ ∈ V12, β1, β2 ∈ V35 and 〈ξ, β1, β2〉 is the unique element of

ΘA3
mapped to [ξ] by the projection ΘA3

→ P(V12). Suppose that [ξ + β] ∈ CW,A: it follows that

dim(A∩F(ξ+β)) = 2. A straightforward computation shows that [ξ+β] /∈ B(W,A) and hence CW,A
is smooth at [ξ + β]. This proves that F has no multiple factors.

W = 〈v0, U〉 where U ∈ Gr(2, V35) Let

T := {[β] ∈ P(U) | mult[β] CW,A ≥ 3}.

By (5.5.25) it suffices to prove that T has cardinality at least 4. Let [β] ∈ P(V35): as is easily

checked dim(Fβ ∩A3) = 2 and moreover

|P(Fβ ∩A3) ∩Gr(3, V )| =

{
2 if [β] /∈ D∨A3

,

1 if [β] ∈ D∨A3
.

(We have the identification P(
∧2

V ∨35) = P(V35).) Since A is GE1 -stable we have
∧2

U /∈ DA3
and

hence |P(U) ∩D∨A3
| = 2. Applying Proposition 3.1.2 we get that

P(U) ∩D∨A3
⊂ T. (5.5.29)

Next we examine A2. By hypothesis DA2 = L1 ∪ L2 where L1, L2 ⊂ P(
∧2

V35) are distinct lines

intersecting in
∧2

U . It follows that there exist bases {ξ1, ξ2} of V12 and {β1, β2, β3} of V35 such

that

A2 ⊃ 〈v0 ∧ β1 ∧ β3 + ξ1 ∧ ξ2 ∧ β1, v0 ∧ β2 ∧ β3 + ξ1 ∧ ξ2 ∧ β2〉.

Thus dim(Fβi ∩A) ≥ 4 for i = 1, 2: by Corollary 3.1.3 we get that

[β1], [β2] ∈ T. (5.5.30)

We have [β1], [β2] /∈ D∨A3
because DA2

is transverse to DA3
(see Corollary 5.5.5). Thus (5.5.29)

and (5.5.30) give that T has cardinality at least 4.
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Proposition 5.5.12. Let A ∈ SFE1 be properly GE1-semistable with minimal orbit. Then either

[A] = x (here x ∈ M is as in (4.4.3)) or else the following holds: if W ∈ ΘA then CW,A is a

semistable sextic curve PGL(W )-equivalent to a sextic of Type III-2.

Proof. By Claim 5.1.1 A is PGL(V )-semistable with minimal orbit. We claim that A /∈ X∗W . In

fact suppose that A ∈ X∗W . Since A is the limit of A′ generic in SFE1 we get that ΘA contains a

curve of degree 3 (with respect to the Plücker embedding) namely the limit of ΘA′3
. On the other

hand if A ∈ X∗W then any curve in ΘA has even degree, that is a contradiction. Now suppose that

[A] 6= x: by Proposition 5.2.7 we get that CW,A 6= P(W ). Since A is not GE1 -stable we may

assume that A ∈MB
E1 by Proposition 5.5.8. It follows that

∧10
A is fixed by the 1-PS of SL(V )

given by (m, r, s1, s2, s3) = (0, 1, 2, 0,−2) - see (5.5.3). On the other hand
∧10

A is fixed by λE1
because A ∈ SFE1 . Thus

∧10
A is fixed by the torus

T := {diag(s4, st, st−1, s−2t2, s−2, s−2t−2) | (s, t) ∈ C× × C×}.

(The basis of V is B = {v0, ξ1, ξ2, β1, β2, β3}.) Now suppose that W ∈ ΘA is fixed by T : then W is

spanned by vectors of B. Let CW,A = V (P ) where 0 6= P ∈ S6W∨. Applying Claim 3.1.4 we get

that P is fixed by a maximal torus of SL(W ): it follows that CW,A is of Type III-2. Next assume

that W is not fixed by T : then we may find a 1-PS λ : C× → T such that limt→0 λ(t)W exists and

is equal to W0 ∈ ΘA fixed by T : it follows that CW,A is a semistable sextic PGL(W )-equivalent to

a sextic of Type III-2.

5.5.3 Wrapping it up

We will prove Proposition 5.5.2. Item (1) is the content of Corollary 5.5.5. We have noticed

that if A ∈ SFE1 is generic then DA2 , DA3 are conics intersecting transversely: together with Item (1)

that gives Item (2). Let’s prove Item (3). By Corollary 5.5.10 we have ΘA = {V02} ∪ΘA3
∪ ZA

where ZA is finite. By Corollary 5.5.5 we know that ΘA3
is a rational normal twisted curve

parametrizing subspaces W ⊂ V15. By the classification of [20] (see Table 2) the following holds:

V35 is the unique 3-dimensional vector-subspace of V intersecting every W ∈ ΘA3 in a subspace

of dimension 2. In addition Proposition 5.5.11 gives that CV02,A is a sextic of Type II-2 with

isolated singular point in [v0] (for the last statement go to the proof of Proposition 5.5.11). Now

let g ∈ Stab(A) belong to the connected component of Id. The facts quoted above about ΘA and

CV02,A give that g([v0]) = [v0], g(V12) = V12 and g(V35) = V35. Thus g belongs to the centralizer

CSL(V )(λE1). Since A is GE1-stable the stabilizer of A in GE1 is a finite group and Item (3) follows.

In order to prove Item (4) we will show that

x ∈ BE1 . (5.5.31)

(Here x ∈ M is as in (4.4.3).) By definition it suffices to show that Ak(L) ∈ B∗E1 , where Ak(L) is

given by Definition 4.4.1. Let W ∈ ΘAk(L). There exists a basis {X,Y, Z} of L such that W =

〈X2, XY,XZ〉. Let F = {v0, . . . , v5} be the basis of S2 L defined by F := {X2, XY,XZ, Y 2, Y Z, Z2}.
A straightforward computation shows that v0∧ (v1∧ v4− v2∧ v3), v0∧ (v1∧ v5− v2∧ v4) ∈ A. Since

v0 ∧ v1 ∧ v2 ∈ A it follows that Ak(L) ∈ B∗E1 . This proves (5.5.31). Item (4) follows from (5.5.31),

Proposition 5.5.11 and Proposition 5.5.12.

5.6 BE∨1

Let λE∨1 be the 1-PS of (5.1.2). The isotypical decomposition of
∧3

λE∨1 with decreasing weights is

3∧
V =

3∧
V02 ⊕

2∧
V02 ∧ V34 ⊕

(
V02 ∧

2∧
V34 ⊕

2∧
V02 ∧ [v5]

)
⊕ V02 ∧ V34 ∧ [v5]⊕

3∧
V35. (5.6.1)

Let A ∈ SFE∨1 ; by definition A = A0 ⊕A1 ⊕A2 ⊕A3 where

A0=
∧3 V02, A1∈Gr(2,

∧2 V02∧V34), A2∈LG(V02∧
∧2 V34⊕

∧2 V02∧[v5]), A3=A⊥1 ∩(V02∧V34∧[v5]).
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We associate to the generic A ∈ SFE∨1 two closed subsets of P(V02) (generically conics) as follows. First

we notice that P(V02 ∧V34 ∧ [v5])∩G(3, V ) is isomorphic to P(V02)×P(V34) embedded by the Segre

map. Since P(A3) has codimension 2 in P(V02∧V34∧ [v5]) it follows that ΘA3 has dimension at least

1 and that generically it is a twisted rational cubic curve. The projection P(V02)×P(V34)→ P(V02)

defines a regular map π : ΘA3
→ P(V02). Let CA3

:= imπ. If ΘA3
is a twisted rational cubic curve

then CA3
is a smooth conic. On the other hand let

CA2
:= {[β] ∈ P(V02) | A2 ∩ ([β] ∧

2∧
V34 ⊕ [β] ∧ V02 ∧ [v5]) 6= {0}}. (5.6.2)

Then CA2
is a lagrangian degeneracy locus and either it is a conic or all of P(V02). If A2 ∩

∧2
V02 ∧

[v5] = {0} we may describe CA2
as follows. By our assumption A2 is the graph of a linear map

V02∧
∧2

V34 −→
∧2

V02∧[v5] which is symmetric because A2 is lagrangian: let qA2 be the associated

quadratic form. Then CA2
= V (qA2

). If A is generic in SFE∨1 then CA2
, CA3

are conics intersecting

transversely. Below is the main result of the present subsection.

Proposition 5.6.1. The following hold:

(1) Let A ∈ SFE∨1 . Then A is GE∨1 -stable if and only if CA3
is a smooth conic and CA2

is a conic

intersecting DA3 transversely.

(2) The generic A ∈ SFE∨1 is GE∨1 -stable.

(3) If A ∈ SFE∨1 is GE∨1 -stable the connected component of Id in Stab(A) < SL(V ) is equal to

imλE∨1 .

(4) BE∨1 ∩ I = {x∨}.

The proof of Proposition 5.6.1 is in Subsubsection 5.6.3.

5.6.1 The GIT analysis

Proposition 5.6.2. A ∈ SFE∨1 is not GE∨1 -stable if and only if one of the following holds:

(1) There exists a non-zero decomposable element of A1.

(2) dim(A2 ∩
∧2

V02 ∧ [v5]) ≥ 1.

(3) There exist bases {β1, β2, β3} of V02, {ξ1, ξ2} of V34 and x, y ∈ C not both zero such that

〈β1 ∧ ξ1 ∧ v5, (xβ1 ∧ ξ2 + yβ2 ∧ ξ1) ∧ v5〉 ⊂ A3

and

dim(A2 ∩ 〈ξ1 ∧ ξ2 ∧ β1, β1 ∧ β2 ∧ v5〉) ≥ 1.

Proof. A is not GE∨1 -stable if and only if δV (A) is not GE1-stable - see (1.0.12) for the definition of δV .

Now δV (A) ∈ SGE1 where G = {v∨5 , v∨4 , . . . , v∨0 }. The proposition follows at once from Proposition

5.5.3.

By copying the proof of Corollary 5.5.5 one gets the following result.

Corollary 5.6.3. A ∈ SFE∨1 is GE∨1 -stable if and only if CA3
is a a smooth conic (equivalently ΘA3

is a smooth curve) and CA2 is a conic intersecting CA3 transversely.

Let {β1, β2, β3} be a basis of V02 and {ξ1, ξ2} be a basis of V34. Let λ∨1 be the 1-PS of SL(V )

defined by λ∨1 (t) := diag(t2, 1, t−2, t, t−1, 1) where we mean diagonal with respect to the basis

{β1, β2, β3, ξ1, ξ2, v5}. The group GE∨1 acts on the affine cone ŜFE∨1 over SFE1 . The fixed locus (ŜFE∨1 )λ1

is the set of A which are mapped to themselves by ∧3λ1(t) and such that ∧3λ1(t) acts trivially on∧10
A.
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Definition 5.6.4. Let MB
E∨1
⊂ P((ŜFE∨1 )λ1) be the set of A such that ∧3λ1(t) acts trivially on

∧2
A1,∧3

A2 and
∧4

A3.

Suppose that A ∈ SFE∨1 ; then A ∈ MB
E∨1

if and only if it is λ∨1 -split of types dλ
∨
1 (A1) = (0, 1, 1, 0)

and dλ
∨
1 (A2) = (1, 1, 1). Moreover MB

E∨1
is an irreducible component of P((ŜFE∨1 )λ1). By copying the

proof of Proposition 5.5.8 one gets the following result.

Proposition 5.6.5. Suppose that A is properly GE∨1 -semistable. Then there exists a semistable

A0 ∈MB
E∨1

with minimal orbit which is GE∨1 -equivalent to A.

5.6.2 Analysis of ΘA and CW,A

Proposition 5.6.6. Let A ∈ SFE∨1 be GE∨1 -stable and W ∈ ΘA. Then one of the following holds:

(a) W = V02.

(b) W ∈ ΘA3
.

(c) W = 〈β, ξ1, ξ2〉 where β ∈ V02 and ξ1, ξ2 ∈ V34.

Proof. Follows from the equality δV (ΘA) = ΘδV (A) and Proposition 5.5.9.

Proposition 5.6.7. Let A ∈ SFE∨1 be GE∨1 -stable. Let W ∈ ΘA and hence one of Items (a), (b), (c)

of Proposition 5.6.6 holds. Then CW,A is a sextic curve of

(1) Type II-3 if Item (a) holds.

(2) Type II-1 if Item (b) holds.

(3) Type II-2 if Item (c) holds.

Proof. The orbit PGL(V )A is minimal because A is GE∨1 -stable (see Claim 5.1.1) and dim ΘA = 1

by Proposition 5.6.6: thus CW,A 6= P(W ) by Corollary 5.2.8. Let us carry out a case-by-case

analysis.

W = V02 We have CA2 , CA3 ⊂ CV02,A. Moreover dim(A3 ∩ Fβ) ≥ 2 for all [β] ∈ P(V02): thus

mult[β] CV02,A ≥ 2 for all [β] ∈ CA3 . Since CA2 and CA3 are conics and CV02,A is a sextic it follows

that CV02,A = CA2
+ 2CA3

: by Corollary 5.6.3 the conics CA2
, CA3

are transverse and hence

CV02,A is of Type II-3.

W ∈ ΘA3
Thus W = 〈β, v5, ξ〉 where β ∈ V02 and ξ ∈ V34. Notice that λE∨1 (t) maps W to itself

for every t ∈ C×. Let {x, y, z} be the basis of W∨ dual to {β, v5, ξ}: applying Claim 3.1.4 we get

that

CW,A = V ((xy + a1z
2)(xy + a2z

2)(xy + a3z
2)). (5.6.3)

It remains to prove that a1, a2, a3 are pairwise distinct. It suffices to show that

mult[xβ+yv5+ξ] CW,A ≤ 1 if y 6= 0. (5.6.4)

The key step is the proof that

dim(A ∩ F(xβ+yv5+ξ)) ≤ 2, y 6= 0. (5.6.5)

Let α ∈ A ∩ F(xβ+yv5+ξ). Write α =
∑3
i=0 αi where αi belongs to the (i + 1)-th (starting from

the left) summand of (5.6.1). We set α2 = α′2 + α′′2 where α′2 ∈ V02 ∧
∧2

V34, α′′2 ∈
∧2

V02 ∧ [v5].

We have (xβ + yv5 + ξ) ∧ α = 0. Now decompose (xβ + yv5 + ξ) ∧ α according to the direct-sum

decomposition of
∧4

V determined by V = V02 ⊕ V34 ⊕ [v5]: we get that

0 = yv5∧α′2+ξ∧α3 = yv5∧α1+ξ∧α′′2 +xβ∧α3 = xβ∧α′2+ξ∧α1 = xβ∧α′′2 +yv5∧α0 = xβ∧α1+ξ∧α0.

(5.6.6)
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Now suppose that y 6= 0: then

A ∩ F(xβ+yv5+ξ)
ρ−→ V02 ∧ V34 ∧ [v5]

α 7→ α3
(5.6.7)

is injective. This follows at once from (5.6.6). Now we prove (5.6.5) arguing by contradiction.

Suppose that (5.6.5) does not hold. Since the map ρ of (5.6.7) is injective it follows that dim(im ρ) ≥
3. Now consider the intersection of P(im ρ) and P(V02) × P(V34) × {[v5]}: it contains [β ∧ ξ ∧ v5]

and the expected dimension is zero. Since the Segre 3-fold P(V02)× P(V34) has degree 3 it follows

that one of the following holds:

(I) P(im ρ) contains [β′ ∧ ξ′ ∧ v5] 6= [β ∧ ξ ∧ v5].

(II) P(im ρ) contains a tangent vector to P(V02) × P(V34) × {[v5]} at [β ∧ ξ ∧ v5] i.e. there exists

α ∈ A ∩ F(xβ+yv5+ξ) such that α3 = (β ∧ ξ′ + β′ ∧ ξ) ∧ v5.

Suppose that (I) holds. We let β3 := β, ξ2 := ξ, β1 := β′ and ξ1 := ξ′. By hypothesis there

exists α ∈ A ∩ F(xβ+yv5+ξ) such that α3 = β1 ∧ ξ1 ∧ v5. The first equality of (5.6.6) gives that

α′2 = y−1β1 ∧ ξ1 ∧ ξ2. The third equality of (5.6.6) gives that α1 = −xy−1β1 ∧ β3 ∧ ξ1 + γ ∧ ξ2 for

some γ ∈
∧2

V02. Since β1 ∧ ξ1 ∧ v5 ∈ A3 and A1⊥A3 we get that γ ∧ β1 = 0. Thus γ = β1 ∧ θ for

some θ ∈ V02 and α1 = −xy−1β1∧β3∧ξ1 +β1∧θ∧ξ2. Since A1 contains no non-zero decomposable

element we get that {β1, β3, θ} is a basis of V02: we let β2 := θ. The second equality of (5.6.6) gives

that α′′2 = yβ1 ∧ β2 ∧ v5. Summarizing:

α1 = −xy−1β1 ∧ β3 ∧ ξ1 + β1 ∧ β2 ∧ ξ2, α2 = y−1β1 ∧ ξ1 ∧ ξ2 + yβ1 ∧ β2 ∧ v5. (5.6.8)

The equality A3 = A⊥1 ∩ (V02 ∧ V34 ∧ [v5]) together with the first equality of (5.6.8) gives that

there exist s, t ∈ C not both zero such that (sβ1 ∧ ξ2 + tβ2 ∧ ξ1) ∧ v5 ∈ A3. By hypothesis

β1 ∧ ξ1 ∧ v5 = α3 ∈ A3. Thus Item (3) of Proposition 5.6.2 holds and hence A is not GE∨1 -stable;

that is a contradiction. Next suppose that (II) holds. Let β1 := β, ξ1 := ξ, β2 := β′ and ξ2 := ξ′.

Thus

β1 ∧ ξ1 ∧ v5, (β1 ∧ ξ2 + β2 ∧ ξ1) ∧ v5 ∈ A3

and there exists α ∈ A∩F(xβ+yv5+ξ) such that α3 = (β1 ∧ ξ2 +β2 ∧ ξ1)∧ v5. Since ΘA3 is a smooth

curve β1, β2 are linearly independent and {ξ1, ξ2} is a basis of V34. On the other hand an argument

similar to that of the previous case gives that α2 = −y−1β1 ∧ ξ1 ∧ ξ2 − xβ1 ∧ β2 ∧ v5. Thus A

is not GE∨1 -stable by Proposition 5.6.2; that is a contradiction. We have proved (5.6.5). Next

assume that [xβ + yv5 + ξ] ∈ CW,A and y 6= 0. Thus dim(A ∩ F(xβ+yv5+ξ)) = 2. One shows that

[xβ + yv5 + ξ] /∈ B(W,A). The computations are similar to those which prove (5.6.5): we leave

details to the reader. This finishes the proof that if W ∈ ΘA3
then CW,A is a semistable sextic of

Type II-1.

W = 〈β, ξ1, ξ2〉 where β ∈ V02, ξ1, ξ2 ∈ V34 Mutatis mutandis the proof is that (given in Propo-

sition 5.5.11) that if Item (a) of Proposition 5.5.9 holds then CW,A is of Type II-2. Let

{X0, X1, X2} be the basis of W∨ dual to {β, ξ1, ξ2}: applying Claim 3.1.4 one gets that

CW,A = V (X2
0F (X1, X2)), 0 6= F ∈ C[X1, X2]4.

It remains to prove that F does not have multiple roots. Let 0 6= ξ ∈ V34 and π : A ∩ F(β−ξ) →
V02 ∧ V34 ∧ [v5] be the projection. Arguing as in the proof of Proposition 5.5.11 one shows that

the image is either {0} or it belongs to ΘA3 , and it has dimension at most 1. Moreover the kernel is

spanned by β ∧ ξ1 ∧ ξ2. Now suppose that [β− ξ] ∈ CW,A: then it follows that dim(A∩F(β−ξ)) = 2.

Moreover one checks easily that [β − ξ] /∈ B(W,A). By Proposition 3.2.6 it follows that CW,A is

smooth at [β − ξ]: thus F does not have multiple roots.

Arguing as in the proof of Proposition 5.5.12 one gets the following result.

Proposition 5.6.8. Let A ∈ SFE∨1 be properly GE∨1 -semistable with minimal orbit. Then either

[A] = x∨ or else the following holds: if W ∈ ΘA then CW,A is a semistable sextic curve PGL(W )-

equivalent to a sextic of Type III-2.
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5.6.3 Wrapping it up

We will prove Proposition 5.6.1. Item (1) is the content of Corollary 5.6.3. We have noticed

that if A ∈ SFE∨1 is generic then CA2
, CA3

are conics intersecting transversely: together with Item (1)

that gives Item (2). Item (3) follows from Item (3) of Proposition 5.5.2 because if A ∈ SFE∨1 is

GE∨1 -stable then δV (A) belongs to SF′E1 for a suitable basis F′ of V ∨ and is GE1 -stable. In order to

prove Item (4) we notice that δ(BE1) = BE∨1 and hence x∨ ∈ BE∨1 by (5.5.31). Since x∨ ∈ BE∨1
Item (4) follows from Proposition 5.6.7 and Proposition 5.6.8.

5.7 BF1

Let A ∈ SFF1
. Then

A =

2∧
V01 ∧ V23 ⊕A2 ⊕ V01 ∧

2∧
V45 ⊕

2∧
V23 ∧ V45, A2 ∈ LG(V01 ∧ V23 ∧ V45). (5.7.1)

Below is the main result of the present subsection.

Proposition 5.7.1. The following hold:

(1) Let A ∈ SFF1
. Then A is GF1

-stable if and only if A2 contains no non-zero decomposable

element.

(2) The generic A ∈ SFF1
is GF1-stable.

(3) If A ∈ SFF1
is GF1-stable the connected component of Id in Stab(A) < SL(V ) is equal to HF1

(see (5.1.13)).

(4) BF1
∩ I = ∅.

The proof of Proposition 5.7.1 is in Subsubsection 5.7.3.

5.7.1 The GIT analysis

Let λ be a 1-PS of GF1 . Since GF1
∼= SL(V01)× SL(V23)× SL(V45) we have I−(λ) = ∅, see Defi-

nition 5.1.2. Let A ∈ SFF1
: by (5.1.22) we have

µ(A, λ) = µ(A2, λ). (5.7.2)

Let {ξ0, ξ1}, {ξ2, ξ3}, {ξ4, ξ5} be bases of V01, V23 and V45 respectively such that

λ(t) := diag(tr1 , t−r1 , tr2 , t−r2 , tr3 , t−r3), r1 ≥ 0, r2 ≥ 0, r3 ≥ 0. (5.7.3)

We denote λ by (r1, r2, r3): thus (r1, r2, r3) belongs to the first quadrant of R3. Below are the

weights of the action of
∧3

λ(t) on V01 ∧ V23 ∧ V45:

[ξ0∧ξ2∧ξ4] [ξ0∧ξ2∧ξ5] [ξ0∧ξ3∧ξ4] [ξ1∧ξ2∧ξ4] [ξ0∧ξ3∧ξ5] [ξ1∧ξ2∧ξ5] [ξ1∧ξ3∧ξ4] [ξ1∧ξ3∧ξ5]

r1+r2+r3 r1+r2−r3 r1−r2+r3 −r1+r2+r3 r1−r2−r3 −r1+r2−r3 −r1−r2+r3 −r1−r2−r3
(5.7.4)

Proposition 5.7.2. A ∈ SFF1
is GF1

-stable if and only if A2 contains no non-zero decomposable

element.

Proof. Suppose that A2 contains a non-zero decomposable element α. Since we have an isomorphism

P(V01)× P(V23)× P(V45) ↪→ P(V01 ∧ V23 ∧ V45) ∩Gr(3, V )

([u], [v], [w]) 7→ [u ∧ v ∧ w]
(5.7.5)

there exists bases {ξ0, ξ1}, {ξ2, ξ3}, {ξ4, ξ5} as above such that α = ξ0 ∧ ξ2 ∧ ξ4. Let λ1 be the 1-PS

of GF1
denoted (1, 1, 1) i.e. λ1(t) := diag(t, t−1, t, t−1, t, t−1). Then µ(A2, λ1) ≥ 0: by (5.7.2) we get
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that A is not GF1
-stable. We prove the converse by running the Cone Decomposition algorithm.

We choose the maximal torus T < GF1
to be

T = {diag(s1, s
−1
1 , s2, s

−1
2 , s3, s

−1
3 )) | si ∈ C×}. (5.7.6)

(The maps are diagonal with respect to the basis {ξ0, ξ1, ξ2, ξ3, ξ4, ξ5}.) Thus

X̌(T )R = {(r1, r2, r3) ∈ R3} (5.7.7)

where the ri’s are those appearing in (5.7.3) and C = {(r1, r2, r3) ∈ R3 | ri ≥ 0} . Let H ⊂ X̌(T )R
be a hyperplane: by (5.7.4) H is an ordering hyperplane if and only if it is the kernel of one of the

following following linear functions on X̌(T )R:

ri, ri − rj , ri − rj − rk (j 6= k).

A quick computation gives that the ordering rays are those spanned by

(1, 0, 0), (1, 1, 0), (2, 1, 1), (1, 1, 1)

and their permutations. Computing µ(A2, λ) and imposing µ(A2, λ) ≥ 0 we get that in each case

A2 contains a non-zero decomposable element.

5.7.2 Analysis of ΘA and CW,A

Proposition 5.7.3. Let A ∈ SFF1
be GF1-stable. Then

ΘA={W∈Gr(3,V )|V01⊂W⊂V03}∪{W∈Gr(3,V )|V23⊂W⊂V25}∪{W∈Gr(3,V )|V45⊂W⊂(V45⊕V01)}. (5.7.8)

Let W ∈ ΘA: then CW,A is a semistable sextic curve of Type II-2.

Proof. The right-hand side of (5.7.8) is contained in ΘA by (5.7.1). Now suppose that W0 ∈ ΘA.

Since A is lagrangian

W0 has non-trivial intersection with every W belonging to the right-hand side of (5.7.8). (5.7.9)

Suppose that W0 contains one of V01, V23 or V45: it follows from (5.7.9) that W0 must belong to the

right-hand side of (5.7.8). Now suppose that W0 does not contain V01 nor V23 nor V45. It follows

from (5.7.9) that W0 has non-trivial intersection with two at least among V01, V23 and V45. That

easily leads to a contradiction because by Proposition 5.7.2 we know that A2 contains no non-zero

decomposable elements. We have proved (5.7.8). Now suppose that W ∈ ΘA i.e. W belongs to

the right-hand side of (5.7.8): we will prove that CW,A is a semistable sextic curve of Type II-2.

By (5.7.8) we have dim ΘA = 1: by Corollary 5.2.8 it follows that CW,A 6= P(W ). From now on

we will assume that V01 ⊂W ⊂ V03, if W belongs to one of the other two subsets in the right-hand

side of (5.7.8) the proof is analogous. Let ξ be a generator of W ∩ V23: thus W = 〈ξ, v0, v1〉. Let

{X0, X1, X2} be the basis of W∨ dual to {ξ, v0, v1}. Then λF1(t) maps W to itself for every t ∈ C×:

applying Claim 3.1.4 we get that

CW,A = V (X2
0P ), 0 6= P ∈ C[X1, X2]4. (5.7.10)

It remains to prove that P has no multiple factors. Let 0 6= u ∈ V01. We claim that

dim(A ∩ F(ξ−u)) ≤ 2. (5.7.11)

In fact assume that α ∈ A ∩ F(ξ−u). Thus (ξ − u) ∧ α = 0. Write α = α0 + α2 + α′3 + α′′3 where

α0 ∈
∧2

V01 ∧ V23, α2 ∈ V01 ∧ V23 ∧ V45, α′3 ∈ V01 ∧
∧2

V45 and α′′3 ∈
∧2

V23 ∧ V45. The equality

(ξ − u) ∧ α = 0 is equivalent to the following equalities:

0 = ξ ∧ α0 = u ∧ α2 = ξ ∧ α′3 = u ∧ α′3, ξ ∧ α2 = u ∧ α′′3 . (5.7.12)
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In particular α0 ∈
∧2

V01 ∧ [ξ]. One also gets easily that the projection

π : A ∩ F(ξ−u) −→ V01 ∧ V23 ∧ V45

has 1-dimensional kernel namely
∧2

V01 ∧ [ξ]. On the other hand

imπ ⊂ {u ∧ θ | θ ∈ V23 ∧ V45}. (5.7.13)

A subspace of the right-hand side of (5.7.13) of dimension at least 2 contains non-zero decomposable

elements: since A2 does not contain non-zero decomposables it follows that dim(imπ) ≤ 1. This

proves (5.7.11). Next assume that [ξ − u] ∈ CW,A: by (5.7.11) we get that dim(A ∩ F(ξ−u)) = 2.

As is easily checked B(W,A) = ∅. This proves that CW,A is smooth at [ξ − u]: it follows that the

polynomial P of (5.7.10) does not have multiple roots.

Before stating the next result we notice that PGL(V )AIII ∩ SFF1
6= ∅.

Proposition 5.7.4. Let A ∈ SFF1
be properly GF1

-semistable: then A ∈ PGL(V )AIII . In particular

CW,A is a semistable sextic curve of Type III-2.

Proof. By Proposition 5.7.2 A2 contains a non-zero decomposable element, say ξ0 ∧ ξ2 ∧ ξ4.

Proceeding as in the proof of Proposition 5.7.2 we define a 1-PS λ1 such that µ(A, λ1) = 0.

Considering the action of λ1 on V01 ∧ V23 ∧ V45 we get that A′ := limt→0 λ1(t)A has a monomial

basis. Thus either A′ is not GF1
-semistable or else it belongs to PGL(V )AIII by Claim 4.2.1 -

one checks that in fact the latter holds.

5.7.3 Wrapping it up

We will prove Proposition 5.7.1. Item (1) is the content of Proposition 5.7.2. The generic

A2 ∈ LG(V01 ∧V23 ∧V45) contains no non-zero decomposable element because the dimension of the

right-hand side of (5.7.5) is equal to 3, thus Item (2) follows from Item (1). Let’s prove Item (3). Let

g ∈ Stab(A) belong to the connected component of Id. Proposition 5.7.3 gives that g(V01) = V01,

g(V23) = V23 and g(V45) = V45 i.e. g ∈ CSL(V )(λF1
). Since A is GF1

-stable the stabilizer of A in GF1

is finite: it follows that g ∈ HF1 . Lastly Item (4) follows from Proposition 5.7.3 and Proposition

5.7.4.

5.8 BF2

The isotypical decomposition of
∧3

λF2
is the following:

∧2 V01∧V23⊕(
∧2 V01∧V45⊕V01∧

∧2 V23)⊕V01∧V23∧V45⊕(V01∧
∧2 V45⊕

∧2 V23∧V45)⊕V23∧
∧2 V45. (5.8.1)

Let A ∈ SFF2
: then A = A0 + . . . + A4 where Ai is the (i + 1)-summand of A with respect to

Decomposition (5.8.1) (we start counting from the left). Let λ be a 1-PS of GF2 . There exist bases

{ξ0, ξ1}, {ξ2, ξ3}, {ξ4, ξ5} of V01, V23, V45 respectively such that

λ(t) = (tm, (diag(tr1 , t−r1),diag(tr2 , t−r2),diag(tr3 , t−r3))), r1 ≥ 0, r2 ≥ 0, r3 ≥ 0. (5.8.2)

We denote such a 1-PS by (m, r1, r2, r3). Below are the weights of the action of
∧3

λ(t) on the first

two summands of (5.8.1):∧2
V01 ∧ V23 = [ξ0 ∧ ξ1 ∧ ξ2] ⊕ [ξ0 ∧ ξ1 ∧ ξ3]

r2 −r2
(5.8.3)

∧2 V01∧V45⊕V01∧
∧2 V23 = [ξ0∧ξ2∧ξ3] ⊕ [ξ1∧ξ2∧ξ3] ⊕ [ξ0∧ξ1∧ξ4] ⊕ [ξ0∧ξ1∧ξ5]

r1−3m −r1−3m r3+3m −r3+3m
(5.8.4)

The weights of the action of
∧3

λ(t) on V01 ∧ V23 ∧ V45 are given by (5.7.4). In particular we get

that I−(λ) = ∅: by (5.1.22) and (2.1.9) we have

µ(A, λ) = 2µ(A0, λ) + 2µ(A1, λ) + µ(A2, λ).
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Proposition 5.8.1. A ∈ SFF2
is not GF2

-stable if and only if one of the following holds:

(1) dimA1 ∩ (V01 ∧
∧2

V23) ≥ 1 or dimA1 ∩ (
∧2

V01 ∧ V45) ≥ 1.

(2) There exist 0 6= β ∈ V23 and 0 6= θ ∈ V01 ∧ V45 such that v0 ∧ v1 ∧ β ∈ A0 and β ∧ θ ∈ A2.

(3) There exist 0 6= α ∈ V01, 0 6= β ∈ V23, 0 6= γ ∈ V45 such that (α ∧ v2 ∧ v3 + v0 ∧ v1 ∧ γ) ∈ A1

and α ∧ β ∧ γ ∈ A2.

(4) There exists 0 6= α ∈ V01 such that dimA2 ∩ ([α] ∧ V23 ∧ V45) ≥ 2, or there exists 0 6= γ ∈ V45

such that dimA2 ∩ (V01 ∧ V23 ∧ [γ]) ≥ 2.

Proof. We begin by considering the duality operator. If A is not GF2
-stable then so is δV (A)

where δV is defined by (1.0.12). More precisely let {ξ0, ξ1, . . . , ξ5} be a basis of V as above and

{ξ∨0 , ξ∨1 , . . . , ξ∨5 } be the dual basis of V ∨. Let φ : V ∨
∼−→ V be the isomorphism such that φ(ξ∨i ) =

ξ5−i. Let A ∈ SFF2
: then

B :=

3∧
φ(δV (A)) ∈ SFF2

. (5.8.5)

Now suppose that λ1 is the 1-PS of GF2
denoted by (m, r1, r2, r3) and let λ2 be the 1-PS of GF2

denoted by (−m, r3, r2, r1). An easy computation shows that µ(A, λ1) = µ(B, λ2); in particular if

µ(A, λ1) ≥ 0 then µ(B, λ2) ≥ 0. Thus non-stable elements of SFF2
come in dual pairs. One can

easily check that if A satisfies one of Items (1) - (4) above then B satisfies the same Item. Now let’s

prove that if one of Items (1) - (4) holds then A is not GF2
-stable. We will freely use the data listed

in Tables (20) and (21). Suppose that Item (1) holds. Let {ξ0, ξ1, . . . , ξ5} be a basis of V as above

and λ±1 be the 1-PS of GF2
which is diagonal in the chosen basis and is indicized by (±1, 0, 0, 0) -

see (5.8.2). Explicitly

λ+
1 (s) = diag(s, s, s−2, s−2, s, s), λ−1 (s) = diag(s−1, s−1, s2, s2, s−1, s−1). (5.8.6)

If dim(A1 ∩ V01 ∧
∧2

V23) ≥ 1 then µ(A, λ+
1 ) ≥ 0 (see (20)), if dim(A1 ∩

∧2
V01 ∧ V45) ≥ 1 then

µ(A, λ−1 ) ≥ 0: in both cases it follows that A is not GF2
-stable. Next suppose that Item (2) holds.

Let ξ2 := β and extend ξ2 to a basis {ξ0, . . . , ξ5} of V as above. Let λ2 be the 1-PS’s of GF2
which

is diagonal in the chosen basis and is indicized by (0, 0, 1, 0). Explicitly

λ2(s) = diag(1, 1, s, s−1, 1, 1). (5.8.7)

Then µ(A, λ2) ≥ 0 - see Tables (20) and (21). Now suppose that Item (3) holds. Let ξ0 := α, ξ2 := β

and ξ4 := γ. Extend {ξ0, ξ2, ξ4} to a basis {ξ0, . . . , ξ5} as above: we require that ξ0 ∧ ξ1 = v0 ∧ v1

and ξ2 ∧ ξ3 = v2 ∧ v3. Let λ3 be the 1-PS’s of GF2
which is diagonal in the chosen basis and is

indicized by (0, 3, 0, 3). Explicitly

λ3(s) = diag(s3, s−3, 1, 1, s3, s−3). (5.8.8)

Then µ(A, λ3) ≥ 0 - see Tables (20) and (21). Now suppose that Item (4) holds. We may assume

that Item (1) does not hold. Thus there exists an isomorphism ϕ : V01
∼−→ V45 such that

A1 = {v0 ∧ v1 ∧ ϕ(α) + α ∧ v2 ∧ v3 | α ∈ V01}. (5.8.9)

Assume first that there exists 0 6= α ∈ V01 such that dim(A2 ∩ [α]∧V23 ∧V45) ≥ 2. Let ξ0 := α and

ξ4 := ϕ(α). We extend {ξ0, ξ4} to a basis {ξ0, . . . , ξ5} as above: we require that ξ0 ∧ ξ1 = v0 ∧ v1

and ξ2 ∧ ξ3 = v2 ∧ v3. Let λ+
4 be the 1-PS’s of GF2 which is diagonal in the chosen basis and is

indicized by (1, 6, 0, 0). Then µ(A, λ+
4 ) ≥ 0 - see Tables (20) and (21). Now assume that there

exists 0 6= γ ∈ V45 such that dim(A2 ∩ V01 ∧ V23 ∧ [γ]) ≥ 2. Let B be given by (5.8.5): then

dim(B2 ∩ [α] ∧ V23 ∧ V45) ≥ 2 for a certain 0 6= α ∈ V01 and hence A is not GF2
-stable. More

precisely let λ−4 be the 1-PS’s of GF2 indicized by (−1, 0, 0, 6): then µ(A, λ−4 ) ≥ 0. The 1-PS’s λ±4
are given explicitly by

λ+
4 (s) = diag(s7, s−5, s−2, s−2, s, s), λ−4 (s) = diag(s−1, s−1, s2, s2, s5, s−7). (5.8.10)

93



It remains to prove that if A ∈ SFF2
is not GF2

-stable then one of Items (1) - (4) holds. We will run

the Cone Decomposition algorithm. We choose the maximal torus T < GF2
to be

T = {(u,diag(s1, s
−1
1 ),diag(s2, s

−1
2 ),diag(s3, s

−1
3 ))) | u, si ∈ C×}. (5.8.11)

(The maps are diagonal with respect to the bases {ξ0, ξ1}, {ξ2, ξ3}, {ξ4, ξ5}.) Thus

X̌(T )R = {(m, r1, r2, r3) | m, ri ∈ R}, C = {(m, r1, r2, r3) | ri ≥ 0}

with notation as in (5.8.2). Looking at (5.7.4), (5.8.3) and (5.8.4) we get that H ⊂ X̌(T )R is an

ordering hyperplane if and only if it is the kernel of one of the following linear functions:

ri, ri − rj , ri − rj − rk (j 6= k), r1 − r3 + 6m, r1 − r3 − 6m, r1 + r3 + 6m, r1 + r3 − 6m.

In particular the hypotheses of Proposition 2.3.4 are satisfied. It follows that the ordering rays

are generated by vectors (m, r1, r2, r3) such that m ∈ {0,±1} and

(r1,r2,r3)∈{(0,0,0), (0,1,0), (6,0,0), (0,0,6), (6,6,0), (0,6,6), (3,0,3), (3,3,3), (3,6,3), (12,6,6), (6,6,12), (4,2,2), (2,2,4)}.

Actually the ordering 1-PS with m = 0 are (0, 0, 1, 0), (0, 3, 0, 3), (0, 3, 3, 3) and (0, 3, 6, 3) while all

combinations of m = ±1 and the (r1, r2, r3) listed above occur. By the self-duality of SFF2
that we

discussed above it suffices to prove that if µ(A, λ) ≥ 0 for an ordering 1-PS λ with m ∈ {0, 1} then

A satisfies one of Items (1)-(4). In other words it suffices to check that if A does not satisfy one

of Items (1)-(4) then µ(A, λ) < 0 for all ordering 1-PS λ with m ∈ {0, 1}. One gets the claimed

statement by consulting the last column of Tables (20) and (21) except for λ indicized by (0, 0, 1, 0)

and A such that dλ(A0) = 0 and dλ(A2) ≥ 3. Then µ(A, λ) ≥ 0: on the other hand one checks

easily that one of Items (1), (3) holds.

Corollary 5.8.2. The generic A ∈ SFF2
is GF2-stable.

Proof. It suffices to show that the generic A ∈ SFF2
satisfies none of Items (1)-(4) of Proposition

5.8.1. A dimension count shows that the set of A’s satisfying Item (1) or (2) has codimension (at

least) 1, and the set of A’s satisfying Item (3) or (4) has codimension (at least) 2.

Proposition 5.8.3. Let λ±1 , λ±2 , λ3 and λ4 be the 1-PS’s of GF2
defined by (5.8.6), (5.8.7),

(5.8.8) and (5.8.10) respectively. Suppose that A ∈ SFF2
is properly GF2-semistable. Then A is

GF2
-equivalent to A′ ∈ SFF2

satisfying one of the following conditions:

(1’) A′ is λ±1 -split and dλ
±
1 (A′1) = (1, 1).

(2’) A′ is λ2-split, dλ2(A′0) = (1, 0) and dλ
±
1 (A′2) = (1, 3) (non-reduced type).

(3’) A′ is λ3-split, dλ3(A′0) = (1, 0), dλ3(A′1) = (1, 1) and dλ3(A′2) = (1, 2, 1) (non-reduced type).

(4’) A′ is λ±4 -split, dλ
±
4 (A′1) = (1, 1) and dλ

±
4 (A′2) = (2, 2) (non-reduced type).

Proof. Follows from the proof of Proposition 5.8.1 together with the observation that the types

indicated above are those for which the numerical function µ(A, ·) is equal to 0 (i.e. not > 0).

The proof of the above proposition gives also the following observation.

Remark 5.8.4. Let A ∈ SFF2
be GF2

-semistable. If Item (1) of Proposition 5.8.1 holds then either

dimA1∩ (V01∧
∧2

V23) = 1 or dimA1∩ (
∧2

V01∧V45) = 1. If Item (2) of Proposition 5.8.1 holds

then θ is unique up to rescaling.

Below we will prove a result on CW,A for certain semistable A ∈ SFF2
(in ?? we will examine

CW,A for arbitrary semistable A ∈ SFF2
with minimal orbit). Let A ∈ SFF2

; there exists β0 ∈ V23

well-defined up to rescaling such that

A0 = [v0 ∧ v1 ∧ β0], A4 = [β0 ∧ v4 ∧ v5]. (5.8.12)
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Proposition 5.8.5. Let A ∈ SFF2
be GF2

-semistable with closed orbit and suppose that Item (1)

of Proposition 5.8.1 holds. Let W ∈ ΘA. Then CW,A is a semistable sextic curve of Type II-2

or of Type III-2.

Proof. By Proposition 5.8.3 we know that A is GF2 -equivalent to A′ which is λ±1 -split with

dλ
±
1 (A′) = (1, 1). Since A has closed orbit we may assume that A′ = A. Let {ξ0, . . . , ξ5} be the

basis of V introduced in the proof of Proposition 5.8.1. If A is λ+
1 -split we get that there exists

0 6= γ ∈ V45 such A contains ξ0 ∧ ξ1 ∧ γ, if A is λ−1 -split there exists 0 6= α ∈ V01 such A contains

α ∧ ξ4 ∧ ξ5. Let β0 be as in (5.8.12): then A contains ξ0 ∧ ξ1 ∧ β0 and β0 ∧ ξ4 ∧ ξ5. It follows that

A ∈ B∗F1
: thus the proposition follows from Proposition 5.7.3 and Proposition 5.7.4.

Corollary 5.8.6. Let A ∈ SFF2
be GF2

-semistable and suppose that Item (1) of Proposition 5.8.1

holds. Let W ∈ ΘA. Then CW,A is a semistable sextic curve and the period map (0.0.10) is regular

at CW,A.

Proof. By contradiction. Suppose that CW,A is either P(W ) or a sextic curve in the indeterminacy

locus of the period map (0.0.10). Let A′ ∈ SFF2
be GF2

-semistable with closed orbit and GF2
-

equivalent to A: thus A′ belongs to the closure of GF2
A. It follows that there exists W ′ ∈ ΘA′ such

that CW ′,A′ is either P(W ′) or a sextic curve in the indeterminacy locus of the period map (0.0.10)

(for W = W ′): that contradicts Proposition 5.8.5.

5.9 BF2 ∩ I

Let U be a complex vector-space of dimension 4 and i+ be the map of (2.2.11): choosing an

isomorphism

ψ :

2∧
U
∼−→ V (5.9.1)

we get i+ : P(U) ↪→ Gr(3, V ). Let {u0, u1, u2, u3} be a basis of U and D ⊂ P(U) be the smooth

conic

D := {[λ2u0 + λµu1 + µ2u3] | [λ, µ] ∈ P1}. (5.9.2)

(No misprint: the vectors are u0, u1 and u3.) Then i+(D) is an irreducible curve parametrizing

pairwise incident projective planes of Type Q according to the classification of [20]. Let A ∈ SFF2

be semistable with minimal orbit and such that [A] ∈ I: we will prove that ΘA contains i+(D) for

some choice of Isomorphism (5.9.1), see Proposition 5.9.5. That result will lead us to study those

A ∈ LG(
∧3

V ) such that ΘA contains i+(D) and moreover
∧10

A is fixed by the action of the 1-PS

of SL(V ) given by
∧2

g where g : C× → SL(U) is defined by g(t) := diag(t, 1, 1, t−1) (with respect

to the basis {u0, u1, u2, u3}) - notice that if we let

v0 := u0 ∧ u1, v1 := u0 ∧ u2, v2 := u0 ∧ u3, v3 := u1 ∧ u2, v4 := u1 ∧ u3, v5 := u2 ∧ u3

then
∧2

g(t) is identified with λF2(t). We will denote by Wψ
fix the set of such A; as noticed above

Wψ
fix ⊂ SFF2

. If A ∈ SFF2
is semistable with minimal orbit and [A] ∈ I then it is PGL(V )-equivalent

to an element Wψ
fix, see Proposition 5.9.8. Given A ∈ SFF2

let β0 ∈ V23 be as in (5.8.12) and let

W∞ := 〈v0, v1, β0〉, W0 := 〈v4, v5, β0〉. (5.9.3)

Thus W∞,W0 ∈ ΘA. In Subsubsection 5.9.3 we will analyze the locus of A ∈ Wψ
fix such that

CW∞,A is not a sextic in the regular locus of the period map (0.0.10), in particular we will identify

an irreducible locus XψV ⊂Wψ
fix parametrizing such A’s and whose image in M is a closed irreducible

3-dimensional set XV contained in I. Lastly we will prove that BF2 ∩ I = XV , see Subsubsection

5.9.5.
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5.9.1 Lagrangians A such that ΘA contains a curve of Type Q

Lemma 5.9.1. Suppose that A ∈ SFF2
is semistable with minimal orbit and that [A] ∈ I. Then

there exists

W ∈ {W∞, 〈α, β, γ〉,W0}, α ∈ V01, β ∈ V23, γ ∈ V45 (5.9.4)

such that W ∈ ΘA and CW,A is either P(W ) or a sextic curve in the indeterminacy locus of

Map (0.0.10).

Proof. By hypothesis there exists W? ∈ ΘA such that CW?,A is either P(W?) or a sextic curve in

the indeterminacy locus of Map (0.0.10). Suppose that CW?,A = P(W?). By Proposition 5.2.7

we have [A] ∈ X∗W ∪{z}. By Claim 4.3.5 and (4.4.6) we get that CW,A = P(W ) for every W ∈ ΘA

in particular for W = W∞ (or W = W0). Thus from now on we may assume that

for all W ∈ ΘA we have CW,A 6= P(W ). (5.9.5)

Taking limt→0 λF2(t)W we get that there exists W ∈ ΘA such that CW,A is a sextic curve in the

indeterminacy locus of Map (0.0.10) and W is fixed by λF2(t) for all t ∈ C×. Thus W is the direct

sum of 3 irreducible summands for the representation λF2
: C× → SL(V ) i.e. one of

W∞, W0, V01 ⊕ [γ], V23 ⊕ [α], V23 ⊕ [γ], V45 ⊕ [α], 〈α, β, γ〉, α ∈ V01, β ∈ V23, γ ∈ V45.

Suppose that W does not belong to the set appearing in the right-hand side of (5.9.4). Then Item (1)

of Proposition 5.8.1 holds and hence [A] /∈ I by Proposition 5.8.5, that is a contradiction.

Proposition 5.9.2. Suppose that A ∈ SFF2
is semistable with minimal orbit and that [A] ∈ I. Then

dim ΘA ≥ 1.

Proof. By contradiction. Suppose that dim ΘA = 0. In particular

if W1 6= W2 ∈ ΘA then dim(W1 ∩W2) = 1. (5.9.6)

Moreover CW,A is a sextic curve for every W ∈ ΘA by Corollary 5.2.8. By Lemma 5.9.1 there

exists W ∈ ΘA such that (5.9.4) holds and CW,A is a sextic curve in the indeterminacy locus of

Map (0.0.10). Notice that

dimSW ≤ 3. (5.9.7)

In fact suppose that (5.9.7) does not hold. Then A ∈ BC1 : by Proposition 5.2.1 we get that

A ∈ PGL(V )A+, that is a contradiction because dim ΘA+ = 3. Let {w0, w1, w2} be the basis of W

appearing in (5.9.3) or in (5.9.4): thus w0 = v0 if W = W∞, w0 = α if W = 〈α, β, γ〉 and w0 = v4

if W = W0 etc. Let {X0, X1, X2} be the basis of W
∨

dual to {w0, w1, w2}. The 1-PS λF2
acts

trivially on
∧10

A; applying Claim 3.1.4 we get that CW,A = V (P ) where

P =

{
F4X

2
2 , F4 ∈ C[X0, X1]4 if W = W∞ or W = W0,

(b1X0X2 + a1X
2
1 )(b2X0X2 + a2X

2
1 )(b3X0X2 + a3X

2
1 ) if W = 〈α, β, γ〉.

Since CW,A is a sextic curve in the indeterminacy locus of Map (0.0.10) one gets that one of the

following holds:

(1) CW,A = V ((bX0X2 + aX2
1 )3).

(2a) CW,A = V (X2
0X

2
2 (bX0X2 +X2

1 )).

(2b) CW,A = V (L ·M3 ·X2
2 ) where L,M ∈ C[X0, X1]1.

(3) CW,A = V (X4
1 (bX0X2 + aX2

1 )).
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Let Z ⊂ P(W ) be the union of 1-dimensional components of singCW,A: in all of the above cases

Z is non-empty. By Proposition 3.2.6 we get that Z ⊂ B(W,A). Let [v] ∈ Z be generic: there

does not exist W ∈ ΘA containing [v] and different from W because dim ΘA = 0. It follows that

dim(A ∩ Fv ∩ SW ) ≥ 2. Since [v] moves on a curve it follows that dimSW ≥ 3 (recall that (5.9.6)

holds): by (5.9.7) we get that

dimSW = 3. (5.9.8)

Let V = W ⊕ U where U is λF2
-invariant and let V := SW ∩ (

∧2
W ∧ U). By (5.9.8) we have

dimV = 2. View V as a subspace of Hom(W,U) by choosing a volume form on W : every φ ∈ V
has rank 2 (by (5.9.6), (5.9.8) and the fact that Z is not empty). Now suppose that (1) above

holds. Since Z is a smooth conic we get that A ∈ BE∨1 by Remark 3.3.4. By Proposition

5.6.1 we get that A ∈ PGL(V )Ah: that is a contradiction because dim ΘAh = 2. Now suppose

that (2a) or (2b) above holds: then Z is the union of two lines and that contradicts Proposition

A.3.1. Lastly suppose that (3) above holds. Then K(V) (notation as in (A.3.6)) is the line V (X1).

By Proposition A.3.1 we get that V is GL(W ) × GL(U)-equivalent to Vl. Thus there exists a

basis {u0, u1, u2} of U such that

V = 〈w0 ∧ w1 ∧ u0 + w0 ∧ w2 ∧ u1, w0 ∧ w2 ∧ u2 + w1 ∧ w2 ∧ u0〉. (5.9.9)

Up to scalars there is a unique non-zero element of V mapping w0 to 0 and similarly there is a unique

(up to scalars) non-zero element of V mapping w2 to 0: since V, [w0] and [w2] are λF2-invariant it

follows that the two elements of V appearing in (5.9.9) generate λF2 -invariant subspaces. Since each

wi generates a λF2
-invariant subspace it follows that each uj generates a λF2

-invariant subspace.

Now suppose that W = 〈α, β, γ〉. Considering the possible weights of the uj ’s we get that u0 ∈ V23,

u1 ∈ V01 and u2 ∈ V45. Thus we have

V = 〈α ∧ β ∧ u0 + α ∧ γ ∧ u1, α ∧ γ ∧ u2 + β ∧ γ ∧ u0〉, u0 ∈ V23, u1 ∈ V01, u2 ∈ V45.

It follows that Item (3) of Proposition 5.8.1 holds and hence µ(A, λ3) ≥ 0 where λ3 is given

by (5.8.8). Since the GF2 -orbit of A is closed in SF,ssF2
we may assume that λ3 acts trivially on∧10

A. By Claim 3.1.4 we get that P is left invariant by diag(s3t, s−3t, t−2) for s, t ∈ C×: it

follows that P = aX2
0X

2
1X

2
2 , that is a contradiction. Now suppose that W = W∞. We may (and

will) choose v2 := w2 = β0. Considering the possible weights of the uj ’s we get that u0 ∈ V45 ,

u1 ∈ V23 and u2 ∈ V45. Thus we may assume that v3 = u1, v4 = u0 and v5 = u2. It follows that

V = 〈v0 ∧ v1 ∧ v4 + v0 ∧ v2 ∧ v3, v0 ∧ v2 ∧ v5 + v1 ∧ v2 ∧ v4〉.

Thus (v0 ∧ v2 ∧ v5 + v1 ∧ v2 ∧ v4) ∈ A ∩ SW . Now A ∩ SW contains a 3-dimensional subspace R

dictated by the condition A ∈ BF2 - see Table (1) - and (v0 ∧ v2 ∧ v5 + v1 ∧ v2 ∧ v4) /∈ R. Thus

dim(A ∩ SW ) ≥ 4 and that contradicts (5.9.8). It remains to deal with the case W = W0: it is

similar to the case W = W∞.

Lemma 5.9.3. BF2
does not contain x nor x∨.

Proof. Suppose the contrary. Then Ak(L) ∈ SFF2
or Ah(L) ∈ SFF2

, in particular λF2(t) acts trivially

on
∧10

Ak(L) (respectively
∧10

Ah(L)). The stabilizer of
∧10

Ak(L) (respectively
∧10

Ah(L)) is

the image of the homomorphism ρ : SL(L)→ SL(S2 L) (we have chosen an isomorphism V = S2 L):

since {λF2
(t) | t ∈ C×} is not in the image of ρ we get a contradiction.

Remark 5.9.4. Let U be a 4-dimensional complex vector-space and i+ be the map of (2.2.11). Let

D ⊂ P(U) be given by (5.9.2). The smooth quadric Z ⊂ P(U) given by

Z := {[η0u0 + η1u1 + η2u2 + η3u3] | η0η3 − η2
1 = 0}

contains D: it follows that if A ∈ X∗W(U) then there exists g ∈ PGL(V ) such that ΘgA ⊃ i+(D).

Proposition 5.9.5. Suppose that A ∈ SFF2
is semistable with minimal orbit and that [A] ∈ I. Then

ΘA contains i+(D) for some choice of Isomorphism (5.9.1).
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Proof. Suppose first that dim ΘA ≥ 2. By Lemma 5.2.6 we have A ∈ X∗W ∪ PGL(V )Ak ∪
PGL(V )Ah. By Lemma 5.9.3 we get that [A] ∈ X∗W and hence ΘA contains i+(D) for some choice

of isomorphism (5.9.1) - see Remark 5.9.4. Now suppose that dim ΘA ≤ 1. By Proposition 5.9.2

we have dim ΘA = 1. Let Θ be a 1-dimensional irreducible component of ΘA. By Theorem 3.9

of [20] the curve Θ belongs to one of the Types

F1,D, E2, E∨2 ,Q,A,A∨, C2,R,S,T,T∨

defined in [20]. Moreover if Θ is of Type X then A ∈ BX - see Claim 3.22 of [20]. Thus if

Θ has calligraphic Type then A ∈ BF1 ∪ BD ∪ BE2 ∪ BE∨2 ∪ BA ∪ BA∨ ∪ BC2 ; by (5.1.6) we get

that [A] ∈ BA ∪ BC1 ∪ BD ∪ BE1 ∪ BE∨1 and hence [A] ∈ BW ∪ {x, x∨} by Proposition 5.2.1,

Proposition 5.3.1, Proposition 5.4.1, Proposition 5.5.2 and Proposition 5.6.1. It follows

that dim ΘA ≥ 2, that is a contradiction. Thus we may assume that Θ is of Type Q, R, S, T

or T∨. Now notice that if t ∈ C× then λF2
(t) acts on Θ i.e. λF2

(t)|Θ is an automorphism of Θ.

Suppose that λF2(t)|Θ is the identity for each t ∈ C×: looking at the action of λF2(t) on V we get

that Θ is a line and hence A ∈ BF1
. By Proposition 5.7.1 we have BF1

∩I = ∅ and hence we get

a contradiction. It follows that if t ∈ C× is generic then λF2
(t)|Θ is not the identity - in particular

there exist points in Θ with dense orbit and hence Θ has geometric genus 0. We claim that there

does not exist a Θ of Type R, S, T or T∨ such that λF2(t)(Θ) = Θ for t ∈ C×. In fact suppose that

Θ has type R. Then we may assume that Θ = i+(C) where C ⊂ P(U) is a rational normal cubic

curve and each λF2
(t) is induced by a projectivity of P(U): as is easily checked that is impossible.

On the other hand Θ cannot be of Type S, T or T∨ because there is no 1-PS of PGL(V ) mapping

such a curve to itself. (There is no copy of C× in the automorphism group of such a curve acting

trivially on the Picard group of the curve.) Thus Θ is of type Q and that finishes the proof of the

corollary.

5.9.2 Lagrangians containing i+(D) and fixed by λF2

Let

Wψ := {A ∈ LG(

3∧
V ) | ΘA ⊃ i+(D)} (5.9.10)

i.e. the closed subset of lagrangians A such that P(A) contains i+(D) - the superscript ψ refers to

Isomorphism (5.9.1). Now consider the action of C× on P(U) defined by g(t) := diag(t, 1, 1, t−1)

in the basis {u0, u1, u2, u3}. Via ψ we get a representation τ : C× → SL(V ). A straightforward

computation gives that τ(t) = λF2
(t) where λF2

(t) is the 1-PS corresponding to F2 and the basis

F of V is given by

v0 = u0 ∧ u1, v1 = u0 ∧ u2, v2 = u0 ∧ u3, v3 = u1 ∧ u2, v4 = u1 ∧ u3, v5 = u2 ∧ u3. (5.9.11)

Let t ∈ C×: then D is sent to itself by g(t) and hence λF2
(t) defines a projectivity of P(V ) mapping

i+(D) to itself. It follows that λF2 defines an action ρ of C× on Wψ. Let Ŵψ ⊂
∧10

(
∧3

V ) be the

affine cone over Wψ: then ρ lifts to an action ρ̂ on Ŵψ. Let

Wψ
fix := {A ∈Wψ |

10∧
A is in the fixed locus of ρ̂(t) for all t ∈ C×}. (5.9.12)

An explicit description of Wψ
fix goes as follows. First we explain Table (22). Let 〈〈i+(D)〉〉 ⊂ A+(U)

be the span of the affine cone over i+(D). Going through Table (14) one gets that a basis of

〈〈i+(D)〉〉 is given by the first five entries of Table (22). It follows by a straightforward computation

that the elements of Table (22) form a basis of i+(D)⊥. Notice that each such element spans a

subspace invariant under the action of λF2(t) for t ∈ C×: the corresponding character of C× is

contained in the third column of Table (22). Let PD ⊂ A+(U) be the subspace spanned by the

elements of Table (29) which belong to lines 6 through 10 and QD ⊂ A−(U) be the subspace

spanned by the elements of Table (29) which belong to lines 11 through 15. Both PD and QD
are isotropic for (, )V and the symplectic form identifies one with the dual of the other; thus the
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Table 22: Bases of 〈〈i+(D)〉〉 and of 〈〈i+(D)〉〉⊥.

α-β notation explicit expression action of λF2
(t)

α(2,0,0,0) v0 ∧ v1 ∧ v2 t2

α(1,1,0,0) v0 ∧ (v1 ∧ v4 − v2 ∧ v3) t

α(0,2,0,0) + α(1,0,0,1) v0 ∧ v2 ∧ v5 + v0 ∧ v3 ∧ v4 − v1 ∧ v2 ∧ v4 1

α(0,1,0,1) v0 ∧ v4 ∧ v5 + v2 ∧ v3 ∧ v4 t−1

α(0,0,0,2) v2 ∧ v4 ∧ v5 t−2

α(1,0,1,0) v0 ∧ v1 ∧ v5 − v1 ∧ v2 ∧ v3 t

α(0,2,0,0) − α(1,0,0,1) −v0 ∧ v2 ∧ v5 + v0 ∧ v3 ∧ v4 + v1 ∧ v2 ∧ v4 1

α0,1,1,0) v0 ∧ v3 ∧ v5 + v1 ∧ v3 ∧ v4 1

α(0,0,2,0) v1 ∧ v3 ∧ v5 1

α(0,0,1,1) v1 ∧ v4 ∧ v5 + v2 ∧ v3 ∧ v5 t−1

β(0,0,1,1) −v0 ∧ v1 ∧ v4 − v0 ∧ v2 ∧ v3 t

2β(0,2,0,0) − β(1,0,0,1) v0 ∧ v3 ∧ v5 + 2v1 ∧ v2 ∧ v5 − v1 ∧ v3 ∧ v4 1

β(0,1,1,0) −v0 ∧ v2 ∧ v5 − v1 ∧ v2 ∧ v4 1

β(0,0,2,0) 4v0 ∧ v2 ∧ v4 1

β(1,0,1,0) v0 ∧ v4 ∧ v5 − v2 ∧ v3 ∧ v4 t−1

restriction of (, )V to PD ⊕ QD is a symplectic form. It follows that a lagrangian A ∈ LG(
∧3

V )

contains i+(D) if and only if it is equal to 〈〈i+(D)〉〉 ⊕R where R ∈ LG(PD ⊕QD). Let P 0
D ⊂ PD

and Q0
D ⊂ QD be the subspaces of elements which are invariant for λF2

i.e. the spaces spanned by

the elements on rows 7 through 9 and 12 through 14 of Table (22) respectively. The symplectic

form (, )V identifies P 0
D with the dual of Q0

D and the restriction of (, )V to P 0
D ⊕Q0

D is a symplectic

form: we let LG(P 0
D ⊕Q0

D) be the corresponding symplectic grassmannian. Given c = [c0, c1] ∈ P1

we let

Rc := 〈c0α(1,0,1,0) + c1β(0,0,1,1), c0α(0,0,1,1) + c1β(1,0,1,0)〉. (5.9.13)

Let c = [c0, c1] ∈ P1 and L ∈ LG(P 0
D ⊕Q0

D); we let

Ac,L := 〈〈i+(D)〉〉 ⊕Rc ⊕ L. (5.9.14)

Looking at the action of λF2(t) on the given bases of PD and QD one gets that

Wψ
fix = {Ac,L | (c,L) ∈ P1 × LG(P 0

D ⊕Q0
D)} ∼= P1 × LG(P 0

D ⊕Q0
D). (5.9.15)

Notice that Ac,L is λF2
-split of reduced type (1, 2) (look at the action of λF2

on the elements of the

bases of 〈〈i+(D)〉〉, PD and QD). Thus

Wψ
fix ⊂ SFF2

. (5.9.16)

Remark 5.9.6. Let A ∈ X∗W(U). By Remark 5.9.4 we get that there exists g ∈ PGL(V ) such that

gA ∈ Wψ
fix. Explicitly: we get all elements of X∗W up to projectivities as Ac,L with c1 = 0 and L

containing 〈α(0,1,1,0), α(0,0,2,0)〉.
In the present subsubsection we will prove that if A ∈ SFF2

is semistable with minimal orbit

and [A] ∈ I then there exists g ∈ PGL(V ) such that gA ∈ Wψ
fix. First we will examine the curve

Θ := i+(D) and the variety

RΘ :=
⋃

W∈i+(D)

P(W ) (5.9.17)

swept out by the projective planes parametrized by Θ. Let {W1,−Z2,W3, Z3,W2, Z1} be the basis

of V ∨ dual to the basis F of (5.9.11): thus

v = W1v0 − Z2v1 +W3v2 + Z3v3 +W2v4 + Z1v5. (5.9.18)
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Let W,Z be the column vectors with entries W1,W2,W3 and Z1, Z2, Z3 respectively. Let

B :=

 0 1 0

1 0 0

0 0 −2

 .

The Plücker quadratic relation is W t · Z = 0 and we have

RΘ = V (W t · Z) ∩ V (Zt ·B · Z).

Thus

|IRΘ(2)| = P(〈Q0, Q∞〉), Q0 := V (W t · Z), Q∞ := V (Zt ·B · Z). (5.9.19)

We will describe Aut(RΘ) < PGL(V ). Let g ∈ Aut(RΘ). Then g(Q∞) = Q∞ because Q∞
is the unique singular quadric containing RΘ - see (5.9.19). It follows that g(V (Z1, Z2, Z3)) =

V (Z1, Z2, Z3) and hence

f∗
(
W

Z

)
=

(
L M

03 N

)
·
(
W

Z

)
(5.9.20)

where L, M , N are 3× 3 matrices, 03 is the 3× 3 zero matrix. Equation (5.9.19) gives that

N t ·B ·N = µB, Lt ·N = ν13, M t ·N = τB + P, µ, ν, τ ∈ C, P t = −P. (5.9.21)

The intersection Aut(RΘ)∩GF2 acts on Wψ
fix. It follows from (5.9.21) that the elements of Aut(RΘ)∩

GF2 are represented by matrices

a−2 0 0 0 m1 0

0 b−2 0 m2 0 0

0 0 a−1b−1 0 0 m3

0 0 0 a2 0 0

0 0 0 0 b2 0

0 0 0 0 0 ab


, a2m1 + b2m2 + abm3 = 0. (5.9.22)

In particular

dim Aut(RΘ) ∩GF2 = 3. (5.9.23)

Claim 5.9.7. Let Q,Q′ ∈ |IRΘ(2)| be smooth quadrics and h ∈ Aut(Θ). There exists g ∈ Aut(RΘ)

such that g(Q) = Q′ and the automorphism g ∈ Aut(Θ) induced by g is equal to h.

Proof. Let Qs := V (W t ·Z+sZt ·B ·Z) - the notation is consistent with (5.9.19). Thus Qs ∈ |IRΘ
(2)|

is a smooth quadric and conversely every smooth quadric in |IRΘ(2)| is equal to Qs for some s ∈ C.

Let gs ∈ PGL(V ) be such that

g∗sW1 = W1 + 2sZ2, g∗sW2 = W2, g∗sW3 = W3 − 2sZ3, g∗sZi = Zi.

Then gs ∈ Aut(RΘ) ∩ GF2
(it corresponds to a = b = 1, m1 = 2s, m2 = 0 and m3 = −2s

in (5.9.22)) and g∗s (Q0) = (Qs). To finish the proof it suffices to notice that every ϕ ∈ Aut(D)

extends to an automorphism of P(U) and hence it induces a projectivity of P(
∧2

U) = P(V ) sending

RΘ to itself.

Proposition 5.9.8. Let F0 be a basis of V and ψ be as in (5.9.1). Suppose that A ∈ SF0

F2
is

semistable with minimal orbit and that [A] ∈ I. Then there exist g ∈ PGL(V ) such that gA ∈Wψ
fix.

Proof. Suppose first that dim ΘA ≥ 2. By Lemma 5.2.6 we have A ∈ X∗W ∪ PGL(V )Ak ∪
PGL(V )Ah. By Lemma 5.9.3 we get that [A] ∈ X∗W and hence there exist g ∈ PGL(V ) such that

gA ∈Wψ
fix by Remark 5.9.6. Now suppose that dim ΘA ≤ 1. By Proposition 5.9.5 we get that

there is an irreducible component Θ of ΘA which is projectively equivalent to i+(D) (i.e. of Type
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Q). The 1-PS λF0

F2
fixes A hence it acts on Θ: notice that the action is effective because the set of

fixed points for the action of λF2
on Gr(3, V ) is a collection of points and lines. The image

H := {ρ ∈ Aut(Θ) | ρ = λF2
(t)|Θ for some t ∈ C×} (5.9.24)

consists of the group of automorphisms fixing two points p, q ∈ Θ. Of course λF2
acts on RΘ

as well and hence also on |IΘ(2)|. Since there is single singular quadric in |IΘ(2)| there exists a

smooth quadric Q ∈ |IΘ(2)| which is mapped to itself by λF2
. On the other hand there exists

g ∈ PGL(V ) such that g(Θ) = i+(D) =: Θ because up to projectivities there is a single curve of

Type Q. By Claim 5.9.7 we may choose g so that g(p) = i+([1, 0, 0, 0]), g(q) = i+([0, 0, 0, 1]) and

g(Q) = Gr(2, U) (recall that
∧2

U is identified with V via (5.9.1) and hence Gr(2, U) is a smooth

quadric containing RΘ). With this choice of g the group H of (5.9.24) gets identified with the group

of automorphisms of D fixing [1, 0, 0, 0] and [0, 0, 0, 1]. Thus gA ∈Wψ
fix.

5.9.3 CW∞,A for A ∈Wψ
fix

Let Ac,L ∈Wψ
fix: then

W∞ = i+([1, 0, 0, 0]) = 〈v0, v1, v2〉, W0 = i+([0, 0, 0, 1]) = 〈v4, v5, v2〉. (5.9.25)

In particular we may set

β0 = v2. (5.9.26)

(Here β0 is as in (5.9.3).) Let {X0, X1, X2} be the basis of W∨∞ dual to the basis {v0, v1, v2}. Write

CW∞,A = V (P∞) where P∞ ∈ C[X0, X1, X2]6. Since λF2 acts trivially on
∧10

A and it maps W∞
to itself we may apply Claim 3.1.4: it follows that P∞ is fixed by every element of {diag(t, t, t−2)}.
Thus

CW∞,A = V (F∞X
2
2 ), F∞ ∈ C[X0, X1]4. (5.9.27)

Next we notice the following. Let

Λ := P(ψ(

2∧
〈u0, u1, u3〉)) = P(〈v0, v2, v4〉) ⊂ P(V ).

Given p ∈ D let W (p) = i+(p). The projective plane Λ intersects P(W (p)) in the line LW (p) ⊂
P(W (p)) parametrizing lines contained in P〈u0, u1, u3〉 and containing p: each such line, with

the exception of the line tangent to D, is parametrized by the intersection (in P(
∧2

U) = P(V ))

P(W (p)) ∩ P(W (q)) for a suitable q ∈ (D \ {p}). By Corollary 3.2.7 it follows that CW (p),Ac,L

is singular along LW (p) (or CW (p),Ac,L
= P(W )). Now we consider W∞ = W ([1, 0, 0, 0]): then

LW∞ = V (X1) and recalling (5.9.27) we get that

CW∞,Ac,L
= V ((a2X

2
0 + a3X0X1 + a4X

2
1 )X2

1X
2
2 ). (5.9.28)

(Of course a similar formula holds for W0.) We let

Xψ := {Ac,L ∈ Yψfix | CW∞,Ac,L
= V ((a3X0X1 + a4X

2
1 )X2

1X
2
2 )}. (5.9.29)

Thus Ac,L ∈ Xψ if and only if CW∞,Ac,L
is not a semistable sextic in the regular locus of the

period map (0.0.10). We will determine the dimension and the number of irreducible components

of Xψ. In order to do that we introduce the dense open subset U ⊂ LG(P 0
D ⊕Q0

D) of L such that

L ∩Q0
D = {0}. Let

LM := 〈α(0,2,0,0) − α(1,0,0,1) +m11(2β(0,2,0,0) − β(1,0,0,1)) + 2m12β(0,1,1,0) + 4m13β(0,0,2,0),

α(0,1,1,0) +m12(2β(0,2,0,0) − β(1,0,0,1)) +m22β(0,1,1,0) + 2m23β(0,0,2,0),

α(0,0,2,0) +m13(2β(0,2,0,0) − β(1,0,0,1)) +m23β(0,1,1,0) + 2m33β(0,0,2,0)〉 (5.9.30)

where mij are arbitrary complex numbers - here M is the symmetric 3× 3-matrix with entries the

given mij ’s. A straightforward computation (use the last column of Table (14)) gives that LM ∈ U
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Table 23: Basis of Ac,LM (0).

(024) (025) (034) (035) (124) (125) (134) (135) element of basis

0 1 1 0 −1 0 0 0 α(0,2,0,0) + α(1,0,0,1)

16m13 −2m12 − 1 1 m11 −2m12 + 1 2m11 −m11 0 `1

8m23 −m22 0 m12 + 1 −m22 2m12 −m12 + 1 0 `2

8m33 −m23 0 m13 −m23 2m13 −m13 1 `3

Table 24: Basis of Ac,L(1).

(014) (015) (023) (123) element of basis

1 0 −1 0 α(1,1,0,0)

−c1 c0 −c1 −c0 c0α(1,0,1,0) + c1β(0,0,1,1)

and that conversely every L ∈ U is equal to LM for a unique M . Next recall that Ac,L ∈Wψ
fix is sent

to itself by the 1-PS λF2
and hence Ac,L decomposes as the direct sum of its weight subspaces: we let

Ac,L(i) ⊂ Ac,L be the weight-i subspace (thus Ac,L(i) is Ac,L,2−i in the old notation). Tables (23),

(24) and (25) give bases of Ac,LM (i) for i = 0,±1. A few explanations regarding notation: we

denote vi ∧ vj ∧ vk by (ijk), we let `j be the j-th element of the basis of LM given by (5.9.30). In

order to determine whether Ac,L ∈Wψ
fix belongs to Xψ we will analyze CW∞,Ac,L

in a neighborhood

of [v0 + v2]. The first step is the computation of Fv0+v2
∩Ac,L. Notice that

(Fv0+v2
∩Ac,LM ) ⊃ 〈α(2,0,0,0), α(1,1,0,0) + α(0,2,0,0) + α(1,0,0,1) + α(0,1,0,1) + α(0,0,0,2)〉. (5.9.31)

(Of course (5.9.31) holds also if LM is replaced by an arbitrary element of LG(P 0
D ⊕Q0

D).)

Lemma 5.9.9. Keep notation as above. If c0m11 6= 0 then right-hand side and left-hand side

of (5.9.31) are equal. On the other hand

Fv0+v2
∩A[0,1],LM ⊃ 〈α(2,0,0,0), α(1,1,0,0) + α(0,2,0,0) + α(1,0,0,1) + α(0,1,0,1) + α(0,0,0,2),

α(1,1,0,0) + β(1,1,0,0), α(0,1,0,1) + 2α(0,0,0,2) + β(1,0,1,0)〉. (5.9.32)

Proof. By (5.9.31) the first two elements spanning the right-hand side of (5.9.32) are contained

in A[0,1],LM . On the other hand the third and fourth element are contained in A[0,1],LM because

β(1,1,0,0), β(1,0,1,0) ∈ A[0,1],LM . Thus the right-hand side of (5.9.32) is contained in A[0,1],LM . Look-

ing at Table (22) we get that the right-hand side of (5.9.32) is contained in Fv0+v2
as well: this

proves that (5.9.32) holds. Now suppose that c0m11 6= 0. Let γ ∈ Ac,LM . Write γ =
∑
i γ(i) where

γ(i) ∈ Ac,LM (i), i.e. λF2(t)γ(i) = tiγ(i). Then γ ∈ Fv0+v2 if and only if (v0 + v2) ∧ γ = 0. Now

v0 ∈ Ac,LM (1) and v2 ∈ Ac,LM (0): it follows that γ ∈ Fv0+v2 ∩Ac,LM if and only if

0=v2∧γ(−2)=v0∧γ(−2)+v2∧γ(−1)=v0∧γ(−1)+v2∧γ(0)=v0∧γ(0)+v2∧γ(1)=v0∧γ(1)+v0∧γ(2)=v2∧γ(2). (5.9.33)

Now let γ ∈ Fv0+v2
∩ Ac,LM : we will show that γ belongs to the right-hand side of (5.9.31).

Subtracting from γ a suitable multiple of α(2,0,0,0) we might assume that γ(2) = 0. By (5.9.33) we

Table 25: Basis of Ac,L(−1).

(045) (145) (234) (235) element of basis

1 0 1 0 α(0,1,0,1)

c1 c0 −c1 c0 c0α(0,0,1,1) + c1β(1,0,1,0)
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get that v0 ∧ γ(1) = 0; since c0 6= 0 it follows that γ(1) ∈ 〈α(1,1,0,0)〉 - see Table (24). Subtracting a

suitable multiple of the second element appearing in the right-hand side of (5.9.31) we may assume

that γ(1) = 0: we must prove that γ = 0. By (5.9.33) we get that v0 ∧ γ(0) = 0; a straightforward

computation - see Table (23) - gives that γ(0) = 0 (recall that by hypothesis m11 6= 0). By (5.9.33)

we get that v0 ∧ γ(−1) = 0, this implies that γ(−1) = 0 - see Table (25). By (5.9.33) we get that

v0 ∧ γ(−2) = 0 and hence γ(−2) = 0 because γ(−2) ∈ 〈v2 ∧ v4 ∧ v5〉. This proves that γ = 0.

Proposition 5.9.10. Let [1, c1] ∈ (P1 \ {[0, 1]}). Then for generic L ∈ LG(P 0
D ⊕ Q0

D) we have

A[1,c1],L /∈ Xψ.

Proof. We will analyze CW∞,A[1,c1],LM
in a neighborhood of [v0 + v2]. Let

V0 := 〈v0, v1, v3, v4, v5〉.

(No typo: we omit v2 !) Going through Tables (23), (24) and (25) one gets that

3∧
V0 ∩A[1,c1],LM = {0} if det

 2m13 2m12 m11

m23 2m22 m12

m33 2m23 m13

 6= 0. (5.9.34)

The determinant appearing in (5.9.34) is not identically zero: we assume that M is such that the

determinant does not vanish. We will also assume that m11 6= 0 and hence the right-hand side and

left-hand side of (5.9.31) are equal. The lagrangians
∧3

V0 and A[1,c1],LM are transverse because

On the other hand we have a direct-sum decomposition V = [v0 + v2] ⊕ V0. Thus Claim 3.3.2

applies. We adopt the notation of that claim: of course in the present context v0 is (v0 + v2) and

W0 = W∞ ∩ V0 = 〈v0, v1〉. Claim 3.3.2 states that

CW∞,A[1,c1],LM
∩ (P(W∞ \ P(W0)) = V (det(qA[1,c1],LM

+ z0qv0
+ z1qv1

). (5.9.35)

(Beware that the point with affine coordinates (z0, z1) is (1 + z0)v0 + z1v1 + v2.) Here qA[1,c1],LM

is as in (3.3.4) and qA[1,c1],LM
, qv0

, qv1
are the quadratic forms on

∧2
V0/

∧2
W0 given by (3.3.9).

The kernel of qA[1,c1],LM
is as follows. First notice that

−(α(2,0,0,0)+α(1,1,0,0)+α(0,2,0,0)+α(1,0,0,1)+α(0,1,0,1)+α(0,0,0,2)) = (v0+v2)∧(v1+v3−v5)∧(v0−v4).

By Lemma 5.9.9 it follows that

ker qA[1,c1],LM
= 〈e1〉, e1 := (v1 + v3 − v5) ∧ (v0 − v4). (5.9.36)

(The notation is somewhat sloppy: we mean that the kernel is generated by the image of e1 in∧2
V0/

∧2
W0.) Since e1 is a decomposable tensor we have qv1

(e1) = 0 and hence by Proposition

A.1.2 we have

det(qA[1,c1],LM
+ z1qv1

) = b2z
2
1 + b3z

3
1 + . . .+ b6z

6
1 .

(Of course this agrees with (5.9.28).) We will show that b2 6= 0 for M generic and that will prove

the proposition. We will apply Proposition A.1.3 as reformulated in Remark A.1.4. In the

case at hand q∗ = qA[1,c1],LM
and q = qv1

. It follows that e2 is such that

(v0 + v2) ∧ e2 − v1 ∧ (v1 + v3 − v5) ∧ (v0 − v4) ∈ A[1,c1],LM .

(Once again notation is potentially confusing: e2 ∈
∧2

V0/
∧2

W0 and is determined modulo 〈e1〉,
we think of e2 as an element of

∧2
V0 determined modulo 〈v0 ∧ v1, e1〉.) By Remark A.1.4 we get

that b2 = 0 if and only if

(v0 + v2) ∧ e2 ∧ v1 ∧ (v1 + v3 − v5) ∧ (v0 − v4) = 0. (5.9.37)

One computes e2 by using Table (26). We explain Table (26). Let π :
∧3

V →
∧3

V0 be the pro-

jection determined by the direct-sum decomposition
∧3

V = Fv0+v2
⊕
∧3

V0. Then π(A[1,c1],LM ) =
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Table 26: π(A[1,c1],LM (0)).

(013) (014) (015) (034) (035) (045) (134) (135) (145) γ

0 1 0 0 0 0 0 0 0 α(1,1,0,0)

0 0 0 −1 0 1 0 0 0 α(0,1,0,1)

0 0 0 0 0 −1 0 0 0 α(0,0,0,2)

−1 −c1 1 0 0 0 0 0 0 α(1,0,1,0) + c1β(0,0,1,1)

0 0 0 c1 −1 c1 0 1 0 α(0,0,1,1) + c1β(1,0,1,0)

0 1 − 2m12 2m11 1 m11 0 −m11 0 0 `1

0 −m22 2m12 0 m12 + 1 0 1 −m12 0 0 `2

0 −m23 2m13 0 m13 0 −m13 1 0 `3

〈v0∧v1, e1〉⊥, in particular π(A[1,c1],LM ) is contained in the subspace generated by vi∧vj∧vk where

i < j < k, i, j, k ∈ {0, 1, 3, 4, 5} and (i, j, k) 6= (3, 4, 5). Table (26) gives π(γ) as linear combination

of the vi ∧ vj ∧ vk’s listed above for a collection of γ ∈ A[1,c1],LM giving a basis of a subspace

complementary to Fv0+v2
∩A[1,c1],LM . (The elements `1, `2, `3 are as in Table (23).) It follows from

Table (26) that

e2=(c1+m22−m−1
11 m12(2m12−1))α(1,1,0,0)+(c1−m−1

11 m12)α(0,1,0,1)+(2c1−m−1
11 m12)α(0,0,0,2)+

+(α(1,0,1,0)+c1β(0,0,1,1))+(α(0,0,1,1)+c1β(1,0,1,0))−m−1
11 m12`1+`2. (5.9.38)

Computing we get that (5.9.37) holds (assuming that m11 6= 0 and the determinant appearing

in (5.9.34) does not vanish) if and only if

2m2
12 −m11m22 − 2m11c1 = 0. (5.9.39)

This proves that for generic M we have A[1,c1],LM /∈ Xψ.

Corollary 5.9.11. Keep notation as above. Then

Xψ = {A[0,1],L | L ∈ LG(P 0
D ⊕Q0

D)} ∪ XψV (5.9.40)

where XψV is an irreducible divisor in |OP1(1) � L| where L is the ample generator of the Picard

group of LG(P 0
D ⊕Q0

D) i.e. the Plücker line-bundle.

Proof. One gets right away that Xψ is the zero-locus of a section σ of OP1(2) � L - see (3.1.21)

and (3.1.26). Moreover σ is not identically zero by Proposition 5.9.10 and hence Xψ is a divisor in

|OP1(2)�L|. By Lemma 5.9.9 and Corollary 3.1.3 the “vertical”divisor V ⊂ P1×LG(P 0
D⊕Q0

D)

given by c0 = 0 is an irreducible component of Xψ. Thus Xψ = V ∪ XψV where XψV ∈ |OP1(d) � L|
with d ≤ 1. Looking at (5.9.39) we get that in fact d = 1 and XψV is irreducible.

Remark 5.9.12. Let pijk for 1 ≤ i < j < k ≤ 6 be homogeneous coordinates on P(
∧3

(P 0
D ⊕ Q0

D))

associated to the basis of (P 0
D ⊕Q0

D) given by

α(0,2,0,0) − α(1,0,0,1), α(0,1,1,0), α(0,0,2,0), 2β(0,2,0,0) − β(1,0,0,1), β(0,1,1,0), β(0,0,2,0).

Corollary 5.9.11 and (5.9.39) give that XψV ⊂ P1 × LG(P 0
D ⊕Q0

D)) has equation

c0p345 − 2c1p234 = 0. (5.9.41)

The following result shows that only the second component of (5.9.40) will contribute to BF2
∩I.

Proposition 5.9.13. If L ∈ LG(P 0
D⊕Q0

D) then A[0,1],L is unstable. On the other hand the generic

A[c0,c1],L ∈ XψV is GF2-stable.
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Proof. We have v0∧v1∧v4, v0∧v2∧v3 ∈ A[0,1],L(1) - see Table (24). Thus Item (1) of Proposition

5.8.1 holds with A = A[0,1],L. On the other hand CW∞,A[0,1],L
is not a sextic curve in the regular

locus of the period map (0.0.10): by Corollary 5.8.6 we get that A[0,1],L is GF2-unstable and hence

unstable. Next we will prove that the generic A[1,c1],LM ∈ XψV is GF2-stable. By Proposition 5.8.1

it suffices to check that if A[1,c1],LM ∈ XψV is generic then none of Items (1) - (4) of Proposition

5.8.1 holds. First Item (1) never holds (because c0 = 1!). Item (2) holds if and only if Fv2 ∩
A[1,c1],LM (0) 6= {0}; looking at Table (23) we get that Item (2) holds if and only if

0 = det


1 0 0 0

1 m11 −m11 0

0 m12 + 1 −m12 + 1 0

0 m13 −m13 1

 = 2m11.

On the other hand if M is generic and (5.9.39) holds then A[1,c1],LM ∈ XψV : it follows that if

A[1,c1],LM ∈ XψV is generic then Item (2) does not hold. Next we will show that if A[1,c1],LM ∈ XψV is

generic then A[1,c1],LM (0) contains no non-zero decomposable tensor: that will prove that neither

Item (3) nor Item (4) holds. First notice that if A ∈ Wψ
fix is generic then ΘA = i+(D): it follows

that A(0) contains no non-zero decomposable tensor. On the other hand Table (23) gives that

the condition “Ac,LM (0) contains a non-zero decomposable tensor ”is independent of c. It follows

that if M is generic then for every choice of c ∈ P1 we have that Ac,LM (0) contains no non-zero

decomposable tensors: choosing c0 = 1 and c1 such that (5.9.39) holds we get A[1,c1],LM ∈ XψV such

that A[1,c1],LM (0) contains no non-zero decomposable tensors.

Definition 5.9.14. Let X∗V := ∪ψXψV be the union over all isomorphisms ψ appearing in (5.9.1)

and XV be the closure of X∗V .

By definition XV is PGL(V )-invariant, moreover the generic A ∈ XV is semistable by Proposi-

tion 5.9.13. Thus it makes sense to let

XV := XV//PGL(V ). (5.9.42)

Thus

XV ⊂ BF2
∩ I. (5.9.43)

Proposition 5.9.15. XV is a closed irreducible 3-dimensional subset of BF2
∩ I.

Proof. By its very definition XV is a subset of BF2 ∩ I, and it is closed because XV is closed.

By Corollary 5.9.11 we know that XψV is irreducible: it follows that XV is irreducible and hence

XV is irreducible as well. It remains to prove that dimXV = 3. We have

Xψ,ssV
π
� XψV//GF2 � XV

(see (5.1.12)) and the second map is a finite. Since dimXψV = 6 it suffices to show that the generic

fiber of π has dimension 3. The open set Xψ,sV parametrizing GF2
-stable A’s is dense by Proposition

5.9.13. Let A ∈ Xψ,sV . By GF2
-stability we have

π−1(π(A)) = {A′ ∈ Xψ,sV | A′ = gA, g ∈ GF2}. (5.9.44)

We will show that the right-hand side has dimension 3. Let Θ = i+(D) and let RΘ be as in (5.9.17).

The group Aut(RΘ)∩GF2
acts on Xψ,sV with finite stabilizers: by (5.9.23) we get that the right-hand

side of (5.9.44) has dimension at least 3. On the other hand dim ΘA = 1 for A ∈ Xψ,sV . In fact

suppose the contrary: by Lemma 5.2.6 either A ∈ X∗W or it is in the PGL(V )-orbit of Ak or

Ah. By Lemma 5.9.3 we get that A ∈ X∗W and hence A is properly GF2-semistable, that is a

contradiction. Let A ∈ Xψ,sV : since dim ΘA = 1 the right-hand side of (5.9.44) is a union of sets

isomorphic to the Aut(RΘ) ∩GF2
-orbit of A and hence it has dimension 3.

We will prove that BF2
∩ I = XV , that is the content of Proposition 5.9.26.
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5.9.4 CW,A for A ∈ XψV and W spanned by α ∈ V01, β ∈ V23 and γ ∈ V45

Definition 5.9.16. Let E ⊂ Gr(3, V ) be the subset of W such that W = 〈α, β, γ〉 where α ∈ V01,

β ∈ V23, γ ∈ V45. Let ED ⊂ E be the subset of W such that

3∧
W⊥〈〈i+(D)〉〉.

Remark 5.9.17. Let A ∈ Wψ
fix and suppose that there exists W ∈ ΘA which belongs to E : then

W ∈ ED.

Below we will make the identification

P1 × P1 × P1 ∼−→ E
([e0, e1], [e2, e3], [e4, e5]) 7→ 〈e0v0 + e1v1, e2v2 + e3v3, e4v4 + e5v5〉

(5.9.45)

A straightforward computation gives the following result.

Lemma 5.9.18. Keep notation as above. Then ([e0, e1], [e2, e3], [e4, e5]) ∈ ED if and only if

e0e3e5 − e1e2e5 − e1e3e4 = 0. (5.9.46)

The group Aut(RΘ) ∩GF2 - see (5.9.22) - acts on ED.

Proposition 5.9.19. There are 5 orbits for the action of Aut(RΘ) ∩GF2
on ED namely

(1) An open dense orbit consisting of those ([e0, e1], [e2, e3], [e4, e5]) such that e1e3e5 6= 0.

(2) The orbit of ([1, 0], [1, 0], [0, 1]).

(3) The orbit of ([1, 0], [0, 1], [1, 0]).

(4) The orbit of ([0, 1], [1, 0], [1, 0]).

(5) The orbit of ([1, 0], [1, 0], [1, 0]).

Proof. One checks easily that the orbit of ([0, 1], [0, 1], [0, 1]) is the set of ([e0, e1], [e2, e3], [e4, e5]) ∈
ED such that e1e3e5 6= 0. Now assume that ([e0, e1], [e2, e3], [e4, e5]) ∈ ED and that e1e3e5 = 0.

Suppose that e1 = 0: then (5.9.46) gives that one among e3, e5 vanishes. Similarly if e3 = 0 then

one among e1, e5 vanishes, if e5 = 0 then one among e1, e3 vanishes. The result follows from this

and simple computations.

Proposition 5.9.20. Let A ∈Wψ
fix be a GF2-semistable lagrangian with minimal GF2-orbit. Sup-

pose that there exists W ∈ ΘA such that

(1) W ∈ E and hence W ∈ ED by Remark 5.9.17.

(2) The Aut(RΘ) ∩GF2
-orbit of W is not the single open orbit.

(3) CW,A is either P(W ) or a sextic curve in the indeterminacy locus of Map (0.0.10), i.e. [A] ∈ I.

Then [A] ∈ XW .

Proof. One of Items (2) through (5) of Proposition 5.9.19 holds. Thus we may assume that W

is one of the following:

(2’) 〈v0, v2, v5〉.

(3’) 〈v0, v3, v4〉.

(4’) 〈v1, v2, v4〉.

(5’) 〈v0, v2, v4〉.
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Suppose that (2’) or (4’) holds: we will reach a contradiction. In fact in both cases dim(W∩W∞) = 2

- see (5.9.25). Thus [A] ∈ BF1
and hence [A] /∈ I by Proposition 5.7.1, that is a contradiction.

Suppose that (3’) holds. Then Item (3) of Proposition 5.8.1 holds for A with α = −v0, β = v3

and γ = v4 because by Table (22) we have (v0 ∧ v1 ∧ v4 − v0 ∧ v2 ∧ v3) = α(1,1,0,0) ∈ A. Now look

at the proof of Proposition 5.8.1: since the GF2
-orbit of A is minimal we get that

∧10
A is left

invariant by the 1-PS λ3 : C× → GF2
defined by (5.8.8). Let CW,A = V (P ) where P ∈ S6W

∨
.

Applying Claim 3.1.4 to CW,A we get that P is left-invariant by the maximal torus of SL(W )

diagonalized in the basis {v0, v3, v4} (recall that
∧10

A is left invariant by λF2
): thus P = aX2

0X
2
3X

2
4

where {X0, X3, X4} is the basis of W
∨

dual to {v0, v3, v4}. By hypothesis CW,A is either P(W ) or

a sextic curve in the indeterminacy locus of Map (0.0.10): it follows that a = 0 i.e. CW,A = P(W ).

By Proposition 5.2.7 and Lemma 5.9.3 we get that [A] ∈ XW . Lastly suppose that (5’) holds:

we will reach a contradiction. We have 〈v0, v2, v4〉 =
∧2〈u0, u1, u3〉 and hence dim(i+(p) ∩W ) = 2

for every p ∈ D. Viewing i+(D) as a subset of P(
∧3

V ) via the Plücker embedding we get that

〈〈i+(D)〉〉 ⊂ SW . Since W ∈ ΘA and dim〈〈i+(D)〉〉 = 5 it follows that A is PGL(V )-unstable (see

Table (2), stratum XF
C1,+), that is a contradiction.

Let

Wm := {Y0v1 + Y1v3 + Y2v5 | Yi ∈ C}. (5.9.47)

Notice that Wm ∈ ED and it belongs to the open orbit for the action of Aut(RΘ) ∩ GF2 . We will

examine those A ∈Wψ such that ΘA contains Wm and CWm,A is not a sextic in the regular locus

of (0.0.10). Let

Mψ := {Ac,L ∈Wψ
fix | v1 ∧ v3 ∧ v5 ∈ Ac,L}.

Notice that v1 ∧ v3 ∧ v5 is fixed by λF2(t) for every t ∈ C× and hence Ac,L ∈ Mψ if and only if

v1 ∧ v3 ∧ v5 ∈ L. Let

P 00
D := 〈α(0,2,0,0) − α(1,0,0,1), α(0,1,1,0)〉, Q00

D := 〈2β(0,2,0,0) − β(1,0,0,1), β(0,1,1,0)〉.

Thus P 00
D ⊂ P 0

D and Q00
D ⊂ Q0

D. Given J ∈ LG(P 00
D ⊕Q00

D ) we let

LJ := (〈α(0,2,0,0)〉 ⊕ J) ∈ LG(P 0
D ⊕Q0

D). (5.9.48)

We have an isomorphism
P1 × LG(P 00

D ⊕Q00
D )

∼−→ Mψ

(c,J) 7→ Ac,LJ
.

(5.9.49)

In particular Mψ is irreducible of dimension 4. Let LM be as in (5.9.30): then

LM = LJ for some J ∈ LG(P 00
D ⊕Q00

D ) if and only if 0 = m13 = m23 = m33. (5.9.50)

We have [v1 ∧ v3 ∧ v5] = i+([u2]); thus we have an isomorphism

〈u0, u1, u3〉
f−→ Wm

u 7→ u ∧ u2

(5.9.51)

If p ∈ D ⊂ P(〈u0, u1, u3〉) then [f(p)] belongs to the distinct planes i+(p) and to P(Wm). Now

suppose that Ac,L ∈Mψ: then i+(p) ∈ ΘAc,L
and hence by Corollary 3.2.7 we get that

CWm,A = V ((Y0Y2 + Y 2
1 )2(bY0Y2 + aY 2

1 )) if A ∈Mψ. (5.9.52)

Here Y0, Y1, Y2 are as in (5.9.47). Let

Mψ ρ
99K P1

A 7→ [a, b]
(5.9.53)

where a, b are as in (5.9.52). (Lemma 5.9.21 shows that for the generic A ∈Mψ we have (a, b) 6=
(0, 0) and hence we do have a rational map.) Let M̂ψ ⊂

∧10
(
∧3

V ) be the affine cone over Mψ:

then ρ is the projectivization of a regular map

M̂ψ ρ̂−→ C2, (5.9.54)
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see (3.1.23) and (3.1.26). Let

Nψ := {A ∈Mψ | a− b = 0}. (5.9.55)

In other words Nψ is the set of A ∈Mψ such that CWm,A is not a sextic in the regular locus of the

period map (0.0.10).

Lemma 5.9.21. Identify Mψ with P1×LG(P 00
D ⊕Q00

D ) via (5.9.49). Then the set of A ∈Mψ such

that [v3] ∈ CWm,A (i.e. P(ρ̂−1{(0, b)})) is equal to

{(c,J) ∈ P1 ×LG(P 00
D ⊕Q00

D ) | c0 = 0} ∪ {(c,J) ∈ P1 ×LG(P 00
D ⊕Q00

D ) | J∩ P 00
D 6= {0}}. (5.9.56)

Proof. Suppose that c0 = 0. Then

−2c1v0∧v2∧v3 = (c1α(1,1,0,0)+c1β(0,0,1,1)) ∈ Fv3
∩Ac,LJ

3 (c1α(0,1,0,1)−c1β(1,0,1,0)) = 2c1v2∧v3∧v4.

Since c1 6= 0 we get that dim(Fv3 ∩ Ac,LJ
) ≥ 3 and hence [v3] ∈ CWm,Ac,LJ

. Next suppose that

J ∩ P 00
D 6= {0} and let 0 6= (s(α(0,2,0,0) − α(1,0,0,1)) + tα(0,1,1,0)) ∈ J ∩ P 00

D . Then

2sv0∧v3∧v4+tv0∧v3∧v5+tv1∧v3∧v4=(s(α(0,2,0,0)+α(1,0,0,1))+s(α(0,2,0,0)−α(1,0,0,1))+tα(0,1,1,0))∈Fv3∩Ac,LJ
.

Thus dim(Fv3 ∩ Ac,LJ
) ≥ 2 and hence [v3] ∈ CWm,Ac,LJ

. We have proved that the set given

by (5.9.56) is contained in P(ρ̂−1{(0, b)}). It remains to prove that P(ρ̂−1{(0, b)}) is contained

in the set given by (5.9.56). Since v3 generates a λF2
-invariant subspace of V the intersection

Fv3
∩ Ac,LJ

decomposes as the direct-sum of the interesections Fv3
∩ Ac,LJ

(i). By (5.9.26) we get

that Fv3 ∩Ac,LJ
(i) can be non-zero only for i = 0,±1. Looking at Tables (24) and (25) we get that

dim(Fv3
∩ Ac,LJ

(±1) is non-zero only if c0 = 0. Next we compute dim(Fv3
∩ Ac,LJ

(0)) for those

J such that LJ = LM - see (5.9.50). Of course v1 ∧ v3 ∧ v5 ∈ Fv3
∩ Ac,LJ

(0). A straightforward

computation gives that dim(Fv3
∩ Ac,LM (0)) ≥ 2 if and only if (m11m22 − 2m2

12) = 0 (notice: this

is equivalent to requiring that LM ∩ P 00
D 6= {0}). This shows that

P(ρ̂−1{(0, b)}) contains {[c0, c1]} × LG(P 00
D ⊕Q00

D ) if and only if c0 = 0. (5.9.57)

In particular P(ρ̂−1{(0, b)}) is not all of P1 × LG(P 00
D ⊕Q00

D ). It follows that P(ρ̂−1{(0, b)}) is the

zero locus of a non-zero section of OP1(2) � L where L is the (ample) Plücker line-bundle on

LG(P 00
D ⊕Q00

D ) - see (3.1.23) and (3.1.26). Since P(ρ̂−1{(0, b)}) contains the set of (5.9.56) we get

by (5.9.57) that it is equal to that set.

Lemma 5.9.22. Identify Mψ with P1×LG(P 00
D ⊕Q00

D ) via (5.9.49). Then the set of A ∈Mψ such

that [v1 − v5] ∈ CWm,A (i.e. P(ρ̂−1{(a, 0)})) is equal to

{(c,J)∈P1×LG(P 00
D ⊕Q

00
D )|c0c1=0}∪{(c,J)∈P1×LG(P 00

D ⊕Q
00
D )|J∩〈α(0,2,0,0)−α(1,0,0,1),β(0,1,1,0)〉6={0}}. (5.9.58)

Proof. First we prove that the set of (5.9.58) is contained in P(ρ̂−1{(a, 0)}). Suppose that c0 = 0.

Then

−2(v1 − v5) ∧ v0 ∧ v4 = α(1,1,0,0) − β(0,0,1,1) + α(0,1,0,1) + β(1,0,1,0) ∈ F(v1−v5) ∩Ac,L

and hence dim(F(v1−v5)∩Ac,L) ≥ 2: it follows that [v1− v5] ∈ CWm,Ac,L
. Now suppose that c1 = 0.

Then

(v1 − v5) ∧ (v0 ∧ v5 + v2 ∧ v3 − v4 ∧ v5) = −(α(0,0,1,1) + α(1,0,1,0)) ∈ F(v1−v5) ∩Ac,L

and hence dim(F(v1−v5) ∩ Ac,L) ≥ 2: it follows that [v1 − v5] ∈ CWm,Ac,L
. Lastly suppose that

J ∩ 〈α(0,2,0,0) − α(1,0,0,1), β(0,1,1,0)〉 6= {0} and let

0 6= (t(α(0,2,0,0) − α(1,0,0,1)) + uβ(0,1,1,0)) ∈ J ∩ 〈α(0,2,0,0) − α(1,0,0,1), β(0,1,1,0)〉.

Then

(v1−v5)∧((2t−u)v2∧v4+(2t+u)v0∧v2)=(−(u+2t)α(2,0,0,0)−t(α(0,2,0,0)+α(1,0,0,1))+

+t(α(0,2,0,0)−α(1,0,0,1))+uβ(0,1,1,0))+(u−2t)α(0,0,0,2))∈F(v1−v5)∩Ac,L.
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Thus dim(F(v1−v5) ∩ Ac,L) ≥ 2: it follows that [v1 − v5] ∈ CWm,Ac,L
. It remains to prove that

P(ρ̂−1{(a, 0)}) is contained in the set given by (5.9.56). Let Ac,L(even) and Ac,L(odd) be the

direct sum of the
∧3

λF2-isotypical summands of Ac,L with even and odd weights respectively. Let

δ ∈ Ac,L: then δ ∈ F(v1−v5) if and only if v1∧δ = v5∧δ. Since both v1 and v5 belong to λF2
-isotypical

summands of odd weight it follows that F(v1−v5) ∩ Ac,L is the direct-sum of its intersections with

Ac,L(even) and Ac,L(odd). Going through Tables (24) and (25) we get that F(v1−v5) ∩Ac,L(odd) is

not empty if and only if c0c1 = 0. Next we compute dim(F(v1−v5) ∩ Ac,LJ
(even)) for those J such

that LJ = LM - see (5.9.50). Of course v1 ∧ v3 ∧ v5 ∈ F(v1−v5) ∩ Ac,LJ
(even). A straightforward

computation gives that dim(F(v1−v5) ∩Ac,LM (even)) ≥ 2 if and only if m11 = 0 (notice: this holds

if and only if (c,LM ) belongs to the second set of (5.9.58)). In particular P(ρ̂−1{(a, 0)}) is not all

of P1 × LG(P 00
D ⊕ Q00

D ). It follows that P(ρ̂−1{(a, 0)}) is the zero locus of a non-zero section of

OP1(2)�L where L is the (ample) Plücker line-bundle on LG(P 00
D ⊕Q00

D ) - see (3.1.23) and (3.1.26).

Since P(ρ̂−1{(a, 0)}) contains the set of (5.9.58) we get that it is equal to that set.

Proposition 5.9.23. Identify Mψ with P1 × LG(P 00
D ⊕Q00

D ) via (5.9.49). Then

Nψ = {(c,J) | c0 = 0} ∪ XψU (5.9.59)

where XψU is an irreducible divisor in |OP1(1) � L| where L is the ample generator of the Picard

group of LG(P 00
D ⊕Q00

D ) i.e. the Plücker line-bundle.

Proof. Let A = Ac,LJ
. If c0 = 0 then CWm,A = P(Wm) by Lemma 5.9.21 and Lemma 5.9.22.

This shows that the left-hand side of (5.9.59) contains the first set in the right-hand side of the

same equation. We need to compare the two sides away from the set of (c,J) such that c0 = 0.

The restriction to Mψ of the Plücker (ample) line-bundle is isomorphic (via Identification (5.9.49))

to OP1(2) � L. Let π and τ be the projections of P1 × LG(P 00
D ⊕ Q00

D ) to the first and second

factor respectively. Both P(ρ̂−1{(0, b)}) and P(ρ̂−1{(a, 0)}) are the supports of divisors in the linear

system |OP1(2)� L|: thus Lemma 5.9.21 and Lemma 5.9.22 give sections

σ1, σ2 ∈ H0(P1 × LG(P 00
D ⊕Q00

D );OP1(2)� L) (5.9.60)

such that

div(σ1) = 2π∗(∞) + τ∗Σ1, div(σ2) = π∗(0) + π∗(∞) + τ∗Σ2 (5.9.61)

(we choose c1/c0 as affine coordinate on (P1 \ {[0, 1])}) where

Σ1 := {J ∈ LG(P 00
D ⊕Q00

D ) | J ∩ P 00
D 6= {0}} (5.9.62)

and

Σ2 := {J ∈ LG(P 00
D ⊕Q00

D ) | J ∩ 〈α(0,2,0,0) − α(1,0,0,1), β(0,1,1,0)〉 6= {0}}. (5.9.63)

Now notice that away from π−1(∞) the divisors div(σ1) and div(σ2) intersect properly: it follows

that the rational map ρ of (5.9.53) is dominant and ρ∗OP1(1) ∼= OP1(1)�L. This shows that (5.9.59)

holds with XψU a divisor in |OP1(1)�L|. It remains to show that XψU is irreducible. Now XψU contains

the base locus of the rational map ρ i.e.

(π−1(∞) ∩ τ−1Σ2) ∪ (π−1(0) ∩ τ−1Σ1) ∪ (τ−1Σ2 ∩ τ−1Σ1). (5.9.64)

Suppose that XψU is reducible, then it is equal to (π−1(s)∪τ−1Σ) for some s ∈ P1 and Σ ∈ |L|. Since

XψU contains the base locus i.e. (5.9.64) it follows that either s =∞ and Σ = Σ1 or s = 0 and Σ = Σ2:

that is absurd because for the generic (c,J) in the first set CWm,Ac,LJ
= V ((Y0Y2 + Y 2

1 )2(Y0Y2))

while for the generic (c,J) in the second set CWm,Ac,LJ
= V ((Y0Y2 + Y 2

1 )2(Y 2
1 )).

Proposition 5.9.24. XψU ⊂ XψV .

Proof. Let Tψ := (XψV ∩Mψ): thus Tψ is a divisor in |OP1(1)� L| by Corollary 5.9.11 (notation

as in the statement of Proposition 5.9.23). Since XψU is an irreducible divisor in |OP1(1) � L| it

will suffice to prove that

Tψ ⊂ XψU . (5.9.65)
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First we notice that the restriction of the rational function ρ (see (5.9.53)) to Tψ is constant. To

see why notice that ρ = σ1/σ2 where σi ∈ H0(P1 × LG(P 00
D ⊕ Q00

D );OP1(2) � L) are the sections

appearing in the proof of Proposition 5.9.23 - see (5.9.60). The equation of Tψ is given by the

restriction of (5.9.41) to P1 × LG(P 00
D ⊕ Q00

D ) - see also (5.9.39): it follows that Tψ is irreducible,

smooth and

(π∗(∞) + τ∗Σ1)|Tψ = (π∗(0) + Σ2)|Tψ .

Looking at (5.9.61) we get that div(σ1|Tψ ) = div(σ2|Tψ ) and hence the restriction of ρ to Tψ is

constant. Thus it will suffice to show that

there exists A0 ∈ Tψ such that CWm,A0 = V ((Y0Y2 + Y 2
1 )3). (5.9.66)

Let’s show that such an example is provided by the lagrangian AR of (4.3.7). Let Z ⊂ P(U) be the

smooth quadric

Z := {[η0u0 + η1u1 + η2u2 + η3u3] | η0η3 − η2
1 + η2

2 = 0}.

Then Z contains D and is left-invariant by diag(t, 1, 1, t−1) for every t ∈ C×: it follows (see the

proof of Proposition 4.3.4) that every lagrangian A ∈ LG(
∧3

V ) containing 〈〈i+(Z)〉〉 belongs to

Wψ. Let R be the ruling of Z by lines containing the line 〈[1, 0, 0, 0], [0, 1,−1, 0]〉 and let AR be

given by (4.3.7). A straightforward computation gives that

W = 〈v0 − v1, 2v2 − v3, v4 + v5〉.

(Notation as in the definition of AR.) Thus W ∈ ED and it belongs to the open orbit for the action

of Aut(RΘ) ∩ GF2 - see Proposition 5.9.19. Thus there exists g0 ∈ Aut(RΘ) ∩ GF2 such that

A0 := g0AR ∈ Mψ. We have CW∞,AR = P(W∞) and hence CW∞,A0
= P(W∞). Thus A0 ∈ Xψ.

By Corollary 5.9.11 either A0 ∈ XψV or else A0 = A[0,1],LJ
for some J: the latter is impossible

because then A0 would be unstable by Proposition 5.9.13, contradicting Proposition 4.3.4.

Thus A0 ∈ XψV i.e. A0 ∈ Tψ. On the other hand CWm,A0 = V ((Y0Y2 + Y 2
1 )3) by Claim 4.3.6. We

have proved (5.9.66).

The result below follows at once from Proposition 5.9.24.

Corollary 5.9.25. Let A ∈Wψ
fix be a GF2

-semistable lagrangian with minimal GF2
-orbit. Suppose

that there exists W ∈ ΘA such that

(1) W ∈ E and hence W ∈ ED by Remark 5.9.17.

(2) The Aut(RΘ) ∩GF2-orbit of W is the single open orbit.

(3) CW,A is either P(W ) or a sextic curve in the indeterminacy locus of Map (0.0.10), i.e. [A] ∈ I.

Then [A] ∈ XV .

5.9.5 The last step

Below is the main result of the present subsection.

Proposition 5.9.26. BF2 ∩ I = XV .

Proof. By (5.9.43) it suffices to prove that

BF2
∩ I ⊂ XV . (5.9.67)

Let [A] ∈ BF2
∩ I and suppose that A has minimal GF2

-orbit in SF,ssF2
. By Proposition 5.9.8

we may assume that A ∈ Wψ
fix. Lemma 5.9.1 gives that there exists W as in (5.9.4) such that

CW,A is not a sextic curve in the regular locus of Map (0.0.10). Suppose that W = W∞: then

A ∈ XV by Corollary 5.9.11 and Proposition 5.9.13, thus [A] ∈ XV . Next suppose that

W = 〈α, β, γ〉 where α ∈ V01, β ∈ V23 and γ ∈ V45. Thus W ∈ ED: if W belongs to the open
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Aut(RΘ) ∩ GF2
-orbit then [A] ∈ XV by Corollary 5.9.25, otherwise [A] ∈ XW by Proposition

5.9.20 and since XW ⊂ XV we are done again. Lastly suppose that W = W0: then there exists

A′ = gA (here g ∈ PGL(V )) such that A′ ∈ Wψ
fix and CW∞,A is not a sextic curve in the regular

locus of Map (0.0.10). In fact consider the involution

P1 ι−→ P1

[λ, µ] 7→ [µ, λ].

Then g :=
∧2

ι : V → V is an involution mapping i+(D) to itself and exchanging W∞ and W0.

Thus [A] = [A′] ∈ XV .

5.10 XN3

We will determine the GN3-stable points of SFN3
- notation is as in Subsection 5.1. We will apply

the Cone Decomposition Algorithm: this makes sense because SFN3
is a closed (GN3

-invariant) subset

of a product of Grassmannians. Let {ξ2, ξ3} be a basis of V23. The isotypical summands of
∧3

λN3

with non-negative weights are the following:

∧2 V01∧V23, 〈v0∧v1∧v4, v0∧ξ2∧ξ3〉, 〈v0∧v1∧v5, v0∧ξ2∧v4, v0∧ξ3∧v4, v1∧ξ2∧ξ3〉, 〈v0∧ξ2∧v5, v0∧ξ3∧v5, v1∧ξ2∧v4, v1∧ξ3∧v4〉.

(5.10.1)

The weights are (starting from the left) 3, 2, 1, 0. Let A ∈ SFN3
. Let Ai be the intersection of A and

the isotypical summand of weight (3− i): then A =
∑6
i=0Ai. By definition

1 = dimA0 = dimA1 = dimA5 = dimA6, 2 = dimA2 = dimA4 = dimA3, Ai⊥A6−i. (5.10.2)

In particular

A0 = [v0 ∧ v1 ∧ γ0], A6 = [γ0 ∧ v4 ∧ v5], 0 6= γ0 ∈ V23. (5.10.3)

Let λ be a 1-PS of GN3 . There exists a basis {ξ2, ξ3} of V23 such that

λ(t) = ((tm0 , tm1 , tm2),diag(tr, t−r)), (m0,m1,m2, r) ∈ (Z4 \ {(0, 0, 0, 0)}), r ≥ 0. (5.10.4)

We denote such a 1-PS by (m0,m1,m2, r). In the basis {v0, v1, ξ2, ξ3, v4, v5} the action of λ(t) on

V is given by

diag(tm0 , t2m1 , tr−m0−m1−m2 , t−r−m0−m1−m2 , t2m2 , tm0). (5.10.5)

Below are the weights of the action of
∧3

λ(t) on the isotypical summands of (5.10.1):

v0 ∧ v1 ∧ ξ2 v0 ∧ v1 ∧ ξ3
r +m1 −m2 −r +m1 −m2

(5.10.6)

v0 ∧ v1 ∧ v4 v0 ∧ ξ2 ∧ ξ3
m0 + 2m1 + 2m2 −m0 − 2m1 − 2m2

(5.10.7)

v0 ∧ v1 ∧ v5 v0 ∧ ξ2 ∧ v4 v0 ∧ ξ3 ∧ v4 v1 ∧ ξ2 ∧ ξ3
2m0 + 2m1 r −m1 +m2 −r −m1 +m2 −2m0 − 2m2

(5.10.8)

v0 ∧ ξ2 ∧ v5 v0 ∧ ξ3 ∧ v5 v1 ∧ ξ2 ∧ v4 v1 ∧ ξ3 ∧ v4

r +m0 −m1 −m2 −r +m0 −m1 −m2 r −m0 +m1 +m2 −r −m0 +m1 +m2
(5.10.9)

In particular I−(λ) ⊂ {0, 6}: by (5.1.22) and (2.1.9) we get that

µ(A, λ) = 2r(2dλ0 (A0)− 1) + 2|m0 + 2m1 + 2m2|(2dλ0 (A1)− 1) + 2µ(A2, λ) + µ(A3, λ).

Proposition 5.10.1. A ∈ SFN3
is not GN3-stable if and only if one of the following holds:

(1) A2 ∩ 〈v0 ∧ v1 ∧ v5, v1 ∧ ξ2 ∧ ξ3〉 6= {0}.

(2) A2 ∩ ([v0] ∧ V23 ∧ [v4]) 6= {0}.
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(3) v0 ∧ v1 ∧ v4 ∈ A1.

(4) [v1] ∧ V23 ∧ [v4] = A3.

(5) v0 ∧ ξ2 ∧ ξ3 ∈ A1.

(6) [v0] ∧ V23 ∧ [v5] = A3.

(7) A3 ∩ 〈v0 ∧ γ0 ∧ v5, v1 ∧ γ0 ∧ v4〉 6= {0}.

(8) A2 ∩ 〈v0 ∧ v1 ∧ v5, v0 ∧ γ0 ∧ v4〉 6= {0}.

(9) There exists 0 6= γ ∈ V23 such that A2 ∩ 〈v0 ∧ v1 ∧ v5, v0 ∧ γ ∧ v4〉 6= {0} and v0 ∧ γ ∧ v5 ∈ A3.

(10) A2 ∩ 〈v0 ∧ γ0 ∧ v4, v1 ∧ ξ2 ∧ ξ3〉 6= {0}.

(11) There exists 0 6= γ ∈ V23 such that A2 ∩ 〈v0 ∧ γ ∧ v4, v1 ∧ ξ2 ∧ ξ3〉 6= {0} and v1 ∧ γ ∧ v4 ∈ A3.

Proof. We will apply the Cone Decomposition Algorithm. We choose the maximal torus T < GN3

to be

T = {(u1, u2, u3),diag(s, s−1)) | ui, s ∈ C×}. (5.10.10)

(The second entry is diagonal with respect to {ξ2, ξ3}.) Thus

X̌(T )R := {(m0,m1,m2, r) ∈ R5}, C := {(m0,m1,m2, r) ∈ R5 | r ≥ 0},

where notation is as in (5.10.4). Equations (5.10.6), (5.10.7), (5.10.8) and (5.10.9) give that H ⊂
X̌(T )R is an ordering hyperplane if and only if is equal to the kernel of one the following linear

functions:

r, m0−m1−m2, m0−m1−m2±r, m0+2m1+2m2, 2m0+m1+m2, 2m0−m1+3m2±r, 2m0+3m1−m2±r.

In particular the hypotheses of Proposition 2.3.4 are satisfied. Notice also that if λ = (m0,m1,m2, r)

is an ordering 1-PS then so are

λ′ := (−m0,−m1,−m2, r), λ′′ := (m0,m2,m1, r). (5.10.11)

In other words Klein’s group acts on the set of ordering rays. A computation gives that the ordering

rays are spanned by

λ1 := (0, 1,−1, 0), λ2 := (−1, 1, 1, 0), λ3 := (0, 1,−1, 4), λ4 := (4,−1,−1, 6), (5.10.12)

and

(0, 1, 1, 2), (2, 1,−2, 3), (4, 5,−1, 0), (2, 1, 1, 6), (8, 1,−5, 0), (−4, 1, 7, 12) (5.10.13)

together with the 1-PS’s obtained from them by operating with Klein’s group, see (5.10.11). Ta-

ble (27) lists the weights of the tensors appearing in (5.10.8) and (5.10.9) for the action of each

λi and the 1-PS’s obtained from them acting with Klein’s group. (We denote v0 ∧ v1 ∧ v5 by 015,

v0 ∧ v1 ∧ ξ2 by 012 etc.) Similarly Table (28) lists the weights of the tensors appearing in (5.10.8)

and (5.10.9) for the action of the ordering 1-PS’s of (5.10.13) and some of the 1-PS’s obtained

acting with the Klein group. Tables (27) and (28) give also the numerical function µ(A, λ) for λ

one of the λi’s or one of the 1-PS’s obtained from them acting with Klein’s group and also for

ordering 1-PS’s of (5.10.13) and some of their images for the Klein group. We explain our choice of

ordering 1-PS’s in Table (28). The sequence of weights for the action of λ′ (or λ′′) on the tensors

appearing in (5.10.8) and (5.10.9) is obtained from that of λ by changing signs (this does not mean

that the weight of a single monomial changes sign !). It follows that if the weights are symmetric

about 0 then µ(A, λ) = µ(A, λ′) = µ(A, λ′′). This condition holds for the 1-PS’s of (5.10.13) except

for λ ∈ {(4, 5,−1, 0), (8, 1,−5, 0), (−4, 1, 7, 12)}. That explains why we have listed the numerical

function µ(A, λ′) (which is equal to µ(A, λ′′)) for these 1-PS’s.

Going through Table (27) one gets the following:
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(1′) Item (1) holds if and only if dλ1
0 (A2) ≥ 1, in particular if it holds then µ(A, λ1) ≥ 0.

(2′) Item (2) holds if and only if d
λ′1
0 (A2) ≥ 1, in particular if it holds then µ(A, λ′1) ≥ 0.

(3′) Item (3) holds if and only if dλ2
0 (A1) ≥ 1, in particular if it holds then µ(A, λ2) ≥ 0.

(4′) Item (4) holds if and only if dλ2
0 (A3) ≥ 2, in particular if it holds then µ(A, λ2) ≥ 0.

(5′) Item (5) holds if and only if d
λ′2
0 (A1) ≥ 1, in particular if it holds then µ(A, λ′2) ≥ 0.

(6′) Item (6) holds if and only if d
λ′2
0 (A3) ≥ 2, in particular if it holds then µ(A, λ′2) ≥ 0.

(7′) Item (7) holds if and only if dλ3
0 (A0) ≥ 1 and dλ3

0 (A3) ≥ 1, in particular if it holds then

µ(A, λ3) ≥ 0 (notice that dλ3
0 (A2) ≥ 1 for arbitrary A).

(8′) Item (8) holds if and only if dλ4
0 (A0) ≥ 1 and dλ4

0 (A2) ≥ 1, in particular if it holds then

µ(A, λ4) ≥ 0.

(9′) Item (9) holds if and only if dλ4
0 (A2) ≥ 1 and dλ4

0 (A3) ≥ 1, in particular if it holds then

µ(A, λ4) ≥ 0.

(10′) Item (10) holds if and only if d
λ′4
0 (A0) ≥ 1 and d

λ′4
0 (A2) ≥ 1, in particular if it holds then

µ(A, λ′4) ≥ 0.

(11′) Item (11) holds if and only if d
λ′4
0 (A2) ≥ 1 and d

λ′4
0 (A3) ≥ 1, in particular if it holds then

µ(A, λ′4) ≥ 0.

This proves that if one of Items(1)-(11) holds then A is not GN3
-stable. Next suppose that A is

not GN3
-stable. By the Cone Decomposition Algorithm there exists an ordering 1-PS λ such that

µ(A, λ) ≥ 0. Going through Tables (27) and (28) one gets that one of Items (1)-(11) holds.

The result below follows at once from Proposition 5.10.1.

Corollary 5.10.2. The generic A ∈ SFN3
is GN3

-stable.

5.11 XN3 ∩ I

Let U be a complex vector-space of dimension 4 and i+ be the map of (2.2.11): choosing an

isomorphism

φ :

2∧
U
∼−→ V (5.11.1)

we get i+ : P(U) ↪→ Gr(3, V ). Let {u0, u1, u2, u3} be a basis of U and C ⊂ P(U) be the rational

normal cubic curve

C := {[λ3u0 + λ2µu1 + λµ2u2 + µ3u3] | [λ, µ] ∈ P1}. (5.11.2)

Then i+(C) is an irreducible curve parametrizing pairwise incident projective planes of Type R

according to the classification of [20]. Let A ∈ SFN3
be semistable with minimal orbit and such

that [A] ∈ I: we will prove that ΘA contains i+(C) for some choice of Isomorphism (5.9.1),

see Proposition 5.11.4. That result will lead us to study those A ∈ LG(
∧3

V ) such that ΘA

contains i+(C) and moreover
∧10

A is fixed by the action of the 1-PS of SL(V ) given by
∧2

g where

g : C× → SL(U) is defined by g(t) := diag(t3, t, t−1, t−3) (with respect to the basis {u0, u1, u2, u3})
- notice that if we let

v0 := u0 ∧ u1, v1 := u0 ∧ u2, v2 := u0 ∧ u3, v3 := u1 ∧ u2, v4 := u1 ∧ u3, v5 := u2 ∧ u3

then
∧2

g(t) is identified with λN3
(t2). We will denote by Yφfix the set of such A; as noticed above

Yφfix ⊂ SFN3
. If A ∈ SFN3

is semistable with minimal orbit and [A] ∈ I then it is PGL(V )-equivalent

to an element Yφfix, see Proposition 5.11.6. Given A ∈ SFN3
let γ0 ∈ V23 be as in (5.10.3) and let

W∞ := 〈v0, v1, γ0〉, W0 := 〈γ0, v4, v5〉. (5.11.3)
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Thus W∞,W0 ∈ ΘA. In Subsubsection 5.11.3 we will analyze the locus of A ∈ Yφfix such

that CW∞,A is not a sextic in the regular locus of the period map (0.0.10), in particular we will

identify an irreducible locus XφZ ⊂ Yφfix parametrizing such A’s and whose image in M is a closed

irreducible 1-dimensional set XZ contained in I. Lastly we will prove that XN3
∩ I = XZ ∪ XW ,

see Subsubsection 5.11.4. As the reader will notice the outline of the subsection is very similar

to that of Subsection 5.9.

5.11.1 Lagrangians A such that ΘA contains a curve of Type R

Lemma 5.11.1. Suppose that A ∈ SFN3
is semistable with minimal orbit and that [A] ∈ I. Then

there exists

W ∈ {W∞, 〈v0, γ, v5〉, 〈v1, γ, v4〉,W0}, γ ∈ V23 (5.11.4)

such that W ∈ ΘA and CW,A is either P(W ) or a sextic curve in the indeterminacy locus of

Map (0.0.10).

Proof. By hypothesis there exists W? ∈ ΘA such that CW?,A is either P(W?) or a sextic curve in

the indeterminacy locus of Map (0.0.10). Suppose that CW?,A = P(W?). By Proposition 5.2.7

we have [A] ∈ X∗W ∪{z}. By Claim 4.3.5 and (4.4.6) we get that CW,A = P(W ) for every W ∈ ΘA

in particular for W = W∞ (or W = W0). Thus from now on we may assume that

for all W ∈ ΘA we have CW,A 6= P(W ). (5.11.5)

Taking limt→0 λN3(t)W we get that there exists W ∈ ΘA such that CW,A is a sextic curve in the

indeterminacy locus of Map (0.0.10) and W is fixed by λN3(t) for all t ∈ C×. Thus W is the direct

sum of 3 irreducible summands for the representation λN3
: C× → SL(V ) i.e. one of W∞, W0 or

〈v0, v1, v4〉, 〈v0, v1, v5〉, 〈v0, γ, v4〉, 〈v0, γ, v5〉, 〈v0, v4, v5〉, 〈v1, γ, v4〉, 〈v1, γ, v5〉, 〈v1, v4, v5〉, [vi]⊕ V23

(5.11.6)

where γ ∈ V23. Let W1 6= W2 ∈ ΘA: by Proposition 5.7.1 we get that dim(W1 ∩W2) = 1. Thus

we may exclude from (5.11.6) all the subspaces which intersect one of W∞, W0 in a 2-dimensional

space. It follows that W is one of

W∞, 〈v0, γ, v4〉, 〈v0, γ, v5〉, 〈v1, γ, v4〉, 〈v1, γ, v5〉,W0.

It remains to prove that we cannot have W = 〈v0, γ, v4〉 nor W = 〈v1, γ, v5〉. Suppose first that

W = 〈v0, γ, v4〉. Then Item (2) of Proposition 5.10.1 holds and hence lims→0 λ
′
1(s)A exists

and belongs to LG(
∧3

V )ss (if ω generates
∧10

A then lims→0 λ
′
1(s)ω exists and is non-zero) -

see (5.10.11), (5.10.12) and Item (2′) in the proof of Proposition 5.10.1. By hypothesis the orbit

PGL(V )A is closed in SF,ssN3
; thus we may replace A by lims→0 λ

′
1(s)A and hence we may assume

that λ′1(s) acts trivially on
∧10

A for every s ∈ C×. Let CW,A = V (P ) where 0 6= P ∈ C[X,Y, Z]6

- here {X,Y, Z} is the basis of W
∨

dual to {v0, γ, v4}. We know that λ′1(s) and λN3
(t) act trivially

on
∧10

A for (s, t) ∈ C× ×C×. Applying Claim 3.1.4 we get that all elements of SL(W ) given by

diag(s−2t5, s−2t−1, s4t−4) act trivially on P . It follows that P = aX2Y 2Z2 and by (5.11.5) we have

a 6= 0, that is a contradiction. Next suppose that W = 〈v1, γ, v5〉. Then Item (1) of Proposition

5.10.1 holds: one excludes this case arguing as above.

Proposition 5.11.2. Suppose that A ∈ SFN3
is semistable with minimal orbit and that [A] ∈ I.

Then dim ΘA ≥ 1.

Proof. By contradiction. Suppose that dim ΘA = 0. In particular

if W1 6= W2 ∈ ΘA then dim(W1 ∩W2) = 1. (5.11.7)

Moreover CW,A is a sextic curve for every W ∈ ΘA by Corollary 5.2.8. By Lemma 5.11.1 there

exists W ∈ ΘA such that (5.11.4) holds and CW,A is a sextic curve in the indeterminacy locus of

Map (0.0.10). We claim that

dimSW ≤ 3. (5.11.8)
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In fact suppose that (5.11.8) does not hold. Then A ∈ BC1 : by Proposition 5.2.1 we get that

A ∈ PGL(V )A+, that is a contradiction because dim ΘA+
= 3. Let {w0, w1, w2} be the basis of

W appearing in (5.11.3) or in (5.11.4): thus w0 = v0 if W = W∞ or W = 〈v0, γ, v5〉, w0 = v1 if

W = 〈v1, γ, v4〉, w0 = γ0 if W = W0 etc. Let {X0, X1, X2} be the basis of W
∨

dual to {w0, w1, w2}.
The 1-PS λN3

acts trivially on
∧10

A; applying Claim 3.1.4 we get that CW,A = V (P ) where

P = (b1X0X2 + a1X
2
1 )(b2X0X2 + a2X

2
1 )(b3X0X2 + a3X

2
1 ). (5.11.9)

Since CW,A is a sextic curve in the indeterminacy locus of Map (0.0.10) one gets that one of the

following holds:

(1) CW,A = V ((bX0X2 + aX2
1 )3).

(2) CW,A = V (X2
0X

2
2 (bX0X2 +X2

1 )).

(3) CW,A = V (X4
1 (bX0X2 + aX2

1 )).

Let Z be the union of 1-dimensional components of singCW,A: in all of the above cases Z is

non-empty. By Proposition 3.2.6 we have Z ⊂ B(W,A). Arguing exactly as in the proof

of Proposition 5.9.5 one shows that

dim(A ∩ SW ) = 3 (5.11.10)

and that Item (1) or Item (2) leads to a contradiction. Lastly suppose that Item (3) holds. Let

V = W ⊕U where U is λN3
-invariant. Let V := SW ∩ (

∧2
W ∧U). By (5.11.10) we have dimV = 2.

View V as a subspace of Hom(W,U) by choosing a volume form on W : every φ ∈ V has rank 2

and K(V) (notation as in (A.3.6)) is the line V (X1). By Proposition A.3.1 we get that V is

GL(W )×GL(U)-equivalent to Vl. Thus there exists a basis {u0, u1, u2} of U such that

V = 〈w0 ∧ w1 ∧ u0 + w0 ∧ w2 ∧ u1, w0 ∧ w2 ∧ u2 + w1 ∧ w2 ∧ u0〉. (5.11.11)

Up to scalars there is a unique non-zero element of V mapping w0 to 0 and similarly there is a unique

(up to scalars) non-zero element of V mapping w2 to 0: since V, [w0] and [w2] are λN3-invariant

it follows that the two elements of V appearing in (5.11.11) generate λN3
-invariant subspaces.

Since each wi generates a λN3
-invariant subspace it follows that each uj generates a λN3

-invariant

subspace. Considering the possible weights of the uj ’s we see that we cannot have W = 〈v0, γ, v5〉
nor W = 〈v1, γ, v4〉. Suppose that W = W∞. We may (and will) choose v2 := w2 = γ0 and v3 to

be a generator of the λN3-invariant subspace of U . Considering the possible weights of the uj ’s we

get that u0 ∈ [v4] , u1 ∈ [v3] and u2 ∈ [v5]. Rescaling v3, v4, v5 we get that

V = 〈v0 ∧ v1 ∧ v4 + v0 ∧ v2 ∧ v3, v0 ∧ v2 ∧ v5 + v1 ∧ v2 ∧ v4〉.

Thus (v0 ∧ v2 ∧ v5 + v1 ∧ v2 ∧ v4) ∈ A ∩ SW . Now A ∩ SW contains a 3-dimensional subspace R

dictated by the condition A ∈ BN3
- see Table (1) - and (v0 ∧ v2 ∧ v5 + v1 ∧ v2 ∧ v4) /∈ R. Thus

dim(A ∩ SW ) ≥ 4 and that contradicts (5.11.10). It remains to deal with the case W = W0: it is

similar to the case W = W∞.

Choose an isomorphism S2 L
∼−→ V : then we have the maps k : P(L) ↪→ Gr(3, V ) and h : P(L∨) ↪→

Gr(3, V ), see (3.2.20). Let D ⊂ P(L) and D′ ⊂ P(L∨) be (smooth) conics. Then k(D) and h(D′)

are smooth rational sextic curves parametrizing pairwise incident planes in P(V ). By Claim 3.15

of [20] (see also (5.11.22)) we may choose the isomorphism S2 L
∼−→ V so that

i+(C) = k(D) = h(D′). (5.11.12)

In particular we get the following result.

Remark 5.11.3. For a suitable Isomorphism (5.11.1) we have that i+(C) ⊂ ΘAk and similarly with

Ak replaced by Ah.
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Proposition 5.11.4. Suppose that A ∈ SFN3
is semistable with minimal orbit and that [A] ∈ I.

Then ΘA contains i+(C) for some choice of Isomorphism (5.11.1).

Proof. Let [A] ∈ XN3
∩ I. By Proposition 5.11.2 we know that dim ΘA ≥ 1. If dim ΘA ≥ 2 then

by Lemma 5.2.6 we have [A] ∈ XW ∪ {x, x∨}. Let A ∈ X∗W : since a smooth quadric in P3 contains

a twisted cubic ΘA contains i+(C) for some choice of Isomorphism (5.11.1). On the other hand

ΘAk and ΘAh contain i+(C) for some choice of Isomorphism (5.11.1) by Remark 5.11.3. Thus

from now on we may assume that dim ΘA = 1. Let Θ be a 1-dimensional irreducible component of

ΘA. By Theorem 3.9 of [20] the curve Θ belongs to one of the Types

F1,D, E2, E∨2 ,Q,A,A∨, C2,R,S,T,T∨

defined in [20]. Moreover if Θ if of calligraphic Type X then A ∈ BX - see Claim 3.22 of [20]. Thus

if Θ has calligraphic Type then A ∈ BF1
∪ BD ∪ BE2 ∪ BE∨2 ∪ BA ∪ BA∨ ∪ BC2 ; by (5.1.6) we get

that [A] ∈ BA ∪ BC1 ∪ BD ∪ BE1 ∪ BE∨1 and hence [A] ∈ XW ∪ {x, x∨} by Proposition 5.2.1,

Proposition 5.3.1, Proposition 5.4.1, Proposition 5.5.2 and Proposition 5.6.1. As noticed

above it follows that ΘA contains i+(C) for some choice of Isomorphism (5.11.1). Thus from now

on we may assume that Θ is of Type Q, R, S, T or T∨. Now notice that if t ∈ C× then λN3
(t) acts

on Θ i.e. λN3(t)|Θ is an automorphism of Θ. Suppose that λN3(t)|Θ is the identity for each t ∈ C×:

looking at the action of λN3(t) on V we get that Θ is a line and hence A ∈ BF1 . By Proposition

5.7.1 we have BF1
∩ I = ∅ and hence we get a contradiction. It follows that if t ∈ C× is generic

then λN3
(t)|Θ is not the identity - in particular there exist points in Θ with dense orbit and hence

Θ has geometric genus 0. We claim that there does not exist a Θ of Type Q, S, T or T∨ such

that λN3(t)(Θ) = Θ for t ∈ C×. In fact suppose that Θ has type Q. Then we may assume that

Θ = i+(D) where D ⊂ P(U) is the conic given by (5.9.2). Arguing as in the proof of Proposition

5.9.8 we may assume that each λN3
(t) is induced by a projectivity of P(U): as is easily checked

that is impossible. On the other hand Θ cannot be of Type S, T or T∨ because there is no 1-PS

of PGL(V ) mapping such a curve to itself. (There is no copy of C× in the automorphism group of

such a curve acting trivially on the Picard group of the curve.) Thus we have proved that Θ is of

Type R: a curve of such type is equal (up to projectivities) to i+(C) where C is given by (5.11.2)

and the proposition follows.

5.11.2 Lagrangians containing i+(C) and fixed by λN3

Let

Yφ := {A ∈ LG(

3∧
V ) | ΘA ⊃ i+(C)} (5.11.13)

i.e. the closed subset of lagrangians A such that P(A) contains i+(C) - the superscript φ refers to

the chosen isomorphism φ :
∧2

U
∼−→ V .

Remark 5.11.5. The action of C× on P1 defined by diag(t−1, t) induces the action on U given by

diag(t3, t1, t−1, t−3) in the basis {u0, u1, u2, u3}. Via φ we get a representation η : C× → SL(V ). A

straightforward computation gives that η(t) = λN3
(t2) where λN3

(t) is the 1-PS corresponding to

N3 and the basis F = {v0, . . . , v5} of V given by (4.3.1) - see Subsection 5.1.

Let t ∈ C×: by the above remark λN3
(t) defines a projectivity of P(V ) mapping i+(C) to itself.

It follows that λN3
defines an action ρ of C× on Yφ. Let Ŷφ ⊂

∧10
(
∧3

V ) be the affine cone over

Yφ: then ρ lifts to an action ρ̂ on Ŷφ. Let

Yφfix := {A ∈ Yφ |
10∧
A is in the fixed locus of ρ̂(t) for all t ∈ C×}. (5.11.14)

An explicit description of Yφfix goes as follows. First we explain Table (29). Let 〈〈i+(C)〉〉 ⊂ A+(U)

be the span of the affine cone over i+(C). Going through Table (14) one gets that a basis of 〈〈i+(C)〉〉
is given by the first seven entries of Table (29). It follows by a straightforward computation that

the elements of Table (29) form a basis of i+(C)⊥. Notice that each such element spans a subspace

invariant under the action of λN3
(t) for t ∈ C×: the corresponding character of C× is contained
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Table 29: Bases of 〈〈i+(C)〉〉 and of 〈〈i+(C)〉〉⊥.

α-β notation explicit expression action of λN3
(t)

α(2,0,0,0) v0 ∧ v1 ∧ v2 t3

α(0,0,0,2) v2 ∧ v4 ∧ v5 t−3

α(1,1,0,0) v0 ∧ (v1 ∧ v4 − v2 ∧ v3) t2

α(0,0,1,1) v5 ∧ (v1 ∧ v4 + v2 ∧ v3) t−2

α(0,2,0,0) + α(1,0,1,0) v0 ∧ v1 ∧ v5 + v0 ∧ v3 ∧ v4 − v1 ∧ v2 ∧ v3 t

α(1,0,0,1) + α0,1,1,0) v0 ∧ v2 ∧ v5 + v0 ∧ v3 ∧ v5 − v1 ∧ v2 ∧ v4 + v1 ∧ v3 ∧ v4 1

α(0,0,2,0) + α(0,1,0,1) v0 ∧ v4 ∧ v5 + v1 ∧ v3 ∧ v5 + v2 ∧ v3 ∧ v4 t−1

α(0,2,0,0) − α(1,0,1,0) −v0 ∧ v1 ∧ v5 + v0 ∧ v3 ∧ v4 + v1 ∧ v2 ∧ v3 t

α(1,0,0,1) − α(0,1,1,0) v0 ∧ v2 ∧ v5 − v0 ∧ v3 ∧ v5 − v1 ∧ v2 ∧ v4 − v1 ∧ v3 ∧ v4 1

α(0,0,2,0) − α(0,1,0,1) −v0 ∧ v4 ∧ v5 + v1 ∧ v3 ∧ v5 − v2 ∧ v3 ∧ v4 t−1

4β(0,0,2,0) − 2β(0,1,0,1) −2v0 ∧ v1 ∧ v5 + 4v0 ∧ v2 ∧ v4 − 2v1 ∧ v2 ∧ v3 t

β(1,0,0,1) − β(0,1,1,0) v0 ∧ v2 ∧ v5 − v0 ∧ v3 ∧ v5 + v1 ∧ v2 ∧ v4 + v1 ∧ v3 ∧ v4 1

4β(0,2,0,0) − 2β(1,0,1,0) −2v0 ∧ v4 ∧ v5 + 4v1 ∧ v2 ∧ v5 + 2v2 ∧ v3 ∧ v4 t−1

in the third column of Table (29). Let PC ⊂ A+(U) be the subspace spanned by the elements of

Table (29) which belong to lines 8 through 10 and QC ⊂ A−(U) be the subspace spanned by the

elements of Table (29) which belong to lines 11 through 13. Both PC and QC are isotropic for (, )V
and the symplectic form identifies one with the dual of the other; thus the restriction of (, )V to

PC⊕QC is a symplectic form. It follows that a lagrangian A ∈ LG(
∧3

V ) contains i+(C) if and only

if it is equal to 〈〈i+(C)〉〉 ⊕ R where R ∈ LG(PC ⊕QC). Given c = [c0, c1] ∈ P1, d = [d0, d1] ∈ P1

we let

Rc,d := 〈c0(α(0,2,0,0) − α(1,0,1,0)) + c1(4β(0,0,2,0) − 2β(0,1,0,1)),

d0(α(1,0,0,1) − α(0,1,1,0)) + d1(β(1,0,0,1) − β(0,1,1,0)),

c0(α(0,0,2,0) − α(0,1,0,1)) + c1(4β(0,2,0,0) − 2β(1,0,1,0))〉 (5.11.15)

and

Ac,d := 〈〈i+(C)〉〉 ⊕Rc,d. (5.11.16)

Looking at the action of λN3
(t) on the given bases of PC and QC one gets that

Yφfix = {Ac,d | (c,d) ∈ P1 × P1} ∼= P1 × P1. (5.11.17)

Notice that Ac,d is λN3-split of reduced type (1, 1, 2) (look at the action of C× on the elements of

the bases of 〈〈i+(C)〉〉, PC and QC). Thus

Yφfix ⊂ SFN3
. (5.11.18)

Proposition 5.11.6. Let F0 be a basis of V and φ be as in (5.11.1). Suppose that A ∈ SF0

N3
is

semistable with minimal orbit and [A] ∈ I. There exist g ∈ PGL(V ) such that gA ∈ Yφfix.
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Table 30: Values of Rφ =
∧3

L−1
φ ◦ δV , I.

(012) (013) (014) (015) (023) (024) (025) (034) (035) (045)

(012) −(013) −(023) −(123) −(014) −(024) −(124) (034) (134) (234)

Table 31: Values of Rφ =
∧3

L−1
φ ◦ δV , II.

(123) (124) (125) (134) (135) (145) (234) (235) (245) (345)

−(015) −(025) −(125) (035) (135) (235) (045) (145) (245) −(345)

Proof. Assume first that dim ΘA ≥ 2. By Lemma 5.2.6 we have [A] ∈ XW ∪ {z, z∨} and the

result follows, see the proof of Proposition 5.11.4. It remains to deal with the case dim ΘA ≤
1: by Proposition 5.11.4 there exists an irreducible component Θ of ΘA which is projectively

equivalent to i+(C). The 1-PS λF0

N3
fixes A hence it acts on Θ: the action is effective because the

set of fixed points for the action of λF0

N3
on Gr(3, V ) is a collection of points and lines. The image

H consists of the group of automorphisms fixing two (distinct) points p, q ∈ Θ. On the other hand

by Theorem 3.9 of [20] there exists g ∈ PGL(V ) such that gΘ = i+(C): we may choose g so that

g(p) = i+([1, 0, 0, 0]) and g(q) = i+([0, 0, 0, 1]). With this choice of g the group H gets identified

with the group of automorphisms of C fixing [1, 0, 0, 0] and [0, 0, 0, 1]. Thus gA ∈ Yφ by definition

of Yφ.

5.11.3 CW∞,A for A ∈ Yφfix

We will start with a couple of preliminary observations. Let {x0, . . . , x5} be the basis of V ∨ dual

to {v0, . . . , v5} and q ∈ S2 V ∨ be the non-degenereate quadratic form given by x0x5 − x1x4 + x2x3:

the Plücker quadric Gr(2, U) ⊂ P(
∧2

U) = P(V ) is the zero-set of q. Let Lφ : V
∼−→ V ∨ be the

isomorphism defined by q.

Proposition 5.11.7. Let (c,d) ∈ P1 × P1 and c′ := [c0,−c1] and d′ := [d0,−d1]. Then Ac′,d′ is

isomorphic to the dual δV (Ac,d) (see (1.0.12) for the definition of δV ), more precisely δV (Ac,d) =∧3
Lφ(Ac′,d′).

Proof. Let Rφ :=
∧3

L−1
φ ◦ δV . Then Rφ maps each of A±(U) to itself and Rφ|A±(U) = ± IdA±(U).

Thus Ac′,d′ = Rφ(Ac,d) and the proposition follows.

Tables (30) and (31) list the images of the monomials vi ∧ vj ∧ vk under the map Rφ appearing

in the poof of Proposition 5.11.7; they will be useful later on. In the tables we have denoted

vi ∧ vj ∧ vk by (ijk). Next we will examine ΘAc,d
. We will start by discussing (5.11.12). Let

ν : Gr(1,P(U)) ↪→ P(
∧2

U) be the Plücker map. We have the embedding

P2 ∼= C(2) κ−→ P(
∧2

U) = P(V )

z1 + z2 7→ ν(〈z1, z2〉)

where 〈z1, z2〉 is the line spanned by z1, z2 (the projective tangent line to C if z1 = z2). Then

κ∗OP(V )(1) ∼= OP2(2). It follows that for a suitable isomorphism V ∼= S2 L we have

κ(C(2)) = V1(L) (5.11.19)

where V1(L) is the Veronese surface of symmetric tensors of rank 1 modulo scalars. In order to

describe the elements of ΘAk(L) and ΘAh(L) we introduce a peice of notation.

Definition 5.11.8. Keep notation as above and let Q ⊂ P(U) be a smooth quadric containing C.

For i = 1, 2 we let Ti(Q) be the family of lines L ⊂ Q such that L · C = i (the intersection takes

place in Q).
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Thus ν(T2(Q)) is a conic lying in the Veronese surface κ(C(2)) and 〈〈ν(T2(Q))〉〉 belongs to ΘAh ;

in fact

ΘAh(L) = {〈〈T2(Q)〉〉 | Q ∈ |IC(2)| smooth} ∪ {i+(p) | p ∈ C}. (5.11.20)

Now notice that Rφ(T2(Q)) = R1(T1(Q)) where Rφ is as in the proof of Proposition 5.11.7.

By Proposition 5.11.7 it follows that

ΘAk(L) = {〈〈T1(Q)〉〉 | Q ∈ |IC(2)| smooth} ∪ {i+(p) | p ∈ C}. (5.11.21)

In particular we get that

i+(C) = ΘA+(U) ∩ΘAk(L) = ΘA+(U) ∩ΘAh(L) = ΘAk(L) ∩ΘAh(L). (5.11.22)

Claim 5.11.9. Let A ∈ SFN3
. Let {X0, X1, X2} be the basis of W∨∞ dual to {v0, v1, γ0}. There exist

ai, bi ∈ C for i = 1, 2, 3 such that

CW∞,A = V ((b1X0X2 + a1X
2
1 )(b2X0X2 + a2X

2
1 )(b3X0X2 + a3X

2
1 )). (5.11.23)

Proof. Let t ∈ C×: then λN3
(t) fixes

∧10
A, W∞ and W0. Applying Claim 3.1.4 and Item (2)

of Remark 4.1.4 we get the result.

Now let Ac,d ∈ Yφfix: then

W∞ = i+([1, 0, 0, 0]).

Let {X0, X1, X2} be as in Claim 5.11.9. As [λ, µ] varies in P1 the intersection P(W∞)∩P(i+([λ, µ])

traces out a dense open subset of V (X0X2−X2
1 ) ⊂ P(W∞). By Corollary 3.2.7 and Claim 5.11.9

we get that

CW∞,Ac,d
= V ((X0X2 −X2

1 )2(bX0X2 + aX2
1 )). (5.11.24)

We will show that CW∞,Ac,d
and CW0,Ac,d

are projectively equivalent. In fact let ι be the involution

of P1 mapping [λ, µ] to [µ, λ]. Equation (5.11.2) identifies P1
[λ,µ] with C: thus we may regard ι as an

involution of C. In turn ι induces the involution on P(U) given by [u0, u1, u2, u3] 7→ [u3, u2, u1, u0]

and also an involution ϕ ∈ SL(V ) via the isomorphism φ :
∧2

U
∼−→ V of (5.11.1). Explicitly

ϕ(v0) = v5, ϕ(v1) = v4, ϕ(v2) = v2, ϕ(v3) = v3, ϕ(v4) = v1, ϕ(v5) = v0. (5.11.25)

A straightforward computation gives that

ϕ(Ac,d) = Ac,d, (c,d) ∈ P1 × P1. (5.11.26)

Since ϕ(W∞) = W0 we get that

If (c,d) ∈ P1 × P1 then CW∞,Ac,d
is projectively equivalent to CW0,Ac,d

. (5.11.27)

We are interested in

Xφ := {Ac,d ∈ Yφfix | CW∞,Ac,d
= V (m(X0X2 −X2

1 )3), m ∈ C}.

Before stating the next result we introduce some notation. By (5.11.22) we have i+(C) = k(D)

where D ⊂ P(L) is a smooth conic. The 1-PS λN3
is induced by a 1-PS ρ of SL(L) which maps the

conic D to itself: let q1, q2, r ∈ P(L) be the fixed points for the action of ρ on P(L), with q1, q2 ∈ D.

Similarly we have i+(C) = h(D′) where D′ ⊂ P(L∨) is a smooth conic. The 1-PS λN3 is induced

by a 1-PS ρ′ of SL(L∨) which maps the conic D′ to itself: let q′1, q
′
2, r
′ ∈ P(L∨) be the fixed points

for the action of ρ′ on P(L∨), with q′1, q
′
2 ∈ D. Up to reordering we have W∞ = k(q1) = h(q′1) and

W0 = k(q2) = h(q′2). The points r, r′ are given explicitly as follows. Let {ξ0, . . . , ξ3} be the basis of

U∨ dual to {u0, . . . , u3} and let

Q0 = V (ξ0ξ3 − ξ1ξ2) ⊂ P(L). (5.11.28)

Then

k(r) = 〈〈T1(Q0)〉〉, h(r′) = 〈〈T2(Q0)〉〉.
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Proposition 5.11.10. Keep notation as above. Let Ac,d ∈ Yφfix. Then one of the following holds:

(s) dim ΘAc,d
≥ 2 and

(s1) c1 = 0 - in this case Ac,d belongs to X∗W - or

(s2) (c,d) = ([1, 1], [1,−1]) - in this case Ac,d belongs to the orbit of Ak - or

(s3) (c,d) = ([1,−1], [1, 1]) - in this case Ac,d belongs to the orbit of Ah.

(t) dim ΘAc,d
= 1 and every irreducible component of ΘAc,d

is one of the folowing:

(t1) i+(C),

(t2) k(〈q1, q2〉), k(〈r, q1, r〉) or k(〈r, q2〉),

(t3) h(〈q′1, q′2〉), h(〈r′, q′1, r〉) or h(〈r′, q′2〉),

(t4) i+({[ξ0u0 + ξ3u3] | [ξ0, ξ3] ∈ P1}),

(t5) {〈〈T1(Q0)〉〉} where Q0 is given by (5.11.28),

(t6) {〈〈T2(Q0)〉〉}.

Moreover 〈〈T1(Q0)〉〉 is an element of ΘAc,d
if and only if d0 +d1 = 0 and 〈〈T2(Q0)〉〉 is an element

of ΘAc,d
if and only if d0 − d1 = 0.

Proof. As is easily checked

{W ∈ Gr(3, V ) |W ∩ i+(p) 6= {0} ∀p ∈ C} = ΘA+(U) ∪ΘAk(L) ∪ΘAh(L)

where L is as in (5.11.19). Since i+(C) ⊂ ΘAc,d
it follows that

ΘAc,d
⊂ ΘA+(U) ∪ΘAk(L) ∪ΘAh(L). (5.11.29)

Let Θ be an irreducible component of ΘAc,d
. By (5.11.29) one of the following holds:

(A) Θ ⊂ ΘA+(U),

(B) Θ ⊂ ΘAk(L),

(C) Θ ⊂ ΘAh(L).

Suppose that (A) holds. Then Θ = i+(R) where R ⊂ P(U) is left invariant by the action of the 1-PS

of PGL(U) defined by diag(t3, t, t−1, t−3) in the basis {u0, . . . , u3} - see Remark 5.11.5. Moreover

R is an irreducible component of i−1
+ (ΘAc,d

) = i−1
+ P(A) and the latter is an intersection of quadrics.

It follows that Θ is one of the following:

(A1) A+(U),

(A2) i+(Q0),

(A3) i+(C).

(A4) {i+([ξ0u0 + ξ3u3]) | [ξ0, ξ3] ∈ P1},

Next suppose that (B) holds. Arguing as above (notice that this time k−1(ΘAc,d
) is an intersection

of cubics) we get that Θ is one of the following:

(B1) Ak(L),

(B2) k(D)(= i+(C)),

(B3) k(〈q1, q2〉), k(〈r, q1, r〉) or k(〈r, q2〉),

(B4) {k(r)} = 〈〈T1(Q0)〉〉.
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Lastly suppose that (C) holds. Arguing as above we get that Θ is one of the following:

(C1) Ah(L),

(C2) h(D′)(= i+(C)),

(C3) h(〈q′1, q′2〉), h(〈r′, q′1, r〉) or h(〈r′, q′2〉),

(C4) {h(r′)} = 〈〈T2(Q0)〉〉.

A quick glance at Items (A1)-(A4), (B1)-(B4), (C1)-(C4) gives that if dim ΘAc,d
≥ 2 then one of

(A1), (A2), (B1) or (C1) holds. A straightforward computation gives that (A1) or (A2) holds if and

only if c1 = 0 (see (5.11.15)). Moreover if (A1) or (A2) holds then Ac,d belongs to X∗W by definition

of X∗W . Next let’s prove that (B4) or (C4) holds if and only if d = [1,−1] or d = [1, 1] respectively.

Let Q0 be as in (5.11.28): it is a smooth quadric containing C. A computation gives that

〈〈T1(Q0)〉〉 = 〈v1, (v2 + v3), v4〉. (5.11.30)

It follows that 〈〈T1(Q0)〉〉 is an element of ΘAc,d
if and only if d0 + d1 = 0. Similarly

〈〈T2(Q0)〉〉 = 〈v0, v2 − v3, v5〉. (5.11.31)

(Notice: Rφ(
∧3〈〈T1(Q0)〉〉) =

∧3〈〈T2(Q0)〉〉.) It follows that ΘAc,d
contains 〈〈T2(Q0)〉〉 if and only

if d0 − d1 = 0. Next we will prove that Ac,d = Ak(L) if and only if (c,d) = ([1, 1], [1,−1]).

Suppose that Ac,d = Ak(L). Then 〈〈T1(Q0)〉〉 is an element of Ac,d and hence d = [1,−1] by the

computation above. Let

Q1 = V (ξ0ξ2 − ξ2
1 + ξ1ξ3 − ξ2

2) ⊂ P(U).

Thus Q1 is another smooth quadric containing C. A computation shows that

〈〈T1(Q1)〉〉 = 〈v0 + v2, v1 + v4, v2 + v5〉.

It follows that 〈〈T1(Q1)〉〉 is an element of ΘAc,d
if and only if

Ac,d34(v0+v2)∧(v1+v4)∧(v2+v5)=

=4α(2,0,0,0)+(α(0,2,0,0)+α(1,0,1,0))−(α(0,2,0,0)−α(1,0,1,0))−(4β(0,0,2,0)−2β(0,1,0,1))+

+(α(0,0,2,0)+α(0,1,0,1))−(α(0,0,2,0)−α(1,0,1,0))−(4β(0,2,0,0)−2β(1,0,1,0))+4α(0,0,0,2).

The above holds if and only if c0 − c1 = 0. This proves that if Ac,d = Ak(L) then (c,d) =

([1, 1], [1,−1]); since we know that there exists such a (c,d) we get that Ac,d = Ak(L) if and only

if (c,d) = ([1, 1], [1,−1]). By Proposition 5.11.7 it follows that Ac,d = Ah(L) if and only if

(c,d) = ([1,−1], [1, 1]). This proves that if dim ΘAc,d
≥ 2 then one of (s1), (s2) or (s3) holds. Now

suppose that dim ΘAc,d
= 1. We showed above that one of (A3), (A4), (B3), (B4), (C3) or (C4)

holds, thus it is clear that one of (t1) - (t6) holds. We have also shown that 〈〈T1(Q0)〉〉 ∈ ΘAc,d
if

and only if d0 + d1 = 0 and that 〈〈T2(Q0)〉〉 ∈ ΘAc,d
if and only if d0 + d1 = 0.

Remark 5.11.11. Let A ∈ X∗W . There exists d ∈ P1 such that PGL(V )A = PGL(V )A[1,0],d.

Corollary 5.11.12. Let Ac,d ∈ Yφfix. Then CW∞,Ac,d
= P(W∞) if and only if either c1 = 0 or

(c,d) = ([1, 1], [1,−1]).

Proof. If c1 = 0 or (c,d) = ([1, 1], [1,−1]) then CW∞,Ac,d
= P(W∞) by Proposition 5.11.10 -

see Claim 4.3.5 and (4.4.6). Thus it remains to prove the converse. Suppose that CW∞,Ac,d
=

P(W∞). By Corollary 3.2.7 it follows that B(W∞, Ac,d) = P(W∞). Thus one of the following

holds:

(a) Given a generic [v] ∈ P(W∞) there exists W ∈ ΘAc,d
containing v.
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(b) For any [v] ∈ P(W∞) we have

dim(Ac,d ∩ SW∞ ∩ Fv) ≥ 2. (5.11.32)

If (a) holds then dim ΘAc,d
≥ 2. By Proposition 5.11.10, (4.4.6) and (4.4.7) we get that either

c1 = 0 or (c,d) = ([1, 1], [1,−1]). Now suppose that (a) does not hold and that (b) holds. Then

dim(Ac,d ∩ SW∞) ≥ 4 (5.11.33)

and of course c1 6= 0. A straightforward computation gives that (5.11.33) holds if and only if d1 = 0

and in that case

Ac,d∩SW∞=〈v0∧v1∧v2, v0∧v1∧v4−v0∧v2∧v3,

(c0+c1)v0∧v1∧v5−2c1v0∧v2∧v4−(c0−c1)v1∧v2∧v3, v0∧v2∧v5−v1∧v2∧v4〉. (5.11.34)

Given (5.11.34) one checks easily that the set of [v] ∈ P(W∞) for which (5.11.32) holds is a proper

subset of P(W∞), in fact the union of a line and a singleton: that is a contradiction.

Proposition 5.11.13. Let Ac,d ∈ Yφfix. Then Ac,d ∈ Xφ if and only if c1(c0d1 + c1d0) = 0.

Proof. We start by noting that Xφ is the zero-locus of a section (possibly zero) ofOP1(2)�OP1(1) (we

identify Yφfix with P1×P1 via (5.11.17)) - this is a consequence of the discussion that follows (3.1.21).

By Proposition 5.11.10 and Claim 4.3.5 we know that {(c,d) | c1 = 0} is contained in Xφ; it

follows that there exists σ ∈ H0(OP1(m)�OP1(1)) with m ≤ 1 such that

Xφ = {Ac,d | c1 = 0} ∪ V (σ).

Let’s show that σ 6= 0. Suppose the contrary holds i.e. that σ = 0. It follows that the locus of

(c,d) ∈ P1 × P1 such that CW∞,Ac,d
= P(W ) is either all of P1 × P1 or else it is the zero-locus

of a section of OP1(2) � OP1(1); that contradicts Corollary 5.11.12. This proves that σ 6= 0.

By Proposition 5.11.10 and (4.4.6), (4.4.7) we have

([1, 1], [1,−1]), ([1,−1], [1, 1]) ∈ V (σ). (5.11.35)

It follows that m = 1 i.e.

σ ∈ H0(OP1(1)�OP1(1)). (5.11.36)

It remains to prove that

V (σ) = {Ac,d | c0d1 + c1d0 = 0}. (5.11.37)

We will show that

V (σ) ∩ {(c,d) | d1 = 0} = {([1, 0], [1, 0])}. (5.11.38)

Granting the above equality we get (5.11.37) by noting that there is one divisor in |H0(OP1(1) �
OP1(1))| whose zero-locus contains ([1, 1], [1,−1]), ([1,−1], [1, 1]) and ([1, 0], [1, 0]) namely the right-

hand side of (5.11.37). It remains to prove (5.11.38). By (5.11.36) the intersection number of V (σ)

and the “vertical”line P1 × {[1, 0]} is equal to 1: thus in order to prove (5.11.38) it suffices to show

that if c1 6= 0 6= d1 then Ac,d /∈ V (σ). Let (c,d) ∈ P1×P1: as is easily checked d1 = 0 if and only if

ΘAc,d
⊃ i+({[ξ0u0 + ξ3u3]) | [ξ0, ξ3] ∈ P3}). (5.11.39)

Now suppose that d1 = 0 and c1 6= 0. By Proposition 5.11.10 we know that dim ΘAc,d
= 1.

Thus the conic on the right-hand side of (5.11.39) is an irreducible component of ΘAc,d
. Now

let p ∈ (C \ {[1, 0, 0, 0]} be close to [1, 0, 0, 0] and set W = i+(p). By Corollary 5.11.12 we

know that CW∞,Ac,d
6= P(W∞). By continuity it follows that CW,Ac,d

6= P(W ). On the other

hand we see immediatly that B(W,Ac,d) contains a conic and a line (the “projections ”from p

of C and 〈[1, 0, 0, 0], [0, 0, 0, 1]〉 respectively). Thus CW,Ac,d
= 2D + 2L where D is a smooth

conic and L is a line (intersecting D transversely). By continuity and (5.11.24) it follows that

CW∞,Ac,d
= V ((X0X2 − X2

1 )2X2
1 ), in particular (c,d) /∈ Xφ and a fortiori (c,d) /∈ V (σ). This

proves that (5.11.38) holds.

126



Definition 5.11.14. Let XφZ := {Ac,d | c0d1 + c1d0 = 0}. Let X∗Z := ∪φXφZ be the union over all

isomorphisms φ appearing in (5.11.1), and XZ be the closure of X∗Z .

The generic Lagrangian Ac,d ∈ XφZ is semistable: in fact Proposition 5.11.10 gives that it is

semistable for (c,d) ∈ {([1, 0], [1, 0], ([1, 1], [1,−1]), ([1,−1], [1, 1])}. The proposition below gives a

more precise result.

Proposition 5.11.15. Let Ac,d ∈ Yφfix. Then Ac,d is not GN3
-stable if and only if

c1d1(c20 − c21) = 0. (5.11.40)

Proof. A straightforward application of Proposition 5.10.1.

The result below follows at once from Proposition 5.11.15.

Corollary 5.11.16. Let Ac,d ∈ XφZ . Then Ac,d is semistable with minimal orbit.

By the above results it makes sense to let

XZ := XZ//PGL(V ). (5.11.41)

Claim 5.11.17. XZ is an irreducible curve and it is contained in XN3
∩ I.

Proof. By Proposition 5.11.13 we know that dimXZ ≤ 1 and that XZ is irreducible. Since XZ
contains the 3 distinct points y, z, z∨ it is an irreducible curve. By (5.11.18) we have XZ ⊂ XN3

.

Let Ac,d ∈ XφZ : then CW∞,Ac,d
is either P(W∞) or a triple conic: it follows that XZ ⊂ I.

5.11.4 The last step

We will prove that if Ac,d ∈ Yφfix is semistable and [A] ∈ I then A ∈ Xφ. First we will analyze

Ac,[1,±1]. Let

W+ := 〈〈T2(Q0)〉〉 = 〈v0, v2 − v3, v5〉, W− := 〈〈T1(Q0)〉〉 = 〈v1, v2 + v3, v4〉. (5.11.42)

By Proposition 5.11.10 we have W± ∈ ΘAc,[1,±1]
.

Claim 5.11.18. Let {Z0, Z1, Z2} be the basis of W∨± dual to the basis of W± appearing in (5.11.42).

There exist homogeneous quadratic polynomials P±, Q± ∈ C[c0, c1] such that

CW±,Ac,[1,±1]
= V ((Z0Z2 − Z2

1 )2(P±(c)Z0Z2 +Q±(c)Z2
1 )). (5.11.43)

Proof. Applying Claim 3.1.4 to the action of λN3
on W± we get that CW±,Ac,[1,±1]

has equation

fc :=
∏3
i=1(bi(c)Z0Z2 + ai(c)Z2

1 ). Let p ∈ C; by Corollary 3.2.7 the differential of fc vanishes at

W± ∩ i+(p). Since

{W± ∩ i+(p) | p ∈ C} = V (Z0Z2 − Z2
1 ) (5.11.44)

we get that (5.11.43) holds. We may assume that P±, Q± are homogeneous polynomials of degree 2

(beware that they are determined only up to a common scalar factor) by (3.1.22) and (3.1.23).

Proposition 5.11.19. Let notation be as in Claim 5.11.18. The point with Z-coordinates [0, 1, 0]

(1) belongs to CW+,Ac,[1,1]
if and only if c = [3,−1],

(2) belongs to CW−,Ac,[1,−1]
if and only if c = [1, 1].

Moreover

CW+,Ac,[1,1]
= V ((Z0Z2 − Z2

1 )2Z0Z2), CW−,Ac,[1,−1]
= P(W−). (5.11.45)
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Proof. The point in P(W+) with Z-coordinates [0, 1, 0] is [v2 − v3]. By definition [v2 − v3] ∈
CW+,Ac,[1,1]

if and only if dim(Fv2−v3
∩Ac,[1,1]) ≥ 2. Thus the proposition is proved by a computa-

tion. A priori we need to compute the zeroes of a 9× 9 determinant with entries functions of c0, c1.

We explain why the computation breaks up into a series of trivial calculations. The intersection

Fv2−v3
∩Ac,[1,1] is the kernel of the multiplication map

Ac,[1,1] −→
∧4

V

α 7→ (v2 − v3) ∧ α
(5.11.46)

Both Ac,[1,1] and
∧4

V are C×-modules because λN3 acts on them; let Ac,[1,1](t
m) ⊂ Ac,[1,1] be the

weight-m susbpace. Map (5.11.46) is C×-equivariant because (v2 − v3) is λN3
-invariant; hence its

kernel is the direct-sum of the kernels of the multiplication maps Ac,[1,1](t
m)→

∧4
V . The kernels

of these maps are readily computed. One gets that if m /∈ {0,±1} the kernel is trivial for all c,

Fv2−v3 ∩Ac,[1,1](t) =

{
{0} if c 6= [3,−1],

[(v2 − v3) ∧ (v0 ∧ v4 − v1 ∧ v3)] if c = [3,−1],
(5.11.47)

Fv2−v3
∩Ac,[1,1](t

−1) =

{
{0} if c 6= [3,−1],

[(v2 − v3) ∧ (v1 ∧ v5 − v3 ∧ v4)] if c = [3,−1].
(5.11.48)

Moreover the invariant part of Fv2−v3 ∩ Ac,[1,1] is spanned by (v2 − v3) ∧ v0 ∧ v5. It follows that

[v2 − v3] ∈ CW+,Ac,[1,1]
if and only if c = [3,−1]. Moreover we see that [v2 − v3] /∈ B(W+, Ac,[1,1]):

by Proposition 3.2.6 we get that CW+,Ac,[1,1]
has an ordinary node at [v2 − v3] and hence the

first equality of (5.11.45) holds. Similar computations show that [v2 + v3] ∈ CW−,Ac,[1,−1]
(notice:

[v2 + v3] is the point of P(W−) with Z-coordinates [0, 1, 0]) if and only if c = [1, 1]. The second

equality of (5.11.45) holds because by Proposition 5.11.10 we know that A[1,1],[1,−1] = Ak(L).

Corollary 5.11.20. Let {Z0, Z1, Z2} be the basis of W∨± dual to the basis of W± appearing in (5.11.42).

Then

CW±,A[1,0],[1,±1]
= V ((Z0Z2 − Z2

1 )3).

Proof. By Proposition 5.11.19 we know that CW±,A[1,0],[1,±1]
6= P(W±). Thus (see Corollary

3.1.3) it suffices to show that

dim(Fv ∩A[1,0],[1,±1]) ≥ 4 if [v] = W± ∩ i+(p), p ∈ C. (5.11.49)

Let [v] be as above: then v = φ(τ0 ∧ τ1) where τ0, τ1 ∈ U and P(〈τ0, τ1〉) is a line contained in Q0.

Given q ∈ P(〈τ0, τ1〉) we let αq ∈
∧3

V be a generator of
∧3

i+(q) = [αq]: then αq ∈ Fv∩A[1,0],[1,±1].

As q varies in P(〈τ0, τ1〉) the elements αq span a 3-dimensional subsapace of Fv ∩A[1,0],[1,±1] which

does not contain a generator of
∧3

W±; inequality (5.11.49) follows.

Proposition 5.11.21. Let Ac,d ∈ Yφfix. There exists W ∈ ΘAc,d
such that CW,Ac,d

is either P(W )

or a sextic in the indeterminacy locus of the period map (0.0.10) if and only if Ac,d ∈ Xφ.

Proof. Let Ac,d ∈ Xφ; then CW∞,Ac,d
is either P(W∞) or a sextic in the indeterminacy locus

of (0.0.10) by definition of Xφ. Now assume that there exists W ∈ ΘAc,d
such that CW,Ac,d

is

either P(W ) or a sextic in the indeterminacy locus of (0.0.10). If dim ΘAc,d
≥ 2 then Ac,d ∈ Xφ

by Proposition 5.11.10 and Proposition 5.11.13. Thus we may assume that dim ΘAc,d
= 1.

Since the 1-PS λN3
acts on ΘAc,d

we may assume that W is fixed by λN3
(t) for all t ∈ C×. Going

through Items (t1) - (t6) of Proposition 5.11.10 we get that W is one of W∞,W0,W+,W−.

If W ∈ {W∞,W0} then Ac,d ∈ Xφ by definition and by (5.11.27). Next let us consider W+.

By Proposition 5.11.10 we know that W+ ∈ ΘW,Ac,d
if and only if d = [1, 1], moreover CW+,Ac,[1,1]

is a sextic for every c ∈ P1 by Proposition 5.11.19. By Claim 5.11.18 and Corollary 5.11.12

it follows that we have a regular map

P1 −→ |OP(W+)(6)|
c 7→ CW+,Ac,[1,1]

(5.11.50)
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with image a line and c has degree 2 onto its image. Let Z0, Z1, Z2 be the homogeneous coordinates

on P(W+) introduced above. Map (5.11.50) sends [1, 0] to V ((Z0Z2−Z2
1 )3) by Corollary 5.11.20

and it sends [1,−1] to the same sextic by Proposition 5.11.10 and (4.4.7). Since Map (5.11.50)

is of degree 2 onto a line it follows that no other c is mapped to V ((Z0Z2 − Z2
1 )3) i.e. if c /∈

{[1, 0], [1,−1]} then CW+,Ac,[1,1]
is a sextic which is not in the indeterminacy locus of the period

map (0.0.10). By Proposition 5.11.13 both ([1, 0], [1, 1]) and ([1,−1], [1, 1]) belong to Xφ. Lastly

we consider W−. By Proposition 5.11.10 we know that W− ∈ ΘW,Ac,d
if and only if d = [1,−1].

By Proposition 5.11.19 we know that CW−,Ac,[1,−1]
= P(W−) if and only if c = [1, 1] moreover

CW−,A[1,0],[1,−1]
= V ((Z0Z2 − Z2

1 )3) by Corollary 5.11.20. By Claim 5.11.18 it follows that

(a) CW−,Ac,[1,−1]
= V ((Z0Z2 − Z2

1 )3) for all c 6= [1, 1] or else

(b) CW−,Ac,[1,−1]
= V ((Z0Z2 − Z2

1 )3) only for c = [1, 0].

A computation gives that the point in P(W−) with Z-coordinates [1, 0, 1] (i.e. [v1 + v4]) belongs to

CW−,A[1,−1],[1,−1]
: in fact

Fv1+v434(v1+v4)∧(v0∧v2−v2∧v3−v2∧v5)=4α(0,0,0,2)−(α(0,0,2,0)+α(0,1,0,1))+((α(0,0,2,0)−α(0,1,0,1))−(4β(0,2,0,0)−2β(1,0,1,0)))+

+(α(0,2,0,0)+α(1,0,1,0))−((α(0,2,0,0)−α(1,0,1,0))−(4β(0,0,2,0)−2β(0,1,0,1)))−4α(2,0,0,0)∈A[1,−1],[1,−1]. (5.11.51)

Thus Item (b) holds; since ([1, 0], [1,−1]) ∈ Xφ this finishes the proof.

Below is the main result of the present subsection.

Proposition 5.11.22. XN3
∩ I = XW ∪ XZ .

Proof. By (5.11.18) and Remark 5.11.11 we know that XW ⊂ XN3
, moreover XW ⊂ I by Claim

4.3.5: thus XW ⊂ XN3 ∩ I. On the other hand XZ ⊂ XN3 ∩ I by Claim 5.11.17. It remains to

prove that

XN3
∩ I ⊂ XW ∪ XZ . (5.11.52)

Let [A] ∈ XN3 ∩ I. We may and will assume that A has minimal orbit. By Proposition 5.11.6

we may assume that A ∈ Yφfix, say A = Ac,d. By Proposition 5.11.21 we get that Ac,d ∈ Xφ

and by Proposition 5.11.13 either c1 = 0 or (c0d1 + c1d0) = 0. If c1 = 0 then [Ac,d] ∈ XW
by Proposition 5.11.10, if (c0d1 + c1d0) = 0 then [Ac,d] ∈ XZ by definition.

We finish the section by observing that

XV ∩ XZ = {y}. (5.11.53)
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A Elementary auxiliary results

A.1 Discriminant of quadratic forms

Let U be a complex vector-space of finite dimension d. We view S2 U∨ as the vector-space of

quadratic forms on U . Given q∗ ∈ S2 U∨ we let Φ be the polynomial on the vector-space S2 U∨

defined by Φ(q) := det(q∗ + q). Of course Φ is defined up to multiplication by a non-zero scalar,

moreover it depends on q∗ although that does not show up in the notation. Let

Φ = Φ0 + Φ1 + . . .+ Φd, Φi ∈ Si(S2 U) (A.1.1)

be the decomposition into homogeneous components. We will be interested in giving “intrin-

sic”descriptions of the loci

{q ∈ S2 U∨ | 0 = Φ0(q) = . . . = Φj(q)}. (A.1.2)

Of course all one needs to do is to expand a determinant: the point is to give a meaningful

interpretation of the result. We introduce some notation. Given q ∈ S2 U∨ we let

q̃ : U → U∨, (v, w)q := 〈q̃(v), w〉 (A.1.3)

be the associated symmetric map and symmetric bilinear form respectively (here 〈f, v〉 := f(v) for

f ∈ U∨ and v ∈ U). Let K := ker q; then q̃ may be viewed as a (symmetric) map q̃ : (U/K) →
AnnK. The dual quadratic form q∨ is the quadratic form associated to the symmetric map

q̃−1 : AnnK → (U/K).

Thus q∨ ∈ S2(U/K). We denote by ∧iq the quadratic form induced by q on
∧i

U .

Remark A.1.1. If α = v1 ∧ . . . ∧ vi is a decomposable vector of
∧i

U then ∧iq(α) is equal to the

determinant of q|〈v1,...,vi〉 with respect to the basis {v1, . . . , vi}.

The following is well-known (it follows from a straightforward computation).

Proposition A.1.2. Let q∗ ∈ S2 U∨ and

K := ker(q∗), k := dimK. (A.1.4)

Let Φi be the polynomials appearing in (A.1.1). Then

(1) Φi = 0 for i < k, and

(2) there exists c 6= 0 such that Φk(q) = cdet(q|K).

Keep notation and hypotheses as in Proposition A.1.2. Let VK ⊂ S2 U∨ be the subspace of

quadratic forms whose restriction to K vanishes. Given q ∈ VK we have q̃(K) ⊂ AnnK and hence

it makes sense to consider the restriction of q∨∗ to q̃(K).

Proposition A.1.3. Keep notation and hypotheses as in Proposition A.1.2. There exists c 6= 0

such that

Φ2k(q) = cdet(q∨∗ |q̃(K)), q ∈ VK . (A.1.5)

In particular by Remark A.1.1 we have that Φ2k(q) = 0 if and only if the restriction of q∨∗ to

q̃(K) is degenerate.

Proof. Choose a basis {u1, . . . , ud} of U such that K = 〈u1, . . . , uk〉 and q̃∗(ui) = u∨i for k < i ≤ d.

Let q ∈ VK and let M be the matrix of q in the chosen basis - thus the upper-left k × k subminor

of M is zero. Expanding det(q∗ + tq) we get that

det(q∗ + tq) ≡ (−1)kt2k
∑
J

(detMk,J)2 (mod t2k+1)
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where Mk,J is the k × k submatrix of M determined by the first k rows and the columns indicized

by J = (j1, j2, . . . , jk). The claim follows because∑
J

(detMk,J)2 = ∧k(q∨∗ )(q̃(u1) ∧ . . . q̃(uk)).

Remark A.1.4. Keep notation and hypotheses as in Proposition A.1.3. Suppose in addition that

k = 1 and set K = ker q∗ = 〈e1〉. Let q ∈ VK i.e. q(e1) = 0. Since ker q∗ = 〈e1〉 there exists e2 ∈ U
(well-defined modulo 〈e1〉) such that q̃(e1) = q̃∗(e2). An equivalent formulation of Proposition

A.1.3 (in this case) is that Φ2(q) = 0 if and only if q∗(e2) = 0.

A.2 Quadratic forms of corank 2

In the present subsection q∗ ∈ S2 U∨ will be a quadratic form such that

cork(q∗) = 2, K := ker(q∗). (A.2.1)

Let Φ0, . . . ,Φd be the polynomials (well-defined up to multiplication by a non-zero scalar) associated

to q∗. Let q ∈ S2 U∨; by Proposition A.1.2 we know that Φi(q) = 0 for i ≤ 1 and moreover

Φ2(q) = 0 if and only if q|K is degenerate. We will describe the loci of q (subject perhaps to some

a priori condition) such that Φi(q) = 0 for higher i.

Claim A.2.1. Suppose that (A.2.1) holds. Let q ∈ S2 U∨ and keep notation and hypotheses as

above. Suppose moreover that Φ2(q) = 0 i.e. q|K is degenerate. Then Φ3(q) = 0 if and only if there

exists 0 6= e ∈ K such that

q̃(e) ∈ Ann(K), q∨∗ (q̃(e)) = 0. (A.2.2)

(Notice that the equation makes sense because of the first condition.)

Proof. Suppose that q|K = 0. Then Φ3(q) = 0 by Proposition A.1.3. On the other hand

q̃(e) ∈ Ann(K) for all e ∈ K and hence we may define a quadratic form Q on K by setting

Q(v) := q∨∗ (q̃(v)); since dimK = 2 it follows that there exists a non-trivial zero of Q i.e. a solution

of (A.2.2). Now suppose that q|K = 0 has rank 1 and let 〈e〉 = ker(q|K). There exists a basis

{u1, . . . , ud} of U such that K = 〈u1, u2〉, e = u1 and the matrix associated to q∗ is diagonal:

q̃∗(ui) = u∨i for 2 < i ≤ d. Expanding det(q∗ + tq) as function of t one gets that Φ3(q) = 0 if and

only if (A.2.2) holds.

Next we assume that

q|K = 0. (A.2.3)

First we introduce some notation. Given w ∈ K we have q̃(w) ∈ AnnK by (A.2.3) and hence there

exists e(q;w) such that

q̃(w) = q̃∗(e(q;w)). (A.2.4)

Of course e(q;w) is determined modulo K.

Claim A.2.2. Suppose that (A.2.1) holds. Let q ∈ S2 U∨ such that (A.2.3) holds. Let v ∈ K and

suppose that q̃(v) ∈ ker(q∨∗ |q̃(K)) i.e.

(e(q; v), e(q;w))q∗ = 0 ∀w ∈ K. (A.2.5)

Then

(w, e(q; v))q = 0 ∀w ∈ K

and hence q(e(q; v)) is well-defined although e(q; v) is defined modulo K.
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Proof. We have

(w, e(q; v))q = 〈q̃(w), e(q; v)〉 = 〈q̃∗(e(q;w)), e(q; v)〉 = (e(q; v), e(q;w))q∗ .

The last expression vanishes by (A.2.5).

Proposition A.2.3. Suppose that (A.2.1) holds. Let q ∈ S2 U∨. Assume that q|K = 0 and hence

Φi(q) = 0 for i < 4 (see Proposition A.1.3). Suppose moreover that Φ4(q) = 0 i.e. q∨∗ |q̃(K) is

degenerate (see Proposition A.1.3). Then Φ5(q) = 0 if and only if there exists 0 6= v ∈ K such

that (A.2.5) holds and moreover q(e(q; v)) = 0.

Proof. Suppose first that q̃|K is not injective. Then det(q∗+tq) = 0 for all t, in particular Φ5(q) = 0.

On the other let v ∈ K such that q̃(v) = 0. Then e(q; v) = 0; thus (A.2.5) holds and q(e(q; v)) = 0.

Next suppose that q̃|K is injective and q∨∗ |q̃(K) has rank 0. A straightforward computation gives

that Φ5(q) = 0. Now (A.2.5) holds for arbitrary v ∈ K; since dimK = 2 there exists 0 6= v ∈ K
such that q(e(q; v)) = 0. Lastly suppose that q̃|K is injective and q∨∗ |q̃(K) has rank 1. There exists

a basis {u1, . . . , ud} of U such that K = 〈u1, u2〉,

q̃∗(ui) = u∨7−i i = 3, 4, q̃∗(ui) = u∨i 4 < i ≤ d

and q̃(u1) = u∨3 , q̃(u2) = u∨5 . Thus 〈q̃(u1)〉 = ker(q∨∗ |q̃(K)) and e(q;u1) = u4. Let A = (aij) be the

matrix of q with respect to the chosen basis. A straightforward computation gives that

det(q∗ + tq) ≡ a44t
5 (mod t6)

Since a44 = q(u4) = q(e(q;u1)) that finishes the proof of the proposition.

Lastly we will consider the restriction of Φ to affine planes containing q∗ and subject to a certain

hypothesis.

Assumption A.2.4. r, s ∈ S2 U∨ and the following hold:

(1) r|K = 0 and s|K has rank 1 with kernel spanned by v,

(2) the subspace 〈r̃(v), s̃(v)〉 ⊂ AnnK has dimension 2 and when we restrict q∨∗ we get a quadratic

form of rank 1 with kernel spanned by r̃(v),

(3) the restriction of q∨∗ to r̃(K) is degenerate.

Suppose that r, s satisfy Assumption A.2.4; by Proposition A.1.2, Claim A.2.1 and Propo-

sition A.1.3 we have

det(q∗ + xr + ys) ≡ c03y
3 + c31x

3y + c22x
2y2 + c13xy

3 + c04y
4 (mod (x, y)5) (A.2.6)

Claim A.2.5. Suppose that (A.2.1) holds and moreover r, s satisfy Assumption A.2.4, in par-

ticular (A.2.6) holds. Then c31 = 0 if and only if r(e(r; v)) = 0 where v is as in Item (1) of As-

sumption A.2.4 and e(r; v) is as in (A.2.4) with q replaced by r.

Proof. We may choose a basis {u1, . . . , ud} of U such that the following hold

(a) K = 〈u1, u2〉, q̃∗(ui) = u∨7−i for i = 3, 4 and q̃∗(ui) = u∨i for 4 < i ≤ d,

(b) the matrix associated to r in the chosen basis is A = (aij) with a1j = δ3j and a22 = a24 = 0,

(c) the matrix associated to s in the chosen basis is B = (bij) with b1j = δ5j and b22 = 1.
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Let mij := (aijx+ bijy); then q∗ + xr + ys is equal to

0 0 x 0 y 0 · · · 0

0 y m23 b24y m25 m26 · · · m2d

x m32 m33 1 +m34 m35 m36 · · · m3d

0 b42y 1 +m43 m44 m45 m46 · · · m4d

y m52 m53 m54 1 +m55 m56 · · · m5d

0 m62 m63 m64 m65 1 +m66 · · · m6d

...
...

...
...

...
...

. . .
...

0 md2 md3 md4 md5 md6 · · · 1 +mdd


A computation gives that

det(q∗ + xr + ys) = y3 + a44x
3y + . . .

Now a44 = r(u4). On the other hand q̃∗(u4) = u∨3 = r̃(u1) i.e. u4 = e(r;u1); since 〈u1〉 = ker(s|K)

that proves the claim.

A.3 Pencils of degenerate linear maps

Let gl(3) be the space of 3×3 complex matrices. Let gl(3)r ⊂ gl(3) be the closed subset of matrices

of rank at most r. Let

P := {V ∈ Gr(2, gl(3)) | V ⊂ (gl(3)2 \ gl(3)1)}. (A.3.1)

In other words an element of P is a 2-dimensional space of 3× 3 complex matrices whose non-zero

elements have rank 2. Multiplication on the left and the right defines an action of GL3(C)×GL3(C)

on P ; we are interested in the orbits for this action. First we give three explicit elements of P . Let

f :=

0 1 0

1 0 0

0 0 0

 , g :=

0 0 1

0 0 0

1 0 0

 , h :=

1 0 0

0 0 1

0 0 0

 . (A.3.2)

Let

Vl := 〈f, g〉, (A.3.3)

Vc := 〈f, h〉, (A.3.4)

Vp := 〈f t, ht〉. (A.3.5)

Then Vl,Vc,Vp ∈ P ; we claim that the orbits of these elements are pairwise distinct. To see why

we introduce a piece of notation: given V ∈ P let K(V) ⊂ P2 be defined by

K(V) := {ker f | [f ] ∈ P(V)}. (A.3.6)

(This makes sense precisely because rk(f) = 2 for every [f ] ∈ P(V).) If V,V ′ ∈ P belong to the same

orbit then K(V) and K(V ′) belong to the same PGL3(C)-orbit. A straightforward computation

shows that

K(Vl) = V (x), K(Vc) = V (x2 − yz), K(Vp) = V (x, y). (A.3.7)

(Here [x, y, z] are the standard homogeneous coordinates on P2.) Since the above subsets of P2 are

pairwise not projectively equivalent we get that the orbits of Vl,Vc,Vp are pairwise distinct. One

more piece of notation: if V ∈ P we let Vt := {f t | f ∈ V}.

Proposition A.3.1. Keep notation as above. Let V ∈ P ; then V is GL3(C) ×GL3(C)-equivalent

to one and only one of Vl,Vc,Vp.

Proof. It suffices to prove that if V ∈ P then V is equivalent to one of Vl,Vc,Vp. A priori there are

four possible cases:
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(1) neither K(V) nor K(Vt) is a singleton,

(2) K(V) is not a singleton, K(Vt) is a singleton,

(3) K(V) is a singleton, K(Vt) is not a singleton,

(4) both K(V) and K(Vt) are singletons.

Assume that Item (1) holds. Then V is equivalent to 〈α, β〉 whereKer(α) = 〈(0, 0, 1)〉, im(α) = V (z)

and Ker(β) = 〈(0, 1, 0)〉, im(β) = V (y). Thus

α :=

a b 0

c d 0

0 0 0

 , β :=

m 0 n

0 0 0

p 0 q

 . (A.3.8)

Expanding 0 ≡ det(sα + tβ) we get that 0 = d = q. Furthermore bc 6= 0 and np 6= 0 because

2 = rk(α) = rk(β). Then it is easy to show that there exist M,N ∈ GL3(C) such that MαN = f

and MβN = g. Thus V is equivalent to Vl. Now suppose that Item (2) holds: an argument similar

to that given above shows that V is equivalent to Vc. On the other hand if Item (3) holds then

Item (2) holds with V replaced by Vt; since Vp = Vtc we get that V is equivalent to Vp. Finally

suppose that Item (4) holds. We may assume that K(V) = 〈(0, 0, 1)〉 and K(Vt) = V (z). Then

V ⊂ gl2(C); since dimV = 2 there exists 0 6= f ∈ V such that rk(f) < 2, that is a contradiction.

Thus Item (4) cannot hold.

Remark A.3.2. Any 2-dimensional subspace of o3(C) is an element of P ; such a subspace is equiv-

alent to Vl.

References

[1] A. Beauville - R. Donagi, La variétés des droites d’une hypersurface cubique de dimension 4,

C. R. Acad. Sci. Paris Sér. I Math. 301, 1985, pp. 703-706.

[2] C. De Concini - C. Procesi, Topics in hyperplane arrangements, polytopes and box-splines, Univer-

sitext, Springer (2011).

[3] D. Eisenbud - S. Popescu - C. Walter, Lagrangian subbundles and codimension 3 subcanonical

subschemes, Duke Math. J. 107, 2001, pp. 427-467.

[4] A. Ferretti, The Chow ring of double EPW sextics, Math. Zeitschrift 2012, DOI: 10.1007/s00209-

012-0980-5.

[5] V. Gritsenko, K. Hulek, G.K. Sankaran, Moduli spaces of irreducible symplectic manifolds, Com-

pos. Math. 146, 2010, pp. 404-434.

[6] D. Huybrechts, A global Torelli theorem for hyperkähler manifolds (after Verbitsky),

arXiv:1106.5573, Bourbaki talk June 2011.

[7] D. Huybrechts, M. Lehn, The geometry of moduli spaces of shaves, Aspects of Mathematics E 31,

Vieweg (1997).

[8] A. Iliev - L. Manivel, Fano manifolds of degree ten and EPW sextics, Annales scientifiques de l’Ecole

Normale Supérieure 44, 2011, pp. 393-426.

[9] R. Laza, The moduli space of cubic fourfolds, J. Algebraic Geom. 18, 2009, pp. 511-545.

[10] R. Laza, The moduli space of cubic fourfolds via the period map, Ann. of Math. 172, 2010, pp. 673-

711.

[11] E. Looijenga, Compactifications defined by arrangements II: locally symmetric varieties of Type IV ,

Duke Math. J. 118, 2003, pp. 157-181.

134



[12] E. Looijenga, The period map for cubic fourfolds, Invent. Math. 177, 2009, pp. 213-233.
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