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Chapter 0

Introduction

Background

Algebraic geometry studies solutions of systems polynomial equations in a finite set of variables. In
a sense, algebraic geometry originated from Descartes’ introduction of coordinates, because we view
the set of solutions as a geometric object. It is much more convenient to study solutions of polynomial
equations in the homogeneous coordinates of points of a projective space, even if one is initially interested
in the solutions which belong to an affine space, and hence also projective geometry playes a key rôle
in algebraic geometry.

However, the problems that really started algebraic geometry as we know it have to do with the
computation of certain integrals. To explain this, consider the following indefinite integrals:

ż

dx
?

1` x2
,

ż

dx
?

1` x3
.

We may integrate the first one by the substitution x “ 2t
1´t2 , and we get

ż

dx
?

1` x2
“

ż

2dt

1´ t2
“ log

ˆ

1` t

1´ t

˙

` c “ logpx`
a

1` x2q ` c.

The intriguing fact discovered by Fagnano and Euler is that, although no susbtitution by a rational
function will reduce the second integral to an elementary integral, there exists an addition formula

ż a

0

dx
?

1` x3
`

ż b

0

dx
?

1` x3
“ cost`

ż c

0

dx
?

1` x3
,

where c “ Rpa, b,
?
a3 ` 1,

?
b3 ` 1q is a rational funzction of a, b,

?
a3 ` 1,

?
b3 ` 1. The formula is

analogous to the addition formula for logarithms, i.e.
şa

1
dx
x `

şb

1
dx
x “

şab

1
dx
x , and it holds for an analogous

reason, i.e. the existence of maps px, yq ÞÑ pϕpx, yq, ψpx, yqq with ϕ,ψ rational functions, mapping to
itself the curve tpa, bq | b2 “ a3 ` 1u, acting transitively on the points of such curve, and leaving
invariant the differential that we are integrating (the maps are analogous to the maps x ÞÑ λx, which
leave invariant the differential dx

x ).
**************

Conventions

K is an algebraically closed field, and KrZ0, . . . , Zns is the K-algebra of polynomials in Z0, . . . , Zn
with coefficients in K. Let KrZ0, . . . , Znsd Ă KrZ0, . . . , Zns be the degree-d subspace of the algebra of
polynomials, i.e. the set of polynomials F such that F pλZq “ λdF pZq for all λ P K and Z P Kn`1.
Thus we have the direct sum decomposition

KrZ0, . . . , Zns “
8
à

d“0

KrZ0, . . . , Znsd.
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0. Introduction

A polynomial in KrZ0, . . . , Zns is homogeneous if it belongs to one of the above direct summands. An
ideal I Ă KrZ0, . . . , Zns is homogeneous if

I “
8
à

d“0

I XKrZ0, . . . , Znsd, (0.0.1)

i.e. if it is generated by homogeneous elements.
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Chapter 1

Algebraic varieties and regular maps

We are interested in understanding solutions z1, . . . , zn of a family of polynomial equations

f1pz1, . . . , znq “ 0, . . . , frpz1, . . . , znq “ 0.

The entries zi are unknowns in a field K, which we assume to be algebraically closed, e.g. K “ C, and
each fi is an element of Krz1, . . . , zns. Of course, one may consider an arbitrary field, and consider
solutions with entries in that field, but the proper setting for this kind of questions is that of schemes.

In order to understand the geometry of a set of solutions of polynomial equations, it is convenient to
replace affine space AnK by projective space PnK, and consider the set of points in PnK which are solutions
of polynomial equations in the homohgeneous coordinates. The reason is that PnC, with the classical
topology, is compact, and in general PnK has an algebraic property which replaces compactness over C.

We explain this with Bézout’s Theorem, a result which holds for solutions of polynomial equations
in PnK but not in AnK. If F1, . . . , Fn are homogeneous non costant polynomials in Z0, . . . , Zn, then there
exists a common solution of the polynomials

F1pZ0, . . . , Znq “ 0, . . . , FnpZ0, . . . , Znq “ 0,

and moreover, either the set of common solutions is infinite, or it has cardinality degF1 ¨. . .¨Fn, provided
one assignes a suitable multiplicity to each common solution. No analogous result holds for solutions
of polynomial equations in An (take f1, f2, where f2 “ f1` 1), and the reason is that, some (ora all) of
the common solutions might be “at infinity”.

Thus we will start by considering solutions of polynomial equations in a projective space.
We will omit K from the notation for affine and projective space.

1.1 The Zariski topology

Let F P KrZ0, . . . , Znsd. Let x P Pn be represented by a non zero Z P Kn`1. Then F pZq “ 0 if and
only if F pλZq “ 0 for every λ P K˚, because F pλZq “ λdF pZq. Hence, although F pxq is not defined, it
makes to state that F pxq “ 0 or F pxq ­“ 0. Let I Ă KrZ0, . . . , Zns be a homogeneous ideal; we let

V pIq :“ tx P Pn | F pxq “ 0 @ homogeneous F P Iu.

By Hilbert’s basis Theorem A.3.6, a homogeneous ideal I is generated by a finite set of homogeneous
polynomials F1, . . . , Fr, i.e. I “ pF1, . . . , Frq. It follows that

V pIq “ V pF1, . . . , Frq :“ tx P Pn | F1pxq “ . . . “ Frpxq “ 0u

is the set of solutions of a finite system of algebraic equations.

Proposition 1.1.1. The collection of subsets V pIq Ă Pn, where I runs through the collection of homo-
geneous ideals of KrZ0, . . . , Zns, satisfies the axioms for the closed subsets of a topological space.
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1. Algebraic varieties and regular maps

Proof. We have H “ V pp1qq, Pn “ V pp0qq.
Let I, J be homogeneous ideals; we claim that V pIq Y V pJq “ V pI X Jq. We have V pIq, V pJq Ă

V pI X Jq, because I, J Ą I X J ; thus V pIq Y V pJq Ă V pI X Jq. Hence it suffices to show that if
x P V pI X Jq and x R V pIq, then x P V pJq. Since x R V pIq, there exists F P I such that F pxq ­“ 0. If
G P J , then F ¨ G P I X J , and thus pF ¨ Gqpxq “ 0 because x P V pI X Jq; since F pxq ­“ 0, it follows
that Gpxq “ 0. This proves that x P V pJq.

Lastly, let tItutPT be a family of homogeneous ideals of KrZ0, . . . , Zns. Then

č

tPT

V pItq “ V pxtItutPT yq,

where xtItutPT y is the (homogeneous) ideal generated by the collection of the It’s.

Definition 1.1.2. The Zariski topology of Pn is the topology whose closed sets are the sets V pIq Ă Pn,
where I runs through the collection of homogeneous ideals of KrZ0, . . . , Zns. The Zariski topology of a
subset A Ă Pn is the topology induced by the Zariski topology of Pn.

Remark 1.1.3. If K “ C, the Zariski topology is weaker than the classical topology of Pn. In fact, unless
n “ 0, the Zariski is much weaker than the classical topology, in particular it is not Hausdorff.

Remark 1.1.4. We will always identify An with the open subset pPnzV pZ0qq Ă Pn. Thus An has a Zariski
topology, that we describe below. Let J Ă Krz1, . . . , zns be an an ideal, in general not homogeneous.
We let

V pJq :“ tz P An | fpzq “ 0 @f P Ju. (1.1.1)

By Hilbert’s basis Theorem, every ideal J Ă Krz1, . . . , zns is finitely generated, and if J “ pf1, . . . , frq,
then

V pJq “ V pf1, . . . , frq :“ tz P An | fpzq “ 0 @f P Ju.

(The notation conflicts with the notation employed for closed subsets of Pn, but it will always be clear
form the context whether V pJq is a subset of a projective space or of an affine space.)

A subet X Ă An is closed if and only if there exist an ideal J Ă Krz1, . . . , zns such that X “

V pJq. In fact, if X is closed, say X “ pPnzV pZ0qq X V pF1, . . . , Frq, where Fj Ă KrZ0, Z1, . . . , Zns are
homogeneous, then X “ V pf1, . . . , frq, where

fjpz1, . . . , znq :“ F p1, z1, . . . , znq.

Conversely, consider V pf1, . . . , frq. For j P t1, . . . , ru, let dj be the degree of fj . Then

FjpZ0, . . . , Znq :“ Z
dj
0 f

ˆ

Z1

Z0
, . . . ,

Zn
Z0

˙

is a homogegenous polynomial of degree dj . Since V pF1, . . . , Frq Ă Pn is closed, and

V pf1, . . . , frq “ pPnzV pZ0qq X V pF1, . . . , Frq,

we get that V pf1, . . . , frq is closed in An.

Example 1.1.5. A subset X Ă Pn is a hypersurface if it is equal to V pF q, where F is a non constant
homogeneous polynomial. Similarly, a subset X Ă An is a hypersurface if it is equal to V pfq, where f
is a non constant polynomial (in general not homogeneous).

A picture of a hypersurface in A2 is in Figure 1.1. Notice that px, yq are the affine coordinates -
in general, whenever we consider affine or projective space of small dimension, we will denore affine or
homogeneous coordinates by letters x, y, z, . . . and X,Y, Z, . . . respectively.

What is the field K ? The picture shows points with real coordinates. We can view the picture as a
“slice” of the corresponding hypersurface over C, or as the closure (either in the Zariski or the classical
topology) of the corresponding hypersurface over the algebriac closure of the rationals Q.
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1.1. The Zariski topology

Figure 1.1: px2 ` 2y2 ´ 1qp3x2 ` y2 ´ 1q ` 3
100 “ 0

Given a subset A Ă Pn, let

IpAq :“ xF P KrZ0, . . . , Zns | F is homogeneous and F ppq “ 0 for all p P Ay, (1.1.2)

where x, y means “the ideal generated by”. Clearly IpAq is a homogeneous ideal of KrZ0, . . . , Zns, and
V pIpAqq is the closure of A in the Zariski topology.

Definition 1.1.6. A quasi-projective variety is a Zariski locally closed subset of a projective space,
i.e. X Ă Pn such that X “ U X Y , where U, Y Ă Pn are Zariski open and Zariski closed respectively.

Example 1.1.7. By Remark 1.1.4, every subset V pJq Ă An, where J Ă Krz1, . . . , zns is an ideal, is a
quasi projective variety.

Definition 1.1.8. Let X Ă Pn be a closed subset. A principal open subset of X is an open U Ă X
which is equal to

XF :“ XzV pF q,

where F P KrZ0, . . . , Zns is a homogeneous polynomial of strictly positive degree. In general, if X Ă Pn
is locally closed, a principal open subset of X is an open U Ă X which is equal to XF , for a homogeneous
polynomial F P KrZ0, . . . , Zns of strictly positive degree.

Claim 1.1.9. Let X Ă Pn be locally closed. The collection of principal open subsets of X is a basis of
the Zariski topology of X.

Proof. Let U Ă X be open. Then U is open in X. Hence it suffices to prove the claim for X closed. We
have U “ XzW , where W is closed. Let W “ V pIq, where I Ă KrZ0, . . . , Zns is a homogeneous ideal.
Let J Ă KrZ0, . . . , Zns be the homogeneous ideal generated by all products F ¨ Zi, where F P I, and
i P t0, . . . , nu. Then V pJq “ V pIq “ W , and J is generated by a non empty finite set of homogeneous
polynomials F1, . . . , Fr. Then

U “ XzV pF1, . . . , Frq “ XF1
YXF2

Y . . .YXFr .

7



1. Algebraic varieties and regular maps

Remark 1.1.10. If V is a finite dimensional complex vector space, the Zariski topology on PpV q is
defined by imitating what was done for Pn: one associates to a homogeneous ideal I Ă SymV _ the
set of zeroes V pIq, etc. Similarly one defines the Zariski topology on a finite dimensional complex
affine space. Everything that we do in the present chapter applies to this situation, but for the sake of
concreteness we formulate it for Pn and An.

1.2 Decomposition into irreducibles

A proper closed subset X Ă P1 (or X Ă A1) is a finite set of points. In general, a quasi projective
variety is a finite union of closed subsets which are irreducible, i.e. are not the union of proper closed
subsets. In order to formulate the relevant result, we give a few definitions.

Definition 1.2.1. Let X be a topological space. We say that X is reducible if either X “ H or there
exist proper closed subsets Y,W Ă X such that X “ Y YW . We say that X is irreducible if it is not
reducible.

Example 1.2.2. Projective space Pn with the euclidean (classical) topology is reducible except if n “ 0.
On the other hand, Pn with the Zariski topology is irreducible for any n. In fact suppose that Pn “ YYW
with Y and W proper closed subsets. Then there exist F P IpY q such that F ppq ­“ 0 for one (at least)
p P W and g P IpW q such that gpqq ‰ 0 for one (at least) q P Y . Then fg “ 0 because Pn “ Y YW ;
that is a contradiction because KrZ0, . . . , Zns is an integral domain.

Definition 1.2.3. Let X be a topological space. An irreducible decomposition of X consists of a
decomposition (possibly empty)

X “ X1 Y ¨ ¨ ¨ YXr (1.2.1)

where each Xi is a closed irreducible subset of X (irreducible with respect to the induced topology)
and moreover Xi Ć Xj for all i ‰ j.

We will prove the following result.

Theorem 1.2.4. Let A Ă Pn with the (induced) Zariski topology. Then A admits an irreducible
decomposition, and such a decomposition is unique up to reordering of components.

The key step in the proof of Theorem 1.2.4 is the following remarkable consequence of Hilbert’s
basis Theorem A.3.6.

Proposition 1.2.5. Let A Ă Pn, and let A Ą X0 Ą X1 Ą . . . Ą Xm Ą . . . be a descending chain of
Zariski closed subsets of A, i.e Xm Ą Xm`1 for all m P N. Then the chain is stationary, i.e. there
exists m0 P N such that Xm “ Xm0

for m ě m0.

Proof. Let Xi be the closure of Xi in Pn. Then Xi “ A X Xi, because Xi is closed in A. Hence we
may replace Xi by Xi, or equivalently we may suppose that the Xi are closed in Pn. Let Im “ IpXmq.
Then I0 Ă I1 Ă . . . Ă Im Ă . . . is an ascending chain of (homogeneous) ideals of KrZ0, . . . , Zns. By
Hilbert’s basis Theorem and Lemma A.3.3 the ascending chain of ideals is stationary, i.e. there exists
m0 P N such that Im0

“ Im for m ě m0. Thus Xm0
“ V pIm0

q “ V pImq “ Xm for m ě m0.

Proof of Theorem 1.2.4. If A is empty, then it is the empty union (of irreducibles). . Next, suppose
that A is not empty and that it does not admit an irreducible decomposition; we will arrive at a
contradiction. First A in reducible, i.e. A “ X0 YW0 with X0,W0 Ă A proper closed subsets. If both
X0 and W0 have an irreducible decomposition, then A is the union of the irreducible components of X0

and W0, contradicting the assumption that A does not admit an irreducible decomposition. Hence one
of X0, W0, say X0, does not have an irreducible decomposition. In particular X0 is reducible. Thus
X0 “ X1 YW1 with X1,W1 Ă X0 proper closed subsets, and arguing as above, one of X1,W1, say X1,

8



1.2. Decomposition into irreducibles

does not admit a decomposition into irredicbles. Iterating, we get a strictly descending chain of closed
subsets

A Ľ X0 Ľ X1 Ľ ¨ ¨ ¨ Ľ Xm Ľ Xm`1 Ľ ¨ ¨ ¨

This contradicts Proposition 1.2.5. This proves that X has a decomposition into irreducibles X “

X1 Y . . .YXr.
By discarding Xi’s which are contained in Xj with i ­“ j, we may assume that if i ­“ j, then Xi is

not contained in Xj .
Lastly, let us prove that such a decomposition is unique up to reordering, by induction on r. The

case r “ 1 is trivially true. Let r ě 2. Suppose that X “ Y1 Y . . .Y Ys, where each Yj is Zariski closed
irreducible, and Yj Ć Yk if j ­“ k. Since Ys is irreducible, there exists i such that Ys Ă Xi. We may
assume that i “ r. By the same argument, there exists j such that Xr Ă Yj . Thus Ys Ă Xr Ă Yj . It
follows that j “ s, and hence Ys “ Xr. It follows that X1 Y . . . YXr´1 “ Y1 Y . . . Y Ys´1, and hence
the decomposition is unique up to reordering by the inductive hypothesis.

Definition 1.2.6. Let X be a quasi projective variety, and let

X “ X1 Y . . .YXr

be an irreducible decomposition of X. The Xi’s are the irreducible components of X (this makes sense
because, by Theorem 1.2.4, the collection of the Xi’s is uniquely determined by X).

We notice the following consequence of Proposition 1.2.5.

Corollary 1.2.7. A quasi projective variety X (with the Zariski topology) is quasi compact, i.e. every
open covering of X has a finite subcover.

The following result makes a connection between irreducibility and algebra.

Proposition 1.2.8. A subset X Ă Pn is irreducible if and only if IpXq is a prime ideal.

Proof. The proof has essentially been given in Example 1.2.2. Suppose that X is irreducible. In
particular X ­“ H (by definition), and hence IpXq is a proper ideal of KrZ0, . . . , Zns. We must prove
that KrZ0, . . . , Zns{IpXq is an integral domain. Suppose the contrary. Then there exist

F,G P pKrZ0, . . . , ZnszIpXqq (1.2.2)

such that

F ¨G P IpXq. (1.2.3)

By (1.2.3), we have X “ pX X V pF qq Y pX X V pGqq, and both X X V pF q, X X V pGq are proper closed
subsets of X by (1.2.2). This proves that if X is irreducible, then IpXq is a prime ideal.

Next, assume that X is reducible; we must prove that IpXq is not prime. If X “ H, then IpXq “
KrZ0, . . . , Zns and hence IpXq is not prime. Thus we may assume that X ­“ H, and hence there
exist proper closed subset Y,W Ă X such that X “ Y YW . Since Y Ć W and W Ć Y , there exist
F P pIpY qzIpW qq and G P pIpW qzIpY qq. It follows that both (1.2.2) and (1.2.3) hold, and hence IpXq
is not prime.

Remark 1.2.9. Let I :“ pZ2
0 q Ă KrZ0, Z1s. Then V pIq “ tr0, 1su is irreducible although I is not prime.

Of course IpV pIqq is prime, it equals pZ0q.

Remark 1.2.10. Let X Ă An. Let IpXq Ă Krz1, . . . , zns be the ideal of polynomials vanishing on X.
Then X is irreducible if and only if IpXq is a prime ideal. The proof is analogous to the proof of
Proposition 1.2.8. One may also directly relate IpXq with the ideal J Ă KrZ0, . . . , Zns generated by
homogeneous polynomials vanishing on X (as subset of Pn), and argue that IpXq is prime if and only
if J is.
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1. Algebraic varieties and regular maps

Example 1.2.11. Let V pF q Ă Pn be a hypersurface, and let F1, . . . , Fr be the distinct prime factors of the
decomposition of F into a products of primes (recall that KrZ0, . . . , Zns is a UFD, by Corollary A.2.2).
The irreducible decomposition of V pF q is

V pF q “ V pF1q Y . . .Y V pFrq.

In fact, each V pFiq is irreducible by Proposition 1.2.8. What is not obvious is that V pFiqno Ă V pFjq
if Fi, Fj are non associated primes. This follows from Hilbert’s Nullstellensatz, i.e. Theorem A.4.1 (or
by a simpler argument involving only unique factorization in the ring of polynomials).

1.3 Regular maps

Definition 1.3.1. Let X Ă Pn and Y Ă Pm be quasi projective varieties. A map f : X Ñ Y is regular
at a P X if there exist an open U Ă X containing a and F0, . . . , Fm P KrZ0, . . . , Znsd such that for all
rZs P U pF0pZq, . . . , FmpZqq ‰ p0, . . . , 0q, and

fprZsq “ rF0pZq, . . . , FmpZqs. (1.3.1)

The map f is regular if it is regular at each point of X.

The identity map of a quasi projective variety is regular (choose FjpZq “ Zj). If f : X Ñ Y and
g : Y Ñ W are regular maps of quasi projective varieties, the composition g ˝ f : X Ñ W is regular,
because the composition of polynomial functions is a polynomial function. Thus we have the category
of quasi projective varieties. In particular we have the notion of isomorphism between quasi projective
varieties.

Example 1.3.2. Let X Ă An be a locally closed subset (recall that An “ PnZ0
). Then f : X Ñ Pm is

a regular map if and only if, given any a P X, there exist f0, . . . , fm P Krz1, . . . , zns (in general not
homogeneous) such that on an open subset U Ă X containing a we have

fpzq “ rf0pzq, . . . , fmpzqs. (1.3.2)

(This includes the statement that V pf1, . . . , fmq X U “ H.) In fact, if f is regular there exist homo-
geneous F0, . . . , Fm P KrZ0, . . . , Znsd such that fpr1, zsq “ rF0p1, zq, . . . , Fmp1, zqs, and it suffices to let
fjpzq :“ Fjp1, zq. Conversley, if (1.3.2) holds, then

fprZ0, Z1, . . . , Znsq “ rZ
d
0 , Z

d
0f1

ˆ

Z1

Z0
, . . . ,

Zn
Z0

˙

, . . . , Zd0fm

ˆ

Z1

Z0
, . . . ,

Zn
Z0

˙

s, (1.3.3)

and for d is large enough, each of the rational functions appearing in (1.3.3) is actually a homogeneous
polynomial of degree d.

Example 1.3.3. Let X Ă An be a locally closed subset and let f : X Ñ Pm be a map such that fpXq Ă
PmT0

(we let rT0, . . . , Tms be homogeneous coordinates on Pm). Then f is regular if and only if locally
there exist f0, . . . , fm P Krz1, . . . , zns (in general not homogeneous) such that, in affine coordinates
pT1

T0
, . . . , TmT0

q, we have

fpzq “

ˆ

f1pzq

f0pzq
, . . . ,

fmpzq

f0pzq

˙

. (1.3.4)

Example 1.3.4. Let f P Krz1, . . . , zns. Let Y :“ V pfpz1, . . . , znq ¨ zn`1 ´ 1q Ă An`1. The map

AnzV pfq ÝÑ Y
pz1, . . . , znq ÞÑ pz1, . . . , zn,

1
fpz1,...,znq

q

is an isomorphism.
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1.3. Regular maps

Example 1.3.5. Let

Cn “
"

rξ0, . . . , ξns P Pn | rk

ˆ

ξ0 ξ1 ¨ ¨ ¨ ξn´1

ξ1 ξ2 ¨ ¨ ¨ ξn

˙

ď 1

*

. (1.3.5)

Since a matrix has rank at most 1 if and only if all the determinants of its 2ˆ2 minors vanish it follows
that Kn is closed. We have a regular map

P1 ϕn
ÝÑ Kn

rs, ts ÞÑ rsn, sn´1t, . . . , tns
(1.3.6)

Let us prove that ϕn is an isomorphism. Let ψn : Cn Ñ P1 be defined as follows:

ψn prξ0, . . . , ξnsq “

#

rξ0, ξ1s if rξ0, . . . , ξns P Cn X Pnξ0
rξn´1, ξns if rξ0, . . . , ξns P Cn X Pnξn

Of course one has to check that the two expressions coincide for points in Kn X Pnξ0 X Pnξn : from (1.3.5)
we get that ξ0 ¨ ξn´ ξ1ξn´1 vanishes on Kn and this shows the required compatibility. One checks easily
that ψd ˝ ϕn “ IdP1 and ϕn ˝ ψn “ IdKn ; thus ϕn defines an isomorphism P1 „

ÝÑ Kn.
Unless we are in the trivial case n “ 1, it is not possible to define ψn globally as

ψn prξ0, . . . , ξnsq “ rP pξ0, . . . , ξnq, Qpξ0, . . . , ξnqs, (1.3.7)

with P,Q P Krξ0, . . . , ξnse not vanishing simultaneously on Kn. In fact suppose that (1.3.7) holds, and
let

pps, tq :“ P psn, . . . , tnq, qps, tq :“ Qpsn, . . . , tnq.

The polynomials pps, tq, qps, tq are homogeneous of degree de, they do not vanish simultaneously on a
non zero ps0, t0q, and forall rs, ts P P1 we have rpps, tq, qps, tqs “ rs, ts. It follows that pps, tq “ s ¨ rps, tq
and qps, tq “ t ¨ rps, tq, where rps, tq has no non trivial zeroes, i.e. rps, tq is constant. In particular
de “ deg p “ deg q “ 1, and hence d “ 1.

Example 1.3.6. We recall the formula

dimKrZ0, . . . , Znsd “

ˆ

d` n

n

˙

. (1.3.8)

(See Exercise 1.8.1 for a proof.) Let Npn; dq :“
`

d`n
n

˘

´ 1. Let

Pn νnd
ÝÑ PNpn;dq

rZs ÞÑ rZd0 , Z
d´1
0 Z1, . . . , Z

d
ns

(1.3.9)

be defined by all homogeneous monomials of degree d - this is a Veronese map. Clearly νnd is regular.
The homogeneous coordinates on PNpn;dq appearing in (1.3.9) are indiced by length n`1 multiindices

I “ pi0, . . . , inq such that deg I :“ i0 ` . . .` in “ d; we denote them by r. . . , ξI , . . .s. Let V n
d Ă PNpn;dq

be the closed subset defined by

V n
d :“ V p. . . , ξI ¨ ξJ ´ ξK ¨ ξL, . . .q,

where I, J, L,K run through all multiindices such that I ` J “ K ` L. Clearly νnd pPnq Ă V n
d . Let us

show that νnd is an isomorphism onto V n
d .

Given a length n ` 1 multiindex H of degree d ´ 1, we let Hs :“ H ` es, where, for e0, . . . , en is
the standard basis of Zn, i.e. es has alla entries equal to 0, except for the entry at place s` 1, which is
equal to 1. For s P t0, . . . , nu, let

V n
d zV pξH0

, . . . , ξHnq
ϕnd pHq
ÝÑ Pn

r. . . , ξI , . . .s ÞÑ rξH0
, . . . , ξHns

11



1. Algebraic varieties and regular maps

Let H,H 1 be length n` 1 multiindices of degree d´ 1. It follows from the equations defining V n
d that

ϕnd pHqprzsq “ ϕnd pH
1qprzsq for all rZs which is in the domain of ϕnd pHq and ϕnd pH

1q. Thus the ϕnd pHq’s
define a regular map ϕnd : V n

d Ñ Pn. We claim that

ϕnd ˝ ν
n
d “ IdPn (1.3.10)

νnd ˝ ϕ
n
d “ IdPNpn;dq . (1.3.11)

The first equality is easily checked. In order to check the second equality, one may proceed as follows.
Let rξs “ r. . . , ξI , . . .s P V n

d be a point such that ξdes ­“ 0 for some s P t0, . . . , nu. Then it is not difficult
to show that there exists rZs P Pn such that rξs “ νnd przsq. By (1.3.10), it follows that νnd ˝ϕ

n
d prξsq “ rξs.

Hence it suffices to prove that if rξs P V n
d , then there exists s P t0, . . . , nu such that ξdes ­“ 0. Thus, we

must show that if . . . , ξI , . . . are such that ξI ¨ ξJ “ ξK ¨ ξL whenever I ` J “ K ` L, and ξdes “ 0 for
all s P t0, . . . , nu, then ξI “ 0 for all multiindices I. This is easily proved by “descending induction” on
the maximum of i0, . . . , in, by using a suitable relation ξ2

I “ ξK ¨ ξL (if the maximum is d, then ξI “ 0
by hypothesis).

Example 1.3.7. Assume that charK “ p ą 0. Let X “ V pG1, . . . , Grq Ă Pn be a closed subset defined
by homogeneous G1, . . . , Gr P FprZ0, . . . , Zns (we require that the coefficients of the Gi’s belong to the
prime field Fp). Then we may define the Frobenius map : X Ñ X by setting

X
F
ÝÑ X

rZs ÞÑ rZp0 , . . . , Z
p
i , . . . , Z

p
ns.

In fact, if Gi “
ř

I aJZ
J , then

GipZ
p
0 , . . . , Z

p
i , . . . , Z

p
nq “

ÿ

I

aJpZ
Jqp “

ÿ

I

apJpZ
Jqp “ GipZ0, . . . , Zi, . . . , Znq

p “ 0.

More generally, if all the coefficients of the Gi’s are contained in Fpr (e.g. if K is the algebraic closure
of Fp), then we may define F : X Ñ X replacing the exponent p by pr. Notice that F is bijective, but
it is not an isomorphism.

Proposition 1.3.8. A regular map of quasi projective varieties is Zariski continuous.

Proof. Let X Ă Pn and Y Ă Pm be Zariski locally closed, and let f : X Ñ Y be a regular map. We must
prove that if C Ă Y is Zariski closed, then f´1C is Zariski closed in X. Let U ĂW be an open subset
such that (1.3.1) holds. Let us show that φ´1C X U is closed in U . Since C is closed C “ V pIq X Y
where I Ă KrT0, . . . , Tms is a homogeneous ideal. Thus

φ´1C X U “ trZs P U | P pF0pZq, . . . , FmpZqq “ 0 @P P Iu.

Since each P pF0pZq, . . . , FmpZqq is a homogeneous polynomial, we get that φ´1C X U is closed in U .
By definition of regular map X can be covered by Zariski open sets Uα such that (1.3.1) holds with

U replaced by Uα. We have proved that Cα :“ φ´1C X Uα is closed in Uα for all α. It follows that
φ´1C is closed. In fact let Cα Ă X be the closure of Cα and Dα :“ XzUα. Since Cα is closed in Uα we
have

Cα X Uα “ Cα “ φ´1C X Uα. (1.3.12)

Moreover Dα is closed in X because Uα is open. By (1.3.12) we have

φ´1C “
č

α

`

Cα YDα

˘

.

Thus φ´1C is an intersection of closed sets and hence is closed.

The following lemma will be useful later on. The easy proof is left to the reader.
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1.4. Regular functions on affine varieties

Lemma 1.3.9. Let f : X Ñ Y be a map between quasi projective varieties. Suppose that Y “
Ť

iPI Ui
is an open cover, that f´1Ui is open in X for each i P I and that the restriction

f´1Ui ÝÑ Ui
x ÞÑ fpxq

is regular for each i P I. Then f is regular.

Definition 1.3.10. A quasi projective variety is

‚ an affine variety if it is isomorphic to a closed subset of an affine space (as usual we view An as
the open subset PnZ0

Ă Pn),

‚ a projective variety if it is isomorphic to a closed subset of a projective space.

Example 1.3.11. Let F P KrZ0, . . . , Zns be a homogeneous polynomial of strictly positive degree. The

principal open subset PnF (see Definition 1.1.8) is an affine variety. In fact, let νnd : Pn ÝÑ Pp
d`n
n q´1 be

the Veronese map, see (1.3.9), and let V n
d :“ Im νnd be the corresponding Veronese variety. As shown

in Example 1.3.6 the map Pn Ñ V n
d defined by νnd is an isomorphism. It follows that the restriction of

νnd to PnF defines an isomorphism between PnF and V n
d zH, where H Ă Pp

d`n
n q´1 is a suitable hyperplane

section. Equivalently, PnF is isomorphic to the intersection of the affine space Pp
d`n
n q´1

zH and the closed
set V n

d , and hence is an affine variety.
If Y Ă Pn is closed, and F P KrZ0, . . . , Zns is homogeneous of strictly positive degree d, it follows

that the principal open set YF “ Y zV pF q is an affine variety. In fact, since νnd is an isomorphism
νnd pYF q is closed in the affine variety V n

d zH, and hence is itself affine. Moreover, the restriction of νnd
to YF defines an isomorphism YF and the affine variety νnd pYF q.

Claim 1.1.9 and Example 1.3.11 give the following result.

Proposition 1.3.12. The open affine subsets of a quasi projective variety form a basis of the Zariski
topology.

In a certain sense, open affine subsets of a quasi projective variety are similar to the open subsets
of a complex manifold given by charts of a holomorphic atlas.

1.4 Regular functions on affine varieties

Definition 1.4.1. A regular function on a quasi projective variety X is a regular map X Ñ K.

Let X be a non empty quasi projective variety. The set of regular functions on X with pointwise
addition and multiplication is a K-algebra, named the ring of regular functions of X. We denote it by
KrXs.

If X is a projective variety, then it has few regular functions. In fact we will prove (see Corol-
lary 1.6.6) that every regular function on X is locally constant. On the other hand, affine varieties have
plenty of functions. In fact if X Ă An is closed we have an inclusion

Krz1, . . . , zns{IpXq ãÑ KrXs. (1.4.1)

Theorem 1.4.2. Let X Ă An be closed. Then (1.4.1) is an equality, i.e. every regular function on X
is the restriction of a polynomial function on An.

Before proving Theorem 1.4.2, we notice that, ifX Ă An is closed, the Nullstellensatz for Krz1, . . . , zns
implies a Nullstellensatz for Krz1, . . . , zns{IpXq. First a definition: given an ideal J Ă pKrz1, . . . , zns{IpXqq
we let

V pJq :“ ta P X | fpaq “ 0 @f P Ju .

The following result follows at once from the Nullstellensatz.
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1. Algebraic varieties and regular maps

Proposition 1.4.3 (Nullstellensatz for a closed subset of An). Let X Ă An be closed, and let J Ă
pKrz1, . . . , zns{IpXqq be an ideal. Then

 

f P pKrz1, . . . , zns{IpXqq | f|V pJq “ 0
(

“
?
J.

(The radical
?
J is taken inside Krz1, . . . , zns{IpXq.) In particular V pJq “ H if and only if J “ p1q.

The following example makes it clear that Proposition 1.4.3 must play a rôle in the proof of The-
orem 1.4.2. Let X Ă An be closed. Suppose that g P Krz1, . . . , zns and that gpaq ‰ 0 for all a P Z. Then
1{g P KrXs and hence Theorem 1.4.2 predicts the existence of f P Krz1, . . . , zns such that g´1 “ f|X .
By Proposition 1.4.3, pgq “ p1q in Krz1, . . . , zns{IpXq, because V pgq “ H, where g :“ g|X . hence there

exists f P Krz1, . . . , zns such that f ¨ g “ 1, where f :“ f|X , i.e. g´1 “ f|X

Proof of Theorem 1.4.2. Let ϕ P KrXs. We claim that there exist fi, gi P Krz1, . . . , zns for 1 ď i ď d
such that

1. X “
Ť

1ďiďdXgi , i.e. V pg1, . . . , gdq XX “ H,

2. for all a P Xgi we have ϕpaq “ fipaq
gipaq

,

3. for 1 ď i ď j we have pgjfi ´ gifjq|X “ 0.

(Notice: the last item implies that on Xgi XXgj we have fi{gi “ fj{gj .) For i “ 1, . . . , d let gi :“ gi|X
and f i :“ fi|X . Then

giϕ “ f i. (1.4.2)

In fact by Item (1) it suffices to check that (1.4.2) holds on Xfj for j “ 1, . . . , d. For j “ i it holds by
Item (2), for j ­“ i it holds by Item (3). (Notice: if we do not assume that Item (3) holds we only know
that (1.4.2) holds on Uj X Ui.) By Proposition 1.4.3 we have that pg1, . . . , gdq “ p1q, i.e. there exist
h1, . . . , hd P Krz1, . . . , zns such that

1 “ h1g1 ` ¨ ¨ ¨ ` hdgd.

where hi :“ hi|X . Multiplying by ϕ both sides of the above equality and remembering (1.4.2) we get
that

ϕ “ h1g1ϕ` ¨ ¨ ¨ ` hdgdϕ “ h1f1 ` . . .` h1fd “ ph1f1 ` ¨ ¨ ¨ ` hdfdq|X . (1.4.3)

It remains to prove that there exist fi, gi P Krz1, . . . , zns with the properties stated above. By definition
of regular function there exist an open covering of X, and for each set U of the open cover a couple
α, β P Krz1, . . . , zns such that ϕpxq “ αpxq{βpxq for all x P U (it is understood that βpxq ­“ 0 for all

x P U). By Remark 1.4.4 we may cover U by open affine sets Xγ1 , . . . , Xγr . Since V pβq Ă
r
Ş

i“1

V pγiq

the Nullstellensatz gives that, for each i, there exist Ni ą 0 and µi P Krz1, . . . , zns such that γNii “ µiβ
and hence ϕpxq “ µipxqαpxq{γipxq

N for all x P Xγi . Since Xγi “ XγNi
we get that we have covered

X by principal open sets Xg1 such that ϕ “ f 1{g1 for all x P Xg1 , where f 1 P Krz1, . . . , zns (of course
f 1 depends on g1). By Corollary 1.2.7, the open covering has a finite subcovering, corresponding to
f 11, g

1
1, . . . , f

1
d, g

1
d. Now let

fi :“ f 1ig
1
i, gi :“ pg1iq

2.

Clearly Items (1) and (2) hold. In order to check Item (3) we write

pgjfi ´ gifjq|X “ ppg
1
jq

2f 1ig
1
i ´ pg

1
iq

2f 1jg
1
jq|X “ ppg

1
ig
1
jqpf

1
ig
1
j ´ f

1
jg
1
iqq|X .

Since ϕpzq “ f 1ipzq{g
1
ipzq “ f 1jpzq{g

1
jpzq for all z P Xg1i

X Xg1j
the last term vanishes on Xg1i

X Xg1j
, on

the other hand it vanishes also on pXzXg1i
XXg1j

q “ X X V pg1ig
1
jq because of the factor pg1ig

1
jq.
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1.4. Regular functions on affine varieties

We end the present section with a couple of consequences of Theorem 1.4.2.
First we give a more explicit version of Proposition 1.3.12 in the case that the quasi projective

variety itself is affine. Given a quasi projective variety X, and f P KrXs, let

Xf :“ XzV pfq, (1.4.4)

where V pfq :“ tx P X | fpxq “ 0u. The following remark is easily verified.

Remark 1.4.4. Let X Ă An be closed (and hence an affine variety). Let f P KrXs, and hence by

Theorem 1.4.2 there exists rf P Krz1, . . . , zns such that rf|X “ f . Let Y Ă An`1 be the subset of
solutions of gpz1, . . . , znq “ 0 for all g P IpXq, and the extra equation fpz1, . . . , znq ¨ zn`1´ 1 “ 0. Then
the map

Xf ÝÑ Y
pz1, . . . , znq ÞÑ pz1, . . . , zn,

1
fpz1,...,znq

q

is an isomorphism. In particular Xf is an open affine subset of X. Moreover, the open affine subset
Xf , for f P KrXs form a basis for the Zariski topology of X.

Notice that, by Theorem 1.4.2 and the above isomorphism, every regular function on Xf is given
by the restriction to Xf of g

fm , where g P KrXs and m P N.

Next, we give a few remarkable consequences of Theorem 1.4.2.

Proposition 1.4.5. Let R be a finitely generated K algebra without nilpotents. There exists an affine
variety X such that KrXs – R (as K algebras).

Proof. Let α1, . . . , αn be generators (over K) of R, and let ϕ : Krz1, . . . , zns Ñ R be the surjection of
algebras mapping zi to αi. The kernel of ϕ is an ideal I Ă Krz1, . . . , zns, which is radical because R
has no nilpotents. Let X :“ V pIq Ă An. Then KrXs – R by Theorem 1.4.2.

In order to introduce the next result, consider a regular map f : X Ñ Y of (non empty) quasi
projective varieties. The pull-back f˚ : KrY s Ñ KrXs is the homomorphism of K-algebras defined by
f˚pϕq :“ ϕ ˝ f .

Proposition 1.4.6. Let Y be an affine variety, and let X be a quasi projective variety. The map

tf : X Ñ Y | f regularu ÝÑ tϕ : KrY s Ñ KrXs | ϕ homomorphism of K-algebrasu
f ÞÑ f˚

(1.4.5)

is a bijection.

Proof. We may assume that Y Ă An is closed; let ι : Y ãÑ An be the inclusion map. Suppose that
f, g : X Ñ Y are regular maps, and that f˚ “ g˚. Then f˚pι˚pziqq “ g˚pι˚pziqq for i P t1, . . . , nu,
and hence f “ g. This proves injectivity of the map in (1.4.5). In order to prove surjectivity, let
ϕ : KrY s Ñ KrXs be a homomorphism of K algebras. Let fi :“ ϕpι˚pziqq, and let f : X Ñ An be the
regular map defined by fpxq :“ pf1pxq, . . . , fnpxqq for x P X. Then fpxq P Y for all x P X. In fact,
since Y is closed, it suffices to show that gpfpxqq “ 0 for all g P IpXq. Now

gpf1pxq, . . . , fnpxqq “ gpϕpι˚pz1qq, . . . , ϕpι
˚pznqq “ ϕpgpι˚pz1qq, . . . , ι

˚pznqq “ ϕp0q “ 0.

(The second and last equality hold because ϕ is a homomorphism of K-algebras.) Thus f is a regular
map f : X Ñ Y such that f˚pι˚pziqq “ ϕpι˚pziqq for i P t1, . . . , nu. By Theorem 1.4.2 the K-algebra
KrY s is generated by ι˚pz1q, . . . , ι

˚pznq; it follows that f˚ “ ϕ.

Corollary 1.4.7. In Proposition 1.4.5, the affine variety X such that KrXs – R is unique up to
isomorphism.
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1. Algebraic varieties and regular maps

1.5 Products

We will prove that the category of quasi projective varieties has (finite) products.
First let X, Y be affine varieties. Thus, we may assume that X Ă Am and Y Ă An are closed subsets.

Then X ˆ Y Ă Am ˆAn – Am`n is a closed subset, and the maps X ˆ Y Ñ X and X ˆ Y Ñ Y given
by the two projections are regular. One checks easily that X ˆ Y with the two projection maps is the
product of X and Y in the category of quasi projective varieties (use Proposition 1.4.6). The ring of
regular functions of X ˆ Y is constructed from KrXs and KrY s as follows. Let πX : X ˆ Y Ñ X and
πY : X ˆ Y Ñ Y be the projections. The K-bilinear map

KrXs ˆKrY s ÝÑ KrX ˆ Y s
pf, gq ÞÑ π˚Xpfq ¨ π

˚
Y pgq

(1.5.1)

induces a linear map

KrXs bK KrY s ÝÑ KrX ˆ Y s. (1.5.2)

Proposition 1.5.1. The map in (1.5.2) is an isomorphism.

Proof. We may assume that X Ă Am and Y Ă An are closed subsets. Then X ˆ Y Ă Am`n is closed
subset, and hence the map in (1.5.2) is surjective by Theorem 1.4.2. It remains to prove injectivity,
i.e. the following: if A Ă KrXs and B Ă KrY s are finite-dimensional complex vector subspaces, then
the map AbB Ñ KrX ˆY s obtained by restriction of (1.5.2) is injective. Let tf1, . . . , fau, tg1, . . . , gbu
be bases of A and B. By considering the maps

X ÝÑ Ka
z ÞÑ pf1pzq, . . . , fapzqq

Y ÝÑ Kb
z ÞÑ pg1pzq, . . . , gbpzqq

(1.5.3)

we get that there exist p1, . . . , pa P X and q1, . . . , qb P Y such that the square matrices pfippjqq and
pgipqjqq are non-singular. By change of bases, we may assume that fippjq “ δij and gkpqhq “ δkh.
Computing the values of π˚Xpfiq ¨ π

˚
Y pgjq on pps, qtq for 1 ď i, s ď a and 1 ď j, t ď b we get that the

functions . . . , π˚Xpfiq ¨ π
˚
Y pgjq, . . . are linearly independent. Thus AbB Ñ KrW ˆ Zs is injective.

Since every quasi projective variety has an open cover by affine varieties, one could try to define the
product of quasi projective varieties X and Y by gluing together the products of the affine varieties
in open coverings of X and Y . This is done in scheme theory, where schemes are algebriac varieties
defined by atlases with charts given by affine schemes. However, one wants to show more, for example
that the product of projective varieties is a projective variety. This is why we need the more elaborate
construction presented below.

Let Mm`1,n`1 be the vector space of complex pm` 1q ˆ pn` 1q matrices. Let

Σm,n :“ trAs P PpMm`1,n`1q | rkA “ 1u.

Then Σm,n is a projective variety in PpMm`1,n`1q “ Pmn`m`n. In fact the entries of a non zero
matrix A P Mm`1,n`1 define homogegeous coordinates on PpMm`1,n`1q, and Σm,n is the set of zeroes
of determinants of all 2 ˆ 2 minors of A. Let rW s P Pm and rZs P Pn; then W t ¨ Z is a complex
pm` 1q ˆ pn` 1q matrix of rank 1, determined up to recsaling. Thus we have the Segre map

Pm ˆ Pn σm,n
ÝÑ Σm,n

prW s, rZsq ÞÑ rW t ¨ Zs
(1.5.4)

Proposition 1.5.2. The map in (1.5.4) is a bijection.

From now on, we identify Pm ˆ Pn with the projective variety Σm,n. In particular Pm ˆ Pn has a
Zariski topology.
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1.5. Products

Claim 1.5.3. A subset X Ă Pm ˆ Pn is closed if and only if there exist bihomogeneous polynomials 1

F1, . . . , Fr P KrW0, . . . ,Wm, Z0, . . . , Zns

such that

X “ V pF1, . . . , Frq :“ tprW s, rZsq P Pn ˆ Pm | 0 “ F1pW ;Zq “ ¨ ¨ ¨ “ FrpW ;Zqu . (1.5.5)

Remark 1.5.4. If m ­“ 0 and n ­“ 0, then the Zariski topology on the product PmˆPn is not the product
topology. In fact it is finer than the product topology

Example 1.5.5. The diagonal ∆Pn Ă Pn ˆ Pn is closed. In fact, ∆ is the set of couples prW s, rZsq
such that the matrix with rows W and Z has rank less than 2, and hence it is the zero locus of the
bihomogeneous polynomials WiZj´WjZi for pi, jq P t0, . . . , nu. Notice that this is not in contrast with
the fact that, if n ­“ 0, the Zariski topology on Pn is not Hausdorff, because of Remark 1.5.4.

Claim 1.5.6. The projections of Pm ˆ Pn on its two factors are regular maps.

Proof. Let aij , where pi, jq P t0, . . . ,muˆt0, . . . , nu, be the homogeneous coordinates on PpMm`1,n`1q

given by the entries of a matrix A P Mm`1,n`1. Then

Pm ˆ Pn “
ď

0ďiďm
0ďjďn

pPm ˆ Pnqaij . (1.5.6)

On the open subset pPm ˆ Pnqaij , the projections Pm ˆ Pn Ñ Pm, Pm ˆ Pn Ñ Pn are given by

Pm ˆ Pn ÝÑ Pm
rAs ÞÑ ra0j , . . . , amjs

Pm ˆ Pn ÝÑ Pn
rAs ÞÑ rai0, . . . , ains

respectively.

Proposition 1.5.7. Let X be a quasi projective variety, and let f : X Ñ Pm and g : X Ñ Pn be regular
maps. Then

X ÝÑ Pm ˆ Pn
x ÞÑ pfpxq, gpxqq

(1.5.7)

is a regular map.

Proof. We have the open cover of Pm ˆ Pn given by (1.5.6), with open sets indicized by t0, . . . ,mu ˆ
t0, . . . , nu. By Lemma 1.3.9, it suffices to prove that, for each pi, jq P t0, . . . ,mu ˆ t0, . . . , nu, the
following hold:

1. pf ˆ gq´1pPm ˆ Pnqaij q is open in X.

2. The restriction
pf ˆ gq´1pPm ˆ Pnqaij q ÝÑ pPm ˆ Pnqaij

x ÞÑ pfpxq, gpxqq
(1.5.8)

is regular.

We have
pf ˆ gq´1ppPm ˆ Pnqaij q “ Xzpf´1V pWiq Y g

´1V pZjqq.

Both f and g are continuous, because they are regular, and hence f´1V pXiq and g´1V pYjq are closed.
It follows that Item (1) holds. The map

AmˆAn ÝÑ pPmˆPnqaij
ppw0,..., pwi,...,wmq,pz0,...,pzj ,...,znqq ÞÑ prw0,...,wi´1,1,wi`1...,wms,rz0,...,zj´1,1,zj`1,...,znsq

is an isomorphism commuting with the projections. Item (2) follows.

1A polynomial F P KrW ;Zs is bihomogeneous of degree pd, eq if F “
ř

deg I“d
deg J“e

aI,JW
IZJ .
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1. Algebraic varieties and regular maps

It follows that Pm ˆ Pn with the two projections is the product of Pm and Pn in the category of
quasi projective varieties.

Now suppose that X Ă Pm and Y Ă Pn are locally closed sets. It follows from Claim 1.5.5 that
Y ˆY Ă PmˆPn is locally closed, i.e. we have identified W ˆZ with a quasi-projective set. Moreover,
the projections of X ˆ Y to X and Y are regular, because they are the restrictions of the projections
of Pm ˆ Pn to X ˆ Y .

The proof of the following result is easy; we leave details to the reader.

Proposition 1.5.8. Keep notation as above. The quasi projective variety X ˆ Y , with the projections
to the two factors, is the product of X and Y in the category of quasi projective sets.

Notice that if X Ă Pm and Y Ă Pn are closed then X ˆ Y is closed in Pm ˆ Pn. Hence the product
of projective varieties is a projective variety. On the othar hand, we have already observed that the
product of affine varieties is an affine varietry.

Remark 1.5.9. Let X Ă Pm and Y Ă Pn be locally closed sets. Let ϕ : X
„
ÝÑ X 1, ψ : Y

„
ÝÑ Y 1 be

isomorphisms, where X 1 Ă Pa and Y 1 Ă Pb are locally closed sets. Then

X ˆ Y ÝÑ X 1 ˆ Y 1

pp, qq ÞÑ pϕppq, ψpqqq
(1.5.9)

is an isomorphism. This follows from the formal property of a categorical product. Thus the isomorph-
ism class of X ˆ Y is independent of the embeddings X Ă Pm and Y Ă Pn. This is why we say that
X ˆ Y is the product of X and Y .

Since the product of two quasi projective varieties exists, also the product X1 ˆ . . .ˆXr of a finite
collection X1, . . . , Xr of quasi-projective varieties exists; it is given by pX1 ˆ pX2 ˆ pX3 . . . ˆXrq . . .q
(we may rearrange the parenthesis arbitrarily, and we will get an isomorphic variety).

Let X be a quasi projective variety, and let ∆X Ă X ˆ X be the diagonal. It follows from Ex-
ample 1.5.5 that ∆X is closed in XˆX (this is not in contradiction with the fact that, if X is not finite,
then it is not Hausdorff, see Remark 1.5.4). This property of quasi projective varieties goes under the
name of properness. The following is a consequence of properness.

Proposition 1.5.10. Let X, Y be quasi projective varieties, and let f, g be regular maps X Ñ Y . If
fpxq “ gpxq for x in a dense subset of X, then f “ g.

Proof. Let ϕ : X Ñ Y ˆ Y be the map defined by ϕpxq :“ pfpxq, gpxqq. Then ϕ is regular, because
Y ˆ Y is the categorical square of Y . Since ∆Y is closed, ϕ´1p∆Y q is closed. By hypothesis ϕ´1p∆Y q

contains a dense subset of X, hence it is equal to X, i.e. fpxq “ gpxq for all x P X.

1.6 Elimination theory

LetM be a topological space. ThenM is quasi compact, i.e. every open covering has a finite subcovering,
if and only if M is universally closed, i.e. for any topological space T , the projection map T ˆM Ñ T
is closed, i.e. it maps closed sets to closed sets. (See tag/005M in [?].)

A quasi projective variety X is quasi compact, but it is not generally true that, for a variety T , the
projection T ˆX Ñ T is closed. In fact, let X Ă Pn be locally closed; then ∆X , the diagonal of X, is
closed in X ˆ Pn, because it is the intersection of X ˆX Ă Pn ˆ Pn with the diagonal ∆Pn Ă Pn ˆ Pn,
which is closed. The projection X ˆ Pn Ñ Pn maps X to X, hence if X is not closed in Pn, then X
is not universally closed. This does not contradict the result in topology quoted above, because the
Zariski topology of the product of quasi projective varieties is not the product topology.

The following key result states that projective varieties are the equivalent of compact topological
spaces in the category of quasi projective varieties.
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1.6. Elimination theory

Theorem 1.6.1 (Main Theorem of elimination theory). Let T be a quasi-projective variety and let X
be a closed subset of a projective space. Then the projection

π : T ˆX Ñ T

is closed.

Proof. By hypothesis we may assume that X Ă Pn is closed. It follows that T ˆX Ă T ˆ Pn is closed.
Thus it suffices to prove the result for X “ Pn. Since T is covered by open affine subsets, we may assume
that T is affine, i.e. T is (isomorphic to) a closed subset of Am for some m. It follows that it suffices to
prove the proposition for T “ Am. To sum up: it suffices to prove that if X Ă Am ˆ Pn is closed, then
πpXq is closed in Am, where π : AmˆPn Ñ Am is the projection. We will show that pAmzπpXqq is open.
By Claim 1.5.5 there exist Fi P Krt1, . . . , tm, Z0, . . . , Zns for i “ 1, . . . , r, homogeneous as polynomial
in X0, . . . , Xn such that

X “ tpt, rZsq | 0 “ F1pt, Zq “ . . . “ Frpt, Zqu.

Suppose that Fi P Krt1, . . . , tmsrZ0, . . . , Znsdi i.e. Fi is homogeneous of degree di in Z0, . . . , Zn. Let
t P pT zπpXqq. By Hilbert’s Nullstellensatz, there exists N ě 0 such that

pF1pt, Zq, . . . , Frpt, Zqq Ą KrZ0, . . . , ZnsN . (1.6.10)

We may assume that N ě di for 1 ď i ď r. For t P Am let

KrZ0, . . . , ZnsN´d1 ˆ . . .ˆ rZ0, . . . , ZnsN´dr
Φptq
ÝÑ KrZ0, . . . , ZnsN

pG1, . . . , Grq ÞÑ
řr
i“1Gi ¨ Fi

Thus Φptq is a linear map: choose bases of domain and codomain and let Mptq be the matrix associated
to Φptq. Clearly the entries of Mptq are elements of Krt1, . . . , tms. By hypothesis Φptq is surjective
and hence there exists a maximal minor of Mptq, say MI,Jptq, such that detMI,Jptq ­“ 0. The open
pAmzV pdetMI,Jqq is contained in pT zπpXqq. This finishes the proof of Theorem 1.6.1.

We will give a few corollaries of Theorem 1.6.1. First, we prove an elementary auxiliary result.

Lemma 1.6.2. Let f : X Ñ Y be a regular map between quasi-projective varieties. The graph of f

Γf :“ tpx, fpxqq | p P Xu

is closed in X ˆ Y .

Proof. The map
f ˆ IdY : X ˆ Y Ñ Y ˆ Y

is regular, and Γf “ pf ˆ IdXq
´1p∆Y q. Hence Γf is closed because ∆Y is closed in Y ˆ Y .

Proposition 1.6.3. Let X Ă Pn be closed, and let Y be a quasi-projective set. A regular map f : X Ñ Y
is closed.

Proof. Since closed subsets of X are projective it suffices to prove that fpXq is closed in Y . Let
π : X ˆ Y Ñ Y be the projection map. Then fpXq “ πpΓf q. By Lemma 1.6.2 and the Main Theorem
of elimination theory we get that fpXq is closed.

Corollary 1.6.4. A locally-closed subset of Pn is projective if and only if it is closed.

Proof. Let X Ă Pn be a locally closed subset. If it is closed, then it is projective by definition.
Conversely, suppose that X is projective. Hence there exist a closed subset Y Ă Pm and an isomorphism
f : Y

„
ÝÑ X. Composing f with the inclusion X ãÑ Pn, we get a regular map g : Y Ñ Pn. Then

X “ gpY q is closed by Proposition 1.6.3.
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1. Algebraic varieties and regular maps

Remark 1.6.5. By way of contrast, notice that it is not true that a locally-closed subset of An is affine
if and only if it is closed. In fact the complement of a hypersurface V pfq Ă An is affine but not closed.

Corollary 1.6.6. Let X be a projective variety. A regular map f : X Ñ K is locally constant.

Proof. Composing f with the inclusion j : K ãÑ P1 we get a regular map f : X Ñ P1. By Proposi-
tion 1.6.3 fpXq is closed. Since fpXq S r0, 1s it follows that fpXq “ fpXq is a finite set.

1.7 Grassmannians

Let V be a complex vector space of finite dimension, and let 0 ď h ď dimV . The Grassmannian of
h-dimensional vector subpaces of V is the set of (complex) subvector spaces of V of dimension h:

Gr ph, V q :“ tW Ă V | dimW “ hu .

Notice that if h P t0,dimV u, then Gr ph, V q is a singleton, that Gr p1, V q “ PpV q, and that we have a
bijection

PpV _q ÝÑ Gr pdimV ´ 1, V q
rf s ÞÑ kerpfq

We will identify the elements of Gr ph, V q with the points of a projective variety. Consider the Plücker
map

Gr ph, V q
P
ÝÑ P

´

Źh
V
¯

W ÞÑ
Źh

W.

(this makes sense:
Źh

W is a 1-dimensional subspace of
Źh

V because dimW “ h).

Proposition 1.7.1. Keep notation as above. Then P is injective, and Im P is a closed subset of

P
´

Źh
V
¯

.

Before proving Proposition 1.7.1, we prove the result below.

Lemma 1.7.2. Let v1, . . . , va P V be linearly independent, and let α P
Źh

V . Then

vi ^ α “ 0 @i P t1, . . . , au (1.7.1)

if and only if there exists β P
Źh´a

V such that

α “ v1 ^ . . .^ va ^ β. (1.7.2)

Proof. The non trivial statement is that if (1.7.1) holds, then (1.7.2) holds. Extend v1, . . . , vs to a basis
v1, . . . , vm of V . Given a subset I Ă t1, . . . ,mu of cardinality s, we let vI “ vi1 ^ . . . ^ vis , where
I “ ti1, . . . , isu and 1 ď i1 ă . . . ă is ď m. The collection of the vI ’s is a basis of the exterior algebra
Ź‚

V . Hence

α “
ÿ

|I|“h

cIvI ,

where cI are complex numbers. Since

0 “ vi ^ α “
ÿ

|I|“h
iRI

cIvi ^ vI ,

it follows that t1, . . . , au Ă I for all I such that cI ­“ 0. Now, if t1, . . . , au Ă I, then vI “ v1^. . .^va^γ.
It follows that (1.7.2) holds.
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1.7. Grassmannians

Proof of Proposition 1.7.1. For α P
Źh

V , let mα be the linear map

V
mα
ÝÑ

Źh`1
V

v ÞÑ v ^ α

It follows from Lemma 1.7.2 that if α ­“ 0, then the kernel of mα has dimension at most h, and that
dim kerpmαq “ h if and only if α is decomposable, i.e. α “ w1 ^ . . .^ wh, where w1 ^ . . .^ wh P V are
linearly independent. Thus

ImpPq “

!

rαs P P
´

ľh
V
¯

| dimpkermαq ě h
)

, (1.7.3)

and if rαs P ImpPq, then rαs “
Źh

kerpmαq. The latter equality shows that P is injective. Morover,

the equality in (1.7.3) shows that ImpPq is closed in Pp
Źh

V q. In fact, choose a basis v1, . . . , vm of
V , and let x1, . . . , xn be the associated dual basis. Notice that the basis of V determines the basis
. . . , vI , . . . (where |II “ h) of

Źh
V , and hence projective coordinates r. . . , ZI , . . .s (where |II “ h) on

Pp
Źh

V q. Then mα is described (with respect to the chosen bases) by a matrix of order
`

n
h`1

˘

ˆh with
entries linear functions in x1, . . . , xn. Hence the right hand side of (1.7.3) is the set of points where
all determinants of minors of order pn ´ h ` 1q ˆ pn ´ h ` 1q of mα vanish. Thus ImpPq is equal to
the common zeroes of homogeneous polynomials (of degree n´ h` 1) in the homogeneous coordinates
r. . . , ZI , . . .s, it follows that is closed.

Remark 1.7.3. In the proof of Proposition 1.7.1 we exhibited polynomials defining Gr ph, V q which are

of high degree. In fact, the ideal of Gr ph, V q Ă Pp
Źh`1

V q is generated by quadrics. In the first
non-trivial case, i.e. h R t0, 1,dimV ´ 1,dimV u, i.e. Gr p2, V q with dimV ě 4, we can easily describe

the Plücker quadrics generating the (homoheneous) ideal of the Grassmannian; in fact α P
Ź2

V is
decomposable if and only if α^ α “ 0.

Remark 1.7.4. We have a bijection between Gr pk ` 1, V q and the set of linear subspaces of PpV q of
dimension k:

Gr pk ` 1, V q ÝÑ Grpk,PpV qq :“ tL Ă PpV q | L linear subspace, dimL “ ku
W ÞÑ PpW q.

Thus by Proposition 1.7.1 we may identify Gr pk,PpV qq with a projective set.

In order to do computations, we will need to write explicitly homogeneous of the Plücker image of
elements W P Gr ph, V q. This is done as follows. Let v1, . . . , vm be a basis of V , and let p. . . , vI , . . .q

be the associated basis of
Źh

V , where I runs through subsets of t1, . . . ,mu of cardinality h (notation
as in the proof of Lemma 1.7.2). Thus we also have associated homogeneous coordinates r. . . , TI , . . .s

on Pp
Źh

V q. By associating to linearly independent vectors w1, . . . , wh P V the matrix with rows the
coordinates of the wi’s in the chosen basis, we get a matrix

¨

˚

˝

a11 ¨ ¨ ¨ a1m

...
. . .

...
ah1 ¨ ¨ ¨ ahm

˛

‹

‚

of rank h. Viceversa, every such matrix determines the coordinates of linearly independent vectors
w1, . . . , wh P V . Now, the homogeneous coordinates r. . . , TI , . . .s of Ppxw1, . . . , whyq are given by

TI “ det

¨

˚

˝

a1,i1 ¨ ¨ ¨ a1,ih
...

. . .
...

ah,i1 ¨ ¨ ¨ ah,ih

˛

‹

‚

,

where, as usual, I “ ti1, . . . , ihu with 1 ď i1 ă . . . ă ih ď dimV .
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1. Algebraic varieties and regular maps

Proposition 1.7.5. The Grassmannian Grph, V q has an open covering by pairwise intersecting open
subsets isomorphic to an affine space of dimension h ¨ pdimV ´ hq.

Proof. We identify Grph, V q with its image by the Plücker map PpGrph, V qq Ă Pp
Źh

V q. Let m :“
dimV , and let v1, . . . , vm be a basis of V . Keep the notation introduced above. In particular r. . . , TI , . . .s

are homogeneous coordinates on Pp
Źh

V q, where I runs through subsets of t1, . . . ,mu of cardinality h.
Thus we have the open covering

Grph, V q “
ď

|I|“h

Grph, V qI , (1.7.4)

where, as usual Grph, V qI Ă Grph, V q is the open subset of points such that TI ­“ 0. Let I “ t1, . . . , hu.
The map

Mh,m´hpKq ÝÑ Grph, V qI
¨

˚

˝

a1,1 ¨ ¨ ¨ a1,m´h

...
. . .

...
ah,1 ¨ ¨ ¨ ah,m´h

˛

‹

‚

ÞÑ x. . . , vi `
řm´h
j“1 ai,jvh`j , . . .y1ďiďh

(1.7.5)

is an isomorphism. We have similar isomorphisms

Ahpm´kq – Mh,m´hpKq
„
ÝÑ Gr ph, V qJ

for any other multiindex J . One easily checks that for all subsets I, J Ă t1, . . . ,mu of cardinality h the
interesection Gr ph, V qI XGr ph, V qJ is non empty.

Corollary 1.7.6. The Grassmannian Grph, V q is irreducible.

Remark 1.7.7. Let E Ă Grph, V q ˆ V be the subset of couples pv,W q such that v P W , and let
π : E Ñ Grph, V q be the defined by pv,W q ÞÑ W . One easily checks that E is closed, and that π is
a regular map. The inverse image π´1pGrph, V qIq is described as follows. For A P Mh,m´hpKq, let
wipAq P V for i P t1, . . . , hu be the vector appearing in (1.7.5). Then (1.7.5) gives an isomorphism

Mh,m´hpKq ˆKh ÝÑ π´1pGrph, V qIq

pA, tq ÞÑ pxw1pAq, . . . , whpAqy,
řh
i“1 tiwipAqq

(1.7.6)

where t “ pt1, . . . , thq P Kh.

1.8 Exercises

Exercise 1.8.1. Let k be a field. Given a finite-dimensional k-vector space V define the formal power series
pV P krrtss as

PV :“
8
ÿ

d“0

pdimk Symd V qtd

where Symd V is the symmetric product of V . Thus if V “ krx1, . . . , xns1 then Sdpkrx1, . . . , xns1q “ krx1, . . . , xnsd.

1. Prove that if V “ U ‘W then PV “ PU ¨ PW .

2. Prove that if dimk V “ n then PV “ p1´ tq
´n and hence (1.3.8) holds.

Exercise 1.8.2. The purpose of the present exercise is to give a different proof of the properties of the Veronese
map νnd discussed in Example 1.3.6, valid if charK “ 0, or more generally charK does not divide d!. Let

PpKrT0, . . . , Tns1q
µnd
ÝÑ PpKrT0, . . . , Tnsdq

rLs ÞÑ rLds
(1.8.7)
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1.8. Exercises

and let W n
d “ Impµnd q. The above map can be identified with the Veronese map νnd . In fact, writing L P

KrT0, . . . , Tns1 as L “
řn
i“0 αiTi, we see that rα0, . . . , αns are coordinates on PpKrT0, . . . , Tns1q, and they give

an identification Pn „
ÝÑ PpKrT0, . . . , Tns1q. Moreover, let

Pp
d`n
n q´1 „

ÝÑ PpKrT0, . . . , Tnsdq,
r. . . , ξI , . . .s ÞÑ

ř

I“pi0,...,inq
i0`...`in“d

d!
i0!¨...¨in!

ξIT
I

where T I “ T i00 ¨ . . . ¨T inn . By Newton’s formula p
řn
i“0 αiTiq

d
“

ř

I

d!
i0!¨...¨in!

αIT I , we see that, modulo the above

isomorphisms, the Veronese map νnd is identified with µnd , and hence V n
d is identified with W n

d .
Now let us show that W n

d is closed. The key observation is that rF s P W n
d if and only if BF

BZ0
, . . . , BF

BZn
span

a 1-dimensional subspace of KrZ0, . . . , Zns. This may be proved by induction on degF and Euler’s identity

n
ÿ

j“0

Zj
BF

BZj
“ pdegF q ¨ F, (1.8.8)

valid for F homogeneous. Now, the condition that BF
BZ0

, . . . , BF
BZn

span a 1-dimensional subspace of KrZ0, . . . , Zns
is equivalent to the vanishing of determinants of all 2ˆ2 minors of the matrix whose entries are the coordinates
of BF

BZ0
, . . . , BF

BZn
; thus W n

d is closed.

In order to show that µnd is an isomorphism, we notice that if F “ Ld, where L P PpKrT0, . . . , Tns1 is non

zero, then for each i P t0, . . . , nu the partial derivative Bn´1F

BZn´1
i

is a multiple of L (eventually equal to 0 if BL
BZi

“ 0),

and that one at least of such pn ´ 1q-th partial derivative is non zero. Thus, the inverse of µnd is the regular
map θnd : W n

d ÝÑ PpKrT0, . . . , Tns1q defined by

θnd prF sq :“

$

’

’

&

’

’

%

r B
n´1F

BZn´1
0

s if B
n´1F

BZn´1
0

­“ 0,

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

r B
n´1F

BZn´1
n

s if B
n´1F

BZn´1
n

­“ 0.

(1.8.9)

Exercise 1.8.3. We recall that if φ : B Ñ A is a homomorphism of rings, and I Ă A, J Ă B are ideals, the
contraction Ic Ă B and the extension Je Ă A are the ideals defined as follows:

Ic :“ φ´1I, Je :“

#

r
ÿ

i“1

λiφ pbiq | λi P A, bi P J @i “ 1, . . . , r

+

(1.8.10)

(In other words, Je is the ideal of A generated by φpJq.)
Let f : X Ñ Y be a regular map between affine varieties and suppose that f˚ : KrY s ÝÑ KrXs is injective.

1. Let p P X. Prove that mcp “ mfppq, in particular it is maximal.

2. Let q P Y . Prove that
f´1

pqq “
 

p P X | mp Ą meq
(

,

and conclude, by the Nulstellensatz, that f´1
pqq is not empty if and only if meq ‰ KrXs.

Exercise 1.8.4. The left action of GLnpKq on An defines a left action of GLnpKq on Krz1, . . . , zns as follows.
Let φ P Krz1, . . . , zns and g P GLnpKq. Let z be the column vector with entries z1, . . . , zn: we define gφ P
Krz1, . . . , zns by letting

gφpXq :“ φpg´1
¨ zq.

Now let G ă GLn pKq be a subgroup. The algebra of G-invariant polynomials is

Krz1, . . . , znsG :“ tφKrz1, . . . , zns P| gφ “ φ @g P Gu .

(it is clearly a K-algebra). Now suppose that G is finite. One identifies An{G with an affine variety proceeding
as follows.

1. Define the Reynolds operator as

Krz1, . . . , zns ÝÑ Krz1, . . . , znsG
φ ÞÑ 1

|G|

ř

gPG gφ.

Prove the Reynolds identity
R pφψq “ φR pψq @φ P Krz1, . . . , znsG.
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1. Algebraic varieties and regular maps

2. Let I Ă Krz1, . . . , zns be the ideal generated by homogeneous φ P Krz1, . . . , znsG of strictly positive
degree (i.e. non-constant). By Hilbert’s basis theorem there exists a finite basis tφ1, . . . , φdu of I; we
may assume that each φi is homogeneous and G-invariant. Prove that Krz1, . . . , znsG is generated as
K-algebra by φ1, . . . , φd. Since Krz1, . . . , znsG is an integral domain with no nilpotents it follows that
there exist an affine variety X (well-defined up to isomorphism) such that KrXs „

ÝÑ Krz1, . . . , znsG. One
sets An{G “: X.

3. Let ι : Krz1, . . . , znsG ãÑ Krz1, . . . , zns be the inclusion map. By Proposition 1.4.6, there exist a unique
regular map

An π
ÝÑ X “ An{G. (1.8.11)

such that ι “ π˚. Prove that

π ppq “ π pqq if and only if q “ gp for some g P G,

and that π is surjective. [Hint: Let J Ă Krz1, . . . , znsG be an ideal. Show that Je X Krz1, . . . , znsG “ J
where Je is the extension relative to the inclusion ι.]

Exercise 1.8.5. Keep notation and hypotheses as in Exercise 1.8.4. Describe explicitly An{G and the quotient
map π : An Ñ An{G for the following groups G ă GLn pKq:

1. n “ 2, G “ t˘12u.

2. n “ 2, G “

Bˆ

ωk 0
0 ω´1

k

˙F

where ωk is a primitive k-th rooth of 1.

3. G “ Sn, the group of permutation of n elements viewed in the obvious way as a subgroup of GLn pKq
(group of permutations of coordinates).

We introduce definitions that will be discussed more in general later on. Let DivpPnq be the abelain
group with generators the irreducible hypersurfaces in Pn. Thus an element of DivpPnq is a formal
finite sum

ř

iPI miXi, where each mi is an integer, and each Xi id an irreducible hypersurface in Pn.
Let F P KrZ0, . . . , Znsd be non zero. Let X Ă Pn be an irreducible hypersurface, and let IpXq “ pGq.

The multiplicity of F along X is the maximum m such that Gm divides F , and is denoted multX V pF q.

Let F “
r
ś

i“1

Fmii be the decomposition into prime factors, where for i ­“ j the factors Fi and Fj are

not associated. The divisor of F is the element of DivpPnq defined by

divpF q :“
ÿ

XĂPn
irred. hypers.

multX V pF q “
r
ÿ

i“1

miV pFiq. (1.8.12)

Exercise 1.8.6. Let F P KrZ0, Z1sd.

(a) Notice that unless F “ 0 the cardinality of V pF q is at most d, and it equals d if and only if multppF q ď 1
for all p P P1.

(b) Let ∆d Ă PpKrZ0, Z1sdq be the subset of rF s such that there exists p P P1 for which multppF q ě 2. Prove

that ∆d is a closed irreducible subset of PpKrT0, T1sdq. (Hint: let r∆d Ă PpKrT0, T1sdq ˆ P1 be the subset

of couples prF s, rZsq such that F has a multiple root at Z. Show that r∆d is closed in PpKrT0, T1sdq ˆ P1,
and then project to the first factor.)

(c) Assume that charK does not divide d. Let p “ ra0, a1s P P1. Prove that multppF q ě 2 if and only if

BF pa0, a1q

BZ0
“
BF pa0, a1q

BZ1
“ 0. (1.8.13)

(Hint: use Euler’s relation (1.8.8).)

24



Chapter 2

Rational maps, dimension

2.1 Introduction

A rational function on an irreducible locally closed subset X Ă Pn is defined by a quotient F
G , where

F,G P KrZ0, . . . , Znsd are homogeneous polynomials of the same degree, and G does not vanish at all
points of X. The set of rational functions on X, with addition and multiplication defined pointwise,
is a field denoted KpXq, finitely generated over the subfield K of constant functions. One defines the
dimension of X as the transcendence degree of KpXq over K. The dimension is well-behaved (e.g. the
dimension of An or Pn is equal to n), and is invariant under isomorphisms. Two irreducible varietiesX,Y
are birational if KpXq and KpY q are isomorphic (as extensions of K) - this is equivalent to the existence
of isomorphic open dense subsets U Ă X and V Ă Y . This relation is weaker than isomorphism; it
plays a crucial rôle in algebraic geometry.

Let f : X 99K Y be a rational map. The degree of f is a number (possibly 8) related to the
cardinality of f´1pyq for y in an open dense subset of Y . If f factors through the inclusion of a proper
closed subset W Ă Y , then the degree is 0, otherwise f defines by pull-back an inclusion KpY q Ă KpXq
and the degree of f is equal to rKpXq : KpY qs. Suppose that the degree is finite: if the extension
KpXq Ą KpY q is separable, then the result about the cardinality of a generic fiber holds, in general it
holds with the degree replaced by the separable degree of KpXq Ą KpY q.

Let X Ă Pn be a closed subset. There exists a positive number d, called the degree of X, with the
property that, for a generic linear subspace Λ Ă Pn of dimension pn´ dimXq, the cardinality of ΛXX
is d. In order to make sense of the word “generic”(which has a precise meaning despite itself), and to
prove this statement, we introduce the Grassmannian parametrizing linear subspaces of a projective
space and we identify it with a projective variety. Along the road, we will characterize the dimension of
a closed subset of a projective space via its intersection with linear subspaces - this allows us to prove a
(highly non trivial) generalization of the well known result from linear algebra: a set of m homogeneous
linear equations in n unknowns has a non trivial solution if m ă n.

2.2 Rational maps

Let X and Y be quasi projective varieties. We define a relation on the set of couples pU,ϕq where
U Ă X is open dense and ϕ : U Ñ Y is a regular map, as follows: pU,ϕq „ pV, ψq if the restrictions of
ϕ and ψ to U X V are equal. One checks easily that „ is an equivalence relation.

Definition 2.2.1. A rational map f : X 99K T is a „-equivalence class of couples pU,ϕq where U Ă X
is open dense and ϕ : U Ñ Y is a regular map. Let f : X 99K Y be a rational map.

1. The map f is regular at x P X (equivalently x is a regular point of f), if there exists pU,ϕq in the
equivalence class of f such that x P U . We let Regpfq Ă X be the set of regular points of f . By
definition Regpfq is an open subset of X.
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2. Rational maps, dimension

2. The indeterminancy set of f is Indpfq :“ XzRegpfq (notice that Indpfq is closed). A point x P X
is a point of indeterminancy if it belongs to Indpfq.

From now on we will consider only rational maps between irreducible quasi projective varieties. Let
f : X 99K Y and g : Y 99KW be rational maps between (irreducible) quasi projective varieties. It might
happen that for all x P Regpfq the image fpxq does not belong to Regpgq, and then the composition g˝f
makes no sense. In order to deal with compositions of reational maps, we give the following definition.

Definition 2.2.2. A rational map f : X 99K Y between irreducible quasi projective varieties is dominant
if it is represented by a couple pU,ϕq such that ϕpUq is dense in Y .

Notice that if f : X 99K Y is dominant and pV, ψq is an arbitrary representative of f then ψpV q is
dense in Y .

Definition 2.2.3. Let f : X 99K Y be a dominant rational map, and let g : Y 99KW be a rational map
(X,Y,W are irreducible). Let pU,ϕq and pV, ψq be representatives of f and g respectively. Then ϕ´1V
is open dense in X. We let g ˝ f : X 99K W be the rational map represented by pϕ´1V, ψ ˝ ϕq. (The
equivalence class of pϕ´1V, ψ ˝ ϕq is independent of the representatives pU,ϕq and pV, ψq.)

Definition 2.2.4. A dominant rational map f : X 99K Y between irreducible quasi projective varieties
is birational if there exists a dominant rational map g : Y 99K X such that g ˝ f “ IdX and f ˝ g “ IdY .
An irreducible quasi projective variety X is rational if it is birational to Pn for some n, it is unirational
if there exists a dominant rational map f : Pn 99K X.

Example 2.2.5. 1. Of course isomorphic irreducible quasi projective varieties are birational. On
the other a quasi projective (irreducible) variety is birational to any of its dense open subsets.
In particular Pn is birational to An, although they are not isomorphic if n ą 0 (if they were
isomorphic, they would be diffeomorphic as C8 manifolds, but Pn is compact, An is not).

2. Let 0 ­“ F P KrZ0, . . . , Zns2, and let Qn´1 :“ V pF q Ă Pn. Suppose that F is prime, i.e that
rkF ě 3, and hence Qn´1 is irreducible. We claim that Qn´1 is rational. In fact, after a suitable
change of coordinates, we may assume that F “ Z0Zn ´ G, where 0 ­“ G P KrZ1, . . . , Zn´1s2.
The rational maps

Qn´1 f
99K Pn´1

rZ0, . . . , Zns ÞÑ rZ0, . . . , Zn´1s

and
Pn´1 g

99K Qn´1

rT0, . . . , Tn´1s ÞÑ rT 2
0 , T0T1, . . . , T0Tn´1, GpT1, . . . , Tn´1qs

are dominant, and they are inverses of each other. Notice that if n “ 2, then f and g are regular
(see Example 1.3.5), while for n ě 3, the quadric Qn´1 is not isomorphic to Pn´1, because the
underlying C8 manifolds are not homeomorphic.

Proposition 2.2.6. Irreducible quasi varieties X, Y are birational if and only if there exist open dense
subsets U Ă X and V Ă Y that are isomorphic.

Proof. An isomorphism ϕ : U
„
ÝÑ V clearly defines a birational map f : X 99K Y . Conversely, suppose

that f : X 99K Y is birational with inverse g : Y 99K X. Let pU,ϕq represent f and pV, ψq represent g.
Then ϕ´1V Ă U and ψ´1U Ă V are open dense. By hypothesis the composition

ψ ˝
`

ϕ|ϕ´1V

˘

: ϕ´1V Ñ U

is equal to the identity on an open non-empty subset of ϕ´1V . By Proposition 1.5.10, we get that
ψ ˝

`

ϕ|ϕ´1V

˘

“ Idϕ´1V . In particular ψ ˝ ϕ
`

ϕ´1V
˘

Ă U i.e. ϕ
`

ϕ´1V
˘

Ă ψ´1U , and similarly

ϕ ˝
`

ψ|ψ´1U

˘

“ Idψ´1U , ψ
`

ψ´1U
˘

Ă ϕ´1V.

Thus we have isomorphisms ϕ´1V
„
ÝÑ ψ´1U and ψ´1U

„
ÝÑ ϕ´1V .
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2.3. Blow-up

Many natural invariants of projective varieties do not separate between (projective) birational vari-
eties. This fact gives practical criteria that allow to establish that certain projective varieties are not
birational. On the other hand, it leads us to approach the classification of isomorphism classes of pro-
jective varieties in two steps: first we classify equivalence classes for birational equivalence, then we
distinguish isomorphim classes within each birational equivalence class.

2.3 Blow-up

Blow-up of a projective space

Let p “ rv0s P PpV q. The blow-up of PpV q at p is a projective variety obtained from PpV q by replacing
the point p with all the tangent directions at p, i.e. the set Σp of lines containing p. In order to define
it, we notice that we have an identification

Σp “ tPpUq | U P Grp2, V q, v0 P Uu ÝÑ PpV {rv0sq

U ÞÑ U{rv0s

and hence Σp is a projective space whose dimension is one less than the dimension of PpV q. The blow-up
of PpV q at p is the subset of PpV q ˆ Σp defined by

BlppPpV qq :“ tpx,Λq P PpV q ˆ Σp | x P Λu.

Claim 2.3.1. BlppPpV qq is closed in PpV q ˆ Σp, and irreducible.

Proof. Let rZ0, . . . , Zns be homogeneous coordinates such that p “ r1, 0, . . . , 0s. The map

Pn´1 „
ÝÑ Σp

rT1, . . . , Tns ÞÑ xr1, 0, . . . , 0s, r0, T1, . . . , Tnsy
(2.3.1)

is an isomorphism. With these identifications

BlppPpV qq :“ tprZ0, . . . , Zns, rT1, . . . , Tnsq | 0 “ ZiTj ´ ZjTi @1 ď i ă j ď nu. (2.3.2)

Thus BlppPpV qq is closed in PpV q ˆ Σp.
Let ρ : BlppPpV qq Ñ Σp be the restriction to BlppPpV qq of the second projection of PpV q ˆ Σp:

BlppPpV qq
ρ
ÝÑ Σp

px,Λq ÞÑ Λ
(2.3.3)

Since Pn´1 “
Ťn
j“1 P

n´1
Tj

we have

BlppPpV qq “
n
ď

j“1

ρ´1pPn´1
Tj

q. (2.3.4)

By (2.3.14) we have an isomorphism

P1
ˆAn´1 „

ÝÑ ρ´1
pPn´1
Tj

q

prZ0,Zjs,pt1,...,tj´1,tj`1,...,tnqq ÞÑ prZ0,Zjt1,...,Zjtj´1,Zj ,Zjtj`1,...,Zjtns,rt1,...,tj´1,1,tj`1,...,tnsq
(2.3.5)

Thus (2.3.4) defines an open covering of BlppPpV qq in which each open set is irreducible. Any two such
open sets have non empty intersection: it follows that BlppPpV qq is irreducible.

The blow-down (or contraction) map is

BlppPpV qq
π
ÝÑ PpV q

px,Λq ÞÑ x
(2.3.6)
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2. Rational maps, dimension

Clearly π is regular, and

π´1pxq “

#

xp, xy if x ­“ p,

Σp “ PpV {rv0sq if x “ p.
(2.3.7)

Equation (2.3.7) explains the name “blow-up at p”: the fiber of π over p is a blown-up (as in photo-
graphy) version of p. The map π is birational. In fact let

pPpV qztpuq φ
ÝÑ BlppPpV qq

x ÝÑ px, xp, xyq
(2.3.8)

Then φ is regular, and

π ˝ φ “ IdPpV qztpu, φ ˝ pπ|π´1pPpV qztpuqq “ Idπ´1pPpV qztpu .

Since pπ´1pPpV qztpuq is open dense in BlppPpV qq the (equivalence class of) the map φ is the (rational)
inverse of π.

Blow-up of a locally-closed subset of a projective space

Let X Ă PpV q be a locally closed subset and p P X. We assume that dimpX ą 0. Let φ be the map
given by (2.3.8). The blow-up of X at p is the subset of BlppPpV qq defined as the closure of π´1pXztpuq:

BlppXq :“ π´1pXztpuq. (2.3.9)

Notice that BlppXq is locally-closed in the projective variety BlppPpV qq, hence it is a quasi-projective
variety. If X is closed in PpV q, then BlppXq is closed in BlppPpV qq, and hence it is projective.

We let πX : BlppXq Ñ X be the restriction to BlppXq of the blow-down map π : Blp PpV q Ñ PpV q
(thus πPpV q “ π). Let φX : pXztpuq Ñ BlppXq be defined by restricting the map φ of (2.3.8) to pXztpuq.
Then φX defines a rational inverse of πX .

We examine a few examples. Throughout the examples we let rZ0, . . . , Zns be homogeneous co-
ordinates such that p “ r1, 0, . . . , 0s, and zi :“ Zi{Z0.

Example 2.3.2. Let X “ PnZ0
. Thus X is the affine space An and zi “ Zi{Z0 for 1 ď i ď n are affine

coordinates on X. For 1 ď j ď n let

Uj :“ BlppAnq X ρ´1pPn´1
Tj

q (2.3.10)

where ρ is the map (2.3.3). Thus BlppAnq is the union of the open sets Uj for 1 ď j ď n. Equation (2.3.5)
gives an isomorphism

An
φj
ÝÑ Uj

pzj ,t1,...,tj´1,tj`1,...,tnq ÞÑ ppzjt1,...,zjtj´1,zj ,zjtj`1,...,zjtnq,rt1,...,tj´1,1,tj`1,...,tnsq
(2.3.11)

Thus we have

πAn ˝ φjpzj , t1, . . . , tj´1, tj`1, . . . , tnq “ pzjt1, . . . , zjtj´1, zj , zjtj`1, . . . , zjtnq (2.3.12)

and the (rational) inverse of πAn ˝ φj is given by

pπAn ˝ φjq
´1pz1, . . . , znq “ p

z1

zj
, . . . ,

zj´1

zj
, zj ,

zj`1

zj
, . . .

zn
zj
q.

Remark 2.3.3. Let mp Ă Krz1, . . . , zns be the maximal ideal of polynomials vanishing at p. Equa-
tion (2.3.12) gives that the ideal of Krz1, . . . , zns generated by pπAn ˝ φjq

˚pmpq is equal to the principal
ideal pxjq. This simple fact will be the key to the universal property of blow-up.
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2.3. Blow-up

Example 2.3.4. Let X Ă An be a hypersurface containing p “ p0, . . . , 0q. We will give explicit equations
for the intersection of BlppXq with each of the open affine subsets Uj Ă BlppAnq described above. Let
IpXq “ pfq. Expand f around the origin:

f “ fm ` fm`1 ` . . .` fd, fs P Krz1, . . . , znss, fm ­“ 0.

Identify Uj with An via (2.3.11); then

π´1
An pXq XUj “ V pzmj

d´m
ÿ

s“0

zsjfm`spt1, . . . , tj´1, 1, tj`1, . . . , tnqq.

By Remark 2.3.3 it follows that the polynomial

d´m
ÿ

s“0

zsjfm`spt1, . . . , tj´1, 1, tj`1, . . . , tnq (2.3.13)

vanishes on π´1
An pXzt0uqXUj . Since BlppXq is the closure of π´1

An pXzt0uq, it follows that the polynomial
in (2.3.13) vanishes on BlppXq XUj . In fact, we claim that

BlppXq XUj “ V p
d´m
ÿ

s“0

zsjfm`spt1, . . . , tj´1, 1, tj`1, . . . , tnqq. (2.3.14)

In fact, suppose that ϕ P Krxj , t1, . . . , tj´1, tj`1, . . . , tns vanishes on BlppXq X Uj . Then the rational
function ϕp z1zj , . . .

zj´1

zj
, zj ,

zj`1

zj
, . . . , znzj q vanishes at all points of V pfqzV pzjq. Let e P N` be such that

zejϕp
z1

zj
, . . .

zj´1

zj
, zj ,

zj`1

zj
, . . . ,

zn
zj
q (2.3.15)

is a polynomial in z1, . . . , zn. The polynomial in (2.3.15) vanishes on V pfq, and hence it is a multiple
of f , i.e. there exists ψ P Krz1, . . . , zns such that

zejϕp
z1

zj
, . . .

zj´1

zj
, zj ,

zj`1

zj
, . . . ,

zn
zj
q “ ψ ¨ fpzjt1, . . . , zjtj´1, zj , zjtj`1, . . . , zjtnq.

Divide the above equality by zmj , and replace zi
zj

by tj for i ­“ j. We get

zejϕpt1, . . . tj´1, zj , tj`1, . . . , tnq “ ψ ¨

˜

d´m
ÿ

s“0

zsjfm`spt1, . . . , tj´1, 1, tj`1, . . . , tnq

¸

.

Since zj does not divide the second factor of the right hand side, we get that zej divides ψ, and hence
ϕ is a multiple of the polynomial in the right hand side of (2.3.14).

In particular we get that

π´1
X ppq “ tpp0, . . . , 0loomoon

n

q, rT1, . . . , Tns P Pn´1 | fmpT1, . . . , Tnq “ 0u. (2.3.16)

Universal property of the blow-up

Let X Ă Pn and Y Ă Pm be isomorphic locally closed subsets, and let ϕ : X
„
ÝÑ Y be an isomorphism.

Choose p P X, and let q :“ ϕppq P Y . We will show that the isomorphism between Xztpu and Y ztqu
defined by ϕ extends to an isomorphism BlppXq

„
ÝÑ BlqpY q. This means that we may speak of the

blow up of a quasi projective variety at a point without specifying an isomorphism of the variety with
a locally closed subset of a projective space.

The key point is to realize that the blow up has a universal property.
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2. Rational maps, dimension

Proposition 2.3.5 (Universal property of the blow-up). Let Y Ă Pm be a locally closed subset and
q P Y . We assume that dimq Y ą 0 so that the blow-up BlqpY q is defined. Let X be a quasi-projective
variety and F : X Ñ Y be a regular map. Let V Ă Y be an open affine subset containing q and
mq Ă KrV s be the (maximal) ideal of functions vanishing at q. Suppose that there exists an open affine
covering

F´1V “
ď

jPJ

Uj

( affine means that each Uj is an affine variety) such that for every j P J the ideal of KrUjs generated
by pF |Uj

q˚mq is principal, generated by a function ρj P CrUjs which is not a zero-divisor. Then there

exists a lift of F i.e. a regular map rF : X Ñ : BlqpY q fitting into the commutative diagram

BlqpY q

πY

��

X

rF
;;

F
##
Y

Moreover, such a lift is unique.

Proof. Away from F´1pqq we define rF as rF :“ φY ˝ F where φY : pY ztquq Ñ BlqpY q is the rational
inverse of πY . Let us show that φY ˝F extends to a regular map at all points of F´1pqq. Let ψ1, . . . , ψr P
CrV s be generators of mq Ă CrV s. Choose homogeneous coordinates rZ0, . . . , Zms on Pm such that
q “ r1, 0, . . . , 0s, and let zi “ Zi{Z0 be affine coordinates on PnZ0

- notice that q P PnZ0
. Let p P F´1pqq.

Then there exists j P J such that p P Uj . Let Fj :“ F |Uj . By hypothesis

F˚j ψs “ λsjρj (2.3.17)

with λsj regular for 1 ď s ď r, and since ρj is in the ideal generated by F˚j ψ1, . . . , F
˚
j ψr there exists

1 ď s0 ď r such that
λs0,jppq ­“ 0. (2.3.18)

Let

F´1pYZ0
q

Φ
ÝÑ YZ0

p ÞÑ F ppq

be the restriction of F . The equivalence classes of ψ1, . . . , ψr in OY,q generate the maximal ideal
mq Ă OY,q; since the equivalence classes of z1, . . . , zm in OY,q belong to mq it follows that there exist
µij P OX,p for i “ 1, . . . ,m such that

F˚pziq “ µijρj in OX,p. (2.3.19)

On the other hand the equivalence classes of z1, . . . , zm in OY,q also generate mq, thus (2.3.17) and (2.3.18)
give that there exists 1 ď i0 ď m such that µi0,jppq ­“ 0. Shrinking U j around p we may assume that
for all p P U j we have µi0,jppq ­“ 0. By (2.3.19) the restriction of φY ˝ F to U j is equal to

U j ÝÑ Y ˆ Pn´1

p ÞÑ pF ppq, rµ1,jppq, . . . , µm,jppqsq.

Since µi0,jppq ­“ 0 for all p P U j the above map is regular. Now we must check that the local extensions
glue together and that the resulting lift is unique. Both statements follow from the hypothesis that
the ρj ’s are not zero-divisors: this implies that no irreducible component of X is contained in F´1pqq.

Now let U1,U2 Ă X be open subsets such that F |U1
lifts to rF1 : U1 Ñ BlqpY q and F |U2

lifts to
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2.4. The field of rational functions

rF2 : U2 Ñ BlqpY q. The intersection U1 XU2 X pXzF
´1pqqq is dense in U1 XU2 because no irreducible

component of X is contained in F´1pqq. Since rF1|U1XU2zF´1pqq “
rF2|U1XU2zF´1pqq it follows that

rF1 “ rF2. Thus there exists a lift of F . Unicity of the lift follows from unicity of the restriction of a lift
to pY ztquq and the fact that no irreducible component of X is contained in F´1pqq.

Corollary 2.3.6. Let X Ă Pn and Y Ă Pm be locally-closed subsets and F : X
„
Ñ Y be an isomorphism.

Let p P X and q :“ F ppq P Y . There exists a unique isomorphism G : BlppXq
„
ÝÑ BlqpY q fitting into

the commutative diagram

BlppXq
G //

πX

��

BlppY q

πY

��

X
F // Y

Proof. Let us show that F ˝ πX : BlppXq Ñ Y lifts to a regular map G : BlppXq Ñ BlqpY q. Let
rZ0, . . . , Zms be homogeneous coordinates on Pm such that q “ r1, 0, . . . , 0s and let zi “ Zi{Z0 for
i P t1, . . . ,mu be affine coordinates on PmZ0

. The maximal ideal mq Ă CrXZ0s is generated by z1, . . . , zn.

Let U :“ F´1pXZ0
q, and let Φ: U Ñ XZ0

be the map given by restriction of F . Let Ψ: π´1
X pUq Ñ U

be the map given by restriction of πX .

Since F is an isomorphism, U is an open affine subset of X containing p and hence Φ˚pz1q, . . . ,Φ
˚pznq

generate the maximal ideal mp Ă KrU s.
On the other hand, let rW0, . . . ,Wns be homogeneous coordinates on Pn such that p “ r1, 0, . . . , 0s

and let wk “Wk{W0 for k P t1, . . . , nu be affine coordinates on PnW0
. The maximal ideal mp Ă CrXW0

s

is generated by w1, . . . , wn.

Hence, there exists an open affine set V Ă XW0XU containing p such that the ideal in KrV s generated
by the restrictions of Φ˚pz1q, . . . ,Φ

˚pznq to V is equal to the ideal generated by the restrictions of
w1, . . . , wn to V .

By Remark 2.3.3 it follows that there exists an open affine covering tUjujPJ of π´1
X pV q such that for

every j P J the ideal of CrUjs generated by pπX|π´1
X pV qq

˚pΦ˚pz1qq, . . . , pπX|π´1
X pV qq

˚pΦ˚pznqq is principal,

generated by a function which is not a zero-divisor. Hence F ˝ πX : BlppXq Ñ Y lifts to a regular map
G : BlppXq Ñ BlqpY q by Proposition 2.3.6.

Symmetrically F´1 ˝ πY lifts to a regular map H : BlqpY q Ñ BlppXq. The composition H ˝ G is
equal to the identity map because it is the identity on the open dense subset π´1

X pXztpuq. By the same
argument, also the composition G ˝H is the identity.

Let p1, . . . , pr P Y be a finite collection of distinct points. Since Blp1pY q Ñ Y is an isomorphism
outside p1 we may view p2, . . . , pr as points of Blp1pY q, consider Blp2pBlp1pY qq and iterate, blowing
up r times. Of course we may repeat this operation with a different ordering of the same points. Let
rY be one of these blow-ups. Then rY enjoys the following universal property similar to that given by
Proposition 2.3.6. Let U Ă Y be an open affine set containing p1, . . . , pr and F : X Ñ Y be a regular
map such that locally on F´1U the ideal generated by pF |F´1pUqq

˚pmp1 ‘ . . .‘mpr q (here mpi Ă CrU s
is the maximal ideal of pi) is principal, generated by a function which is not a zero-divisor: then F lifts

uniquely to a regular map rF : X Ñ rY . Since this property is independent of the ordering of the points
it follows that any two such blow-ups are isomorphic. From now on we will denote such a blow-up by
Blp1,...,pr pY q.

Example 2.3.7. Let p1, . . . , pr P Pn. Then Blp1,...,pr Pn has an open cover by affine n-dimensional spaces.

2.4 The field of rational functions

If we consider the category whose objects are irreducible quasi projective varieties, and morphisms are
dominant rational maps, we get a familiar algebraic category. In order to explain this, we introduce a
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key definition. Let X be an irreducible quasi projective variety. The field of rational functions on X is

KpXq :“ tf : X 99K K | f is a rational mapu . (2.4.20)

Addition and multiplication are defined on representatives. Let f, g P KpXq be represented by pU,ϕq
and pV, ψq respectively. Then

f ` g :“ r
`

U X V, ϕ|UXV ` ψ|UXV
˘

s,

f ¨ g :“ r
`

U X V, ϕ|UXV ¨ ψ|UXV
˘

s.

Example 2.4.1. • KpPnq – Kpz1, . . . , znq is the purely transcendental extension of K of transcend-
ence degree n.

• Let p P Krzs be free of square factors (and deg p ě 1). Then t2 ´ ppzq is prime and hence
X :“ V

`

t2 ´ ppzq
˘

Ă A2 is irreducible. Then Kpzq Ă KpXq is an extension of degree 2. We may
ask whether KpXq is a purely trascendental extension of K. The answer is yes if deg p “ 1, 2 (see
Example 1.3.5), no if deg p ě 3 (this requires new ideas).

Let f : X 99K Y be a dominant rational map of irreducible quasi projective varieties. We have a
well-defined pull-back

KpY q ϕ˚

ÝÑ KpXq
ϕ ÞÑ ϕ ˝ f

(The composition is well defined because by hypothesis f is dominant.) The map f˚ is an inclusion of
extensions of K. Suppose that f : X 99K Y and g : Y 99K W are dominant rational maps of irreducible
quasi projective varieties. Then g ˝ f : X 99KW is dominant and

f˚ ˝ g˚ “ pg ˝ fq
˚
. (2.4.21)

Of course Id˚X : KpXq Ñ KpXq is the identity map. We will prove the following result.

Theorem 2.4.2. By associating to each quasi projective variety its field of fractions, and to each
dominant rational map f : X 99K Y of irreducible quasi projective varieties the pull back, we get an
equivalence between the category of irreducible quasi projective varieties with homomorphisms dominant
rational maps, and the category of finitely generated field extensions of K.

What must be proved are the following two statements:

1. An extension of fields K Ă E is isomorphic to the filed of rational functions KpXq of a quasi
projective variety X if and only it it is finitely generated over K.

2. Let E, F be finitely generated field extensions of K, and let α : E Ñ F be a homomorphism of
K extensions (i.e. an inclusion E ãÑ F which is the identity on K). Let Y,X be irreducible quasi
projective varieties such that KpY q,KpXq are isomorphic to E and F respectively as extensions
of K (they exist by Item (1)). Then there exists a unique dominant rational map f : X 99K Y
such that f˚ “ α.

Item (1) is proved in Proposition 2.4.4. Item (2) is proved in Proposition 2.4.6.
We start by observing that we may restrict our attention to affine (irreducible) varieties. In fact,

let X be an irreducible quasi projective variety, and let Y Ă X be an open dense affine subset (e.g. a
prinipal open subset). We have a well-defined restriction map

KpXq 99K KpY q. (2.4.22)

In fact, let f P KpXq, and let pU,ϕq be a couple representing an element. Then U XY is an open dense
subset of Y , and the couple pU X Y, ϕ|UXY q represents an element f P KpY q, which is independnet of
the representative of f . The restriction map in (2.4.22) is an isomorphism of K extensions. Hence,
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2.4. The field of rational functions

when dealing with the field of fractions of a quasi projective variety, we may assume that the variety is
affine.

Let X be an irreducible quasi projective variety. We have an inclusion of K extensions:

(field of fractions of KrXs) ãÑ KpXq
α
β ÞÑ rpXzV pβq, αβ qs

(2.4.23)

Claim 2.4.3. Let X be an affine irreducible variety. Then (2.4.23) is an isomorphism.

Proof. We must prove that the map in (2.4.23) is surjective. Let f P KpXq, and let pU,ϕq represent f .
By Remark 1.4.4, there exists 0 ­“ γ P KrXs such that the dense principal open subset Xγ is contained
in U . Moreover, by Remark 1.4.4 and Theorem 1.4.2, KrXf s is generated as K-algebra by KrXs and
γ´1, hence φ is represented by pXγ ,

α
γm q where α P KrXs. Let β :“ γ. Since Xγ “ Xβ , we have proved

that f belongs to the image of (2.4.23).

Proposition 2.4.4. A field extension of K is isomorphic to the field of fractions of an irreducible quasi
projective variety if and only if it is finitely generated over K.

Proof. Let X be a quasi projective variety. Let us prove that KpXq is finitely generated over K. The
field KpXq is isomorphic to the field of fractions of an open dense affine subset of X. Thus we may
assume that X Ă An is closed. By Claim 2.4.3, KpXq is the field of quotients of KrXs, and moreover
KrXs is generated over K by the restrictions of the coordinate functions z1, . . . , zn by Theorem 1.4.2.
Hence the restrictions of the coordinate functions z1, . . . , zn to X generate KpXq over K.

Now assume that E is a finitely generated field extension of K.
In particular the transcendenece degree of E over K is finite, say m. By Corollary A.5.7, there exists

a prime polynomial P P Kpz1, . . . , zmqrzm`1s such that E (as extension of K) is isomorphic to the field
Kpz1, . . . , zmqrzm`1s{pP q. Write

P “ zdm`1 ` c1z
d´1
m`1 ` ¨ ¨ ¨ ` cd, ci P K pz1, . . . , zmq .

Then, for i P t1, . . . , du, we have ci “
ai
bi

where ai, bi P Krz1, . . . , zms and bi ­“ 0. Let rP P Krz1, . . . , zm`1s

be obtained from P by clearing denominators, i.e. rP “ pb1 ¨ . . . ¨bdqP . Lastly, let Q P Krz1, . . . , zm`1s be

obtained from rP by factoring out the maximum common divisor of the coefficients of rP as polynomial
in zm`1 (recall that Krz1, . . . , zms is a UFD). Notice that Q is irreducible and hence prime. Write

Q “ e0z
d
m`1 ` e1z

d´1
m`1 ` ¨ ¨ ¨ ` ed, ei P Krz1, . . . , zms, e0 ­“ 0.

Then X :“ V pQq Ă Am`1 is an irreducible hypersurface because Q is prime. Let zi :“ zi|X . We claim
that the rational functions on X represented by tz1, . . . , zmu are algebraically independent over K. In
fact, suppose that R P Krt1, . . . , tms and Rpz1, . . . , znq “ 0. By the fundamental Theorem of Algebra,
for any pξ1, . . . , ξmq P pAmzV pe0qq there exists ξm`1 P K such that pξ1, . . . , ξm, ξm`1q P X. It follows
that Rpξ1, . . . , ξmq “ 0 for all pξ1, . . . , ξmq P pAnzV pe0qq, and hence R ¨ e0 vanishes identically on Am.
Thus R ¨ e0 “ 0, and since e0 ­“ 0 it follows that R “ 0. This proves that tz1, . . . , zmu are algebraically
independent over K. On the other hand zm`1 is algebraic over Kpz1, . . . , zmq and its minimal polynomial
equals P . Hence the field of fractions of X is isomorphic to Kpz1, . . . , zmqrzm`1s{pP q.

Proposition 2.4.5. Let X and Y be irreducible quasi projective varieties. Suppose that α : KpY q ãÑ

KpXq is an inclusion of extensions of K. There exists a unique dominant rational map f : X 99K Y
such that f˚ “ α.

Proof. We may assume that X Ă An and Y Ă Am are closed. By Claim 2.4.3 KpXq, KpY q are the
fields of fractions of KrXs and KrY s respectively, and by Theorem 1.4.2, KrXs “ Krz1, . . . , zns{IpXq
and KrY s “ Krw1, . . . , wms{IpY q. Given p P Krz1, . . . , zns and q P Krw1, . . . , wms we let p :“ p|X and
q :“ q|Y . We have

α pwiq “
f i
gi
, fi, gi P Krz1, . . . , zns, gi ‰ 0.
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Let U :“ XzpV pg1q Y . . .Y V pgmqq. Then U is open and dense in X. Let

U
rφ
ÝÑ Am

a ÞÑ

´

f1paq
g1paq

, . . . , fmpaqgmpaq

¯

We claim that rφpUq Ă Y . In fact let h P IpY q. Since α is an inclusion of extensions of K,

hpf1{g1, . . . , fm{gmq “ hpαpw1q, . . . , αpwmqq “ αphpw1, . . . , wmq “ αp0q “ 0.

This proves that if h P IpY q then h vanishes on rφpUq , i.e. rφpUq Ă Y . Thus rφ induces a regular map
φ : U Ñ Y . Let f : X 99K Y be the equivalence class of pU, φq. Then f˚ “ α.

It is clear by the above construction that f is the unique rational (dominant) map such that f˚ “
α.

The result below follows at once from what has been proved above.

Corollary 2.4.6. Irreducible quasi projective varieties are birational if and only if their fields of rational
functions are isomorphic as extensions of K.

The result below follows from the above corollary and the proof of Proposition 2.4.4.

Proposition 2.4.7. Let X be an irreducible quasi projective variety and let m :“ Tr.degK KpXq. Then
X is birational to an irreducible hypersurface in Am`1.

2.5 Dimension

Let X be an irreducible quasi projective variety. The dimension of X is defined to be the transcendence
degree of KpXq over K. Next, let X be an arbitrary quasi projective variety, and let X “ X1Y¨ ¨ ¨YXr

be its irreducible decomposition.

1. The dimension of X is the maximum of the dimensions of its irreducible components. We say
that X has pure dimension n if every irreducible component of X has dimension n.

2. Let p P X. The dimension of X at p is the maximum of the dimensions of the irreducible
components of X containing p.

Example 2.5.1. The dimension of An is equal to n because tz1, . . . , znu is a transcendence basis of
Kpz1, . . . , znq over K.

Remark 2.5.2. (a) The dimension of X is equal to the dimension of any open dense subset U Ă X.
In fact, by definition it suffices to rove it for irreducible X, and in that case it holds because the
fields of rational functions KpXq and KpUq are isomorphic extensions of K. Hence the dimension
of Grph, V q is equal to h ¨ pdimV ´ hq, because it is irreducible and it contains an open subset
isomorphic to an affine space of dimension h ¨ pdimV ´ hq, see Proposition 1.7.5.

(b) If dimX “ 0, then X is a finite set. It suffices to prove that if X is irreducible and KpXq “ K,
then X is a singleton. Let X Ă Pn be locally closed and irreducible, and suppose that it contains
two distinct points x1, x2. Then there exist L,M P KrZ0, . . . , Zns1 such that Lpx1q “ 0 ­“ Lpx2q,
and Mpx1q ­“ 0 ­“ Mpx2q. Then L{M defines a rational function f : X 99K K, regular at x1 and
x2, such that fpx1q “ 0 ­“ fpx2q. Thus KpXq ­“ K.

(c) Let f : X 99K Y be a dominant map of irreducible quasi projective varieties. Then dimY ď dimX,
because we have the inclusion f˚ : KpY q ãÑ KpXq of field extensions of K.

Proposition 2.5.3. Let X be an irreducible quasi projective variety and Y Ă X be a proper closed
subset. Then dimY ă dimX.
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Proof. We may assume that Y is irreducible. Since X is covered by open affine varieties, we may
assume that X is affine. Thus X Ă An is a closed (irreducible) subset, and so is Y . We may choose
a transcendence basis tf1, . . . , fdu of KpY q, where each fi is a regular function on Y (for example a
coordinate function).

Let f̃1, . . . , f̃d P KrXs such that f̃i|W “ fi. Since Y is a proper closed subset of X, there exists a

non zero g P KrXs such that g|Y “ 0. It suffices to prove that f̃1, . . . , f̃d, g are algebraically independent
over. We argue by contradiction. Suppose that there exists 0 ‰ P P KrS1, . . . , Sd, T s such that
P pf̃1, . . . , f̃d, gq “ 0. Since X is irreducible we may assume that P is irreducible. Restricting to Y
the equality P pf̃1, . . . , f̃d, gq “ 0, we get that P pf1, . . . , fd, 0q “ 0. Thus P pS1, . . . , Sd, 0q “ 0, because
f1, . . . , fd are algebraically independent. This means that T divides P . Since P is irreducible P “ cT ,
c P K˚. Thus P pf̃1, . . . , f̃d, gq “ 0 reads g “ 0, and that is a contradiction.

Corollary 2.5.4. A (non empty) closed subset X Ă An`1 has pure dimension n if and only if it is an
irreducible hypersurface. Similarly, a closed subset X Ă Pn`1 has pure dimension n if and only if it is
an irreducible hypersurface.

Proof. Let X Ă An`1 be an irreducible hypersurface. Let IpXq “ pfq. Reordering the coordinates
pz1, . . . , zn, zn`1q we may assume that

f “ c0z
d
n`1 ` c1z

d´1
n`1 ` ¨ ¨ ¨ ` cd, ci P Krz1, . . . , zns, c0 ‰ 0, d ą 0.

In proving Proposition 2.4.7 we showed that the restrictions to X of the zi’s, for i “ 1, . . . , d give a
transcendence basis of KpXq. Thus dimX “ n. Since the irreducible components of a hypersurface are
hypersurfaces (if f “

ś

fmii is the decomposition of f into prime factors, the irreducible components
of V pfq are the hypersurfaces V pfiq), it follows that a hypersurface X Ă An`1 is of pure dimension n.

In order to prove the converse, let X Ă An`1 be a closed subset of pure dimension n. Thus
every irreducible component of X is a closed subset of An`1 of dimension n. Since the union of
hypersurfaces in An`1 is a hypersurface in An`1, it suffices to prove that each irreducible component
of Xis a hypersurface, i.e we may assume that X is irreducible. Since dimX “ n ă dimAn`1, there
exists a non zero f P IpXq Ă Krz1, . . . , zn`1s. Since X is irreducible, the ideal IpXq is prime, and hence
there exists a prime factor g of f which vanishes on X. Thus X Ă V pgq, dimX “ n “ dimV pgq (by
the result that we just proved), V pgq is irreducible, and X is closed in V pgq. By Proposition 2.5.3 we
get that X “ V pgq. This finishes the proof for closed subsets of An`1.

The result for closed subsets of Pn`1 follows by a smilar proof, or by intersecting with standard
open affine subsets PnZi .

Proposition 2.5.5. Let X, Y be quasi projective varieties. Then dimpX ˆ Y q “ dimX ` dimY .

Proof. We may assume that X and Y are irreducible affine varieties. There exist transcendence bases
tf1, . . . , fdu, tg1, . . . , geu of KpXq and KpY q respectively given by regular functions. Let πX : XˆY Ñ X
and πY : X ˆ Y Ñ Y be the projections. We claim that tπ˚Xpf1q, . . . , π

˚
Xpfdq, π

˚
Y pg1q, . . . , π

˚
Y pgequ is a

transcendence basis of KpX ˆ Y q.
First, by Proposition 1.5.1 KrXˆY s is algebraic over the subring generated (over K) by π˚Xpf1q, . . . , π

˚
Y pgeq.

Secondly, let us show that π˚Xpf1q, . . . , π
˚
Y pgeq are algebraically independent. Suppose that there is

a polynomial relation

ÿ

0ďm1,...,meďN

Pm1,...,mepπ
˚
Xpf1q, . . . , π

˚
Xpfdqq ¨ π

˚
Y pg1q

m1 ¨ . . . ¨ π˚Y pgeq
me “ 0,

where each Pm1,...,me is a polynomial. Since g1, . . . , ge are algebraically independent we get that
Pm1,...,mepf1paq, . . . , fdpaqq “ 0 for every a P X. Since f1, . . . , fd are algebraically independent, it
follows that Pm1,...,me “ 0 for every 0 ď m1, . . . ,me ď N , and hence P “ 0. This proves that
π˚Xpf1q, . . . , π

˚
Y pgeq are algebraically independent.
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Chapter 3

Projective methods

3.1 Introduction

3.2 Maps of finite degree

Definition 3.2.1. Let f : X 99K Y be a rational map of irreducible quasi-projective varieties. The
degree of f is given by

deg f :“

#

0 if f is not dominant,

rKpXq : f˚pKpY qqs if f is dominant (hence pull-back of rational functions makes sense).

If f is dominant, the pull-back f˚ : KpY q Ñ KpXq is an embedding of fields; abusing notation we
denote the image by KpY q. We recall that

rKpXq : KpY qs “ dimKpY qKpXq.

Thus 0 ă deg f ă 8 if and only if f is dominant and dimX “ dimY , or equivalently KpXq is a finite
extension of KpY q.
Example 3.2.2. Let X Ă An`1 be an irreducible hypersurface such that IpXq “ pP q, where

P “ a0z
d
n`1 ` a1z

d´1
n`1 ` ¨ ¨ ¨ ` ad, ai P Krz1, . . . , zns, a0 ‰ 0.

Let f : X Ñ An be the projection map fpzq “ pz1, . . . , znq. Then deg f “ d. In fact suppose that d “ 0.
Then Im f “ V pa0q and hence f is not dominant. If d ą 0, then KpXq “ Kpz1, . . . , znqrzn`1s{pP q, and
hence rKpXq : Kpz1, . . . , znqs “ d.

Definition 3.2.3. Let f : X 99K Y be a rational map of irreducible quasi-projective varieties, of finite
degree (hence KpXq is a finite extension of KpY q). The separable degree of f is equal to 0 if deg f “ 0,
and if deg f ­“ 0 it is the separable degree rKpXq : KpY qss, see Theorem A.5.3. We denote it by degs f .

Example 3.2.4. Let X Ă An`1 and f : X Ñ An be as in Example 3.2.2. Suppose that d ­“ 0, and hence
deg f “ d ą 0. If charK “ 0, then KpXq is a separable extension of Kpz1, . . . , znq, and hence degs f “

deg f “ d. If charK “ p ą 0, then there is a maximum r ě 0 such that P “ Qpz1, . . . , zn, z
pr

n`1q, where

Q P Krz1, . . . , zn, ws. Then BQ
Bzn`1

­“ 0. It follows that the maximal separable extension of Kpz1, . . . , znq

in KpXq is obtained by adjoining zp
r

n`1. Since the minimal polynomial of zp
r

n`1 is Q
a0

(the minimal

polynomial is monic), the separable degree degs f is equal to degwQ “
d
pr “

deg f
pr .

Below is the main result of the present section.

Proposition 3.2.5. Let f : X Ñ Y be a regular map between irreducible quasi-projective varieties.
Suppose that deg f ă 8. There exists an open dense Y 0 Ă Y such that

|f´1tqu| “ degs f @q P Y 0.
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Example 3.2.6. Let us check the statement of Proposition 3.2.5 for the map f : X Ñ An of Example 3.2.2.
Let Q P Krz1, . . . , zn, ws be as in Example 3.2.4, and let Y :“ V pQq Ă An. Let h : X Ñ Y be defined

by hpzq “ pz1, . . . , zn, z
pr

n`1q, and let g : Y Ñ An be the projection gpz1, . . . , zn, wq “ pz1, . . . , znq. Then
f “ g ˝ h.

The non zero polynomial BQ{Bw has degree in w strictly smaller than the degree in w of Q, hence
it is not a multiple of the prime polynomial Q. It follows that V pQ, BQ{Bwq is a proper closed subset
of X and hence it has dimension strictly smaller than dimX “ n. Therefore, the closure

∆ :“ fpV pQ, BQ{Bwqq

is a proper closed subset of An and hence U :“ pAnz∆zV pa0qq is an open dense subset of An. Let a P U .
Then |g´1paq| “ degs f , because Qpa,wq P Krws is a polynomial of degree degs f with simple roots.
Since f´1paq “ h´1pg´1paqq, and h is bijective (since charK “ p, every elemnt of sK has exactly one
p-th root), we get that |f´1paq| “ degs f .

The proof of Proposition 3.2.5 follows some preliminary results.
Let f : X Ñ Y and g : W Ñ Y be regular dominant maps of irreducible varieties. Suppose that there

exists an isomorphism of fields ϕ : KpW q „
ÝÑ KpXq which is the identity on KpY q. Let h : X 99KW be

the birational map such that h˚ “ ϕ (see Proposition 2.4.6). Since ϕ is the identity on KpY q, we have
a commutative diagram

X
h //

f
  

Y

g
��

Y

Lemma 3.2.7. Keeping notation and hypotheses as above, there exists a dense open subset Y 0 Ă Y
such that, for all y P y0, the inverse image f´1pyq is contained in Regphq, and the map h defines a
bijection

f´1pyq ÝÑ g´1pyq
x ÞÑ hpxq.

Proof. Let h´1 : W 99K X be the inverse of h. By Proposition 2.2.6, there exist open dense subsets
UX Ă Regphq and UW Ă Regph´1q such that the restriction of h defines an isomorphism UX

„
ÝÑ UW ,

with inverse the restriction of h´1 to UW (this result is not in the statement of the proposition, but in
the proof). Let

Y 0 :“ Y zfpXzUXqzgpW zUW q.

Since XzUX , W zUW are closed proper subsets of the irreducible varieties X,Y , and dimX “ dimY “
dimW , the open Y 0 Ă Y is non empty, and hence dense (Y is irreducible). One easily checks that the
Lemma holds for the Y 0 that we have just defined.

Next, we consider a more general version of Example 3.2.2. Let Y be an affine variety. Let P P

KpY qrts be an irreducible polynomial:

P “ td ` a1t
d´1 ` ¨ ¨ ¨ ` ad.

Since Y is affine KpY q is the field of fractions of KrY s. Thus there exists 0 ‰ b P KrY s such that
b ¨ ai P f

˚pKrY sq for all 1 ď i ď d. Let c0 :“ b, ci :“ b ¨ ai, 1 ď i ď d and

Q :“ c0t
d ` c1t

d´1 ` ¨ ¨ ¨ ` cd P KrY srts. (3.2.1)

Let π : Y ˆ A1 Ñ Y be the projection.

Lemma 3.2.8. Keep hypotheses and notation as above. Assume moreover that

dP

dt
“ dtd´1 ` pd´ 1qa1t

d´2 ` ¨ ¨ ¨ ` ad´1 ­“ 0.
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3.2. Maps of finite degree

(If charK this holds as soon as d ą 0, if charK “ p it holds if and only if there exists i P t1, . . . , du,
which is not a multiple of p, such that ai ­“ 0.)

(a) There is one and only one irreducible component V pQqi of V pQq which dominates Y , i.e. such
that πpV pQqiq “ Y ; call it V , and let g : V Ñ Y be the map defined by π.

(b) The extension of fields KpV q Ą KpY q given by the dominant map g : V Ñ Y is generated by the
restriction of the function t to V , and P is the minimal polynomial of t over KpY q.

(c) There is an open dense U Ă Y such that |g´1pyq| “ d for every y P U .

Proof. (a): We have πpV pQqq Ą Y zV pc0q, and Y zV pc0q is dense in Y because c0 ‰ 0. It follows that
there exists at least one irreducible component V pQq0 of V such that πpV pQq0q “ Y . Let g P IpV pQq0q.
We claim that

Q|g in KpY qrts. (3.2.2)

(Notice: we do not claim that Q|g in KrY srts.) In fact suppose that (3.2.2) does not hold. Then Q
and g are coprime (in KpY qrts) because Q is prime, and hence there exist α, β P KpY qrts such that
α ¨Q` β ¨ g “ 1. Multiplying by 0 ‰ γ P KrY srts such that α ¨ γ, β ¨ γ P KrY srts we get that

pα ¨ γqQ` pβ ¨ γqg “ γ.

It follows that if q P V pQq0 then γpqq “ 0. Since γ ‰ 0 we get that πpV pQq0q ‰ Y : that is a
contradiction. This proves (3.2.2). Let IpV pQq0q “ pg1, . . . , grq. From (3.2.2) we get that there exist
h1, . . . , hr P KrY srts and m1, . . . ,mr P KrY s such that

mi ¨ gi “ Q ¨ hi, mi ‰ 0, i “ 1, . . . , r. (3.2.3)

Set m “ m1 ¨ ¨ ¨ ¨ ¨mr. Then V pQq0zV pmq “ V pQqzV pmq by (3.2.3), and hence V pQq0 is the unique
irreducible component of V pQq dominating Y .

(b): This is clear by construction.

(c): Let
dQ

dt
:“ dc0t

d´1 ` pd´ 1qc1t
d´2 ` ¨ ¨ ¨ ` cd´1 P KrY srts.

be the derivative of Q with respect to t. By hypothesis dQ
dt ­“ 0, and degt

dQ
dt ă d “ degtQ. Thus Q

and dQ
dt are coprime in KpY qrts and hence there exist µ, ν P KpY qrts such that

µ ¨Q` ν ¨
dQ

dt
“ 1.

Arguing as above we get that there exists a proper closed C Ă Y such that

π´1pY zCq X V pQq X V

ˆ

dQ

dt

˙

“ H. (3.2.4)

Now let U :“ pY zCzV pc0qzV pmqq: then |π´1pqq| “ d and π´1pqq Ă V for every q P U .

Remark 3.2.9. If KrY s is a UFD we may factor out the gcd tc0, . . . , cdu and hence by renaming the ci’s
we may assume that gcd tc0, . . . , cdu “ 1. It follows that V pQq is irreducible (the proof is the same as
the one for hypersurfaces in An). The problem is that in general KrY s will not be a UFD (an example:
Y “ V px1x2 ´ x3x4q Ă A4 and Q “ x1y ´ x3), and hence there might be no way of “reducing” the
polynomial of (3.2.1) in order to get that V pQq is irreducible.
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3. Projective methods

Proof of Proposition 3.2.5. Suppose that deg f “ 0. Then fpXq ‰ Y and Y 0 :“ Y zfpXq will do.
Now suppose that deg f ą 0. We construct, via Lemma 3.2.8, a dominant map g : W Ñ Y of

irreducible varieties such that the extension KpW q Ą KpY q is isomorphic to the extension KpXq Ą KpY q,
and so that |g´1pyq| “ degs f for y in an open dense subset of Y . Then Proposition 3.2.5 follows from
Lemma 3.2.7.

Since Y is covered by open affine sets we may assume that Y itself is affine. The extension of
fields KpXq Ą KpY q is algebraic and finitely generated. Let KpXqs Ą KpY q be the maximal separable
extension of KpY q in KpXq. Let d :“ rKpXqs : KpY qs “ degs f . By Theorem A.5.3, there exists a
primitive element ξ of KpXqs over KpY q. Let

P “ td ` a1t
d´1 ` ¨ ¨ ¨ ` ad, ai P KpY q

be the minimal polynomial of ξ. Let Q P KrY srts be the polynomial in (3.2.1), obtained by clearing
denominators of a1, . . . , ad. Let V Ă V pQq be the unique irreducible component dominating Y , and let
g : V Ñ Y be the restriction of π, see Lemma 3.2.8. By Item (b) of that lemma, the extension of fields
KpXqs Ą KpY q and KpV q Ą KpY q are isomorphic.

If KpXqs “ KpXq, let W :“ V .
If KpXqs ­“ KpXq, then charK “ p ą 0, and if α1, . . . , αm are generators of KpXq over KpXqs, there

exist β1, . . . , βm P KpXqs and r1, . . . , rm P N such that αp
ri

i “ βi for i P t1, . . . ,mu, see Theorem A.5.3.
We may view β1, . . . , βm as rational functions on V , because the extension of fields KpXqs Ą KpY q

and KpV q Ą KpY q are isomorphic. Replacing Y by an open dense subset U and V by g´1pU q

we may assume that βi are regular functions for i P t1, . . . ,mu (recall that dimV “ dimY ). Let
W Ă Y ˆ A1 ˆ Am be the subset defined by

W :“ tpy, t, z1, . . . , zmq P Y ˆ A1 ˆ Am | py, tq PW, zp
ri

i “ βiu.

In both cases (KpXq separable or not separable over KpY q) we let g : W Ñ Y be the projection map.
By construction the extension of fields KpXq Ą KpY q and KpW q Ą KpY q are isomorphic, hence by

Lemma 3.2.7 it suffices to prove that there exists an open dense U Ă Y such that |g´1pyq| “ d for y P U .
This follows from Lemma 3.2.8, because if charK “ p, the equation zp

r

“ β has one solution.

Definition 3.2.10. We introduce some terminology. Let Y be a quasi-projective set and P a property
that might or might not hold for a given y P Y (formally P is a subset of Y ). We say that property P
holds for the generic point of Y if there exists an open dense Y 0 Ă Y such that property P holds for
all y P Y 0.

Example 3.2.11. 1. The generic point of Y is smooth.

2. If f : X Ñ Y is a map of quasi-projective varieties and deg f ă 8 then |f´1 tqu | “ deg f for the
generic q P Y .

3.3 Degree of a closed subset of Pn

Let X be an irreducible quasi-projective variety. The codimension of a closed subset Y Ă X is equal
to dimX ´ dimY , and is denoted by codpY,Xq. Below is the main result of the present section.

Theorem 3.3.1. Let X Ă Pn be closed, and let c :“ codpX,Pnq.

1. If 0 ď k ă c and Λ P Grpk,Pnq is generic, then Λ does not intersect X.

2. If c ď k ď n and Λ P Grpk,Pnq, then Λ does intersect X.

3. There exists a strictly positive integer degX such that for a generic Λ P Grpc,Pnq the intersection
ΛXX has cardinality degX.

The proof of the Items in Theorem 3.3.1 will follow from some preliminary results.
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3.3. Degree of a closed subset of Pn

Example 3.3.2. Let X Ă Pn be a hypersurface. Thus c “ codpX,Pnq “ 1. Item (1) of Theorem 3.3.1
is trivially verified, because PnzX is an open dense subset of Pn. It is also straightforward to check
that Item (2) holds. In fact let Λ “ PpW q, where W is a vector subspace of dimension at least 2. If
X “ V pF q, thenΛ X X “ V pF|W q, and since dimW ě 2, the non constant homogeneous polynomial
F|W has non trvial zeroes, i.e. Λ X X is not empty. Regarding Item (3): let F be a generator of
the homogeneous ideal IpXq; thus F is determined up to multiplication by a non zero factor. Then
degX “ degF - see Exercise 3.6.1.

Given 0 ď k ď n let ΓXpkq Ă X ˆGrpk,Pnq be defined by

ΓXpkq “ tpp,Λq P X ˆGrpk,Pnq | p P Λu .

Restricting to ΓXpkq the projections of X ˆGrpk,Pnq, we get regular maps

ΓXpkq

π

||

ρ

%%

X Grpk,Pnq

(3.3.1)

If Λ P Grpk,Pnq, then ρ´1pΛq is identified with ΛXX. Hence Theorem 3.3.1 is a statement about the
fibers of the map ρ. Hence we must start by studying ΓXpkq. The result below is essentially obtained
by considering the fibers of the map π, which are all alike.

Proposition 3.3.3. Let X Ă Pn be closed and irreducible. Then ΓXpkq is closed irreducible of dimen-
sion

dim ΓXpkq “ dimX ` kpn´ kq. (3.3.2)

Proof. A straightforward computation shows that ΓXpkq is closed. Let 0 ď i ď n. We identify PnZi with
Kn, as usual. We have an isomorphism

XZi ˆGrpk,Knq αi
ÝÑ ΓXpkq X pPnZi ˆGrpk,Pnqq

pp,W q ÞÑ pp, p`W q

Notice that W is a k-dimensional vector subspace of Kn. Moreover p`W denotes the closure in Pn of
the affine subspace p `W Ă PnZi » Kn. Omitting those indices i such that X Ă V pZiq, we get that
ΓXpkq is covered by open irreducible subsets of dimension

dimpXZi ˆGrpk,Knqq “ dimX ` dim Grpk,Knq “ dimX ` kpn´ kq.

Since X is irreducible XZi XXZj ‰ H for every couple pi, jq of indices such that XZi and XZj are non
empty. It follows that ΓXpkq is irreducible, of dimension given by (3.3.2).

Corollary 3.3.4. Let X Ă Pn be closed. Then ΓXpkq is closed of dimension

dim ΓXpkq “ dimX ` kpn´ kq. (3.3.3)

If k ď codpX,Pnq then
dim ΓXpkq ď dim Grpk,Pnq (3.3.4)

with equality if and only if k “ codpX,Pnq.

Proof. Let X “ X1 Y ¨ ¨ ¨ YXr be the irreducible decomposition of X. Then

ΓXpkq “ ΓX1pkq Y ¨ ¨ ¨ Y ΓXr pkq.

Thus (3.3.3) follows from Proposition 3.3.3. Let’s prove (3.3.4). Let c :“ codpX,Pnq and Xi such that
c “ n´ dimXi. Then

dim ΓXipcq “ n´ c` cpn´ cq “ pc` 1qpn´ cq “ dim Grpc,Pnq.

This gives (3.3.4).
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3. Projective methods

Proof of Item (a) of Theorem 3.3.1. By Corollary 3.3.4, the image of the map ρ in (3.3.1) is a proper
closed subset of Grpk,Pnq. Hence for generic Λ P Grpk,Pnq, the fiber ρ´1pΛq “ ΛXX is empty.

The result below will be useful in proving Items (b), (c) of Theorem 3.3.1, and also in other circum-
stances.

Proposition 3.3.5. Let X Ă Pn be closed. Suppose that p P PnzX and that H Ă Pnz tpu is a
hyperplane. Let

pPnztpuq π
ÝÑ H

x ÞÑ xp, xy XH

be the projection. Then πpXq is a closed subset of H and dimπpXq “ dimX.

Proof. We may assume that X is irreducible. Since π|X is regular and X is projective πpXq is closed by
Proposition 1.6.3. It remains to prove that dimπpXq “ dimX. We may assume that p “ r0, . . . , 0, 1s,
H “ V pZnq, and X is not contained in V pZ0q. We have

πprZ0, . . . , Znsq “ rZ0, . . . , Zn´1s.

Let Y :“ πpXq. We have an injection of fields π˚ : KpY q ãÑ KpXq, and we must prove that rKpXq :
π˚pKpY qqs ă 8. The field KpY q is generated (over K) by

pZ1{Z0q|Y , . . . , pZn´1{Z0q|Y .

On the other hand KpXq is generated by

pZ1{Z0q|X , . . . , pZn´1{Z0q|X , pZn{Z0q|X .

Since π˚ppZi{Z0q|Y q “ pZi{Z0q|X , it suffices to prove that pZn{Z0q|X is algebraic over pZ1{Z0q|X , . . . , pZn´1{Z0q|X .
There exists F P IpXq such that F ppq ‰ 0 because p R X. Since p “ r0, . . . , 0, 1s we get that

F “ a0Z
d
n ` a1Z

d´1
n ` ¨ ¨ ¨ ` ad, ai P KrZ0, . . . , Zn´1si, a0 ‰ 0.

Dividing by Zd0 and restricting to X we get that

a0 ¨ ppZn{Z0q|Xq
d ` a1 ¨ ppZn{Z0q|Xq

d´1 ` ¨ ¨ ¨ ` ad “ 0 (3.3.5)

where aj :“ paj{Z
j
0q|X for 1 ď j ď d. Since a0 ‰ 0, Equation (3.3.5) shows that pZn{Z0q|X is algebraic

over pZ1{Z0q|X , . . . , pZn´1{Z0q|X .

Proof of Item (b) of Theorem 3.3.1. The proof is by induction on codpX,Pnq. If codpX,Pnq “ 0 the
result is trivial (if you don’t like to start from codpX,Pnq “ 0 you may begin from codpX,Pnq “ 1,
i.e. X a hypersurface). Let’s prove the inductive step. Let p P Λ. If p P X there is nothing to prove;
thus we may assume that p R X. Choose a hyperplane H Ă Pn not containing p, and let π be projection
from p, as in (3.3.6). Then Y :“ πpXq Ă H » Pn´1 is closed and dimY “ dimX by Proposition 3.3.5.
Thus codpY,Pn´1q “ pcodpX,Pnq ´ 1q. Let Λ1 :“ πpΛz tpuq. Then Λ1 Ă H is a linear subspace with
dim Λ1 “ pdim Λ ´ 1q, and hence dim Λ1 ě codpY,Pn´1q. By the inductive hypothesis it follows that
Λ1 X Y is not empty. Let y P Λ X Y . Since y P πpXq there exists x P X such that πpxq “ y. By
definition of π, we have x P xp, yy. Since p P Λ and y P Λ (because Λ1 “ ΛXH), it follows that x P Λ.
Thus x P ΛXX.

Proof of Item (c) of Theorem 3.3.1. We start by defining the degree of a closed X Ă Pn. First assume
that X is irreducible. Let c :“ codpX,Pnq. Let

ΓXpcq
π
ÝÑ Grpc,Pnq

pp,Λq ÞÑ Λ
(3.3.6)
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3.3. Degree of a closed subset of Pn

Since ΓXpcq and Grpc,Pnq are varieties we have a well-defined deg π. By Corollary 3.3.4 we have
dim ΓXpcq “ dim Grpc,Pnq: thus deg π ă 8. The degree of X is defined to be

degX :“ degpΓXpcq
π
ÝÑ Grpc,Pnqq. (3.3.7)

In general let X “ X1 Y ¨ ¨ ¨ YXr be the irreducible decomposition of X. The degree of X is defined to
be

degX :“
ÿ

dimXi“dimX

degXi. (3.3.8)

If X is irreducible, Item (c) of Theorem 3.3.1 follows from Proposition 3.2.5 applied to the map π
of (3.3.6). In general let X “ X1 Y ¨ ¨ ¨ Y Xr be the irreducible decomposition of X. By Item (a) of
Theorem 3.3.1, for generic Λ P Grpc,Pnq

ΛXXi “ H if dimXi ă dimX, ΛX pXi XXjq “ H if i ‰ j.

It follows that for Λ generic
ΛXX “

ğ

dimXi“dimX

ΛXXi

and hence Item (c) follows from the case X irreducible.

Remark 3.3.6. Theorem 3.3.1 gives a characterization of the dimension of a closed X Ă Pn via its
intersections with linear subspaces.

The degree of a closed subset of a projctive space may be considered as a first, very rough, measure
of its complexity. The (classical) result below gives a lower bound of the degree.

Proposition 3.3.7. Let X Ă Pn be closed, irreducible and non degenerate, i.e. spanning the whole
projective space. Then

degX ě codpX,Pnq ` 1. (3.3.9)

Proof. By induction on c :“ codpX,Pnq. If c ­“ 0, then X “ Pn, and certainly (3.3.9) holds. If c “ 1,
then X is a hypersurface. Let IpXq “ pF q. Then degF ě 2, because X is non degenerate. Since
degX “ degF by Exercise 3.6.1, we get that (3.3.9) holds in this case as well.

Let us prove the inductive step. Thus we assume that c ě 2. Since the generic Λ P Grpc,Pnq
intersects X in degX points, it follows that for a generic p P X, the generic Λ P Grpc,Pnq containing p
intersects X in degX points. The idea is to project X from p to a hyperplane H – Pn´1 not containing
p, and compare the degree of X and the degree of the image, which has codimension c´ 1 in Pn´1, and
hence satisfies the inequality in (3.3.9).

Explicitly, choose homogeneous coordinates such that p “ r0, . . . , 0, 1s, and H “ V pZnq. The
projection of X from p to H is the rational map

X
ϕ
99K Pn´1

rZs ÞÑ rZ0, . . . , Zn´1s

Let BlppPnq be the blow up of Pn in p, and let ρ : BlppPnq Ñ Σp, where Σp is the set of lines
containing p, see (2.3.3). We may identify Σp with H, by mapping a line in Σp with its intersection

with H. Let rX :“ BlppXq Ă BlppPnq, and let rϕ : rX Ñ Pn´1 be the restriction of ρ. We have a
commutative diagram

rX

rϕ

!!

π

��

X
ϕ
// Pn´1

Let Y :“ Imprϕq. Then Y is closed and irreducible, because rX is projective and irreducible. We claim

that dimY “ dimX. Let ψ : rX Ñ Y be the map defined by rϕ. Since ψ is surjective, we have an
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injection ψ˚pKpY qq Ă Kp rXq. By our hypothesis on p, the variety X is not a cone with vertex p, and
hence there exists F P IpXq, homogeneous of degree d, which is not an element of KrZ0, . . . , Zn´1s, i.e.

F “ ae ¨ Z
d´e
n ` . . .` ad, ai P KrZ0, . . . , Zn´1si, , e ă d, ae ­“ 0.

Dividing F by Zd0 , we get that

˜

ae

ˆ

Z1

Z0
, . . . ,

Zn´1

Z0

˙

¨

ˆ

Zn
Z0

˙d´e

` . . .` ad

ˆ

Z1

Z0
, . . . ,

Zn´1

Z0

˙

¸

|X

“ 0.

It follows that the rational function π˚
´

Zn
Z0 |X

¯

is algebraic on ψ˚pKpY qq, and hence Kp rXq is algebaric

over ψ˚pKpY qq. This proves that that dimY “ dimX. Thus codpY,Pn´1q “ c´1, and by the inductive
hypothesis deg Y ě c. On the other hand, let Λ be a generic dimension-pc´ 1q linear subspace of Pn´1.
Then

|ΛX Y | “ deg Y, |xΛ, py XX| “ degX.

(The second equality holds because xΛ, py is a generic dimension-c linear subspace of Pn containing p.)
Again by genericity, the fiber of rϕ over each point of Λ X Y does not intersect the exceptional set of
π : rX Ñ X, i.e. π´1ppq; it follows that

degX “ |xΛ, py XX| ě |ΛX Y | ` 1 “ deg Y ` 1 ě c` 1.

3.4 Intersection of closed subsets of a projective space

Theorem 3.3.1 shows that the dimension of a closed subset of a projective space is determined by the
intersections of the subset with linear subspaces. Interesting consequences of this fact are proved in the
present section.

First we define the join of two closed subsets X,Y Ă PN such that

xXy X xY y “ H, (3.4.1)

where xXy and xY y are the linear subspaces generated by X and Y respectively.

Definition 3.4.1. The join of X and Y is the subset of PN swept out by the lines joining a point of
X to a point of Y :

JpX,Y q :“
ď

xPX,yPY

xx, yy. (3.4.2)

Lemma 3.4.2. Let X,Y Ă PN be closed subsets such that (3.4.1) holds. Then

1. JpY,W q is closed,

2. if X and Y are irreducible JpX,Y q is irreducible,

3. dim JpX,Y q “ dimX ` dimY ` 1.

Proof. Let m :“ dimxXy and n :“ dimxY y. There exist homogeneous coordinates

rS0, . . . , Sm, T0, . . . , Tn, U0, . . . , Ups

on PN such that

xXy “ trS0, . . . , Sm, 0, . . . , 0su, xY y “ tr0, . . . , 0, T0, . . . , Tn, 0, . . . , 0su.
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3.4. Intersection of closed subsets of a projective space

Then
JpX,Y q “ trS0, . . . , Sm, T0, . . . , Tn, 0, . . . , 0s | rSs P X, rT s P Y u. (3.4.3)

Item (1) follows at once. Let p P pJpY,W qzXzY q. By (3.4.1) there is unique couple pϕ1ppq, ϕ2ppqq P
X ˆ Y such that p P xϕ1ppq, ϕ2ppqy, and the map

pJpX,Y qzXzY q
ϕ
ÝÑ X ˆ Y

p ÞÑ pϕ1ppq, ϕ2ppqq
(3.4.4)

is regular, with fibers isomorphic to K˚. Moreover for any 0 ď i ď m and 0 ď j ď n the inverse image
ϕ´1pXSi ˆ YTj q is isomorphic to XSi ˆ YTj ˆK˚. Items (2) and (3) follow.

Proposition 3.4.3. Let X Ă Pn be closed, irreducible of strictly positive dimension. Let H Ă Pn a
hyperplane not containing X. Then X X H is not empty and every irreducible component of X X H
has dimension equal to pdimX ´ 1q.

Proof. The intersection is non empty by Theorem 3.3.1. First we will prove a weaker result, namely
that

dimX XH “ dimX ´ 1. (3.4.5)

Let c :“ codpX,Pnq. Then (3.4.5) is equivalent to codpX X H,Hq “ c. Since X X H Ĺ X we have
dimXXH ă dimX and hence codpXXH,Hq ě c. By Theorem 3.3.1 applied to the closed pXXHq Ă H
it suffices to prove that if L Ă H is an arbitrary linear subspace with dimL “ c then LXpXXHq ‰ H.
By Theorem 3.3.1 applied to X we have L X X ‰ H: since L Ă H we have L X X Ă L X pX X Hq.
This proves (3.4.5). The proposition states a stronger result namely that every irreducible component
of X XH has dimension equal to pdimX ´ 1q. The proof is by induction on codpX,Pnq, the initial case
being codpX,Pnq “ 1 (Notice that if codpX,Pnq “ 0 the statement of the prosition is trivially true). If
codpX,Pnq “ 1 then X is a hypersurface by Corollary 2.5.4 and hence X XH is a hypersurface in H:
by Corollary 2.5.4 every irreducible component of X XH has coddimension one in H. Let’s prove the
inductive step. We assume that codpX,Pnq “ c ě 2. Suppose that W1 is an irreducible component of
X XH. Pick a point p P HzX and a hyperplane H 1 not containing p and different from H. Let

Pnztpu πp
ÝÑ H 1

q ÞÑ xp, qy XH 1

be the projection. We will consider πppXq X πppHq. Let X X H “ W1 Y ¨ ¨ ¨ YWr be the irreducible
decomposition of X XH. Let us prove that there exists p such that

πppW1q Ć πppWiq @i P t2, . . . , ru. (3.4.6)

In fact, let q PW1z
Ťr
i“2Wi, and let i P t2, . . . , ru. Then Jpq,Wiq is defined, and by Lemma 3.4.2, it is

closed irreducible. Moreover, by Lemma 3.4.2

dim Jpq,Wiq “ dimWi ` 1 (3.4.7)

Since H Č X, dimWi ď dimX ´ 1 and since codpX,Pnq ě 2 we have dimWi ď dimH ´ 2. Thus
(3.4.7) gives that Jpq,Wiq ‰ H. Hence there exists p P Hz

Ťr
i“2 Jpq,Wiq. Then πppqq R πppWiq for

i P t2, . . . , ru, and hence (3.4.6) holds.
Each of πppW1q, . . . , πppWrq is closed, and

πppXq X πppHq “ πppW1q Y . . .Y πppWrq.

Moreover, by (3.4.6) it follows that πppW1q is an irreducible component of πppXq X πppHq. By Propos-
ition 3.3.5 we have dimπpX “ dimX and hence codpπppXq, H

1q “ pcodpX,Pnq ´ 1q. By the inductive
hypothesis we get that codpπppW1q, πppXqq “ 1. Since dimπppW1q “ dimW1 and dimπppXq “ dimX
(by Proposition 3.3.5) we get that codpW1, Xq “ 1.
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Corollary 3.4.4. Let X Ă Pn be closed of codimension c. Let Λ P Grpc,Pnq. Then XXΛ is not empty
and every irreducible component of X X Λ has dimension at least pdimX ´ cq.

The proposition below is a remarkable generalization of the well-known linear algebra result: “a
system of n homogeneous linear equations in pn` 1q unknowns has at a non-trivial solution”.

Proposition 3.4.5. Let Y,W Ă Pn be closed and suppose that pdimY `dimW q ě n. Then Y XW ­“ H

and moreover every irreducible component of Y XW has dimension at least pdimY ` dimW ´ nq.

Proof of Proposition 3.4.5. Let rs0, . . . , sn, t0, . . . , tns be homogeneous coordinates on P2n`1. We have
two embeddings

Pn i
ÝÑ P2n`1

rX0, . . . , Xns ÞÑ rs0, . . . , sn, 0, . . . , 0s
Pn j

ÝÑ P2n`1

rX0, . . . , Xns ÞÑ r0, . . . , 0, X0, . . . , Xns
(3.4.8)

Since the images of i and j are disjoint linear subspaces of P2n`1 the join JpipY q, jpW qq is defined. We
will intersect JpipY q, jpW qq with the linear subspace of P2n`1 defined by

Λ :“ V ps0 ´ t0, . . . , sn ´ tnq.

We have an isomorphism

Y XW
„
ÝÑ ΛX JpipY q, jpW qq

rX0, . . . , Xns ÞÑ rX0, . . . , Xn, X0, . . . , Xns
(3.4.9)

By Lemma 3.4.2 the closed JpipY q, jpW qq Ă P2n`1 has dimension pdimY ` dimW ` 1q. On the other
hand Λ is a codimension-pn` 1q linear subspace of P2n`1; by Corollary 3.4.4 ΛX JpipY q, jppW qq is not
empty and every irreducible component of ΛXJpipY q, jppW qq has dimension at least pdimY`dimW´nq.
Isomorphism (3.4.9) gives that Y XW is not empty and every irreducible component of Y XW has
dimension at least pdimY ` dimW ´ nq.

Example 3.4.6. Let n ě 2 and X Ă Pn be a smooth hypersurface. Then X is irreducible. In fact
suppose that X “ Y YW where Y,W are proper closed subsets of X. Then Y and W are of pure
dimension pn ´ 1q and hence Y XW is not empty by Proposition 3.4.5. Let p P Y XW : as is easily
checked X is singular at p, that is a contradiction.

3.5 Dimension of fibers

The following key result is a particular case of Krull’s HauptidealSatz (valid for arbitrary Noetherian
rings).

Theorem 3.5.1. Let X be an irreducible quasi projective variety and 0 ­“ f P KrXs. Every irreducible
component of V pfq has dimension pdimX ´ 1q.

Proof. We may assume that X is affine. Thus there exists n such that X Ă An is closed. By The-
orem 1.4.2 there exists f̃ P Krz1, . . . , zns such that f “ f̃|X . We must prove that, if Y is an irreducible

component of V pf̃q, then dimY “ dimX ´ 1. We view An as the open affine set PnX0
Ă Pn, and we let

X,V pf̃q, Y Ă Pn be the closures of X, V pf̃q and Y respectively. Let d be the degree of the hypersurface

V pf̃q Ă Pn. Let N :“ p
`

d`n
n

˘

´ 1q and let

Pn νnd
ÝÑ PN

rZ0, . . . , Zns ÞÑ rZd0 , Z
d´1
0 Z1, . . . , Z

d
ns
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be the Veronese map. Then νnd defines an isomophism X
„
ÝÑ νpXq. Since V pf̃q is a hypersurface of

degree d there exists a hyperplane H Ă PN such that ν´1pHq “ V pf̃q. Thus νnd defines an isomorph-

ism X X V pf̃q
„
ÝÑ νpXq X H. It follows that νpW q is an irreducible component of νpXq X H. By

Proposition 3.4.4 we have

dimW “ dimW “ dim νpW q “ dimX ´ 1 “ dimX ´ 1.

Proposition 3.5.2. Let f : X Ñ Y be a regular map of quasi-projective varieties. Then the following
hold:

(a) If x0 P X, the dimension at x0 of every irreducible component of f´1pfpx0qq is at least dimx0 X´
dimfpx0q Y .

(b) Assume that X,Y are irreducible, f is projective and dominant. There exists an open dense
U Ă Y such that for all y P U the fiber f´1pyq has pure dimension dimX ´ dimY .

(c) Assume that f is projective. The function

Y
α
ÝÑ N

y ÞÑ dim f´1pyq

is upper-semicontinuous, i.e. given k P N the set ty P Y | dim f´1pyq ě ku is closed.

Proof. (a): We may assume that Y is affine. Let dimfpx0q Y “ m. Then there exist φ1, . . . , φm P KrY s
such that fpx0q is an irreducible component of V pφ1, . . . , φmq (in fact choose 0 ‰ φ1 P Iptfpx0quq, then
choose φ2 P Iptfpx0quq not vanishing on any irreducible component of V pφ1q etc.). Thus, by shrinking
Y around fpx0q, we may assume that tx0u “ V pφ1, . . . , φmq, and hence

f´1pfpx0qq “ V pf˚φ1, . . . , f
˚φm.

By repeated application of Theorem 3.5.1 every irreducible component of V pf˚φ1, . . . , f
˚φmq has di-

mension at x0 at least pdimx0 X ´mq “ pdimx0 X ´ dimfpx0q Y q.
(b): By induction on e :“ dimX ´ dimY . Suppose that e “ 0, i.e. dimX “ dimY . By our

hypotheses 0 ă deg f ă 8, hence in this case the assertion holds by Proposition 3.2.5.
Let us prove the inductive step. Suppose that e ą 0. Since f is projective and dominant, it is

surjective. Hence for all y P Y , we have dim f´1pyq ě e by Item (a) (more precisely, every irreducible
component of f´1pyq has dimension at least e). Since f is projective, we may assume that X Ă PN ˆY
is closed, and f “ π|X , where π : PN ˆ Y Ñ Y is the projection map. Let ρ : PN ˆ Y Ñ PN be the

other projection. Let y0 P Y , and let H Ă PN be a hyperplane that does not contain f´1py0q. Then
W :“ H ˆ Y is a proper closed subset of X. Let g : W Ñ Y be the restriction of the projection π
(i.e. the restriction of f). The map g is projective, and πpW q “ Y , because, given y P Y , we have
ρpg´1pyqq “ ρpf´1pyqq X H, and f´1pyq is a closed subset of PN of dimension at least e ą 0. Let
W “ W1 Y . . .YWr be the decomposition into irreducible components. Each Wi is closed in PN ˆ Y ,
hence gpWiq is closed for every i P t1, . . . , ru. Let

U :“ Y z
ď

gpWiq ­“ Y gpWiq.

Then U is open dense in Y . Shrinking Y we may assume that U “ Y , i.e. gpWiq “ Y for all i P t1, . . . , ru.
Every Wi has dimension dimX ´ 1 by Proposition 3.5.1 (H is locally the zero set of single non zero
function). Let gi : Wi Ñ Y be the restriction of g. Then dimWi ´ dimY “ e ´ 1, and hence by the
inductive hypothesis, there exists an open dense Y0piq Ă Y such that g´1pyq has pure dimension e´ 1
for all y P Y0piq. Let

Y0 :“
r
č

i“1

Y0piq.
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Clearly Y0 is open and dense in Y . Let y P Y0. Then

H X ρpg´1pyqq “
r
ď

i“1

ρpg´1
i pyqq.

The right hand side is the intersection of the hyperplane H with closed subset of PN all of whose
components have dimension at least e. The right hand side is a union of irreducible closed subsets of
dimension e´ 1. It follows that g´1pyq has pure dimension e.

(c): Let y P Y . Then dim f´1pyq ě k if and only if ΛXf´1pyq is not empty for all Λ P GrpN´k,PN q,
by Theorem 3.3.1. Hence

ty P Y | dim f´1pyq ě ku “
č

ΛPGrpN´k,PN q

πpΛˆ Y XXq.

Hence the left hand side is closed by Elimination Theory (Λˆ Y and X are closed in PN ˆ Y ).

Example 3.5.3. The function α of Proposition 3.5.2 is not constant in general. A typical example is
provided by the blow-up of Pn at p0 P Pn, i.e. the set

Blp0Pn :“ tpp, `q P Pn ˆGrp1,Pnq : ` Ą tp0, puu .

As is easily checked Blp0Pn is closed in Pn ˆGrp1,Pnq. Let

f : Blp0Pn Ñ Pn, pp, `q ÞÑ p

be projection; then

f´1 tpu “

#

xp0, py if p ‰ p0,

t` P Grp1,Pnq : p0 P `u if p “ p0.

Thus

dimp f
´1 tpu “

#

0 if p ‰ p0,

n´ 1 if p “ p0.

3.6 Exercises

Exercise 3.6.1. Let X Ă Pn be a hypersurface, and let IpXq “ pF q.

(a) Let ∆pF q Ă Grp1,Pnq be the subset of lines PpW q such that there exist p P PpW q for which multppF q ě 2.
- see Exercise 1.8.6. Prove that ∆pF q is a proper closed subset of Grp1,Pnq. (Hint: for the proof that
∆pF q is closed, see Exercise 1.8.6, for the proof that it is a proper subset, see the proof of Lemma 3.2.8.)

(b) Prove that degX “ degF . (Hint: recall Item (b) of Exercise 1.8.6.)

Exercise 3.6.2. Let X Ă Pn be a hypersurface. Prove that

degX “ maxt|ΛXX| | Λ P Grp1,Pnq such that ΛXX is finiteu. (3.6.1)

(An analogous result holds for a closed pure dimensional X Ă Pn of any codimension, see Proposition ??.)

Exercise 3.6.3. Let ∆d Ă PpKrT0, T1sdq be the subset of rF s for which there exist p P P1 such that multppF q ě
2 - see Exercise 1.8.6.

(a) Prove that ∆d is an irreducible hypersurface in PpKrT0, T1sdq.

(b) Prove that ∆d has degree 2d´ 2.
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Exercise 3.6.4. Let R be an integral domain. Let F P RrT0, T1sm and G P RrT0, T1sn; we assume
throughout that m,n are not both 0. The resultant Rm,npF,Gq is the element of R defined as follows.
Consider the map of free R-modules

RrT0, T1sn´1 ‘RrT0, T1sm´1
Lm,npF,Gq
ÝÑ RrT0, T1sm`n´1

pΦ,Ψq ÞÑ Φ ¨ F `Ψ ¨G
(3.6.2)

and let Sm,npF,Gq be the matrix of Lm,npF,Gq relative to the basis

pTn´1
0 , 0q, pTn´2

0 T1, 0q, . . . , p0, T
m´1
0 q, p0, Tm´2

0 T1q, . . . , p0, Tm´1
1 q

of the domain and the basis

Tm`n´1
0 , Tm`n´2

0 T1, . . . , T0T
m`n´2
1 , Tm`n´1

1

of the codomain. Then
Rm,npF,Gq :“ detSm,npF,Gq. (3.6.3)

Explicitly: if

F “
m
ÿ

i“0

aiT
m´i
0 T i1, G “

n
ÿ

j“0

bjT
n´j
0 T j1 (3.6.4)

then

Rm,npF,Gq “ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a0 0 ¨ ¨ ¨ 0 b0 0 ¨ ¨ ¨ 0
a1 a0 ¨ ¨ ¨ 0 b1 b0 ¨ ¨ ¨ 0
...

...
...

...
...

...
...

...
...

... ¨ ¨ ¨ a0

...
... ¨ ¨ ¨ b0

am am´1 ¨ ¨ ¨
... bn bn´1 ¨ ¨ ¨

...

0 am ¨ ¨ ¨
... 0 bn ¨ ¨ ¨

...

0 0 ¨ ¨ ¨
... 0 0 ¨ ¨ ¨

...
...

... ¨ ¨ ¨
...

...
... ¨ ¨ ¨

...
0 0 ¨ ¨ ¨ am 0 0 ¨ ¨ ¨ bn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.6.5)

Now let k be a field and let K be an algebraic closure of k. Let F P krT0, T1sm and G P krT0, T1sn.

(a) Prove that Rm,npF,Gq “ 0 if and only if there exists H P krT0, T1sd with d ą 0 which divides F
and G in krT0, T1s.

(b) Prove that Rm,npF,Gq “ 0 if and only if there exists a common non-trivial root of F and G in
P1
K, i.e. a non zero pT0, T1q P K2 such that F pT0, T1q “ GpT0, T1q “ 0.

(c) Suppose that charK does not divide d. Give an explicit homogeneous polynomial of degree p2d´2q
in the coefficients ci of

F “
d
ÿ

i“0

ciT
i
0 ¨ T

d´i
1

which vanishes if and only if there exists p P P1
K such that multppF q ě 2. (Hint: recall Item (d)

of Exercise 1.8.6.) Compare to Item (b) of Exercise 3.6.3.

Exercise 3.6.5. Let Cn Ă Pn be the the image of the Veronese map νn : P1
Ñ Pn given by νnprs, tsq “

rsn, sn´1t, . . . , tns. Prove that deg Cn “ n. Notice that Cn is irreducible and non degenerate. Thus Cn has

the minimum degree that an irreducible nondegenerate (closed) curve can have according to Proposition 3.3.7.

Prove that if X Ă Pn is closed, irreducible, non degenerate, and degX “ n, then X is projectively equivalent

to Cn.
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Exercise 3.6.6. We recall that a closed X Ă Pn is a cone with vertex p, if whenever x P pXztpuq, the line

xp, xy is contained in X. Equivalently, there is a closed Y Ă H, where H Ă Pn is a hyperplane not containing

p, such that X is the union of the lines xp, yy, for y P Y . Suppose that (notation as above), Y is irreducible,

and non degenerate in H. Prove that degX “ deg Y . From this and the previous exercise, deduce that given

any 0 ď c ă n, there exists closed irreducible non degenerate X Ă Pn such that degX “ c ` 1 (the minimum

according to Proposition 3.3.7).

Exercise 3.6.7. Let A,B Ă Pa`b`1 be disjoint linear subspaces of dimensions a and b respectively. Let Ca Ă A
and Cb Ă B be closed irreducible non degenerate curves of degrees a and b respectively (see Exercise 3.6.5).
Choose an isomorphism f : Ca

„
ÝÑ Cb (they are both isomorphic to P1 according toExercise 3.6.5), and let

Xa,b :“
ď

xPCa

xx, fpxqy.

Explicitly, up to a change of homogegenous coordinates

Xa,b :“ trλsa, λsa´1t, . . . , λta, µsb, µsb´1t, . . . , µtbs | rλ, µs P P1, rs, ts P P1
u.

(i) Prove that Xa,b is closed, irreducible, of dimension 2, non degenerate.

(ii) Prove that degXa,b “ a ` b. Thus Xa,b has the minimum degree according to Proposition 3.3.7. Show
that Xa,b is not a cone, except in the degenerate case a “ 0 or b “ 0.

Let X Ă Pn be a closed subset. For k P t0, . . . , nu, we let

FkpXq :“ tΛ P Grpk,Pnq | Λ Ă Xu

be the set of k dimensional linear spaces contained in X. Thus F0pXq “ X. The first interesting case
is F1pXq, i.e. the set of lines contained in X. By solving the following exercises, one proves interesting
results about FkpXq.

Exercise 3.6.8. Let X Ă Pn be a closed subset. Prove that FkpXq is a closed subset of Grpk,Pnq, arguing as
follows:

1. If X “ Pn, then FkpPnq “ Grpk,Pnq. If X is not Pn, then X “ V pP1q X . . . X V pPrq and FkpXq “
FkpV pP1qq X . . .X FkpV pPrqq. Hence it suffices to prove the result for X “ V pP q Ă Pn a hypersurface.

2. Since we have the open covering of Grpk,Pnq given by (1.7.4), it suffices to show that the intersection
FkpV pP qqXGrpk,PnqI is closed for every multiindex I Ă t0, . . . , nu of cardinality k`1. Prove by explicit
computation that FkpV pP qq XGrpk,PnqI is closed.

Exercise 3.6.9. Let LkpKrZ0, . . . , Znsdq Ă Grpk,Pnq ˆ PpKrZ0, . . . , Znsdq be

LkpKrZ0, . . . , Znsdq :“ tpΛ, rP sq | Λ Ă V pP qu.

Prove that LkpKrZ0, . . . , Znsdq is closed, arguing as follows:

1. Since we have the open covering

Grpk,Pnq ˆ PpKrZ0, . . . , Znsdq “
ď

|I|“k`1

Grpk,PnqI ˆ PpKrZ0, . . . , Znsdq,

in order to prove that LkpKrZ0, . . . , Znsdq is closed it suffices to show that the intersection of LkpKrZ0, . . . , Znsdq
with the open subset indicized by I, call it LkpKrZ0, . . . , ZnsdqI , is closed.

2. Let I “ t0, . . . , ku. Identify Grpk,PnqI with Mk`1,n´kpKq via the isomorphism in (1.7.5). Then

LkpKrZ0, . . . , ZnsdqI “ tpA, rP sq | CJpA,P q “ 0 @Ju. (3.6.6)

Since each CJpA,P q is a polynomial in the entries of A and (the coefficients) of P , homogeneous in P ,
we get that LkpKrZ0, . . . , ZnsdqI is closed.
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Exercise 3.6.10. Prove that if k ă n then LkpKrZ0, . . . , Znsdq is irreducible and

dimLkpKrZ0, . . . , Znsdq “ dimPpKrZ0, . . . , Znsdq ` pk ` 1q ¨ pn´ kq ´

˜

d` k

k

¸

, (3.6.7)

arguing as follows:

1. Show that
LkpKrZ0, . . . , ZnsdqI X LkpKrZ0, . . . , ZnsdqI1 ­“ H

for any two subsets I, I 1 Ă t0, . . . , nu.

2. Since each LkpKrZ0, . . . , ZnsdqI is open, and any two have non empty intersection by the previous item,
it will suffice to show that each LkpKrZ0, . . . , ZnsdqI is irreducible of dimension given by (3.6.7). For
P P KrZ0, . . . , Znsd, let

P “
ÿ

degK“d

PKZ
K ,

where K runs through multiindices K “ pk0, . . . , knq of degree d. Rewrite (3.6.6) as

LkpKrZ0, . . . , ZnsdqI “ tpA, rP sq |
ÿ

degK“d

DJ,KpAqPK “ 0 @Ju,

where DJ,KpAq is a polynomial in the entries of the matrix A.

3. By the previous item, LkpKrZ0, . . . , ZnsdqI is the set of couples pA, rP sq, where P is any non trivial
solution of

`

d`k
k

˘

homogeneous linear equations. Show the system of linear equations has maximum rank
for each A by observing that the restriction map

KrZ0, . . . , Znsd ÝÑ Krλ0, . . . , λksd
P ÞÑ P pλ0w0pAq ` . . .` λkwkpAqq

is surjective, where wipAq :“ vi `
řm´h
j“1 ai,jvh`j for i P t0, . . . , ku, so that ΛA (the linear subspace

corresponding to A) is the span of rw0pAqs, . . . , rwkpAqs.

4. Given A, by the previous item there exists a
`

d`k
k

˘

ˆ
`

d`k
k

˘

minor of the matrix pDJ,kpAqqJ,K , call it mpAq
with non zero determinant. Let Mk`1,n´kpKqm Ă Mk`1,n´kpKq be the open subset of points such the
minor mpAq has non zero determinant. Show that the open subset

LkpKrZ0, . . . , ZnsdqI X tA PMk`1,n´kpKq | detmpAq ­“ 0u ˆ PpKrZ0, . . . , Znsdq (3.6.8)

is isomorphic to tA PMk`1,n´kpKq | detmpAq ­“ 0u ˆ Pr, where

r “ PpKrZ0, . . . , Znsdq ´

˜

d` k

k

¸

.

Conclude from this that LkpKrZ0, . . . , Znsdq is irreducible, of dimension given by (3.6.7).

Exercise 3.6.11. Let k ă n. Prove that the subset of PpKrZ0, . . . , Znsdq defined by

trP s P PpKrZ0, . . . , Znsdq | FkpXq ­“ Hu (3.6.9)

is closed, irreducible, of dimension at most equal to

dimPpKrZ0, . . . , Znsdq ` pk ` 1q ¨ pn´ kq ´

˜

d` k

k

¸

.

In particular, show that for all d ě 2n´2 there exist hypersurfaces V pP q Ă Pn defined by a degree d homogeneous

P which do not contain a line.
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Chapter 4

Tangent space, smooth points

4.1 Introduction

One definition of tangent space of a C8 manifold M at a point x P M is as the real vector space of
derivations of the space EM,x of germs of C8 functions at x. We will give an analogous definition of the
Zariski tangent space of a quasi projective variety. The advantage of such an abstract definition is that
it is intrinsic by definition. On the other hand, we will identify the Zariski tangent space at a point a
of a closed subset X Ă An with the classical embedded tangent space, defined by the common zeroes
of the linear approximations at a of polynomials in a basis of the ideal IpXq.

A fundamental difference between quasi projective varieties and smooth manifolds is that the di-
mension of the tangent space at a point might depend on the point, even for an irreducible variety. The
points where the dimension has a local minimum are the so-called smooth points of the variety. If the
field K is C, in a neighborhood of a smooth point the variety is naturally a complex manifold.

4.2 The local ring of a variety at a point

Let X be a quasi projective variety. We start by defining the ring of germs of regular functions at
x P X.

Definition 4.2.1. Let X be a quasi projective variety, and let x P X. Let pU, φq and pV, ψq be couples
where U, V are open subsets of X containing x, and φ P KrU s, ψ P KrV s. Then pU, φq „ pV, ψq if there
exists an open subset W Ă X containing x such that W Ă U X V and φ|W “ ψ|W .

One checks easily that „ is an equivalence relation: an equivalence class for the realtion „ is a
germ of regular function of X at x. We may define a sum and a product on the set of germs of regular
functions of X at x by setting

rpU, φqs ` rpV, ψqs :“ r
`

U X V, φ|UXV ` ψ|UXV
˘

s, (4.2.1)

and
rpU, φqs ¨ rpV, ψqs :“ r

`

U X V, φ|UXV ¨ ψ|UXV
˘

s. (4.2.2)

Of course one has to check that the equivalence class of the sum and product is independent of the
choice of representatives: this is easy, we leave details to the reader. With these operations, the set of
germs of regular functions of X at x is a ring.

Definition 4.2.2. Let X be a quasi projective variety, and let x P X. The local ring of X at x is the
ring of germs of regular functions of X at x, and is denoted OX,x.

We have a natural homomorphism of rings

KrXs ρ
ÝÑ OX,x

f ÞÑ rpX, fqs
(4.2.3)
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Lemma 4.2.3. Suppose that X is an affine variety, and let x P X. If ϕ P OX,x then there exist

f, g P KrXs, with gpxq ­“ 0, such that ϕ “ ρpfq
ρpgq .

Proof. Let ϕ be represented by pU, hq, where U Ă X is open, and x P U . Since the principal open affine
subsets of X form a basis of the Zariski topology, there exists α P KrXs such that Xα Ă U and x P Xα

(see Remark 1.4.4). Thus ϕ “ rpXα, h|Xαqs. By Remark 1.4.4, there exist f P KrXs and m P N such

that h is the restriction to Xα of f
αm . Then ϕ “ ρpfq

ρpαmq .

There is a well-defined surjective homomorphism

OX,x ÝÑ K
rpU, φqs ÞÑ φpaq

(4.2.4)

The kernel

mx :“ trpU, φqs | φpxq “ 0u

of (4.2.4) is a maximal ideal, because (4.2.4) is a surjection to a field.

Proposition 4.2.4. With notationas above, mx is the unique maximal ideal of OX,x, and hence OX,x
is a local ring. Moreover, OX,x is Noetherian.

Proof. Let f “ rpU, φqs P pOX,xzmxq. Then W :“ pUzV pφqq is an open subset of X containing x and
hence g :“ rpW, pφ|W q

´1s belongs to OX,x. Since gf “ 1 we get that f is invertible. It follows that mx
contains any proper ideal of OX,x and hence is the unique maximal ideal of OX,x.

In order to prove that OX,x is Noetherian, we notice that if U Ă X is Zariski open and contains x,
then the natural homomorphism OU,x Ñ OX,x is an isomorphism. Since X is covered by open affine
subsets, it follows that we may assume that X is affine. Let I Ă OX,x be an ideal. Let ρ be the
homomorphism in (4.2.3). Then ρ´1pIq is a finitely generated ideal, because KrXs is Noetherian. Let
f1, . . . , fr be generators of ρ´1pIq. Then ρpf1q, . . . , ρpfrq generate I. In fact let ϕ P I. By Lemma 4.2.3,

there exist f, g P KrXs, with gpxq ­“ 0, such that ϕ “
ρpfq
ρpgq . We have f “

řr
i“1 aifi, and hence

ϕ “
řr
i“1

ρpaiq
ρpgq ρpfiq.

4.3 The Zariski tangent space

The homomorphism (4.2.4) equips K with a structure of OX,x-module. Moreover OX,x is a K-algebra.
Thus it makes sense to speak of K-derivations of OX,x to K.

Definition 4.3.1. Let X be a quasi projective variety, and let x P X. The Zariski tangent space to X
at x is DerKpOX,x,Kq, and will be denoted by ΘxX. Thus ΘxX is an OX,x-module (see Section ??),
and since mx annihilates every derivation OX,x Ñ K, it is a complex vector space.

Lemma 4.3.2. Let a P An. The complex linear map

ΘaAn ÝÑ Kn
D ÞÑ pDpz1q, . . . , Dpznqq

(4.3.5)

is an isomorphism.

Proof. The formal partial derivative B
Bzm

defined by (A.6.1) defines an element of ΘaAn by the familiar
formula

B

Bzm

ˆ

f

g

˙

paq :“

Bf
Bzm

paq ¨ gpaq ´ fpaq ¨ Bg
Bzm

paq

gpaq2
.

(See Example A.6.3.) Since B
Bzm

pzjq “ δmj , the map in (4.3.5) is surjective.
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Let’s prove that the map in (4.3.5) is injective. Assume that D P ΘX,x is mapped to 0 by the map
in (4.3.5), i.e. Dpxjq “ 0 for j P t1, . . . , nu. Let f, g P Krz1, . . . , zns, with gpaq ­“ 0. Then

D

ˆ

f

g

˙

“
Dpfq ¨ gpaq ´ fpaq ¨Dpgq

gpaq2
.

(See Example A.6.3.) Hence it suffices to show that Dpfq “ 0 for every f P Krz1, . . . , zns. Consider the
first-order expansion of f around a i.e. write

f “ fpaq `
n
ÿ

i“1

cipzi ´ aq `R, R P m2
a. (4.3.6)

Since D is zero on constants (because D is a K-derivation) and Dpzjq “ 0 for all j it follows that
Dpfq “ DpRq, and the latter vanishes by Leibniz’ rule and the hypothesis Dpzjq “ 0 for all j.

The differential of a regular map at a point of the domain is defined by the usual procedure.
Explicitly, let f : X Ñ Y be a regular map of quasi projective varieties, let x P X and y :“ fpxq. There
is a well-defined pull-back homomorphism

OY,y
f˚

ÝÑ OX,x
rpU, φqs ÞÑ rpf´1U, φ ˝ pf|f´1U qqs

(4.3.7)

The differential of f at x is the linear map of complex vector spaces

TxX
dfpxq
ÝÑ TyY

D ÞÑ pφ ÞÑ D pf˚φqq
(4.3.8)

The differential has the customary functorial properties. Explicitly, suppose that we have

X1
f1 // X2

f2 // X3 , x1 P X1, x2 “ f1 px1q .

Since pf2 ˝ f1q
˚
“ f˚1 ˝ f

˚
2 we have

d pf2 ˝ f1q px1q “ df2 px2q ˝ df1 px1q . (4.3.9)

Moreover d IdXpxq “ IdTxX for x P X.

Remark 4.3.3. It follows from the above that if f is an isomorphism, then dfpxq : TxX Ñ TfpxqY is an
isomorphism, in particular dimTxX “ dimTyY .

The next result shows how to compute the Zariski tangent space of a closed subset of An. Since
every point x of a quasi projective variety X is contained in an open affine subset U , and ΘxX “ ΘxU
(because restriction defines an identification OX,x “ OU,x), the result will allow to compute the Zariski
tangent space in general.

Proposition 4.3.4. Let ι : X ãÑ An be the inclusion of a closed subset and a P X. The differential
dιpaq : ΘaX Ñ ΘaAn is injective and, identifying ΘaAn with Kn via (4.3.5), we have

Im djpaq “

#

v “ pv1, . . . , vnq P Kn |
n
ÿ

i“1

Bf

Bzi
paq ¨ vi “ 0 @f P IpXq

+

. (4.3.10)

Proof. The differential dιpaq is injective because the pull-back ι˚ : OAn,a Ñ OX,a is surjective. Let
D P DerKpOX,a,Kq. If f P IpXq Ă Krz1, . . . , zns, then dιpDqpfq “ Dpι˚fq “ Dp0q “ 0. Hence Im dιpaq
is contained in the right-hand side of (4.3.10). Let’s prove that Im dιpaq contains the right-hand side

of (4.3.10). Let rD P DerKpOAn,a,Kq belong to the right hand side of (4.3.10), i.e. rDpfq “ 0 for all

f P IpXq. By Item (3) of Example A.6.3 it follows that rDp fg q “ 0 whenever f, g P Krz1, . . . , zns and

f P IpXq (of course we assume that gpaq ­“ 0). Thus rD descends to a K-derivation D P DerKpOX,a,Kq,
and rD “ dι˚paqpDq.
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Remark 4.3.5. With the hypotheses of Proposition 4.3.5, suppose that IpXq is generated by f1, . . . , fr.
Then

Im djpaq “

#

v “ pv1, . . . , vnq P Kn |
n
ÿ

i“1

Bfk
Bzi
paq ¨ vi “ 0 k P t1, . . . , ru

+

.

In fact, the right hand side of the above equation is equal to the right hand side of (4.3.10), because if

f “
řr
j“1 gjfj , then Bf

Bzi
paq “

řr
j“1 gjpaq

Bfjpaq
Bzi

.

Example 4.3.6. Let f P Krz1, . . . , zns be a polynomial without multiple factors, i.e. such that
a

pfq “
pfq, and let X “ V pfq. Let a P X; by Remark 4.3.5 Zariski’s tangent space to X is the subspace of Kn
defined by

n
ÿ

i“1

Bf

Bzi
paq ¨ vi “ 0.

Hence

dim ΘaX “

#

n´ 1 if p Bf
Bz1
paq, . . . , Bf

Bzn
paqq ­“ 0,

n if p Bf
Bz1
paq, . . . , Bf

Bzn
paqq “ 0.

Let us show that

XzV

ˆ

Bf

Bz1
, . . . ,

Bf

Bzn

˙

(4.3.11)

is an open dense subset of X (it is obviously open, the point is that it is dense), i.e. dim ΘaX “ n´ 1
for a in an open dense subset of X.

First assume that f is irreducible. First we notice that there exists i P t1, . . . , nu such that

Bf

zi
­“ 0. (4.3.12)

In fact assume the contrary. It follows that charK “ p ą 0, and that there exists a polynomial
g P Krz1, . . . , zns such that f “ gpzp1 , . . . , z

p
nq. Let g “

ř

I aIz
I , where I runs through a (finite)

collection of multiindices. Since K is algebraically closed, there exists a (unique) p-th root a
1{p
I . Let

h “
ř

I a
1{p
I zI . Then f “ hpz1, . . . , znq

p (recall that pa ` bqp “ ap ` bp), and this is a contradiction
because f is irreducible. This proves that there exists i P t1, . . . , nu such that (4.3.12) holds.

Reordering the coordinates, we may assume that i “ n. hence

f “ a0z
d
n ` a1z

d´1
n ` ¨ ¨ ¨ ` ad, ai P Krz1, . . . , zn´1s, a0 ‰ 0, d ą 0.

Thus
Bf

zn
“ da0z

d´1
n ` pd´ 1qa1z

d´2
n ` ¨ ¨ ¨ ` ad´1 ­“ 0.

The degree in zn of f is d, i.e. f has degree d as element of Krz1, . . . , zn´1srzns. On the other hand, Bfzn
is non zero and its degree in zn is strictly smaller than d. Thus f - Bfzn , and hence the set in (4.3.11) is
dense in X (recall that f is irreducible).

In general, let f “ f1 ¨ ¨ ¨ ¨ ¨fr be the decomposition of f as product of prime factors. Let Xi “ V pfiq.
Then

X “ X1 Y ¨ ¨ ¨ YXr

is the irreducible decomposition of X. As shown above, for each i P t1, . . . , ru

XjzV

ˆ

Bfj
z1
, . . . ,

Bfj
zn

˙

­“ H.
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4.4. Cotangent space

Hence there exists a P Xj such that
Bfj
zh
paq ‰ 0 for a certain 1 ď h ď n. We may assume in addition

that a does not belong to any other irreducible component of X. It follows that

Bf

zh
paq “

Bfj
zh
paq ¨

ź

k‰j

fkpaq ‰ 0.

This proves that the open set in(4.3.11) has non empty intersection with every irreducible component
of X, and hence is dense in X.

Notice also that if a belongs to more than one irreducible component of X, then all partial derivatives
of f vanish at a. In other words, any point in the open dense subset of points a such that dim Θa “ n´1
belongs to a single irreducible component of X.

The result below shows that the behaviour of the tangent space examined in the above example is
typical of what happens in general.

Proposition 4.3.7. Let X be a quasi projective variety. The function

X ÝÑ N
x ÞÑ dim ΘxX

(4.3.13)

is Zariski upper-semicontinuous, i.e. for every k P N

Xk :“ tx P X | dim ΘxX ě ku

is closed in X.

Proof. Since X has an open affine covering, we may suppose that X Ă An is closed. Let IpXq “
pf1, . . . , frq. For x P An let

Jpf1, . . . , fsqpxq :“

¨

˚

˝

Bf1
z1
pxq ¨ ¨ ¨

Bf1
zn
pxq

...
. . .

...
Bfr
z1
pxq ¨ ¨ ¨

Bfr
zn
pxq

˛

‹

‚

be the Jacobian matrix of pf1, . . . , fsq at x. By Proposition 4.3.5 we have that

Xk “ tx P X | rk Jpf1, . . . , frqpxq ď n´ ku . (4.3.14)

Given multi-indices I “ t1 ď i1 ă . . . ă im ď su and J “ t1 ď j1 ă . . . ă jm ď nu let
Jpf1, . . . , fsqpxqI,J be the mˆm minor of Jpf1, . . . , frqpxq with rows corresponding to I and columns
corresponding to J (if m ą mintr, nu we set Jpf1, . . . , fsqpxqI,J “ 0). We may rewrite (4.3.14) as

Xk “ X X V p. . . ,det Jpf1, . . . , frqpxqI,J , . . .q|I|“|J|“n´k`1 .

It follows that Xk is closed.

4.4 Cotangent space

Let X be a quasi projective variety, and let x P X. The cotangent space to X at x is the dual complex
vector space of the tangent space ΘxX, and is denoted ΩXpxq:

ΩXpxq :“ pΘxXq
_
. (4.4.1)

We define a map

OX,x
d
ÝÑ ΩXpxq (4.4.2)

as follows. Let f P OX,x be represented by pU, φq. The codomain of the differential dφpxq : ΘxU Ñ

ΘφpxqK is identified with with K, because of the isomorphism in (4.3.5), and hence dφpxq P pΘxUq
_.
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4. Tangent space, smooth points

Since U Ă Z is an open subset containing x, the differential at x of the inclusion map defines an
identification ΘxU

„
ÝÑ ΘxX. Thus dφpxq P pΘxXq

_ “ ΩXpxq. One checks immediately that if pV, ψq
is another representative of f then dψpxq “ dφpxq. We let

dfpxq :“ dφpxq, pU, φq any representative of f .

Remark 4.4.1. We equip ΩXpxq with a structure of OX,x-module by composing the evaluation map
OX,x Ñ K given by (4.2.4) and scalar multiplication of the complex vector-space ΩZpaq. With this
structure (4.4.2) is a derivation over K.

Remark 4.4.2. Let f P Krz1, . . . , zns and a P An. Then the familiar formula

dfpaq “
n
ÿ

i“1

Bf

Bzi
paqdzipaq

holds. In fact this follows from the first-order Taylor expansion of f at a:

f “ fpaq `
n
ÿ

i“1

Bf

Bzi
paqpzi ´ aiq `

ÿ

1ďi,jďn

mijpzi ´ aiqpzj ´ ajq, mij P Krz1, . . . , zns. (4.4.3)

Remark 4.4.3. Let X Ă An be closed, and let a P X. Identify ΘaAn with Kn via Lemma 4.3.2. By
Remark 4.4.2 we have the identification

TaX “ Anntdfpaq | f P IpXqu.

Let X be a quasi projective variety, and let x P X. Let mx Ă OX,x be the maximal ideal. By
Leibiniz’ rule dφpxq “ 0 if φ P m2

x (recall that d : OX,x Ñ ΩXpxq is a derivation over K). Thus we have
an induced K-linear map

mx{m
2
x

δpxq
ÝÑ ΩXpxq

rφs ÞÑ dφpaq
(4.4.4)

Proposition 4.4.4. Keep notation as above. Then δpxq is an isomorphism of complex vector spaces.

Proof. First we prove that δpxq is surjective. If X “ An, surjectivity follows at once from Lemma 4.3.2.
In general, we may assume that X is a closed subset of An, and surjectivity follows from Proposi-
tion 4.3.5.

In order to prove injectivity of δpxq, we must show that if φ P mx is such that dφpxqpDq “ 0 for all
D P ΘxX, then φ P m2

x. We may suppose that X is a closed subset of An. In order to avoid confusion,
we let x “ a “ pa1, . . . , anq. Let pU, f{gq be a representative of φ, where f, g P KrXs, and fpaq “ 0,
gpaq ­“ 0. It will suffice to prove that f P m2

a. Since 0 “ dφpaq “ gpaq´1dfpaq we have dfpaq “ 0. By
Theorem 1.4.2 there exists f̃ P Krz1, . . . , zns such that f̃|X “ f . By Proposition 4.3.5 we may identify

ΘaX with the subspace of TaKn “ Kn given by (4.3.10). By hypothesis df̃paqpDq “ 0 for all D P ΘaX,
i.e.

df̃paq P Ann pΘaXq Ă ΩAnpxq.

By (4.3.10) there exists h P IpXq such that df̃paq “ dhpaq. Then pf̃ ´ hq|X “ f and dpf̃ ´ hqpaq “ 0.

Thus pf̃ ´ hq P Krz1, . . . , zns has vanishing value and differential at a. It follows (first-order Taylor
expansion of f̃ ´ h at a) that

pf̃ ´ hq P pz1 ´ a1, . . . , zn ´ anq
2.

Since h P IpXq we get that f P m2
a.

The following result is an immediate consequence of Corollary A.7.2.

Corollary 4.4.5. Let X be a quasi-projective variety and p P X. Let f1, . . . , fn P OX,p be germs
vanishing at p i.e. belonging to the maximal ideal mp Ă OX,p, and suppose that δpf1q, . . . , δpfnq generate
ΩXppq. Then f1, . . . , fn generate the maximal ideal mp Ă OZ,p.
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4.5. Smooth points

4.5 Smooth points

Definition 4.5.1. Let X be a quasi projective variety, and let x P X. Then X is smooth at x if
dim ΘxX “ dimxX, it is singular at x otherwise. The set of smooth points of X is denoted by Xsm.
The set of singular points of X is denoted by singX.

Example 4.5.2. Let X Ă An be a hypersurface. By Corollary 2.5.4, the dimension of X is equal to
n´ 1, and hence the set of smooth points of X is an open dense subset of X by Example 4.3.6. By the
last sentence in Example 4.3.6, X is locally irreducible at any of its smooth points.

The main result of the present section extends the picture for hypersurfaces to the general case.

Theorem 4.5.3. Let X be a quasi projective variety. Then the following hold:

1. The set Xsm of smooth points of X is an open dense subset of X.

2. For x P X we have dim ΘxX ě dimxX.

3. X is locally irreducible at any of its smooth points, i.e. if X is smooth at a, there is a single
irreducible component of X containing a.

We will prove Theorem 4.5.3 at the end of the section. First we go through some preliminary results.
Our first result proves a weaker version of Item (1) of Theorem 4.5.3, and proves Item (2) of the

same theorem.

Proposition 4.5.4. Let X be a quasi projective variety. Then the following hold:

1. The set of smooth points of X contains an open dense subset of X.

2. For x P X we have dim ΘxX ě dimxX.

Proof. Suppose that X is irreducible of dimension d. By Proposition 2.4.7 there is a birational map
g : X 99K Y , where Y Ă Ad`1 is a hypersurface. By Proposition 2.2.6 there exist open dense subsets
U Ă X and V Ă Y such that g is regular on U , and it defines an isomorphism f : U

„
ÝÑ V . By

Example 4.5.2, the set of smooth points Y sm of Y is open and dense in Y . Since V is open and dense
in Y the intersection Y sm X V is open and dense dense in Y and hence f´1pY sm X V q is an open dense
subset of X. Since f´1pY sm X V q is contained in U sm, we have proved that the set of smooth points
of X contains an open dense subset of X. We have proved that Item (1) holds if X is irreducible. In
general, let X “ X1 Y ¨ ¨ ¨ YXr be the irreducible decomposition of X. Let

X0
j :“ pXz

ď

i‰j

Xiq “ pXjz
ď

i‰j

Xiq

By the result that was just proved, pX0
j q

sm contains an open dense subset of smooth points. Every

smooth point of X0
j is a smooth point of X, because X0

j is open in X. Thus
Ť

ipX
0
i q

sm is an open dense
subset of X, containing an open dense subset of X. This proves Item (1).

Let us prove Item (2). Let x0 P X, and let X0 be an irreducible component of X containing
x0 such that dimX0 “ dimx0 X. By Item (1) Xsm

0 contains an open dense subset of points x such
that dim ΘxX0 “ dimxX0, and hence by Proposition 4.3.7 we have dim ΘxX0 ě dimxX0 for all
x P X. In particular dim Θx0

X0 ě dimx0
X0 “ dimx0

X. Since Θx0
X0 Ă Θx0

X, it follows that
dim Θx0

X ě dimx0
X.

The next result involves more machinery. We will give an algebraic version of the (analytic) Implicit
Function Theorem. The algebraic replacement for the ring of analytic functions defined in a neighbor-
hood of 0 P An is the ring Krrz1, . . . , znss of formal power series in z1, . . . , zn with complex coefficients.
We have inclusions

Krz1, . . . , zns Ă OAn,0 Ă Krrz1, . . . , znss. (4.5.1)

(The second inclusion is obtained by developing f
g as convergent power series centered at 0, where

f, g P Krz1, . . . , zns and gp0q ­“ 0.) We will need the following elementary results.
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4. Tangent space, smooth points

Lemma 4.5.5. Let m Ă Krz1, . . . , zns, m1 Ă OAn,0 and m2 Ă Krrz1, . . . , znss be the ideals generated
by z1, . . . , zn in the corresponding ring. Then for every i ě 0 we have pm2qi X OAn,0 “ pm1qi, and
pm1qi XKrz1, . . . , zns “ mi.

Proof. By induction on i. For i “ 0 the statement is trivially true. The proof of the inductive step
is the same in both cases. For definiteness let us show that pm2qi`1 X OAn,0 “ pm1qi`1, assuming
that pm2qi X OAn,0 “ pm1qi. The non trivial inclusion is pm2qi`1 X OAn,0 Ă pm1qi`1. Assume that
f P pm2qi`1 X OAn,0. Then f P pm2qi X OAn,0, and hence f P pm1qi by the inductive hypothesis. Thus
we may write

f “
ÿ

|I|

αJz
J ,

where the sum is over all multiindices J “ pj1, . . . , jnq of weight |J | “
řn
s“1 js “ i, and αJ P OAn,0

for all J . Since f P pm2qi`1, we have αJp0q “ 0 for all J . It follows that αJ P m1 for all J , and hence
f P pm1qi`1.

Proposition 4.5.6 (Formal Implicit Function Theorem). Let ϕ P Krrz1, . . . , znss, and suppose that

ϕ “ z1 ` ϕ2 ` . . .` ϕd ` . . . , ϕd P Krz1, . . . , znsd. (4.5.2)

Given α P Krrz1, . . . , znss, there exists a unique β P Krrz1, . . . , znss such that

pα´ β ¨ ϕq P Krrz2, . . . , znss. (4.5.3)

Proof. Write β “ β0`β1` . . .`βd` . . ., where βd P Krz1, . . . , znsd, and the βd’s are the indeterminates.
Expand the product β ¨ ϕ, and solve for β0 by requiring that β ¨ ϕ have the same linear term modulo
z2, . . . , zn as α, then solve for β1 by requiring that β¨ϕ have the same quadratic term modulo pz2, . . . , znq

2

as α , etc. By (4.5.2) there is one and only one solution at each stage.

Corollary 4.5.7. With hypotheses as in Proposition 4.5.7, the natural map Krrz2, . . . , znss Ñ Krrz1, . . . , znss{pϕq
is an isomorphism.

Proposition 4.5.8. Let f1, . . . , fk P Krz1, . . . , zns and a P An. Suppose that

(i) each fi vanishes at a, and

(ii) the differentials df1paq, . . . , dfkpaq are linearly independent.

Then V pf1, . . . , fkq “ X Y Y , where

1. X,Y are closed in An, a P X, while Y does not contain a;

2. X is irreducible of dimension n´ k, it is smooth at a, and TapXq “ Annpxdf1paq, . . . , dfkpaqyq (as
subspace of TaAn).

Moreover, there exists a principal open affine set Ang containing a such that f1|Ang , . . . , fk|Ang generate

the ideal of X X Ang .

Proof. By changing affine coordinates, if necessary, we may assume that a “ 0, and that dfip0q “ zi for
i P t1, . . . , ku. Let J 1 Ă OAn,0 be the ideal generated by f1, . . . , fk (to be consistent with our notation,
we should write J 1 “ pϕpf1q, . . . , ϕpfkqq), let J :“ J 1 X Krz1, . . . , zns, and let J2 Ă Krrz1, . . . , znss be
the ideal generated by f1, . . . , fk. Lastly, let I Ă Krz1, . . . , zns be the ideal generated by f1, . . . , fk. We
claim that

J ¨ g Ă I Ă J. (4.5.4)

for a suitable g P Krz1, . . . , zns with gp0q ­“ 0. In fact, the second inclusion is trivially true. In order
to prove the first inclusion, let h1, . . . , hr be generators of the ideal J Ă Krz1, . . . , zns. By definition
of J , there exist ai, gi P Krz1, . . . , zns, for i P t1, . . . , ru, such that ai P I, gip0q ­“ 0, and hi “

ai
gi

.
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Hence the second inclusion in (4.5.4) holds with g “ g1 ¨ . . . ¨ gr. This proves (4.5.4), and hence we have
V pJq Ă V pIq Ă pV pJq Y V pgqq. It follows that, letting X :“ V pJq, there exists a closed Y Ă V pgq such
that

V pf1, . . . , fkq “ X Y Y, 0 R Y. (4.5.5)

Let us prove that J is a prime ideal, so that in particular X is irreducible. First, we claim that

J2 X OAn,0 “ J 1. (4.5.6)

The non trivial inclusion to be proved is J2 X OAn,0 Ă J 1. Let f P J2 X OAn,0. Then there exist

α1, . . . , αk P Krrz1, . . . , znss such that f “
řk
j“1 αjfj . Given s P N, let αsj be the MacLaurin polynomial

of αj of degree s, i.e. such that pαj ´ α
s
jq P pm

2qs`1, where m2 is as in Lemma 4.5.5. Then

f “
k
ÿ

j“1

α
psq
j fj `

k
ÿ

j“1

pαj ´ α
s
jqfj .

Both addends are in OAn,0. In addition, the first addend belongs to J 1, and the second one belongs
to pm2qs`1. By Lemma 4.5.5, it follows that the second one belongs to pm1qs`1. Hence f P

Ş8

s“0pI
1 `

pm1qs`1q. By Corollary A.8.2, it follows that f P I 1. This proves (4.5.6). By (4.5.6) and the definition
of J , we have an inclusion

Krz1, . . . , zns{J Ă Krrz1, . . . , znss{J
2.

Hence, in order to prove that J is prime, it suffices to show that Krrz1, . . . , znss{J
2 is an integral domain.

In fact we will see that the natural map

Krzk`1, . . . , zns ÝÑ Krrz1, . . . , znss{J
2 (4.5.7)

is an isomorphism of rings. This follows from the algebraic version of the Implicit Function Theorem, i.e.
Proposition 4.5.7. In fact, by Proposition 4.5.7, the natural map Krrz2, . . . , znss Ñ Krrz1, . . . , znss{pf1q

is an isomorphism. Let i P t2, . . . , ku. Given the identification Krrz1, . . . , znss{pf1q “ Krrz2, . . . , znss, the
image of fi under the quotient map Krrz1, . . . , znss Ñ Krrz1, . . . , znss{pf1q is an element zi ` f

1
i , where

f 1i P pm
2q2 (notation as in Lemma 4.5.5). Iterating, we get that the map in (4.5.7) is an isomorphism of

rings. As explained above, this proves that J is a prime ideal. In particular X is irreducible. Moreover,
since zk`1, . . . , zn P KrXs, the isomorphism in (4.5.7) shows that KpXq has transcendence degree n´k,
i.e. X has dimension n´k. Since f1, . . . , fk vanish on X, and their differentials are linearly independent,
it follows that dim Θ0pXq ď pn´ kq “ dim0X. Hence dim Θ0pXq “ pn´ kq “ dim0X, by Item (2) of
Proposition 4.5.4, i.e. X is smooth at 0, and Θ0pXq Ă Θ0An is the annihilator of df1p0q, . . . , dfkp0q. This
proves Items (1) and (2). The last statement in the proposition holds with the polynomial g appearing
in (4.5.4).

Corollary 4.5.9. Let X Ă An be a Zariski closed subset. Let a be a smooth point of X, and let
k “ n´ dimaX. Then following hold:

1. there exist f1, . . . , fk P Krz1, . . . , zns with linerly independent differentials df1paq, . . . , dfkpaq, and
a Zariski open affine subset U Ă An containing a, such that IpX X Uq “ pf1|U , . . . , fk|U q;

2. there is a unique irreducible component of X containing a.

Proof. SinceX is smooth at a, and dimaX “ n´k, there exist f1, . . . , fk P IpXq such that df1paq, . . . , dfkpaq
are linearly independent. Of course X Ă V pf1, . . . , fkq. By Proposition 4.5.9 there is a unique irre-
ducible component of V pf1, . . . , fkq containing a, call it Y , and dimY “ n ´ k. Every irreducible
component of X containing a is contained in Y . Since dimaX “ n ´ k, there exists (at least) one
irreducible component of X containing a of dimension n´k. Let X 1 be such an irreducible component;
by Proposition 2.5.3, X 1 “ Y . It follows that there is a single component of X containing a, and it is
equal to the unique irreducible component of V pf1, . . . , fkq containing a. Hence the corollary follows
from Proposition 4.5.9.
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4. Tangent space, smooth points

Proof of Theorem 4.5.3. Item (2) has been proved in Proposition 4.5.4. Item (3) follows at once from
Corollary 4.5.9, because X is covered by open affine subset.

In order to prove Item (1), let X “
Ť

iPI Xi be the irreducible decomposition of X. Since X is
covered by open affine subset, Corollary 4.5.9 gives that

Xsm Ă Xz
ď

i,jPI
i­“j

pXi XXjq. (4.5.8)

The right hand side of (4.5.8) is an open dense subset of X. Let X0
i be an irreducible component of the

right hand side of (4.5.8). Thus X0
i Ă Xi is the complement of the intersection of Xi with the other

irreducible componets of X. The set of smooth points of X0
i is non empty by Proposition 4.5.4, and

it is open by upper semicontinuity of the dimension of ΘxX ( Proposition 4.3.7), because dimxX is
independent of x P X0

i . Hence Xsm is an open dense subset of the open dense subset of X given by the
right hand side of (4.5.8), and hence is open and dense in X.

4.6 Rational maps on smooth curves

A curve is a quasi-projective variety of pure dimension 1. Below is the main result of the present section.

Proposition 4.6.1. Let X be a smooth curve, and Y be a projective variety. A rational map f : X 99K Y
is regular.

We start with a preliminary result.

Lemma 4.6.2. Let X be a smooth curve, and p P X. Let t P OX,p be a germ vanishing at p, with non
zero differential at p (a local parameter at p). If f P OX,p is non zero, there exist a unit u P OX,p and
an exponent e P N such that f “ u ¨ te.

Proof. Since X is a smooth curve, the cotangent space ΩppXq has dimension 1. By Corollary 4.4.5,
the germ t generates the maximal ideal mp, i.e. mp “ ptq. Thus mip “ pt

iq for every i P N. By Krull’s
Theorem A.8.2, there exists e P N such that f P mep and f R me`1

p . Then f “ u ¨ te, where uppq ­“ 0, and
hence u is a unit.

Proof of Proposition 4.6.1. Since X is smooth, it is locally irreducible by Theorem 4.5.3. Hence we may
assume that X is irreducible. Since every quasi-projective variety is a union of open affine varieties we
may assume in addition that X Ă Am is closed. By hypothesis Y Ă Pn is closed. Let g : X 99K Pn be
the composition of f and the inclusion map Y ãÑ Pn. The key point is to show that g is regular.

There exists an open dense U Ă X such that g is regular on U , and there exist φ0, . . . , φn P CrU s
such that

gpxq “ rϕ0pxq, . . . , ϕnpxqs @x P U. (4.6.1)

For i P t0, . . . , nu locally we have

ϕi “
αi
βi
, αi, βi P CrXs (4.6.2)

and βipxq ­“ 0 for all x P U . By shrinking U if necessary, we may assume that (4.6.2) holds on all of U
(recall that X is irreducible).

The complement XzU is a finite set. In order to prove that g is regular, we must show that for
each p P pXzUq there exist an open U Ă pU Y tpuq containing p and a regular G : U Ñ Pn such that
G|pU ztpuq “ g|pU ztpuq.

Let i P t0, . . . , nu be such that ϕi ­“ 0, i.e. αi ­“ 0. Applying Lemma 4.6.2 to αi and βi, we get that
there exist an open Ui Ă pU Y tpuq containing p such that on Uiztpu we have ϕi “ ui ¨ t

ei , where ui is
everwhere non zero and ei P Z. Let U be the intersection of the Ui’s. On U ztpu we have

gpxq “ r. . . , ui ¨ t
ei , . . .s @x P pU ztpuq. (4.6.3)
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(Some of the ϕi’s might be zero.) Let e :“ mintei | ϕi ­“ 0u. The map

U
G
ÝÑ Pn

x ÞÑ r, . . . , t´eϕippq, . . .s

is regular on U , and its restriction to U ztpu is equal to the restriction of g. This proves that g is
regular. We also see that for each p P pXzUq the image gppq is in the closure of Y . Since Y is closed,
the map g restricts to a regular map g : X Ñ Y which is equal to original map f on U .

Corollary 4.6.3. Let X,Y be smooth projective curves. A birational map f : X 99K Y is an isomorph-
ism.

4.7 Birational models of curves

Desingularization

Definition 4.7.1. A regular map f : X Ñ Y of quasi-projective varieties is

(a) a closed immersion if fpXq is closed in Y and f defines an isomorphism between X and fpXq.

(b) projective if there exists a decomposition f “ π ˝ j, where j : X ãÑ Pn ˆ Y is a closed immersion,
and π : Pn ˆ Y Ñ Y is the projection.

Remark 4.7.2. (1) If X is projective then a regular map f : X Ñ Y is projective. In fact assume that
X Ă Pn is closed. Let

X
j
ÝÑ Pn ˆ Y

x ÞÑ px, fpxqq

and let π : Pn ˆ Y Ñ Y be the projection. Then f “ π ˝ j, and f is projective because the graph
Γf Ă X ˆ Y is closed by Lemma 1.6.2, and X ˆ Y is closed in Pn ˆ Y .

(2) If f : X Ñ Y is projective and Y is projective, then X is projective. In fact by hypothesis there
exists a closed immersion j : X ãÑ Pn ˆ Y . Since Y is projective so is Pn ˆ Y and hence X is
isomorphic to the projective set jpXq Ă Pn ˆ Y .

(3) Let f : X Ñ Y be projective and let W Ă Y be locally closed (and hence a quasi-projective
variety). The restriction of f to f´1pW q defines a projective map f´1pW q Ñ Y .

Definition 4.7.3. Let X be a quasi-projective variety. A regular map f : rX Ñ X is a desingularization
of X if the following hold:

1. rX is smooth and f´1pXsmq is dense in rX.

2. The restriction of f to f´1pXsmq defines an isomorphism f´1pXsmq
„
ÝÑ Xsm.

3. The map f is projective.

Example 4.7.4. If X is smooth, the identity IdX : X Ñ X is a desingularization. Of course a desingu-
larization of X is interesting only if X is not smooth.

A slightly less trivial example is provided by a quasi-projective variety X whose irreducible com-
ponents, say X1, . . . , Xr, are smooth. Let X1 \ . . .\Xr be the disjoint union of the Xi’s (make sense
of this), and let f : pX1 \ . . .\Xrq Ñ X be the tautological map. Then f is a desingularization of X.

Suppose that charK R t2, 3u, and let X Ă P2 be the curve X :“ V pZ0Z
2
1 ´ Z0Z

2
2 ` Z3

1 q. A
straightforward computation gives that X is irreducible and singX “ r1, 0, 0s (either you compute the
intersection of singX with each standard affine space P2

Zi
, or you apply Exercise 5.5.2). The map

P1 g
ÝÑ X

rs, ts ÞÑ rs3, spt2 ´ s2q, tpt2 ´ s2qs
(4.7.1)
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4. Tangent space, smooth points

is a desingularization of X. Item (1) of Definition 4.7.3 holds because the domain is smooth and
irreducible. In order to check that Item (2) of Definition 4.7.3 holds we and that f´1pr1, 0, 0sq “
tr1, 1s, r1,´1su. The map

Xztr1, 0, 0su
h
ÝÑ P1

rZ0, Z1, Z2s ÞÑ rZ1, Z2s.
(4.7.2)

has image contained in pP1ztr1, 1s, r1,´1su and one checks at once that it is the inverse of the restriction
of f to P1zf´1pr1, 0, 0sq: thus Item (2) of Definition 4.7.3 holds. Lastly, the map f is projective because
the domain is projective.

Remark 4.7.5. Let f : rX Ñ X be a desingularization. Since f is projective the image fpXq is closed in
X by the Main Theorem of Elimination Theory 1.6.1, and hence is equal to X because it contains the
open dense subset of smooth points. This explains in part why we require that the desingularization
map is projective (Items (1) and (2) of Definition 4.7.3 hold for the inclusion map Xsm ãÑ X).

Remark 4.7.6. A desingularization is, in general, not unique.

Desingularization of plane curves

The main result of the present subsection is the proof that there exists a resolution of singularities for
plane projective curves.

Proposition 4.7.7. Let X Ă P2 be a hypersurface. There exists a desingularization f : rX Ñ X.

The formal proof of Proposition 4.7.7 will be given at the end of the present subsection. Let us start
by outlining the algorithm that gives a desingularization of X:

Step 1 If X is smooth let rX “ X and f :“ IdX , otherwise go to Step 2.

Step 2 The singular set of X is finite because dimX “ 1. Let singX “ tp1, . . . , pru and X1 :“

Blp1,...,pr X. If X1 is smooth let rX “ X1 and f :“ πX , otherwise iterate.

What must be proved is that the algorithm terminates i.e. that we eventually reach a blow-up Xn which
is smooth. In order to accomplish this we will need a measure of how singular a curve X is at a point
p. One such measure is the multiplicity of X at p.

Definition 4.7.8. Let X be a quasi-projective variety and p P Xsm be a smooth point of X. Let
f P OX,p. The multiplicity of (vanishing of) f at p is equal to the sup of the set of l P N such that
f P mlp - we denote it by multp f . Let Y Ă X be a proper closed subset and suppose that there exists
an affine open set U Ă X containing p such that IpY X Uq Ă CrU s is a principal ideal generated by f :
the multiplicity of vanishing of Y at p is equal to multp f - we will denote it multp Y , thus dropping X
from the notation. (One has to check that this definition is independent of the open affine U , we leave
details to the reader1.)

Example 4.7.9. Let 0 ­“ f P Krz1, . . . , zns. Then mult0 f “ m if and only if

f “ fmpz1, . . . , znq ` . . .` fdpz1, . . . , znq, fs P Crw1, . . . , wnss, fm ­“ 0, (4.7.3)

i.e. it equals the degree of the first non-zero term in the MacLaurin expansion of f .

Remark 4.7.10. Let X be a quasi-projective variety and p P Xsm be a smooth point of X. Let Y Ă X
be proper a closed subset and suppose that there exists an affine open set U Ă X containing p such
that IpX X Uq Ă CrU s is a principal ideal generated by f . Then

1. p P Y if and only if multp Y ą 0, and

2. p is a singular point of Y if and only if multp f ą 1.

1As a matter of fact multp Y is independent of the embedding Y Ă X; we will not need this result
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4.7. Birational models of curves

Let X Ă A2 be a hypersurface containing 0 and πX : Bl0X Ñ X be the blow-down map. Thus
Bl0pXq is a closed subset of A2 ˆ Σ0 (notation as in Subsection ??). We make the identification
(see (2.3.1))

P1
C

„
ÝÑ Σ0

rT1, T2s ÞÑ xp0, 0q, pT1, T2qy
(4.7.4)

Let f be a generator of IpXq and let fm be as in (4.7.3), with a “ p0, 0q. Then (see (2.3.16))

π´1
X p0q “ tp0, rT1, T2sq | fmpT1, T2q “ 0u. (4.7.5)

(This makes sense because of Identification (4.7.4).) We have Bl0pXq Ă Bl0 A2 and Bl0 A2 is the union
of the two open affine planes U1, U2 given by (2.3.10). Moreover, as shown in Example 2.3.4,

IpBl0pXq XU1q “ fmp1, t2q ` z1fm`1p1, t2q ` . . .` z
d´m
1 fdp1, t2q, (4.7.6)

IpBl0pXq XU2q “ fmpt1, 1q ` z2fm`1pt1, 1q ` . . .` z
d´m
2 fdpt1, 1q. (4.7.7)

where t1 :“ T1{T2 and t2 :“ T2{T1 are the standard affine coordinates on P1
T2

and P1
T1

respectively.
In particular Bl0pXq is locally a hypersurface in the smooth surface Bl0pA2q (i.e. there is an open

affine covering of Bl0pA2q such that the ideal of the intersection of Bl0pXq with each open set is principal)
and hence the multiplicity of vanishing of Bl0pXq at an arbitrary q P Bl0pA2q makes sense. We chose
0 P X for conveniece but it is clear that similar descriptions apply to BlapXq for an arbitrary a P X.
In particular the multiplicity of vanishing of BlapXq at an arbitrary q P BlaA2 makes sense.

Lemma 4.7.11. Let X Ă A2 be a hypersurface and suppose that 0 P X. Let m :“ multoX. For all
q P π´1

X p0q we have
multq Bl0pXq ď m “ mult0X. (4.7.8)

If there exists q P π´1
X p0q such that (4.7.8) is an equality then

IpXq “ plpz1, z2q
m ` fm`1pz1, z2q ` . . .` fdpz1, z2qq, (4.7.9)

where l P Krz1, z2s1 is non zero, and fs P Krz1, z2ss for s P tpm` 1q, . . . , du.

Proof. Expand f in series of MacLaurin, as in (4.7.3); then fm ­“ 0 and hence there exist non-zero
l1, . . . , lm P Crz1, z2s1 such that

fm “ l1 ¨ . . . ¨ lm.

By (4.7.5) q “ p0, V pliqq Ă t0u ˆ P1 for a certain i P t1, . . . ,mu. After a homogeneous change of affine
coordinates we may assume that li “ z2 and hence

0 ­“ fm “ a1z
m´1
1 z2 ` . . .` amz

m
2 . (4.7.10)

We have q P U1 and the ideal of Bl0pXq X U1 is generated by the polynomial in the right hand side
of (4.7.6). By (4.7.10) we get that

IpBl0pXq XU1q “ pa1t2 ` a2t
2
2 ` . . .` amt

m
2 ` z1fm`1p1, t2q ` . . .` z

d´m
1 fdp1, t2qq.

The lemma follows because q is the point with pz1, t2q-coordinates equal to 0

Proof of Proposition 4.7.7. The proof is by contradiction. Let X be singular. We will assume that the
curves X1, X2, . . . , Xi, . . . described at the beginning of the present subsection are singular for all i P N.
We recall that X1 is the blow-up of X at singX and that Xi is the blow-up of Xi´1 at singXi´1 for i ě 2.
Now notice that X1 Ă BlsingX P2, X2 Ă BlsingX1pBlsingX P2q and and so on. Let A1 :“ BlsingX P2,
A2 :“ BlsingX1pBlsingX P2q and so on. Then Ai is a projective surface which has an open cover by affine
planes (this is analogous to Example 2.3.7) Wij such that the ideal IpXiXWijq Ă CrWijs is principal with
generator computed inductively by applying the procedure of Example 2.3.2. In particular multqXi

is defined for any q P Ai. For i ě 1 (we set X0 “ X) let πXi´1
: Xi Ñ Xi´1 be the blow-down map.
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4. Tangent space, smooth points

Then singXi Ă π´1
Xi´1

psingXi´1q. The hypothesis that the curves X1, X2, . . . , Xi, . . . are all singular

and Lemma 4.7.8 give that we may choose pi P singXi for i “ 1, 2, . . . such that πXippi`1q “ pi. Let
Wi,jpiq Ă Ai be an open affine plan as above containing pi. Let

π´1
Xi
pXi XWi,jpiqq Ñ Xi XWi,jpiq (4.7.11)

be the restriction of the blow-down map πXi ; applying Lemma 4.7.8 with q “ pi`1 and a “ pi we get
that multpi`1

Xi`1 ď multpi Xi. On the other hand multpi Xi ě 2 for all i by Remark 5.5.1. It follows
that there exists i P N such that

2 ď m “ multpi Xi “ multpi`1
Xi`1 “ . . . “ multpi`r Xi`r “ . . . (4.7.12)

By Lemma 4.7.8 there exist affine coordinates pz1, z2q on Wi,jpiq (notation as above) such that pi has
coordinates p0, 0q and

IpXi XWiq “ pfq, f “ zm2 ` fm`1 ` . . .` fd, fs P Crz1, z2ss. (4.7.13)

Now notice that the restriction of f to V pz2q does not vanish because Xi is irreducible and m ě 2.
Thus

mult0pf |V pz2qq “ mintpm` 1q ď s ď d | fsp1, 0q ­“ 0u ă 8. (4.7.14)

We have π´1
Xi
ppiq “ tp0, rT1, T2sq | T

m
2 “ 0u and hence pi`1 “ p0, r1, 0sq. Moreover (see (4.7.6)) the ideal

IpXi`1 XWi`1,jpi`1qq Ă CrWi`1,jpi`1qs is generated by

g :“ tm2 ` z1fm`1p1, t2q ` . . .` z
d´m
1 fdp1, t2q. (4.7.15)

It follows that

mult0pg|V pt2qq “ mintpm` 1q ď s ď d | fsp1, 0q ­“ 0u ´m “ mult0pf |V px2qq ´m. (4.7.16)

Iterating this procedure we get a contradiction because the multiplicity of vanishing of a function at a
point of a smooth variety is a non-negative integer.

Smooth projective representative of a birational class
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Chapter 5

Smooth points: deeper properties

5.1 Local invertibility of regular maps

In the present subsection we prove the following analogue, in the category of quasi-projective varieties,
of the local invertibility results valid for C8 or holomorphic maps.

Theorem 5.1.1. Let f : X Ñ Y be a projective map of quasi-projective sets. Let p P X and suppose
that the following hold:

1. f´1pfppqq “ tpu.

2. dfppq : ΘpX Ñ ΘfppqY is injective.

Then there exists an open U Ă Y containing fppq such that the restriction of f to f´1pUq is an
isomorphism to a closed subset of U .

Before proving Theorem 5.1.1 we give some preliminary result. Let ϕ : AÑ B be a homomorphism
of rings. By setting a ¨ b :“ ϕpaqb we equip B with a structure of A-module: we say that B is finite over
A if it is a finitely generated A-module. Let X,Y be affine varieties, and let f : X Ñ Y be a regular
map; the pull back f˚ : KrY s Ñ KrXs is a homomorphism of rings, hence (with f understood) it makes
sense to state that KrXs is finite over KrY s.

Lemma 5.1.2. Let f : X Ñ Y be a projective map of quasi projective varieties. Let y0 P Y and suppose
that f´1py0q is finite. There exists an open affine Y0 Ă Y containing y0 such that X0 :“ f´1pY0q is
affine and KrX0s is finite over KrY0s.

Proof. By Definition 4.7.1 we may assume that X Ă Pn ˆ Y is closed and f is the restriction of
the projection π : Pn ˆ Y Ñ Y . Since X X pPn ˆ y0q is finite there exists homogeneous coordinates
rZ0, . . . , Zns on Pn such that X X pV pZ0q ˆ ty0uq “ H. The intersection X X pV pZ0q ˆ Y q is a closed
subset of PnˆY . By Elimination Theory (i.e. Theorem 1.6.1) C :“ πpX XpV pZ0qˆY qq is closed in Y .
Hence pY zCq is an open subset of Y containing y0. Let Y˚ Ă pY zCq be an open affine subset containing
y0. Then X˚ :“ X X pPn ˆ Y˚q “ f´1pY˚q is a closed subset of the affine set PnZ0

ˆ Y˚ and hence is
affine. It remains to prove that KrX˚s is finite over KrY˚s. The proof is by induction on n. If n “ 0
then KrX˚s “ KrY˚s and there is nothing to prove. Let’s prove the inductive step. Since X˚ is closed
in Pn ˆ Y˚ there exist Fi P KrX˚srZ0, . . . , Znsdi for i “ 1, . . . , r such that

X˚ “ V pF1, . . . , Frq.

(See Claim 1.5.5.) Since X˚ X pV pZ0q ˆ ty0uq is empty we have

V pF1py0qp0, Z1, . . . , Znq, . . . , Frpy0qp0, Z1, . . . , Znqq “ H.
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By Hilbert’s Nullstellensatz, there exists M ą 0 such that

pZ1, . . . , Znq
M Ă pF1py0qp0, Z1, . . . , Znq, . . . , Frpy0qp0, Z1, . . . , Znqq.

It follows (see the proof of Theorem 1.6.1) that, shrinking Y˚ around y0, we may assume that

ZM1 , . . . , ZMn P pF1p0, Z1, . . . , Znq, . . . , Frp0, Z1, . . . , Znqq. (5.1.1)

(Actually we may arrange so that (5.1.1) holds for the original Y˚ - but we do not need this). Equa-
tion (5.1.1) gives that there exists

G “ pZMn `A1Z
M´1
n ` . . .`AM q P pF1, . . . , Frq, Ai P KrY˚srZ0, . . . , Zn´1si.

Thus G|X˚ “ 0: dividing by ZM0 and setting zi :“ Zi{Z0, ai “ Ai{Z
i
0 P Crz1, . . . , zn´1s we get that

pzMn ` a1z
M´1
n ` . . .` aM q|X˚ “ 0. (5.1.2)

Let Q :“ r0, . . . , 0, 1s P Pn. The product of projection from Q and IdY˚

pPnztP uq ˆ Y˚
ρ
ÝÑ Pn´1 ˆ Y˚

prZ0, . . . , Zns, pq ÞÑ prZ0, . . . , Zn´1s, pq

is not projective but the restriction of ρ to X˚ is projective. In fact locally over open sets of a covering
Ť

jPJ Uj of Y˚ we may embed X˚ as a closed subset of P1 ˆ Uj so that ρ is the restriction of the

projection pP1 ˆ Ujq Ñ Uj . Thus the image ρpX˚q is a closed subset of Pn´1 ˆ Z˚. Since the fiber of
ρpX˚q Ñ Y˚ over y0 is finite we may assume (possibly after shrinking Y˚ and X˚) that ρpX˚q is affine
(we just proved it). The ring KrX˚s is obtained from KrρpX˚s by adding zn. Equation (5.1.2) gives
that KrX˚s is finite over KrρpX˚s. By the inductive hypothesis KrρpX˚s is finite over KrY˚s (possibly
after shrinking KrY˚s): it follows that KrX˚s is finite over KrY˚s.

Proof of Theorem 5.1.1. Since f is projective it has closed image: thus we may assume that f is sur-
jective. By Lemma 5.1.2 we may assume that X and Y are affine and that KrXs is finite over KrY s.
By surjectivity of f the pull-back defines an inclusion f˚ : KrY s ãÑ KrXs. We will prove that there
exists an open affine U Ă Y containing q such that f˚|U : KrU s ãÑ Krf´1U s is surjective: that will
give that f |U : f´1U Ñ U is an isomorphism. Let q :“ fppq. By Item (1) and the Nullstellensatz we
have

mp “
b

f˚mqKrXs. (5.1.3)

Here f˚mqKrXs is the ideal of KrXs generated by f˚φ for ψ P mq (we will use similar notation in the
course of the proof). Let mp “ pφ1, . . . , φnq. Item (2) gives that for each 1 ď i ď n there exist an affine
open Ui containing p and ψi P KrY s such that pφi ´ f˚ψiq|Ui P m2

pKrUis. Since f is closed it follows
that there exists a principal open affine Yh neighborhood of q (thus h P KrY s with hpqq ­“ 0) such that

pφi ´ f
˚ψiq|f´1pYhq P m

2
pKrf´1pYhqs @1 ď i ď n. (5.1.4)

Let’s prove by “descending induction” on k that

mkpKrf´1pYhqs Ă f˚mqKrf´1pYhqs @1 ď k. (5.1.5)

By (5.1.3) there exists N ą 0 such that (5.1.5) holds for k ě N . Let’s prove the “inductive step”: we
assume that (5.1.5) holds with k ě 2 and we prove that it holds with k replaced by pk ´ 1q. Let

ϕ “
ÿ

|L|“k´1

cLφ
l1
1 . . . φ

ln
n P m

k´1
p Krf´1pYhqs. (5.1.6)

By (5.1.4) we may write φi “ f˚ψi`εi where εi P m
2
pKrf´1pYhqs for i “ 1, . . . , n: substituting in (5.1.6)

and invoking the inductive hypothesis we get that ϕ P f˚mqKrf´1pYhqs. We have proved (5.1.5). Since
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Krf´1pYhqs “ KrY spf˚hsq (the localization of KrY s with respect to the multiplicative system of powers
of f˚h) we get that

Ip :“ tϕ P Krf´1pYhqs | ϕppq “ 0u “ f˚mqKrf´1pYhqs. (5.1.7)

Now notice that Krf´1pYhqs is a finite KrYhs-module because Krf´1Y s is a finite KrY s-module. We
will apply Nakayama’s Lemma to the finitely generated KrYhs-module

M :“ Krf´1pYhqs{f
˚KrYhs

and the ideal mq. We claim that M Ă mqM . In fact since K Ă f˚KrYhs every element of M is
represented by α P Ip (notation as in (5.1.7)) and α P mqM by (5.1.5). By Lemma A.7.2 there exists
ϕ P mq such that

p1` ϕqKrf´1Yhs Ă f˚KrYhs. (5.1.8)

The open affine Yhp1`ϕq Ă Y contains q (because ϕpqq “ 0). By (5.1.8) we get that

Krf´1Yhp1`ϕqs “ f˚KrYhp1`ϕqs.

Example 5.1.3. Suppose that X Ă Pn is closed irreducible and r P pPnzXq. Let H Ă Pn be a hyperplane
not containing r. Projection

X
π
ÝÑ H

p ÞÑ xp, ry XH

is a projective map with finite fibers. Let p P X and suppose that the projective tangent space TpX
does not contain the line xr, py: then dfppq is injective. Suppose in addition that π´1pπppqq “ tpu:
by Theorem 5.1.1 we get that π is birational onto its image. As long as dim ΘppXq ă n, and X has
codimension at least 2, there exists a point r such that the two conditions above hold. Iterating we
get that if dimX “ m we can choose a projection from a linear space of dimension pn´m´ 2q giving
a birational map from ϕ : X Ñ Y where Y Ă Pm`1 is a hypersurface, and such that ϕ restricts to an
isomorphism from a neighborood of p to a neighborhood of ϕppq.

5.2 Local factoriality

The result below is of fundamental importance.

Theorem 5.2.1. Let X be a smooth quasi projective variety. Let D Ă X be a closed subset of pure
codimension 1, and let a P D. There exists an open affine subset U Ă X containing a such that the
ideal IpD X Uq Ă KrU s is principal.

Remark 5.2.2. If we assume that D is smooth at a, then Theorem 5.2.1 follows from Proposition 4.5.9
and Corollary 4.5.9. In fact, replacing X by a suitable open affine subset containing a, we may assume
that X is affine. Hence there exists an embedding X Ă An as closed subset. Thus D Ă An is also
closed. Applying Proposition 4.5.9 and Corollary 4.5.9 to X and D, we get that there exist an open
affine subset U Ă An containing a, and functions f1, . . . , fk`1 P KrU s, such that

IpX X Uq “ pf1, . . . , fkq, IpD X Uq “ pf1, . . . , fk`1q.

Since principal open affine sets form a basis for thge Zariski topology, we may assume that U is a
principal open set, say U “ AnzV pϕq. Hence also U X X is an open principal set, in particular it is
affine. Moreover the image of fk`1 in KrX X U s is a generator of the ideal of D XX X U .

Proof of Theorem 5.2.1.
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The statement of Theorem 5.2.1 is summarized by stating that a smooth quasi projective variety is
locally factorial.

EXPLAIN
The result below follows from Theorem 5.2.1, actually the weak version in Remark 5.2.2 suffices.

Proposition 5.2.3. Let X be a smooth quasi projective variety, and let f : X 99K Pn be a rational map.
The indeterminacy set Indpfq has codimension at least 2 in X.

First we prove the following.

Proof of Proposition 5.2.3. The indeterminacy set Indpfq is a proper closed subset of X. We argue by
contradiction. Suppose that D is a codimension 1 irreducible closed subset of X contained in Indpfq.
Let a be a smooth point of D. By Lemma 5.2.2 there exist an open affine subset U Ă X containing
a and ϕ P KrU s such that IpD X Uq Ă KrU s is generated by ϕ. Since X is smooth at a, there is a
unique irreducible component of X containing a, hence we may assume that U is irreducible. There
exist f0, . . . , fn P KrU s such that V pf0, . . . , fnq is a proper subset of U , and

fpxq “ rf0pxq, . . . , fnpxqs @x P pUzV pf0, . . . , fnqq.

5.3 Smooth points of maps

Let f : X Ñ Y be a regular map of quasi projective varieties.

Definition 5.3.1. Let x P X. The map f is smooth at x if

1. x is a smooth point of X, y :“ fpxq is a smooth point of Y ,

2. and the differential dfpxq : ΘxX Ñ ΘyY is surjective.

The following result explains why we might be interested in the points at which a regular map is
smooth.

Proposition 5.3.2. Let f : X Ñ Y be a regular map of quasi-projective varieties. Suppose that x P X
and that f is smooth at x. Then f´1 tfpxqu is smooth at x and

dimx f
´1pfpxqq “ dimxX ´ dimfpxq Y.

Proof. We may assume that X and Y are affine. Let n :“ dimY , and let y :“ fpxq. There exists r
such that Y Ă An`r is closed. By Corollary 4.5.9 there exist a Zariski open U Ă An`r containing y
and φ1, . . . , φr P Krz1, . . . , zn`rs such that

1. dφ1pyq, . . . , dφrpyq are linearly independent, and

2. V pφ1, . . . , φrq X U “ Y X U .

Let ψ1, . . . , ψn P Krz1, . . . , zn`rs be such that 0 “ ψ1pyq “ . . . “ ψnpyq and

tdφ1pyq, . . . , dφrpyq, dψ1pyq, . . . , dψnpyqu

is a basis of the cotangent space of An`r at y (we may choose the ψi’s to be coordinate functions if
we wish). By Proposition 4.5.9 V pφ1, . . . , φr, ψ1, . . . , ψnq has dimension zero at y. Thus shrinking the
open set U above, if necessary, we may assume that

V pψ1, . . . , ψn, φ1, . . . , φrq X U “ tyu. (5.3.1)
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Let ψi :“ ψi|Y . By (5.3.1) we have that

f´1pyq “ V pf˚pψ1q, . . . , f
˚pψnqq. (5.3.2)

We have dpf˚pψiqqpxq “ f˚dψipyq. By hypothesis dfpxq is surjective, i.e. the transpose

ΩY pyq
dfpxqt

ÝÑ ΩXpxq

is injective. Since dψ1pyq, . . . , dψnpyq are linearly independent, it follows that dpf˚ψ1qpxq, . . . , dpf
˚ψnqpxq

are linearly independent. Let m :“ dimxX. Since X is affine, there exists s such that that X Ă Am`s
is closed. By hypothesis X is smooth at x, and hence by Corollary 4.5.9 there exist a Zariski open
U Ă Am`s containing x and ψ1, . . . , ψs P Krz1, . . . , zm`ss such that

1. V pψ1, . . . , ψsq XU “ X XU , and

2. dψ1pxq, . . . , dψspxq are linearly independent.

Since X is closed in Am`s there exist ϕ1, . . . , ϕn P Krz1, . . . , zm`ss such that ϕi|X “ f˚φi. By (5.3.2)
we have that

f´1tyu XU “ V pψ1, . . . , ψs, ϕ1, . . . , ϕnq XU .

Applying Proposition 4.5.9 we get that V pψ1, . . . , ψs, ϕ1, . . . , ϕnq is smooth at x of dimension m´ n “
dimxX ´ dimx Y .

The result below is elementary.

Claim 5.3.3. Let f : X Ñ Y be a regular map of quasi-projective sets. The set of smooth points of f
is open in X.

Proof. The set of points x P X such that (1) of Definition 5.3.1 holds is equal to Xsm X f´1pY smq and
hence is open by Theorem 4.5.3. Thus it remains to prove that the set of x P XsmXf´1pY smq such that
dfpxq is not surjective is closed in Xsm X f´1pY smq. It suffices to prove it for X and Y affine, smooth.
By Corollary 4.5.9 we may assume that Y is irreducible of dimension d. Thus we must check that the
set

tx P X | rk dfpxq ď pd´ 1qu (5.3.3)

is closed in X. By hypothesis X Ă Am and Y Ă An are closed. Via the identification provided
by Proposition 4.3.5 the differential dfpxq gets identified with the Jacobian matrix Jfpxq. It follows
that (5.3.3) is the set of zeroes of determinants of dˆ d minors of Jfpxq, and hence is closed.

A point that is smooth for a regular map f : X Ñ Y is relative version of smooth point of a variety,
because X is smooth at a point x if and only if the constant map X Ñ ty0u is smooth at x. We have
proved that the set of smooth points of a quasi projective variety is an open dense subset.

By analogy, one might expect density of the set of points at which a dominant map of irreducible
quasi projective varietes is smooth. (We must assume that the map is dominant, otherwise the differen-
tial is never a surjection for trivial reasons, and if the domain has more than one irreducible component,
then again the set of smooth points of the map can be non dense for trivial reaons.) It turns out that
even under the above hypotheses, the set of smooth points of a map might be empty. The Frobenius

map is the archetypical example. Suppose that charK “ p, and let A1 F
ÝÑ A1 be given by F pzq “ zp;

then F is dominant, but the differential is zero everywhere.
The result below provides the hypothesis that guarantee density of the set of smooth points of a

dominant map between irreducible varieties - in particular the hypothesis is satisfied if charK “ 0.

Proposition 5.3.4. Let f : X Ñ Y be a regular dominant map of irreducible quasi-projective varieties
- thus f˚ : KpY q Ñ KpXq is an embedding of field extensions of K. Suppose that KpXq is a separably
generated extension of KpY q. Then the set of smooth points of f is an open dense subset of X.
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Before proving the above result we associate a geometric object to a derivationD P DerKpKpXq,KpXqq,
where X is an irreducible quasi projective variety. This allows to derive Proposition 5.3.4 from Propos-
ition A.6.4. Let x P X. We recall that OX,x Ă KpXq. Suppose that

DpOX,xq Ă OX,x. (5.3.4)

Then we may define a tangent vector Dpxq P ΘxX by setting

OX,x
Dpxq
ÝÑ K

φ ÞÑ Dpφqpxq.
(5.3.5)

The result below shows that an element of DerKpKpXq,KpXqq may be thought of as a vector field on
an open dense subset U Ă X (the open U depends on D).

Claim 5.3.5. Let X be an irreducible quasi-projective variety and D P DerKpKpXq,KpXqq. There
exists an open dense U Ă X such that for all x P U Equation (5.3.4) holds and hence the tangent vector
Dpxq P ΘxX is defined.

Proof. We may assume that X is affine. Thus KpXq is the fraction field of KrXs. Let f1, . . . , fr be
generators of the K-algebra KrXs. There exists 0 ­“ g P KrXs such that g ¨Dpfiq P KrXs for i “ 1, . . . , r.
Let U :“ Xg “ pXzV pgqq. Then Xg is an affine open dense subset of X, and its ring of regular functions
is the subring of KpXq given by

KrU s “ th{gk | h P KrXs, k ě 0u.

Thus (A.6.4) gives that DpKrU sq Ă KrU s. Applying (A.6.4) again it follows that (5.3.4) holds for
x P U .

Proof of Proposition 5.3.4. We know that the set of smooth points of f is open, we must prove that
it is non-empty. We are free to replace X and Y by open dense subsets X0 and Y 0 respectively (of
course we require that fpX0q Ă Y 0): in the course of the proof we will rename X0 and Y 0 by X
and Y respectively. In particular we may assume that X and Y are smooth. By Theorem A.5.6,
there exists a separating transcendence basis φ1, . . . , φm of KpY q over K. Replacing Y by the open
dense subset Y 0 of points where each of φ1, . . . , φm is regular we may assume that φ1, . . . , φm are
regular (of course we replace X by f´1Y 0). Since f is dominant f˚φ1, . . . , f

˚φm are algebraically
independent in KpXq. Let ψ1, . . . , ψn be a separating transcendence basis of KpXq over KpY q (it
exeists by hypothesis). Then φ1, . . . , φm, ψ1, . . . , ψn is a separating transcendence basis of KpXq over
K, and hence by Proposition A.6.4 there exist Dj P DerKpKpXq,KpXqq for j “ 1, . . . ,m such that

Djpf
˚φiq “ δij “

#

1 if i “ j,

0 if i ‰ j.

By Claim 5.3.5, we may assume that DjpOX,xq Ă OX,x for every x P X (after shrinking X). Then Dj

defines a tangent vector Djpxq P ΘxX for each x P X. Let x P X: we claim that dfpxq is surjective. In
fact let y :“ fpxq. Then df˚φ1pyq, . . . , df

˚φmpyq are linearly independent because

xDjpxq, f
˚φiy “ δij . (5.3.6)

In particular dφ1pyq, . . . , dφmpyq are linearly independent. Since m “ dimY and Y is smooth it follows
that tdφ1pyq, . . . , dφmpyqu is a basis of ΩY pyq. This proves that the transpose of dfpxq is injective and
hence dfpxq is surjective.
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5.4 Regular values

Definition 5.4.1. Let f : X Ñ Y be a regular map between quasi-projective sets. A point y P Y is a
regular value of f if f is smooth at each x P f´1tyu.

Theorem 5.4.2 (Sard’s theorem for quasi-projective varieties). Let f : X Ñ Y be a regular map of
quasi-projective varieties over a field K of characteristic 0. Suppose that X is smooth. Then the set of
regular values of f contains an open dense subset of Y .

Proof. One checks easily that it suffices to prove the theorem for X and Y irreducible. If f is not
dominant then every point of the open dense set pY zfpXqq is a regular value of f . Now suppose that
f : X Ñ Y is dominant. By Proposition 5.3.4 the open set

X0 :“ tx P X | dfpxq is surjectiveu

is dense in X. Let C be an irreducible component of XzX0; we claim that fpCq ‰ Y . In fact suppose
the contrary. Applying Proposition 5.3.4 to f|C we get that there exists an open dense C0 Ă C sm such
that

dfpxq|ΘxC : ΘxC Ñ ΘfpxqY

is surjective. That contradicts the definition of X0. This proves that fpCq ‰ Y . It follows that

fpXzX0q ‰ Y.

Thus Y zfpXzX0q is an open dense subset of regular values of Y .

The following result shows, at least in the case of maps of finite degree, that if a map is projective
then the fibers of “nearby” regular values all look alike.

Proposition 5.4.3. Let f : X Ñ Y be a regular projective map between irreducible quasi projective
varieties of the same dimension. If y P Y is a regular value of f , the cardinality of f´1pyq is equal to
deg f . In particular, if there exists a regular value of f , then KpXq is an algebaric separable extension
of KpY q.

Before proving Proposition 5.4.3, we examine an example that was discussed in Section 3.2. It will
convince the reader that Proposition 5.4.3 should be true.

Example 5.4.4. Let Y be an affine variety, and let P P KrY srts be an irreducible polynomial:

P “ td ` a1t
d´1 ` ¨ ¨ ¨ ` ad.

Let X :“ V pP q Ă Y ˆA1, and let f : X Ñ Y be the projection, given by fpy, tq “ y. The closure of X
in Y ˆ P1 is equal to X, because the leading coefficient of P (in t) is equal to 1. Hence the map f is
projective. Clearly dimX “ dimY , and deg f “ d.

Next, we notice that y0 P Y is a regular value of f if and only if Y is smooth at y0, and dP
dt py0, ξq ­“ 0

for all ξ which are solutions of the degree d polynomial P py0, tq “ 0. Hence, if y0 is a regular value of
f , then all solutions of the equation P py0, tq “ 0 have multiplicity 1, and therefore there are d “ deg f
of them.

Proof of Proposition 5.4.3. Since f is projective, we may assume that X Ă Y ˆ PN is closed, and f is
the projection map given by fpy, tq “ y. The proof is by induction on N . If N “ 0, the statement is
trivially true. The inductive step starts from N “ 2, hence the case N “ 1 must be examined separately.
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5.5 Exercises

Exercise 5.5.1. Let n ě 2, and let X Ă Pn be a smooth hypersurface. Prove that X is irreducible. Notice

that this property is peculiar to hypersurfaces in Pn. If Y is a quasi-projective variety of pure dimension, we

may define a hypersurface in Y to be a closed X Ă Y of pure dimension equal to dimY ´ 1. Give examples of

projective smooth Y of dimension at leats 2 and a reducible smooth hypersurfaces X Ă Y .

Exercise 5.5.2. Let X Ă Pn be a hypersurface, and let IpXq “ pF q.

1. Prove that if ras is a singular point of X, then all the partial derivatives BF paq
BZi

vanish. (Hint: use Euler’s

equality (1.8.8).

2. Show that if charK does not divide the degree ofX, then the converse holds, i.e. if all the partial derivatives
BF paq
BZi

vanish, then ras is a singular point of X. (Recall that degX “ degF .)
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Chapter 6

Some classical results

6.1 Bèzout’s Theorem

Definition 6.1.1. Let X be a quasi-projective variety. Let Y,W Ă X be locally-closed. Let p P Y XW .
We say that Y and W intersect transversely at p (or are transverse at p) if the following hold:

1. X, Y , and W are smooth at p.

2. The natural map TpY ‘ TpW Ñ TpX is surjective.

We say that Y and W intersect transversely (in symbols Y&W ) if given any irreducible component V
of Y XW there exists p P V such that Y and W are transverse at p.

Example 6.1.2. Let px, yq be affine coordinates on A2
C. Then V pyq and V py´x2px´1qq do not intersect

transversely at p0, 0q, they intersect transversely at p1, 0q.

Remark 6.1.3. 1. Suppose that Y,W Ă X are locally closed, p P Y XW and Y , W are transverse
at p. Then pdimY ` dimW ´ dimXq ě 0 (obvious) and by ?? there is a unique irreducible
component of Y XW containing p, call it V . Moreover V is smooth at p of dimension equal to
pdimY ` dimW ´ dimZq.

2. Suppose that Y,W Ă X intersect transversely. Let V be an irreducible component of Y XW .
Since the set of p P V such that such that (1) and (2) of Definition 6.1.1 holds is an open subset
of V (that is easily checked) it follows that there is an open dense subset of p P V such that such
that (1) and (2) of Definition 6.1.1 holds.

Theorem 6.1.4 (Transverse Bézout’s theorem). Let X,Y Ă Pn be closed subsets which intersect
transversely. Then

degX X Y “ degX ¨ deg Y

unless dimX ` dimY ă n (in that case X X Y “ H by Remark 6.1.3).

The key element in the proof (that we will give) of Theorem ?? is the following degree computation.

Proposition 6.1.5. Let X,Y Ă PN be closed irreducible subsets such that (3.4.1) holds. Then
deg JpX,Y q “ degX ¨ deg Y .

Proof. Since xJpX,Y qy “ xX,Y y we might as well assume that xX,Y y “ PN . Let

cX :“ codpX, xXyq, cY :“ codpY, xY yq, cJ :“ codpJpX,Y q,PN q.

We have

n “ dimxXy ` dimxY y ` 1, dim JpX,Y q “ dimX ` dimY ` 1.
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Subtracting we get that cJ “ cX ` cZ . Let Λ Ă xXy and Γ Ă xZy be linear subspaces such that

dim Λ “ cX , dim Γ “ cZ , Λ&X, Γ&Z.

Then
|ΛXX| “ degX, |ΓX Y | “ deg Y, dimxΛ,Γy “ cX ` cY ` 1.

The intersection of xΛ,Γy and JpX,Y q is transverse and it equals

JpΛXX,ΓX Y q “
ď

pPΛXX
qPΓXY

xp, qy. (6.1.1)

Let H Ă PN be a hyperplane transverse to each of the finite lines appearing in the right-hand side of
(6.1.1) and such that H X ΛXX “ H X ΓX Y “ H. Then

dimH X xΛ,Γy “ cX ` cY .

Moreover the linear space H X xΛ,Γy intersects transversely JpX,Y q. It follows that

deg JpX,Y q “ |pH X xΛ,Γyq X JpX,Y q| “ degX ¨ deg Y.

Proof of Theorem ??. If dimX ` dimY ă n then X X Y “ H, and there is nothing to prove. Thus we
may assume that

e :“ dimX ` dimY ´ n ě 0. (6.1.2)

As the reader will easily check we may assume that X and Y are irreducible. Then e is the dimension
of every irreducible component of X X Y - see Item (1) of Remark 6.1.3. Let i, j : Pn ãÑ P2n`1 be as
in (3.4.8). Let Λ Ă P2n`1 be given by

Λ :“ V pW0 ´ Z0, . . . ,Wn ´ Znq.

We recall that we have an isomorphism

X X Y
„
ÝÑ ΛX JpipXq, jpY qq

rZ0, . . . , Zns ÞÑ rZ0, . . . , Zn, Z0, . . . , Zns
(6.1.3)

Since X&Y the linear space Λ intersects transversely JpipXq, jpY qq (check it). Now let Γ Ă Pn be a
linear space transverse to X X Y (such a Γ exists by ??). Thus

|ΓXX X Y | “ degpX X Y q (6.1.4)

by ??. On the other hand rΓ :“ JpipΓq, jpPnqq is a linear subspace of P2n`1, the linear subspace
rΓ X Λ has codimension pn ` 1 ` eq (in P2n`1) and it intersects transversely (check it) the closed
JpipXq, jpY qq Ă P2n`1 of dimension pn` 1` eq. Thus

|rΓX ΛX JpipXq, jpY qq| “ deg JpipXq, jpY qq “ degX ¨ deg Y. (6.1.5)

(The second equality follows from Proposition 6.1.5.) Isomorphism (6.1.3) defines a bijective cor-

respondence between Γ X X X Y and rΓ X Λ X JpipXq, jpY qq: thus (6.1.4) and (6.1.5) give that
degpX X Y q “ degX ¨ deg Y .

We will apply Bèzout’s Theorem in order to compute of the number of flexes of a plane curve i.e. a
hypersurface C Ă P2. First we go through a couple of definitions. Let X Ă An be a hypersurface: thus

IpXq “ pfq, f P Krz1, . . . , zns.

Let p P An and L Ă An be a line containing p.
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Definition 6.1.6. The multiplicity of intersection of X and L at p, denoted multppL X Xq is the
multiplicity with which f |L vanishes at p.

Thus multppL X Xq ě 1 if and only if p P X, multppL X Xq ě 2 if and only if L belongs to the
embedded affine tangent space p ` TpX. Now let X Ă Pn be a hypersurface, p P Pn and L Ă Pn be a
line containing p. One defines the multiplicity of intersection of X and L at p by choosing a standard
open affine space PnΦ containing p and setting multppL X Xq :“ multppLΦ X XΦq - this makes sense
because multppLΦ XXΦq is independent of Φ.

Definition 6.1.7. A curve C Ă P2 has an inflection point at p (or p is a flex of C) if there exists a line
L Ă P2 such that multppLX Cq ě 3.

Remark 6.1.8. An easy local computation gives that p P C is a flex of C if and only if one of the
following holds:

1. C is smooth at p and multpppp` TpCq X C ě 3.

2. C is singular at p.

Definition 6.1.9. A flex p of a curve C Ă P2 is ordinary if C is smooth at p and moreover multpppp`
TpCq X C “ 3.

Remark 6.1.10. Let Cd :“ V pZd0 ´ Z
d
1 ´ Z

d
2 q Ă P2

C. Let p “ p1, 1, 0q. Then p is a flex of Cd if and only
if d ě 3: it is ordinary if and only if d “ 3.

Let C Ă P2
C be a curve. Let IpCq “ pF q. We let

HF :“ det

¨

˚

˝

BF
BZ2

0

BF
BZ0BZ1

BF
BZ0BZ2

BF
BZ1BZ0

BF
BZ2

1

BF
BZ1BZ2

BF
BZ2BZ0

BF
BZ2BZ1

BF
BZ2

2

˛

‹

‚

(HF is the Hessian curve of F .) Let d :“ degF ; then HF P CrZ0, Z1, Z2s3pd´2q. One should notice that
the locus V pHF q depends on C and not on the homogeneous coordinates (needed to make snese of the
partial derivatives).

Proposition 6.1.11. Let C Ă P2
C be a curve and let F be generator of the homogeneous ideal IpCq.

The following hold:

1. The set of flexes of C is equal to C X V pHF q.

2. The set of flexes of C is finite unless C contains a line.

3. If all flexes of C are ordinary then the number of flexes is equal to 3 degC ¨ pdegC ´ 2q.

Proof. (1): Let p P C. We must prove that p P V pHF q if and only if p is a flex of C. We may assume
that p “ r1, 0, 0s. Since p P C we have

F “ Zd´1
0 f1 ` Z

d´2
0 f2 ` . . .` fd, fi P CrZ1, Z2si. (6.1.6)

It follows that

HF p1, x1, x2q “ det

¨

˚

˚

˝

řd
i“1pd´ iqpd´ i´ 1qfi

řd
i“1pd´ iq

Bfi
Bx1

řd
i“1pd´ iq

Bfi
Bx2

řd
i“1pd´ iq

Bfi
Bx1

řd
i“1

B
2fi
Bx2

1

řd
i“1

B
2fi

Bx1Bx2
řd
i“1pd´ iq

Bfi
Bx2

řd
i“1

B
2fi

Bx1Bx2

řd
i“1

B
2fi
Bx2

2

˛

‹

‹

‚

(6.1.7)
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Suppose that p P singC. Then the first row (and first column) of HF p1, 0, 0q vanish and hence p P
V pHF q. Next suppose that C is smooth at p. We may assume that f1 “ Z2. It follows that HF p1, 0, 0q “
B2f2p0, 0q{BZ

2
1 . Thus HF p1, 0, 0q “ 0 if and only if p is a flex of C. (2): It is clear that if C contains

a line then every point of the line is a flex of C. Now suppose that the set of flexes of C is infinite.
By Item (1) the set of flexes of C is a closed subset of C: it follows that it contains an irreducible
component C0 of C. The generic point of C0 is smooth and hence locally (away from the finite set
C0 X singC) there exist affine coordinates px, yq such that C0 is the graph of a holomorphic function
ϕpxq. Since every point of C0 is a flex we get that ϕ2 “ 0 and hence C0 is a line. (3): Let p P C be a
flex. We may assume that p “ r1, 0, 0s and hence (6.1.6) holds. The curve C is smooth at p because
the flex is ordinary: thus we may assume that f1 “ Z2. Since p is an ordinary flex of C we have

f2 “ a1Z1Z2 ` a2Z
2
2 , f3 “ b0Z

3
1 ` b1Z

2
1Z2 ` b2Z1Z

2
2 ` b3Z

3
2 , b0 ­“ 0.

By (6.1.7) we get that

HF p1, x1, 0q ” det

¨

˝

0 0 pd´ 1q ` pd´ 2qa1x1

0 6b0x1 ˚

pd´ 1q ` pd´ 2qa1x1 ˚ ˚

˛

‚ pmod x2
1q.

Thus HF p1, x1, 0q ” 6pd ´ 1q2b0x1 pmod x2
1q. It follows that HF has no multiple factors and hence

V pHF q is a curve of degree equal to degHF “ 3pdegC ´ 2q and the intersection of the curves C and
V pHF q is transverse. By Bèzout we get that

|tP P C | p is a flex of Cu| “ 3 degC ¨ pdegC ´ 2q.

Corollary 6.1.12. Let C Ă P2
C be a smooth cubic curve. Then C has exactly 9 flexes.

Proof. By Proposition 6.1.12 it suffices to show that every flex of C is ordinary. Let p be a flex of C.
Then C is smooth at p by hypothesis. Let L :“ TpC: then multppLX Cq ě 3 because p is a flex of C.
Let IpCq “ pF q: thus 0 ­“ F P CrZ0, Z1, Z2s3. We have L “ PpUq where U Ă C3 is a vector subspace
of dimension 2. The restriction F |U is a degree-3 polynomial function which is non-zero because the
curve C is irreducible (see Example 3.4.6). Thus multppLXCq ď 3; since multppLXCq ě 3 we get that
multppLX Cq “ 3 i.e. p is an ordinary flex.

6.2 Cubic surfaces

We will prove the following classical result.

Theorem 6.2.1. A smooth cubic surface in P3
C contains 27 lines.

The proof will be given after a series of preliminary results. Let S Ă P3
C be a surface: we let

F1pSq :“
 

L P Grp1,P3
Cq | L Ă S

(

.

Proposition 6.2.2. Let G P KrZ0, Z1, Z2s3 be such that V pGq is a smooth cubic curve. The cubic
surface S :“ V pZ3

3 ´Gq Ă P3 is smooth1 and it contains 27 lines.

Proof. Let F :“ pz3
3 ´Gq. Then V pBF {BZ0, . . . , BF {BZ3q “ H because V pGq is a smooth cubic curve.

It follows that S is smooth. Since p0 :“ r0, 0, 0, 1s does not belong to S the projection from p0 defines
a regular map

S
π
ÝÑ V pZ3q

rZ0, Z1, Z2, Z3s ÞÑ rZ0, Z1, Z2s

1Here charK ­“ 3.
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(We drop the last (zero) coordinate of points of V pZ3q.) Suppose that L Ă S is a line: we claim
that πpLq is an inflexional tangent of the cubic curve V pGq. The key point is the following: S has an
automorphism of order 3 namely

S
ϕ
ÝÑ S

rZ0, Z1, Z2, Z3s ÞÑ rZ0, Z1, Z2, ωZ3s

where ω “ expp2π
?
´1{3q. Notice that π ˝ ϕ “ π and that the cubic curve V pGq is the fixed locus of

ϕ. Let L Ă S be a line. The cubic curve V pGq is irreducible becuse it is smooth - see Example 3.4.6
- and hence L is not contained in V pZ3q. It follows that L X V pZ3q contains a single point, call it q.
Let’s show that

πpLq X V pGq “ tqu. (6.2.1)

Let ΛL “ xp0, Ly be the plane spanned by p0 and L: thus πpLq “ ΛL X V pZ3q. The lines ϕpLq and
ϕ2pLq are contained in ΛL and L,ϕpLq, ϕ2pLq are pairwise distinct because L Ć V pZ3q. It follows that
ΛLXS “ LYϕpLqYϕ2pLq: since tqu “ ϕpLqXS “ ϕ2pLqXS we get that (6.2.1) holds. Equation (6.2.1)
proves that πpLq is an inflexional tangent of the cubic curve V pGq. Thus we have a map

F1pSq
ρ
ÝÑ tR Ă V pZ3q | R an inflexional tangent of V pGqu

L ÞÑ πpLq

By Corollary 6.1.12 we know that V pGq has 9 inflexional tangents and hence in order to finish the proof
it will suffice to show that ρ is surjective and each fiber has cardinality 3. Let R an inflexional tangent
of V pGq. Let q be the inflexion point of V pGq on R: thus R X V pGq “ tqu. Let us extend Z3 (on
ΛR) to homogeneous coordinates Y0, Y1, Z3 on ΛR such that q “ r1, 0, 0s. The cubic curve S X ΛR has
equation αZ3

3 ´ βY
3
1 for a certain p0, 0q ­“ pα, βq P C2. We have α ­“ 0 because S does not contain the

point r0, 0, 0, 1s and we have β ­“ 0 because V pGq contains no lines: it follows that S X ΛR consists of
3 distinct lines as claimed.

Next let Ud Ă PpKrZ0, Z1, Z2, Z3sdq be the subset of rF s where F has no multiple factors: as is
easily checked Ud is a dense open subset of PpKrZ0, Z1, Z2, Z3sdq. Clearly Ud is the parameter space
for degree-d surfaces in P3. Let

Rd :“ tpL, Sq P Grp1,P3
Cq ˆUd | L Ă Su.

We have two projections

Rd

ρ
zz

π
  

Grp1,P3
Cq Ud

Notice that

πpRdq “ tS P Ud | S contains a lineu. (6.2.2)

Claim 6.2.3. Keep notation as above. Then Rd is closed in Grp1,P3
Cq ˆ Ud, moreover it is smooth

irreducible of codimension pd` 1q.

Proof. Let

Grp1,P3
CqI0 :“ tL P Grp1,P3

Cq | LX V pZ0, Z1q “ Hu.

Then Grp1,P3
CqI0 is one of the principal open subsets (isomorphic to A4) that cover Grp1,P3

Cq - see
Section ??. We will describe ρ´1Grp1,P3

CqI0 . First we recall how to describe lines that belong to
Grp1,P3

CqI0 . Let r “ pr1, . . . , r4q P A4
C: we let

Lr :“ Ppxp1, 0, r1, r2q, p0, 1, r3, r4qyq.
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Then Grp1,P3qI0 is the set whose elements are the lines Lr. Given F P KrZ0, Z1, Z2, Z3sd we may write

F pλ, µ, λr1 ` µr3, λr2 ` µr4q “

d
ÿ

i“0

Aipr, F qλ
d´iµi.

Clearly

ρ´1Grp1,P3qI0 “ tpLr, V pF qq P Grp1,P3qI0 ˆUd | 0 “ A0pr, F q “ A1pr, F q “ . . . “ Adpr, F qu.

Let Ai : A4 ˆ KrZ0, Z1, Z2, Z3sd Ñ K be the function with value Aipr, F q at pr, F q. Then Ai is a
polynomial function and hence ρ´1Grp1,P3qI0 is a closed subset of Grp1,P3qI0 ˆ Ud. Let f0, . . . , fN
be the coefficients of F (here N ` 1 “ pd ` 3q!{3!d!): then Ai P Krr1, . . . , r4srf0, . . . , fN s1 i.e. Ai is
homogeneous of degree 1 in f0, . . . , fN . When we fix r the pd` 1q homogeneous equations in f0, . . . , fN
are linearly independent - this is easily checked. It follows that there is an open cover tAI0,jujPJ0 of
Grp1,P3qI0 such that

ρ´1AI0,j – AI0,j ˆ PN´d´1
C

for all j P J0. A similar picture holds for all principal open subsets of the covering of Grp1,P3
Cq defined

in Section??. The claim follows.

Proposition 6.2.4. Keep notation as above and assume that d ě 3. Let pL, Sq P Rd and suppose that
S is smooth at all points of L. Then dπpL, Sq : ΘpL,SqRd ÝÑ ΘSUd is injective.

Proof. Choose homogeneous coordinates Z0, . . . , Z4 such that L “ V pZ2, Z3q. Let IpSq “ pF q: thus
0 ­“ F P KrZ0, . . . , Z4sd. Throughout the present proof we will adopt the notation introduced in the
proof of Claim 6.2.4. We have L “ L0. The proof of Claim 6.2.4 gives that ΘpL,F q Ă ΘpL,F qA4

C ˆUd is
given by

AnnxdA0p0, F q, . . . , dAdp0, F qy. (6.2.3)

(This is because the differentials dA0p0, F q, . . . , dAdp0, F q are linearly independent.) Let v P ker dπpL, Sq.
Then v “ pv1, . . . , v4q P Θ0A4: since A4 is an affine space there exists a regular (affine if we wish so)
map γ : A1 Ñ A4 such that γp0q “ 0 and γ1p0q “ v. By (6.2.3) we get that

0 “
d

dt |t“0
F pλ, µ, λγ1 ` µγ3, λγ2 ` µγ4q “

“
BF

BZ2
pλ, µ, 0, 0qpλv1 ` µv3q `

BF

BZ3
pλ, µ, 0, 0qpλv2 ` µv4q. (6.2.4)

Now suppose that v ­“ 0: we will arrive at a contradiction. Both BF
BZ2
pλ, µ, 0, 0q and BF

BZ2
pλ, µ, 0, 0q are

homogeneous polynomials of degree pd ´ 1q: equation (6.2.4) gives that they have a common factor
because d “ degF ě 3. It follows that there exists 0 ­“ pλ0, µ0q P C2 such that

0 “
BF

BZ2
pλ0, µ0, 0, 0q “

BF

BZ3
pλ0, µ0, 0, 0q.

On the other hand since L “ V pZ2, Z3q Ă V pF q there exists G,H P KrZ0, . . . , Z3sd´1 such that
F “ GZ2 `HZ3: it follows that

0 “
BF

BZ1
pλ0, µ0, 0, 0q “

BF

BZ2
pλ0, µ0, 0, 0q.

Since F generates IpSq it follows that S is singular at rλ0, µ0, 0, 0s P L: that contradicts our hypothesis.
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Proof of Theorem 6.2.1. Let U 0
3 Ă U3 be the open subset whose elements are smooth cubic surfaces.

Let R0
3 :“ π´1U 0

3 and let π0 : R0
3 Ñ U 0

3 be the restriction of π. Then Imπ0 is the set of smooth cubic
surfaces which contain a line: it is non-empty by Proposition 6.2.2. Since π0 is a projective map Imπ0

is a closed subset of U 0
3 . Let S be a smooth point of Imπ0 and pS,Lq P pπ0q´1pSq. Since R3 is smooth

of dimension equal to dimKrZ0, . . . , Z3s3 (see Claim 6.2.4) and injectivity of the differential dπpL, Sq
(see Proposition 6.2.4) we get that

dimKrZ0, . . . , Z3s3 ď dimS Imπ0.

It follows that Imπ0 “ U 0
3 i.e. every smooth cubic surface contains a line. The map π0 is a proper

(when we consider the euclidean topology) map of smooth varieties because it is projective and it is
a local homeomorphism by Proposition 6.2.4. Thus Proposition ?? gives that the number of lines on
a smooth cubic surface is independent of the surface: by Proposition 6.2.2 we get that every smooth
cubic contains 27 lines.

Theorem 6.2.5. Let S Ă P3 be an irreducible cubic surface; then S is rational unless possibly if it is
the cone over a smooth cubic (plane) curve.

Proof. Suppose that S is smooth. By Theorem 6.2.1, there exist skew lines L,M Ă S. We define a
rational map

f : S 99K LˆM » P1 ˆ P1

as follows. Let p P SzpL YMq: there exists a unique line Rp containing p and intersecting L and M .
We set

fppq :“ pRp X L,Rp XMq.

Let pSzpL YMq, φq represent f . Since F1pSq is finite the generic fiber of φ is a single point and it
follows that dim ¯φpSzpLYMqq “ 2; since LˆM is irreducible 2-dimensional we get that f is dominant.
Moreover since the generic fiber of φ consists of one point f is birational. Since P1 ˆ P1 is rational we
have proved that a smooth cubic is rational. Now suppose that S is singular but is not a cone over a
smooth cubic curve; then there exists p0 P S of multiplicity 2. Projection from p0 defines a birational
map π : S 99K P2.

Exercises
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Appendix A

Algebra à la carte

A.1 Introduction

In what follows, rings are always commutative with 1. The proofs of the results below are contained in
most Algebra textbooks (e.g. Lang [?]).

A.2 Unique factorization

Theorem A.2.1. Let R be a UFD. Then Rrts is a UFD. Moreover a polynomial p “ a0t
d ` a1t

d´1 `

. . .` ad is prime if and only if

1. p is prime when viewed as element of Krts, where K is the field of fractions of R,

2. and the greatest common divisor of a0, a1, . . . , ad is 1.

Corollary A.2.2. The ring Krx1, . . . , xns is a unique factorization domain.

Proof. By induction on n. If n “ 0, the ring is a field, and hence it is trivially a UFD. The inductive
step follows from Theorem A.2.2, because Krx1, . . . , xns – Krx1, . . . , xn´1srts.

A.3 Noetherian rings

Definition A.3.1. A (commutative unitary) ring R is Noetherian if every ideal of R is finitely gener-
ated.

Example A.3.2. A field K is Noetherian, because the only ideals are t0u “ p0q and K “ p1q. The ring
Z is Noetherian, because every ideal has a single generator.

Lemma A.3.3. A (commutative unitary) ring R is Noetherian if and only if every ascending chain

I0 Ă I1 Ă . . . Ă Im Ă . . .

of ideals of R (here Im is defiend for all m P N, and Im Ă Im`1 for all m P N) is stationary, i.e. there
exists m0 P N such hat Im “ Im0

for m ě m0.

Proof. Suppose that R is Noetherian. The union I :“
Ť

mPN Im is an ideal because the tImu form a
chain. By Noetherianity I is finitely generated, say I “ pa1, . . . , arq. There exists m0 such that aj P Im0

for j P t1, . . . , ru, and hence I “ Im0
. Let m ě m0; then Im Ă I and I Ă Im, hence I “ Im. Thus

Im0
“ Im for m ě m0.

Now suppose that every ascending chain of ideals of R is stationary. Let I Ă R be an ideal. Suppose
that I is not finitely generated. Let a1 P I. Then pa1q Ĺ I because I is not finitely generated; let
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a2 P pIzpa1qq. Then pa1, a2q Ĺ I because I is not finitely generated. Iterating, we get a non stationary
chain of ideals (contained in I)

pa1q Ĺ pa1, a2q Ĺ . . . Ĺ pa1, . . . , amq Ĺ

This is a contradiction.

Example A.3.4. The ring HolpKq of entire functions of one variable is not Noetherian. In fact let
fm P HolpKq be defined by

fmpzq :“
8
ź

n“m

ˆ

1´
z2

n2

˙

, m ě 1.

Then pfmq Ĺ pfm`1q. Thus pf1q Ă pf2q Ă . . . Ă pfmq Ă . . . is a non-stationary ascending chain of ideals,
and hence HolpKq is not Noetherian by Lemma A.3.3.

Theorem A.3.5. Let R be a Noetherian commutative ring. Then Rrts is Noetherian.

Proof. For a non zero f P Rrts, we let `pfq be the leading coefficient of f , i.e. if f “
řm
i“0 cit

i with
cm ­“ 0, then `pfq “ cm.

Let I Ă Rrts. We must prove that I is finitely generated. If I “ p0q there is nothing to prove and
hence we may assume I ‰ p0q. Thus the set

`pIq :“ t`pfq | 0 ‰ f P Iu

is non-empty and it makes sense to define

J :“ x`pIqy Ă R

as the ideal of R generated by `pIq. By hypothesis J is finitely generated: J “ pc1, . . . , csq. Since J is
generated by `pIq we may assume that each generator is the leading coefficient of a polynomial in I,
i.e. for each 1 ď i ď s there exists fi P I such that `pfiq “ ci. Let

d :“ max
1ďiďs

tdeg fiu .

Let H :“ I X tf P Rrts | deg f ď du. Then H is a submodule of tf P Rrts | deg f ď du » Rd`1 (as
R-modules). Since R is Noetherian every submodule of Rd`1 is finitely generated (argue by induction
on d; if d “ 0 it holds by definition of Noetherian ring, if d ą 0 consider the projection Rd`1 Ñ R) and
hence

H “ pg1, . . . , gtq.

Let us prove that
I “ pf1, . . . , fs, g1, . . . , gtq.

In fact let f P I. If deg f ď d then f P H and hence f P pg1, . . . , gtq Ă pf1, . . . , fs, g1, . . . , gtq. Now
suppose that deg f ą d. Then `pfq “

řs
i“1 aici. Let

h :“ f ´
s
ÿ

i“1

ait
deg f´deg fifi.

Then deg h ă deg f . Since
řs
i“1 ait

deg f´deg fifi P pf1, . . . , fs, g1, . . . , gtq it suffices to prove that h P I.
If deg h ď d we are done, otherwise we iterate until we get down to a polynomial of degree less or equal
to d.

Theorem A.3.6 (Hilbert’s basis Theorem). Every ideal of Krx1, . . . , xns is finitely generated.

Proof. By induction on n. If n “ 0, the ring is a field, and hence is Noetherian. The inductive step
follows from Theorem A.3.5, because Krx1, . . . , xns – Krx1, . . . , xn´1srts.
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A.4 The Nullstellensatz

If Y Ă An is a subset, we let IpY q :“ tf P Krz1, . . . , zns | f |Y “ 0u. We recall that the radical of an
ideal I ina ring R, is the set of elements a P R such that am P I for some m P N. As is easily checked,
the radical is an ideal; it is denoted by

?
I,

Theorem A.4.1 (Hilbert’s Nullstellensatz, Chapter X of [?]). Let I Ă Krz1, . . . , zns be an ideal. Then
IpV pIqq “

?
I.

Before discussing the proof of the Nullstellensatz, we introduce some notation. For pa1, . . . , anq P An,
let

ma :“ pz1 ´ a1, . . . , zn ´ anq “ tf P Krz1, . . . , zns | fpa1, . . . , anq “ 0u . (A.4.1)

Notice that ma is the kernel of the surjective homomorphism

Krz1, . . . , zns
φ
ÝÑ K

f ÞÑ fpa1, . . . , anq,

and hence is a maximal ideal. The Nullstellensatz is a consequence of the following result.

Proposition A.4.2. An ideal m Ă Krz1, . . . , zns is maximal if and only if there exists pa1, . . . , anq P An
such that m “ ma.

Proof for uncountable K. We know that ma is maximal. Now suppose that m Ă Krz1, . . . , zns is a
maximal ideal. Let

Krz1, . . . , zns
φ
ÝÑ Krz1, . . . , zns{m “: E

be the quotient map. Notice that mXK “ t0u because m ­“ p1q. Thus φpKq is a copy of K and hence
E is a field extension of K. For i P t1, . . . , nu let zi :“ φpziq. We claim that

for all i P t1, . . . , nu there exists ai P K (meaning ai P φpKq) such that zi “ ai. (A.4.2)

In fact suppose that zi R K. Let c P K; since zi ­“ c and E is a field pzi ´ cq´1 exists. The field E is
a quotient of Krz1, . . . , zns - a K-vector space of countable dimension - thus E as vector space over K
has a countable basis. Since K is uncountable we get that tpxi´ cq

´1ucPK is a set of linearly dependent
elements, and hence there exist pairwise distinct complex numbers c1, . . . , cs P K and λ1, . . . , λs P K˚
such that

s
ÿ

h“1

λhpzi ´ chq
´1 “ 0. (A.4.3)

Multiplying both sides by
śs
j“1pzi ´ cjq we get that

s
ÿ

h“1

λh

s
ź

j ­“h

pzi ´ cjq “ 0. (A.4.4)

The polynomial ϕ P Krts defined by

ϕ :“
s
ÿ

h“1

λh

s
ź

j ­“h

pt´ cjq

is non-zero. In fact ϕpc1q “ λ1

śs
1ăjďspc1 ´ cjq ­“ 0. B (A.4.4) we have ϕpziq “ 0; since ϕ ­“ 0, zi

is algebraic over K, and hence zi P K because K is algebraically closed. This is a contradiction, and
hence (A.4.2) holds. Thus

pzi ´ aiq P kerφ “ m, i “ 1, . . . , n.

Since ma is generated by pz1 ´ a1q, . . . , pzn ´ anq it follows that ma Ă m. The ideal ma is maximal and
so is m: this implies that m “ ma.
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Corollary A.4.3 (Weak Nullstellensatz). Let I Ă Krz1, . . . , zns be an ideal. Then V pIq “ H if and
only if I “ p1q.

Proof. If I “ p1q, then V pIq “ H. Assume that V pIq “ H. Suppose that I ‰ p1q. Then there exists a
maximal ideal m Ă Krz1, . . . , zns containing I. Since I Ă m, V pIq Ą V pmq. By Proposition A.4.2 there
exists a P Kn such that m “ ma and hence V pmq “ V pmaq “ tpa1, . . . , anqu. Thus a P V pIq and hence
V pIq ‰ H. This is a contradiction, and hence I “ p1q.

Proof of Hilbert’s Nullsetellensatz (Rabinowitz’s trick). Let f P IpV pIqq. By Hilbert’s basis theorem
I “ pg1, . . . , gsq for g1, . . . , gs P Krz1, . . . , zns. Let J Ă Krz1, . . . , zn, ws be the ideal

J :“ pg1, . . . , gs, f ¨ w ´ 1q.

Since f P IpV pIqq we have V pJq “ H and hence by the Weak Nullstellensatz J “ p1q. Thus there exist
h1, . . . , hs, h P Krx1, . . . , xn, ys such that

s
ÿ

i“1

higi ` h pf ¨ w ´ 1q “ 1.

Replacing w by 1{fpzq in the above equality we get

s
ÿ

i“1

hi

ˆ

z,
1

fpzq

˙

gipzq “ 1. (A.4.5)

Let d ąą 0: multiplying both sides of (A.4.5) by fd we get that

s
ÿ

i“1

hi pzq gipzq “ fdpzq, hi P Krz1, . . . , zns.

Thus f P
?
I.

If K is not algebariaclly closed, then the statement of Theorem A.4.1 is no longer true. For example,
if K “ R and I :“ px2 ` 1q Ă Rrxs, then V pIq “ H but I ­“ p1q. There is a modified version of
Proposition A.4.2 which holds for an arbitrary field k: it states that if m Ă krx1, . . . , xns is a maximal
ideal then krx1, . . . , xns{m is an algebraic extension of k, see Chapter X of [?].

A.5 Extensions of fields

An extension of fields F Ă E is algebraic if every α P E is the root of a non zero polynomial ψ P F rzs.
If this is the case, the set of polynomials vanishing on α is a non zero ideal F rzs, and hence it is
generated by a unique monic poylnomial ϕ, which is the minimal polynomial of α over F . Of course
ϕ is irreducible, hence prime. The subfield of F generated by F and α is isomorphic to the quotient
F rzs{pϕq.

An extension is an algebraic closure of F , if it is algebraic over F , and every polynomial in F rzs has
a root in E.

Theorem A.5.1 (Chapter VII in [?]). An algebraic closure exists, and is unique up to isomorphism,
i.e. if E1, E2 are two algebriac closures, there exists an isomorphism E1

„
ÝÑ E2 which is the identity

on F .

One denotes “the” algebraic closure of F by F a, or by F . Notice that a non costant polynomial in
F rzs decomposes in F as a product of polynomials of degree 1 (it has a root, hence it is divisible by a
linear term, if the quotient is not constant it has a root hence it is divisible...)

Let rE : F s be the dimension of E as vector space over F - the degree of E over F . Notice that
if rE : F s is finite, then E is an algebraic extension of F . Suppose that E is algebraic over F . One
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defines another degree of E over F as follows. Let σ : F ãÑ L be an embedding into a field which is an
algebraic closure of σpF q. An extension of σ to E is an embedding rσ : E ãÑ L such that rσ|F “ σ. The
number of such extensions is independent of the embedding σ : F ãÑ L, and is the separable degree of
E over F - one denotes it by rE : F ss.

Example A.5.2. Let ϕ P F rzs be an irreducible monic polynomial, and let E “ F rzs{pϕq. Let α P E be
the class of z: by construction the minimal polynomial of α is equal to ϕ.

Let σ : F ãÑ L be an embedding into a field which is an algebraic closure of σpF q. An extension
of σ to E is determined by its value on α, and moreover such value can be chosen to be any root of
ϕ in L. Hence the separable degree of E over F is the number of roots of ϕ in F (not counted with
multiplicity).

If the formal derivative dϕ
dz is not the zero polynomial, then since its degree is strictly smaller than

degϕ, and ϕ is prime, the ideal pϕ, dϕdz q is equal to F rzs, and thus ϕ, dϕdz have no common roots. It
follows that all the roots of ϕ have multiplicity 1, and the separable degree of E over F is equal to
degϕ, which is also the degree of E over F . Hence in this case rE : F s “ rE : F ss.

The formal derivative dϕ
dz is the zero polynomial only if charF “ p ą 0, and ϕ “ ψpzpq, where

ψ P F rzs, i.e. all monomials appearing in f have exponent a multiple of p. Iterating, we may write
ϕ “ ρpzp

r

q, where ρ P F rzs is such that dρ
dz is not the zero polynomial. Hence the numer of roots of ϕ

is equal to the degree of hρ, and thus rE : F ss “ deg ρ.
Since rE : F s “ degϕ “ pr ¨deg ρ “ rE : F ss, we see (at least in this case) that the separable degree

divides the degree. Moreover, let β “ αp
r

. Then Es :“ F rβs is a separable extension of F such that
rEs : F s “ rE : F ss, and the extension E Ą Es is obtained by adjoining p-th roots, and iterating.

The result below states that the example given above is typical.

Theorem A.5.3 (Chapter VII in [?]). Let E Ą F be a finite extension of fields, i.e. rE : F s is finite.
There exists a maximal separable extension Es Ą F , containing all subfields of E over F which are
separable. The separable degree rE : F ss is equal to the degree of the extension Es Ą F . The extension
Es Ą F has a primitive element, i.e. there exists β P Es generating Es over F . Suppose that Es ­“ E;
then charF “ p ą 0, and if α P E, the minimal polynomial of α over Es is equal to zp

r

´ γ for some
r ě 0, and γ P Es.

Example A.5.4. Let E “ Fppw, zq, and let F “ Fppwp, zpq. Then Es “ F (in this case one says that
E Ą F is a purely inseparable extension, and there is no primitive elemnt of E over F .

Elements α1, . . . , αn P E are algebraically dependent over F is there exists a non zero polynomial
Φ P F rz1, . . . , zns such that Φpα1, . . . , αnq “ 0 (strictly speaking, we should say that the set tα1, . . . , αnu
is algebraically dependent over F ). A collection tαiuiPI of elements of E is algebraically independent
over F if there does not exist a non empty finite ti1, . . . , inu Ă I such that αi1 , . . . , αin are algebraically
dependent (with the usual abuse of language, we also say that the αi’s are algebraically independent).
A transcendence basis of E over F is a maximal set of algebraically independent elements of E over F .
There always exists a transcendence basis, by Zorn’s Lemma. One proves that any two transcendence
bases have the same cardinality, which is the transcendence degree of E over F ; we denote it by
Tr.degF pEq. An extension is algebraic if and only if its transcendence degree is zero.

Every finitely generated extension E Ą F can be obtained as a composition of extensions F Ă K
and K Ă E, where F Ă K is a purely transcendental extension, i.e. there exists a transcendence basis
tα1, . . . , αnu of K over F such that K “ F pα1, . . . , αnq (thus F pα1, . . . , αnq is isomorphic to the field
of rational functions in n indeterminates with coefficients in F ), and F Ă K is a finitely generated
algebraic extension.

Definition A.5.5. Let E Ą F be an extension of fields. A transcendence basis tα1, . . . , αnu of E over
F is separating if E is a separable extension of the subfield F pα1, . . . , αnq. The extension E Ą F is
separably generated if there exists a separating transcendence basis of E over F .

Theorem A.5.6 (Thm 26.2 in [?]). If K is an algebrically closed field, any finitely generated extension
E Ą K is separably generated.
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Proof. Let α1, . . . , αn be a transcendence basis of E over K. Hence the field F :“ Kpα1, . . . , αnq is
isomorphic to the field of rational functions in n indeterminates, and E Ą F is a finite extension. Let
β1, . . . , βr be elements of E algebraic over F , which generate E over F . If all such βi’s are separable
over F (i.e. the subfield of E generated by F and βi is separable over F ), then E is separable over F
(see Chapter VII in [?]).

Suppose that one of the βi’s is not separable over F . Then charF “ charK “ p ą 0. We may reorder
the βi’s so that each of β1, . . . , βs is separable over F , and each of the βs`1, . . . , βr is not separable
over F . We find suitable replacements of the αj ’s so that E is a separable extension of the subfield
generated by the new transcendence basis. Since βs`1 is algebraic over F , there exists a polynomial
Φ P Krz1, . . . , zn`1s such that

Φpα1, . . . , αn, βs`1q “ 0.

We may, and will, assume that Φ is irreducible. We claim that there exists i P t1, . . . , nu such that
BΦ
Bzi
­“ 0. In fact, suppose the contrary. Then all partial derivatives of Φ are zero, because βs`1 is not

separable over F (see Example A.5.2). Write

Φ “
ÿ

IPI

aIz
I ,

where I is a set of multiindices, and we assume that aI ­“ 0 for every I P I . Since BΦ
Bzi

­“ 0
for all i P t1, . . . , n ` 1u, it follows that each I P I is equal to pJ , for a multiindex J . On the
other hand there exists a (unique) p-th root of aI , because K is algebraically closed. It follows that
Φ “ Ψp. This is a contradiction because Φ is irreducible, and hence we have proved that there exists i P
t1, . . . , nu such that BΦ

Bzi
­“ 0. Then αi is algebraic and separable over F 1 :“ Kpα1, . . . , pαi, . . . , αn, βs`1q.

Thus α1, . . . , pαi, . . . , αn, βs`1 is a new transcendence basis of E over K, and E is generated over F by
β1, . . . , βs, αi, βs`2, . . . , βr. Moreover, each of β1, . . . , βs, αi is separable over F 1. Iterating, we get the
Theorem.

Corollary A.5.7. Let E Ą K be a finitely generated extension of fields, and suppose that K is algebra-
ically closed. Let m be the transcendence degree of E over K. Then there exists a prime polynomial P P
Kpz1, . . . , zmqrzm`1s such that E (as extension of K) is isomorphic to the field Kpz1, . . . , zmqrzm`1s{pP q.

A.6 Derivations

Let R be a ring (commutative with unit), and let M be an R-module.

Definition A.6.1. A derivation from R to M is a map D : RÑM such that additivity and Leibinitz’
rule hold, i.e. for all a, b P R,

Dpa` bq “ Dpaq `Dpbq, Dpabq “ bDpaq ` aDpbq.

If k is a field and R is a k-algebra a k-derivation (or derivation over k) D : RÑM is a derivation such
that Dpcq “ 0 for all c P k. We let DerpR,Mq be the set of derivations from R to M . If R is a k-algebra
we let DerkpR,Mq Ă DerpR,Mq be the subset of k-derivations.

Example A.6.2. Let k be a field, and let f “
ř

I aIz
I be a polynomial in krz1, . . . , zns, where the

summation is over multiindices I, aI P K for every I, and aI is almost always zero. The formal
derivative of f with respect to zm is defined by the familar formula

Bf

Bzm
“

ÿ

I s.t. im ą 0

ihaIz
i1
1 ¨ . . . ¨ z

im´1

m´1 ¨ z
im´1
m ¨ z

im`1

m`1 ¨ . . . z
in
n . (A.6.1)

The map

krz1, . . . , zns
B
Bzm
ÝÑ krz1, . . . , zns

f ÞÑ
Bf
Bzm

(A.6.2)
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is a k-derivation of the k algebra to istelf. We claim that Derkpkrz1, . . . , zns, krz1, . . . , znsq is freely
generated (as krz1, . . . , zns module) by B

Bz1
, . . . , B

Bzn
. In fact there is no relation between B

Bz1
, . . . , B

Bzn

because
Bzj
Bzm

“ δjm, and moreover, given a k derivation

D : krz1, . . . , zns Ñ krz1, . . . , zns

we have D “
řn
m“1 αm

B
Bzm

, where αm :“ Dpzmq.

Example A.6.3. Let D : RÑM be a derivation.

1. By Leibniz we have Dp1q “ Dp1 ¨ 1q “ Dp1q `Dp1q and hence Dp1q “ 0.

2. Suppose that g P R is invertible. Then

0 “ Dp1q “ Dpg ¨ g´1q “ g´1Dg ` fDpg´1q (A.6.3)

and hence Dpg´1q “ ´g´2Dpfq.

3. Suppose that f, g P R and that g is invertible. By Item (2) we get that the following familiar
formula holds:

Dpf ¨ g´1q “ g´2pDpfq ¨ g ´ f ¨Dpgqq. (A.6.4)

Let D,D1 P DerpR,Mq and z P R we let

R
D`D1
ÝÑ M

a ÞÑ Dpaq `D1paq
(A.6.5)

and

R
zD
ÝÑ M

a ÞÑ zDpaq
(A.6.6)

Both D `D1 and zD are derivations and with these operations DerpR,Mq is an R-module. If R is a
k-algebra then DerkpR,Mq is an R-submodule of DerpR,Mq.

Next we suppose that E Ą F is an extension of fields, and we consider DerF pE,Eq. Notice that
DerF pE,Eq is a vector space over F .

Proposition A.6.4. Suppose that E Ą F is a finitely and separably generated extension of fields. Let
α1, . . . , αn be a separating transcendence basis of E over F . Then the map of E-vector spaces

DerF pE,Eq ÝÑ En

D ÞÑ pDpα1q, . . . , Dpαnqq
(A.6.7)

is an isomorphism.

Proof. Let K :“ F pα1, . . . , αnq Ă E. Since α1, . . . , αn is a separating transcendence basis of E over F ,
and E is finitely generated (over F ), there exists an element β P E primitive over K. Let P P Krzs be
the minimal polynomial of β. In particular

P pβq “ 0,
dP

dz
pβq ­“ 0. (A.6.8)

(The inequality holds because E is a separable extension of K.)
Since K is a purely transcendental extension of F we have an isomorphism of E-vector spaces

DerF pK,Eq
„
ÝÑ En

D ÞÑ pDpα1q, . . . , Dpαnqq.
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Equivalently every D P DerF pK,Eq is given by

Dpφq “
n
ÿ

i“1

ci
Bφ

Bαi
, αi P E,

and the ci’s may be chosen arbitrarily. Thus we must show that the restriction map

DerF pE,Eq ÝÑ DerF pK,Eq
D ÞÑ D|K

(A.6.9)

defines an isomorphism of E-vector spaces.
Let us prove that the restriction map is injective. Let P “

řd
i“0 aiz

d´i, where a0 “ 1 (recall that
P is the minimal polynomila of β over K). Suppose that D P DerF pE,Eq; by the equality in (A.6.8)
we get that

0 “ DpP pβqq “
d
ÿ

i“0

Dpaiqβ
d´i `

d´1
ÿ

i“0

Dpβqaipd´ iqβ
d´i´1 “

d
ÿ

i“0

Dpaiqβ
d´i `Dpβq

dP

dz
pβq.

By the inequality in (A.6.8), we can divide and we get

Dpβq “ ´

˜

m
ÿ

i“1

Dpaiqβ
m´i

¸

¨
dP

dz
pβq´1. (A.6.10)

This proves that the map in (A.6.9) is injective.
In order to prove surjectivity, we extend a derivation D P DerF pK,Eq to a derivation in DerF pE,Eq

by defining its value on β via (A.6.10).

Corollary A.6.5. Keep hypotheses and notation as above. Then Tr degkK “ dimK DerkpK,Kq.

A.7 Nakayama’s Lemma

Let R be a ring, M be an R-module, and I Ă R be an ideal. We let IM Ă M be the submodule of
finite sums

ř

kPK fkmk, where fk P I and mk PM for every k P K.

Lemma A.7.1 (Nakayama’s Lemma). Let R be a ring and M a finitely generated R-module. Let I Ă R
be an ideal and suppose that M Ă IM (i.e. M “ IM). Then there exists ϕ P I such that p1`ϕqM “ 0
i.e. p1` ϕqm “ 0 for all m PM .

Proof. Let m1, . . . ,mr be generators of M . By hypothesis there exist aij P I for 1 ď i, j ď r such that

mi “

r
ÿ

j“1

aijmj .

Let A be the r ˆ r-matrix with entries in R given by A :“ pδij ´ aijq, where δij is the Kronecker
symbol i.e. δij “ 1 if i “ j and is 0 otherwise. Let B be the r ˆ 1-matrix with entries m1, . . . ,mr.
Then A ¨ B “ 0: multiplying by the matrix of cofactors Ac we get that detA ¨mi “ 0 for i “ 1, . . . , r.
Expanding detA we get that detA “ 1` ϕ where ϕ P I.

Corollary A.7.2. Let R be a local ring with maximal ideal m and M a finitely generated R-module.
Suppose that the quotient module M{mM is generated by the classes of m1, . . . ,mr P M . Then M is
generated by m1, . . . ,mr.

Proof. Let N ĂM be the submodule generated by m1, . . . ,mr and P :“M{N be the quotient module.
We must prove that P “ 0. The module P is finitely generated over R because M is, and moreover
P Ă mP by hypothesis. By Nakayama’s Lemma there exists ϕ P m such that p1 ` ϕqP “ 0. Since
p1 ` ϕq does not belong to m it is invertible (it generates all of R because m contains all non-trivial
ideals of R) and hence it follows that P “ 0.
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A.8 Order of vanishing

The prototype of a Noetherian local ring pR,mq is the ring OX,x of germs of regular functions of a quasi
projective variety X at a point x P X, with maximal ideal mx, see Proposition 4.2.4. The following
result of Krull can be interpreted as stating that a non zero element of OX,x can not vanish to arbitrary
high order at x. In other words, elements of OX,x behave like analytic functions (as opposed to C8

functions).

Theorem A.8.1 (Krull). Let pR,mq be a Noetherian local ring. Then

č

iě0

mi “ t0u.

Proof. Since R is Noetherian the ideal m is finitely generated; say m “ pa1, . . . , anq. Let b P
Ş

iě0 m
i.

Let i ě 0; since b P mi there exists Pi P RrX1, . . . , Xnsi such that Pipa1, . . . , anq “ b. Let J Ă

RrX1, . . . , Xns be the ideal generated by the Pi’s. Since R is Noetherian so is RrX1, . . . , Xns. Thus
J is finitely generated and hence there exists N ą 0 such that J “ pP0, . . . , PN q. Thus there exists

QN`1´i P RrX1, . . . , XnsN`1´i for i “ 0, . . . , N such that PN`1 “
řN
i“0QN`1´iPi. It follows that

b “ PN`1pa1, . . . , anq “
N
ÿ

i“0

QN`1´ipa1, . . . , anqPipa1, . . . , anq “ b
N
ÿ

i“0

QN`1´ipa1, . . . , anq. (A.8.11)

Now QN`1´ipa1, . . . , anq P m for i “ 0, . . . , N and hence ε :“
řN
i“0QN`1´ipa1, . . . , anq P m. Equal-

ity (A.8.11) gives that p1´ εqb “ 0: since ε P m the element p1´ εq is invertible and hence b “ 0.

Corollary A.8.2. Let pR,mq be a Noetherian local ring, and let I Ă R be an ideal. Then

č

iě0

pI`miq “ t0u.

Proof. Let S :“ R{I. Then S is a Noetherian local ring, with maximal ideal mS :“ I`m. The corollary
follows by applying Theorem A.8.2 to pS,mSq.
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