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Chapter 0

Introduction

Background

Algebraic geometry studies solutions of systems polynomial equations in a finite set of variables. In
a sense, algebraic geometry originated from Descartes’ introduction of coordinates, because we view
the set of solutions as a geometric object. It is much more convenient to study solutions of polynomial
equations in the homogeneous coordinates of points of a projective space, even if one is initially interested
in the solutions which belong to an affine space, and hence also projective geometry playes a key role
in algebraic geometry.

However, the problems that really started algebraic geometry as we know it have to do with the
computation of certain integrals. To explain this, consider the following indefinite integrals:

f dx J dx
V1+ a2 Vi+ad
2t

We may integrate the first one by the substitution z = =35, and we get

J de f 2di lo L+t + log(z + /1 + 22) +
= = — c= x x c.
Viter J1i—e = % \1= &
The intriguing fact discovered by Fagnano and Euler is that, although no susbtitution by a rational
function will reduce the second integral to an elementary integral, there exists an addition formula

Ja dx fb dz f dx
+ =cost + | —,
o V14 a3 0o V1+ a3 0o V1+x3
where ¢ = R(a,b,v/a® +1,4/b3 + 1) is a rational funzction of a,b,v/a® + 1,4/b3 + 1. The formula is

analogous to the addition formula for logarithms, i.e. S? d?"‘ +Sllj % = lllb %, and it holds for an analogous
reason, i.e. the existence of maps (z,y) — (p(z,y),¥(x,y)) with ¢, rational functions, mapping to
itself the curve {(a,b) | b> = a3 + 1}, acting transitively on the points of such curve, and leaving
invariant the differential that we are integrating (the maps are analogous to the maps x — Az, which

leave invariant the differential dx—w)
S T T

Conventions

K is an algebraically closed field, and K[Zy, ..., Z,] is the K-algebra of polynomials in Zy,...,Z,
with coefficients in K. Let K[Zy,...,Z,]a € K[Zy, ..., Z,] be the degree-d subspace of the algebra of
polynomials, i.e. the set of polynomials F such that F(A\Z) = M F(Z) for all A € K and Z € K"
Thus we have the direct sum decomposition

o0

K[Zo, -+ Zn) = D K[ Zo, -, Znla-
d=0
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0. INTRODUCTION

A polynomial in K[Zy, ..., Z,] is homogeneous if it belongs to one of the above direct summands. An
ideal I ¢ K[Zy,...,Z,] is homogeneous if

[oe]
I=@1nK[Z,...,2]a (0.0.1)
d=0

i.e. if it is generated by homogeneous elements.



Chapter 1

Algebraic varieties and regular maps

We are interested in understanding solutions z1, ..., 2z, of a family of polynomial equations

fl(zla'“azn) :07"'7f?”(217"'7zn) =0.

The entries z; are unknowns in a field K, which we assume to be algebraically closed, e.g. K = C, and
each f; is an element of K[z1,...,2,]. Of course, one may consider an arbitrary field, and consider
solutions with entries in that field, but the proper setting for this kind of questions is that of schemes.

In order to understand the geometry of a set of solutions of polynomial equations, it is convenient to
replace affine space Ay by projective space Pg, and consider the set of points in P which are solutions
of polynomial equations in the homohgeneous coordinates. The reason is that P¢, with the classical
topology, is compact, and in general Py has an algebraic property which replaces compactness over C.

We explain this with Bézout’s Theorem, a result which holds for solutions of polynomial equations
in Pg but not in Ag. If Fy,..., F, are homogeneous non costant polynomials in Zj, ..., Z,, then there
exists a common solution of the polynomials

Fi(Zo,...,Zx) =0,....Fo(Zo,...,2,) =0,

and moreover, either the set of common solutions is infinite, or it has cardinality deg F; -. . .- F},, provided
one assignes a suitable multiplicity to each common solution. No analogous result holds for solutions
of polynomial equations in A™ (take fi, fo, where fo = f1 + 1), and the reason is that, some (ora all) of
the common solutions might be “at infinity”.

Thus we will start by considering solutions of polynomial equations in a projective space.

We will omit K from the notation for affine and projective space.

1.1 The Zariski topology

Let F € K[Zo, ..., Zyn]a- Let z € P" be represented by a non zero Z € K**!. Then F(Z) = 0 if and
only if F(AZ) = 0 for every A € K*, because F(\Z) = AYF(Z). Hence, although F(z) is not defined, it
makes to state that F'(z) = 0 or F(z) £ 0. Let I < K[Zy, ..., Z,] be a homogeneous ideal; we let

V({I):={xeP"| F(x) =0 Y homogeneous F € I}.

By Hilbert’s basis Theorem A.3.6, a homogeneous ideal I is generated by a finite set of homogeneous
polynomials F, ..., F., i.e. I = (Fy,...,F.). It follows that

VI)=V(F,....,F.):={zeP"| Fi(z)=...= F.(z) =0}
is the set of solutions of a finite system of algebraic equations.

Proposition 1.1.1. The collection of subsets V(I) < P", where I runs through the collection of homo-
geneous ideals of K[Zy, ..., Z,], satisfies the axioms for the closed subsets of a topological space.
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1. ALGEBRAIC VARIETIES AND REGULAR MAPS

Proof. We have & = V((1)), P™ = V((0)).

Let I,J be homogeneous ideals; we claim that V(I) v V(J) = V(I n J). We have V(I),V(J) c
V(I nJ), because I,J > I n J; thus V(I) u V(J) € V(I nJ). Hence it suffices to show that if
xeV(InJ)and x ¢ V(I), then z € V(J). Since x ¢ V(I), there exists F' € I such that F(z) £ 0. If
G e J, then F'-G e InJ, and thus (F - G)(z) = 0 because z € V(I n J); since F(z) + 0, it follows
that G(z) = 0. This proves that z € V(J).

Lastly, let {I;};er be a family of homogeneous ideals of K[Z, ..., Z,]. Then

(V1) = V({L}er),

teT
where {{I;}ier) is the (homogeneous) ideal generated by the collection of the I;’s. O

Definition 1.1.2. The Zariski topology of P™ is the topology whose closed sets are the sets V(I) c P™,
where I runs through the collection of homogeneous ideals of K[Zy, ..., Z,]. The Zariski topology of a
subset A c P" is the topology induced by the Zariski topology of P™.

Remark 1.1.3. If K = C, the Zariski topology is weaker than the classical topology of P". In fact, unless
n = 0, the Zariski is much weaker than the classical topology, in particular it is not Hausdorff.

Remark 1.1.4. We will always identify A™ with the open subset (P™"\V (Zy)) < P™. Thus A™ has a Zariski
topology, that we describe below. Let J < K[z1,...,2,] be an an ideal, in general not homogeneous.
We let

V(J):={2€A"| f(z) =0 VfelJ}. (1.1.1)

By Hilbert’s basis Theorem, every ideal J < K[zy,..., z,] is finitely generated, and if J = (f1,..., fr),
then
V() =V(f1,---. fr) ={z€ A" | f(z) =0 VfeJ}

(The notation conflicts with the notation employed for closed subsets of P™, but it will always be clear
form the context whether V(J) is a subset of a projective space or of an affine space.)

A subet X < A" is closed if and only if there exist an ideal J < K[zy,...,2,] such that X =
V(J). In fact, if X is closed, say X = (P"\V(Zy)) n V(F4,..., F,), where F; c K[Zy, Z1,...,Z,] are
homogeneous, then X = V(f1,..., f.), where

filzr, oo 2n) = F(1,21,..., 2n).

Conversely, consider V(fi,..., fr). For je {1,...,r}, let d; be the degree of f;. Then

dj Z Zn
Fi(Zo, ..., 2n) = Z§ f(Z(l)Zo)

is a homogegenous polynomial of degree d;. Since V(Fi,..., F,) < P" is closed, and
V(fi,..o, fr) = P"\V(Zy)) nV(Fy,..., F),

we get that V(f1,..., fr) is closed in A™.

Ezample 1.1.5. A subset X < P™ is a hypersurface if it is equal to V(F'), where F' is a non constant
homogeneous polynomial. Similarly, a subset X < A™ is a hypersurface if it is equal to V(f), where f
is a non constant polynomial (in general not homogeneous).

A picture of a hypersurface in A? is in Figure 1.1. Notice that (z,y) are the affine coordinates -
in general, whenever we consider affine or projective space of small dimension, we will denore affine or
homogeneous coordinates by letters x,y, z,... and X,Y, Z, ... respectively.

What is the field K ? The picture shows points with real coordinates. We can view the picture as a
“slice” of the corresponding hypersurface over C, or as the closure (either in the Zariski or the classical
topology) of the corresponding hypersurface over the algebriac closure of the rationals Q.
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1.1. The Zariski topology

Figure 1.1: (22 +2y% — 1)(3z2 + y> = 1) + 125 = 0

Given a subset A < P, let
I(A) :=(F eK[Zy,...,Z,] | F is homogeneous and F(p) = 0 for all p e A), (1.1.2)

where (,) means “the ideal generated by”. Clearly I(A) is a homogeneous ideal of K[Zy, ..., Z,], and
V(I(A)) is the closure of A in the Zariski topology.

Definition 1.1.6. A quasi-projective variety is a Zariski locally closed subset of a projective space,
i.,e. X < P” such that X = U nY, where U,Y < P" are Zariski open and Zariski closed respectively.

Ezample 1.1.7. By Remark 1.1.4, every subset V(J) < A", where J < K|[z1,...,2,] is an ideal, is a
quasi projective variety.

Definition 1.1.8. Let X < P™ be a closed subset. A principal open subset of X is an open U < X
which is equal to
Xrp = X\V(F),

where F € K[Zy, ..., Z,] is a homogeneous polynomial of strictly positive degree. In general, if X < P"
is locally closed, a principal open subset of X is an open U < X which is equal to X p, for a homogeneous
polynomial F € K[Zy, ..., Z,] of strictly positive degree.

Claim 1.1.9. Let X < P" be locally closed. The collection of principal open subsets of X is a basis of
the Zariski topology of X .

Proof. Let U — X be open. Then U is open in X. Hence it suffices to prove the claim for X closed. We
have U = X\W, where W is closed. Let W = V(I), where I ¢ K[Zy,..., Z,] is a homogeneous ideal.
Let J < K[Zy,...,Zy,] be the homogeneous ideal generated by all products F - Z;, where F € I, and
i€{0,...,n}. Then V(J) =V (I) =W, and J is generated by a non empty finite set of homogeneous
polynomials Fi,..., F.. Then

U=X\V(F,.. ,F.)=Xp uXpu...uXp.
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1. ALGEBRAIC VARIETIES AND REGULAR MAPS

Remark 1.1.10. If V is a finite dimensional complex vector space, the Zariski topology on P(V) is
defined by imitating what was done for P": one associates to a homogeneous ideal I < Sym V" the
set of zeroes V(I), etc. Similarly one defines the Zariski topology on a finite dimensional complex
affine space. Everything that we do in the present chapter applies to this situation, but for the sake of
concreteness we formulate it for P and A”™.

1.2 Decomposition into irreducibles

A proper closed subset X < P! (or X < A!) is a finite set of points. In general, a quasi projective
variety is a finite union of closed subsets which are irreducible, i.e. are not the union of proper closed
subsets. In order to formulate the relevant result, we give a few definitions.

Definition 1.2.1. Let X be a topological space. We say that X is reducible if either X = ¢J or there
exist proper closed subsets Y, W < X such that X =Y u W. We say that X is irreducible if it is not
reducible.

Ezample 1.2.2. Projective space P with the euclidean (classical) topology is reducible except if n = 0.
On the other hand, P™ with the Zariski topology is irreducible for any n. In fact suppose that P* = YW
with Y and W proper closed subsets. Then there exist F' € I(Y) such that F(p) + 0 for one (at least)
p € W and g € I(W) such that g(q) # 0 for one (at least) ¢ € Y. Then fg = 0 because P* =Y u W;
that is a contradiction because K[Zy, ..., Z,] is an integral domain.

Definition 1.2.3. Let X be a topological space. An irreducible decomposition of X consists of a
decomposition (possibly empty)
X=X, U UX, (1.2.1)

where each X; is a closed irreducible subset of X (irreducible with respect to the induced topology)
and moreover X; ¢ X for all ¢ # j.

We will prove the following result.

Theorem 1.2.4. Let A < P™ with the (induced) Zariski topology. Then A admits an irreducible
decomposition, and such a decomposition is unique up to reordering of components.

The key step in the proof of Theorem 1.2.4 is the following remarkable consequence of Hilbert’s
basis Theorem A.3.6.

Proposition 1.2.5. Let A c P, and let A > X9 o X1 D ... D X,, D ... be a descending chain of
Zariski closed subsets of A, i.e X, D Xpy1 for all m € N. Then the chain is stationary, i.e. there
exists mg € N such that X,, = Xy, for m = my.

Proof. Let X, be the closure of X; in P*. Then X; = A n X;, because X; is closed in A. Hence we

may replace X; by X, or equivalently we may suppose that the X; are closed in P". Let I,, = I(X,,).

Then In c I < ... € I, — ... is an ascending chain of (homogeneous) ideals of K[Zy,...,Z,]. By
Hilbert’s basis Theorem and Lemma A.3.3 the ascending chain of ideals is stationary, i.e. there exists
mg € N such that I, = I, for m = mg. Thus X,,, = V(Ip,) = V(1) = X, for m = my. O

Proof of Theorem 1.2.4. If A is empty, then it is the empty union (of irreducibles). . Next, suppose
that A is not empty and that it does not admit an irreducible decomposition; we will arrive at a
contradiction. First A in reducible, i.e. A = Xy u Wy with Xo, Wy < A proper closed subsets. If both
Xo and Wy have an irreducible decomposition, then A is the union of the irreducible components of X
and Wy, contradicting the assumption that A does not admit an irreducible decomposition. Hence one
of Xy, Wy, say Xy, does not have an irreducible decomposition. In particular X is reducible. Thus
Xy = X7 u Wy with X, W7 < X proper closed subsets, and arguing as above, one of X1, Wy, say Xi,

8



1.2. Decomposition into irreducibles

does not admit a decomposition into irredicbles. Iterating, we get a strictly descending chain of closed
subsets
A2X02X12 2Xp2 X1 2

This contradicts Proposition 1.2.5. This proves that X has a decomposition into irreducibles X =
Xiu...uX,.

By discarding X;’s which are contained in X; with ¢ + j, we may assume that if ¢ + j, then X is
not contained in Xj;.

Lastly, let us prove that such a decomposition is unique up to reordering, by induction on r. The
case r = 1 is trivially true. Let r > 2. Suppose that X =Y; u... U Y, where each Y} is Zariski closed
irreducible, and Y; ¢ Y} if j + k. Since Y is irreducible, there exists ¢ such that Y, < X;. We may
assume that i = r. By the same argument, there exists j such that X, c Y;. Thus Y, c X, c Y. It
follows that j = s, and hence Y; = X,.. It follows that X; u... U X,_1 = Y7 u... U Y, 1, and hence
the decomposition is unique up to reordering by the inductive hypothesis. O

Definition 1.2.6. Let X be a quasi projective variety, and let
X = X1 U... v XT

be an irreducible decomposition of X. The X;’s are the irreducible components of X (this makes sense
because, by Theorem 1.2.4, the collection of the X;’s is uniquely determined by X).

We notice the following consequence of Proposition 1.2.5.

Corollary 1.2.7. A quasi projective variety X (with the Zariski topology) is quasi compact, i.e. every
open covering of X has a finite subcover.

The following result makes a connection between irreducibility and algebra.

Proposition 1.2.8. A subset X < P" is irreducible if and only if I(X) is a prime ideal.

Proof. The proof has essentially been given in Example 1.2.2. Suppose that X is irreducible. In
particular X £ ¢ (by definition), and hence I(X) is a proper ideal of K[Zy, ..., Z,]. We must prove
that K[Z, ..., Z,]/I(X) is an integral domain. Suppose the contrary. Then there exist

F,G e (K[Zo, ..., Za\(X)) (1.2.2)

such that
F-GelI(X). (1.2.3)

By (1.2.3), we have X = (X n V(F)) u (X n V(G)), and both X n V(F), X n V(G) are proper closed
subsets of X by (1.2.2). This proves that if X is irreducible, then I(X) is a prime ideal.

Next, assume that X is reducible; we must prove that I(X) is not prime. If X = ¢, then I(X) =
K[Zo,...,Z,] and hence I(X) is not prime. Thus we may assume that X £ &, and hence there
exist proper closed subset Y, W < X such that X =Y 0 W. Since Y ¢ W and W ¢ Y, there exist
Fe(IY)NI(W))and Ge (I(WN\I(Y)). It follows that both (1.2.2) and (1.2.3) hold, and hence I(X)
is not prime. O

Remark 1.2.9. Let I := (Z2) = K[Zy, Z1]. Then V(I) = {[0, 1]} is irreducible although I is not prime.
Of course I(V (I)) is prime, it equals (Zp).

Remark 1.2.10. Let X < A™. Let I(X) < K|z1,...,2,] be the ideal of polynomials vanishing on X.
Then X is irreducible if and only if I(X) is a prime ideal. The proof is analogous to the proof of
Proposition 1.2.8. One may also directly relate I(X) with the ideal J < K[Zo,..., Z,] generated by

homogeneous polynomials vanishing on X (as subset of P™), and argue that I(X) is prime if and only
if J is.



1. ALGEBRAIC VARIETIES AND REGULAR MAPS

Ezample 1.2.11. Let V(F)  P™ be a hypersurface, and let F1, ..., F,. be the distinct prime factors of the
decomposition of F' into a products of primes (recall that K[Zy, ..., Z,] is a UFD, by Corollary A.2.2).
The irreducible decomposition of V(F) is

V(F) = V(F)u...0 V(F).

In fact, each V(F;) is irreducible by Proposition 1.2.8. What is not obvious is that V(F;)n° < V(Fj)
if F;, F; are non associated primes. This follows from Hilbert’s Nullstellensatz, i.e. Theorem A.4.1 (or
by a simpler argument involving only unique factorization in the ring of polynomials).

1.3 Regular maps

Definition 1.3.1. Let X < P"™ and Y < P"™ be quasi projective varieties. A map f: X — Y is regular
at a € X if there exist an open U < X containing a and Fy, ..., Fy, € K[Zo, ..., Z,]4 such that for all
[Z]1e U (Fo(Z),...,Fn(Z)) # (0,...,0), and

f([Z]) = [Fo(Z),..., Fn(2)]. (1.3.1)
The map f is regular if it is regular at each point of X.

The identity map of a quasi projective variety is regular (choose F;(Z) = Z;). If f: X — Y and
g: Y — W are regular maps of quasi projective varieties, the composition g o f: X — W is regular,
because the composition of polynomial functions is a polynomial function. Thus we have the category
of quasi projective varieties. In particular we have the notion of isomorphism between quasi projective
varieties.

Ezample 1.3.2. Let X < A" be a locally closed subset (recall that A™ = }P’%O). Then f: X — P™ is

a regular map if and only if, given any a € X, there exist fo,..., fm € K[z1,...,2,] (in general not
homogeneous) such that on an open subset U < X containing a we have
f(Z) = [fo(z)v?fm(z)] (1'3'2)

(This includes the statement that V(f1,..., fm) n U = &.) In fact, if f is regular there exist homo-
geneous Fy, ..., Fy € K[Zo,. .., Z,]a such that f([1,z2]) = [Fo(1,2),...,Fn(l,2)], and it suffices to let
fi(2) := Fj(1, z). Conversley, if (1.3.2) holds, then

d rzd 1 n d 1 n
f([Zo, Z1,...,Z =|Z5,72 — ity — | .. L — ., — 1.3.
([ 0541, 3 n]) [ 0 Ofl(ZO7 7ZO>’ ) Ofm(zoa ’Z())]’ ( 33)

and for d is large enough, each of the rational functions appearing in (1.3.3) is actually a homogeneous
polynomial of degree d.

Ezample 1.3.3. Let X < A" be a locally closed subset and let f: X — P™ be a map such that f(X) c

P (we let [Tp,...,Tm] be homogeneous coordinates on P™). Then f is regular if and only if locally
there exist fo,..., fm € K[z1,...,2,] (in general not homogeneous) such that, in affine coordinates
(%, e %’)’), we have

_ () fm(2)
f(z) = <f0(z),-.-, fo(z)>' (1.3.4)

Exvample 1.3.4. Let f € K[z1,...,2,]. Let Y := V(f(21,...,2n) - Zns1 — 1) € A1, The map

) v
(Zl,...,Zn) —> (217...,Zn7m)

is an isomorphism.

10



1.3. Regular maps

Ezample 1.3.5. Let

Cn = {[&o,...,én] e P |1k (’50 Lo 5“) < 1}. (1.3.5)
& & o &
Since a matrix has rank at most 1 if and only if all the determinants of its 2 x 2 minors vanish it follows
that K,, is closed. We have a regular map

L SN K,

1.3.6
[s,t] — [s",8"71,...,t"] ( )

Let us prove that ¢,, is an isomorphism. Let 1, : C, — P! be defined as follows:

&) = {[50751] if [€0,---56n] € Cn N PR,

'(/)n ([&), [gn—hfn] if [507"'75"] EC"m]Pﬂg"

Of course one has to check that the two expressions coincide for points in K, nPg nP¢ : from (1.3.5)
we get that & - &, —£1&,—1 vanishes on K,, and this shows the required compatibility. One checks easily
that ¥4 0 ¢, = Idp1 and ¢, o1, = Idk, ; thus ¢, defines an isomorphism P! 5 K,,.

Unless we are in the trivial case n = 1, it is not possible to define ¥, globally as

Un ([507 s 7571]) = [P(S(% cee ugn)v Q(&Jv cee 7§n)]7 (137)

with P,Q € K[, . ..,&n]e not vanishing simultaneously on K,,. In fact suppose that (1.3.7) holds, and
let

p(s,t) == P(s",...,t"), q(s,t):=Q(s",...,t").

The polynomials p(s,t), q(s,t) are homogeneous of degree de, they do not vanish simultaneously on a
non zero (s, to), and forall [s,¢] € P! we have [p(s,t),q(s,t)] = [s,t]. It follows that p(s,t) = s - 7(s,t)
and ¢(s,t) = t-r(s,t), where r(s,t) has no non trivial zeroes, i.e. r(s,t) is constant. In particular
de = degp = degq = 1, and hence d = 1.

Example 1.3.6. We recall the formula

dimK[Zo, ..., Zn]a = (d ; ”) (1.3.8)

(See Exercise 1.8.1 for a proof.) Let N(n;d) := (d;:") — 1. Let
P l’_:il) PN (nid)

1.3.9
(2] — [28,287'7y,...,29 ( )

be defined by all homogeneous monomials of degree d - this is a Veronese map. Clearly v} is regular.

The homogeneous coordinates on PN (%4 appearing in (1.3.9) are indiced by length n+1 multiindices
I = (io,...,in) such that deg I := iy + ...+ i, = d; we denote them by [...,&,...]. Let ¥' PN (d)
be the closed subset defined by

V=V &8 — €&k,

where I, J, L, K run through all multiindices such that I + J = K + L. Clearly v}}(P") < ¥;'. Let us
show that v} is an isomorphism onto 7.

Given a length n + 1 multiindex H of degree d — 1, we let Hy := H + e,, where, for e, ..., e, is
the standard basis of Z", i.e. es has alla entries equal to 0, except for the entry at place s + 1, which is
equal to 1. For s € {0,...,n}, let

Ai/dn\v(fHo) N aan) w&) Pn
[...,f[,...] — [gHo"”ngn]

11



1. ALGEBRAIC VARIETIES AND REGULAR MAPS

Let H, H' be length n + 1 multiindices of degree d — 1. It follows from the equations defining ¥ that
e (H)([2]) = ¢ (H')([#]) for all [Z] which is in the domain of ¢} (H) and ¢} (H'). Thus the ¢} (H)’s
define a regular map ¢} : 7" — P". We claim that

pgovg = ldpn (1.3.10)
I/g ¢} (pg = Id]P)N(n;d) . (1311)

The first equality is easily checked. In order to check the second equality, one may proceed as follows.
Let [¢] = [...,&1,...] € ¥ be a point such that {g., & 0 for some s € {0,...,n}. Then it is not difficult
to show that there exists [Z] € P such that [{] = v} ([2]). By (1.3.10), it follows that v} o} ([¢]) = [£]-
Hence it suffices to prove that if [£] € #*, then there exists s € {0, ...,n} such that £4., & 0. Thus, we
must show that if ..., ¢{r,... are such that {1 - £5 = &k - &, whenever [ + J = K + L, and &4, = 0 for
all s € {0,...,n}, then & = 0 for all multiindices I. This is easily proved by “descending induction” on
the maximum of i, ..., i,, by using a suitable relation &% = £k - &, (if the maximum is d, then &; = 0
by hypothesis).

Ezample 1.3.7. Assume that charK = p > 0. Let X = V(Gy,...,G,) < P" be a closed subset defined
by homogeneous G1,...,G, € Fy[Zy, ..., Z,] (we require that the coefficients of the G,’s belong to the
prime field F,,). Then we may define the Frobenius map : X — X by setting

x 5 X

(Z] — |Zy,....2Y,....ZF].

In fact, if G; = >, a;Z7, then

Gi(Z8,....20,....Z8) = > as (27 = . ah(Z27) = Gi(Zo, ... Zi, ..., Zn)" = 0.
I I

More generally, if all the coefficients of the G;’s are contained in Fj,- (e.g. if K is the algebraic closure
of Fp), then we may define F': X — X replacing the exponent p by p”. Notice that F is bijective, but
it is not an isomorphism.

Proposition 1.3.8. A regular map of quasi projective varieties is Zariski continuous.

Proof. Let X < P™ and Y < P™ be Zariski locally closed, and let f: X — Y be a regular map. We must
prove that if C' c Y is Zariski closed, then f~'C is Zariski closed in X. Let U — W be an open subset
such that (1.3.1) holds. Let us show that ¢=1C n U is closed in U. Since C is closed C' = V(I) nY
where I < K[Ty, ..., ] is a homogeneous ideal. Thus

¢~ 'CnU={[Z]eU|P(Fy(Z),...,F,(Z2)) =0YPel}.

Since each P(Fy(Z),...,Fn(Z)) is a homogeneous polynomial, we get that ¢~*C' n U is closed in U.

By definition of regular map X can be covered by Zariski open sets U, such that (1.3.1) holds with
U replaced by U,. We have proved that C, := ¢~'C n U, is closed in U, for all a. It follows that
¢~1C is closed. In fact let C, = X be the closure of C, and D,, := X\U,. Since C, is closed in U, we
have

ConU,=Co=0¢'CnU,. (1.3.12)

Moreover Dy, is closed in X because U, is open. By (1.3.12) we have

o7IC = ﬂ (éa U Da) .

Thus ¢~'C is an intersection of closed sets and hence is closed. O

The following lemma will be useful later on. The easy proof is left to the reader.

12



1.4. Regular functions on affine varieties

Lemma 1.3.9. Let f: X — Y be a map between quasi projective varieties. Suppose that Y = |J,.; U;
is an open cover, that f~1U; is open in X for each i € I and that the restriction

i — U
z o~ flx)

1s reqular for each i € I. Then f is reqular.
Definition 1.3.10. A quasi projective variety is

e an affine variety if it is isomorphic to a closed subset of an affine space (as usual we view A™ as
the open subset P, < P"),

e a projective variety if it is isomorphic to a closed subset of a projective space.

Ezample 1.3.11. Let F € K[Zy,...,Z,] be a homogeneous polynomial of strictly positive degree. The
d+n
principal open subset P (see Definition 1.1.8) is an affine variety. In fact, let v} : P* — p(*n")-1 be

the Veronese map, see (1.3.9), and let #* := Im v} be the corresponding Veronese variety. As shown
in Example 1.3.6 the map P* — ¥#* defined by v} is an isomorphism. It follows that the restriction of
v} to P} defines an isomorphism between P} and ¥"\H, where H P(“%") =1 is a suitable hyperplane
section. Equivalently, P% is isomorphic to the intersection of the affine space P(d:n)fl\H and the closed
set 7, and hence is an afline variety.

If Y < P" is closed, and F € K[Z, ..., Z,] is homogeneous of strictly positive degree d, it follows
that the principal open set Yp = Y\V(F) is an affine variety. In fact, since v/} is an isomorphism
v} (Yr) is closed in the affine variety ¥;"\H, and hence is itself affine. Moreover, the restriction of v}
to Y defines an isomorphism Y and the affine variety v} (Yr).

Claim 1.1.9 and Example 1.3.11 give the following result.

Proposition 1.3.12. The open affine subsets of a quasi projective variety form a basis of the Zariski
topology.

In a certain sense, open affine subsets of a quasi projective variety are similar to the open subsets
of a complex manifold given by charts of a holomorphic atlas.

1.4 Regular functions on affine varieties

Definition 1.4.1. A regular function on a quasi projective variety X is a regular map X — K.

Let X be a non empty quasi projective variety. The set of regular functions on X with pointwise
addition and multiplication is a K-algebra, named the ring of regular functions of X. We denote it by
K[X].

If X is a projective variety, then it has few regular functions. In fact we will prove (see Corol-
lary 1.6.6) that every regular function on X is locally constant. On the other hand, affine varieties have
plenty of functions. In fact if X < A" is closed we have an inclusion

K[z1, ..., 20)/I(X) — K[X]. (1.4.1)

Theorem 1.4.2. Let X < A" be closed. Then (1.4.1) is an equality, i.e. every regular function on X
1s the restriction of a polynomial function on A™.

Before proving Theorem 1.4.2, we notice that, if X < A™ is closed, the Nullstellensatz for K[z1, .. ., z,]
implies a Nullstellensatz for K[z, ..., 2z,]/I(X). First a definition: given an ideal J < (K[z1,. .., z,]/I(X))
we let

V(J):={ae X | fla)=0 VYfelJ}.

The following result follows at once from the Nullstellensatz.

13



1. ALGEBRAIC VARIETIES AND REGULAR MAPS

Proposition 1.4.3 (Nullstellensatz for a closed subset of A™). Let X < A™ be closed, and let J <
(K[z1,-.-,20]/I(X)) be an ideal. Then

{f e K[z, 2] /1)) | fvis) =0} = V.
(The radical /J is taken inside K[z1,. .., 2,]/1(X).) In particular V(J) = & if and only if J = (1).

The following example makes it clear that Proposition 1.4.3 must play a role in the proof of The-
orem 1.4.2. Let X < A" be closed. Suppose that g € K[z1, ..., 2,] and that g(a) # 0 for all a € Z. Then
1/g € K[X] and hence Theorem 1.4.2 predicts the existence of f € K|[z1,...,2,] such that g=! = fix-
By Proposition 1.4.3, (g) = (1) in K[z, ..., 2,]/1(X), because V(g) = &J, where g := gx. hence there
exists f € K[z1,...,2,] such that f-g =1, where f := fix, ie. gl = fix

Proof of Theorem 1.4.2. Let ¢ € K[X]. We claim that there exist f;,g; € K[z1,...,2,] for 1 < i < d
such that

L X = U cica Xgir i€ V(gr,...,90) n X = &,

_ fi(a)

2. for all a € X, we have p(a) = 244,

3. for 1 < i< j we have (g;fi — g:fj)|x = 0.

(Notice: the last item implies that on Xy, n X, we have f;/g; = fj/g;.) Fori=1,...,dlet g, := g;x
and f; := fjx. Then

g = i (1.4.2)

In fact by Item (1) it suffices to check that (1.4.2) holds on Xy, for j = 1,...,d. For j =i it holds by
Item (2), for j # i it holds by Item (3). (Notice: if we do not assume that Item (3) holds we only know
that (1.4.2) holds on U; n U;.) By Proposition 1.4.3 we have that (g;,...,74) = (1), i.e. there exist
hi,...,hqg € K[z1,...,2,] such that

1=Mg, + -+ hagy
where h; 1= hjx. Multiplying by ¢ both sides of the above equality and remembering (1.4.2) we get
that

©=higio+-+haGgp =hifi +...+hifg=(hifi + -+ hafa)x- (1.4.3)

It remains to prove that there exist f;, g; € K[z1, ..., z,] with the properties stated above. By definition
of regular function there exist an open covering of X, and for each set U of the open cover a couple
a, B € K[z1,...,2,] such that p(z) = a(z)/B(z) for all x € U (it is understood that S(z) £ 0 for all

xz € U). By Remark 1.4.4 we may cover U by open affine sets X,,,..., X, . Since V(8) < () V()
i=1

the Nullstellensatz gives that, for each i, there exist V; > 0 and y; € K[z1,. .., z,] such that ’yiN P =B
and hence ¢(x) = pi(z)a(x)/vi(z)N for all z € X.,,. Since X, = X~ we get that we have covered
X by principal open sets Xy such that ¢ = f'/¢’ for all z € X, where f' € K[z1,...,2n] (of course
f/ depends on ¢'). By Corollary 1.2.7, the open covering has a finite subcovering, corresponding to

f{?.g/lu . 7fC/l,g£1 NOW let
fis=Fdi 9= (90>
Clearly Items (1) and (2) hold. In order to check Item (3) we write

(g5fi — 9 x = (95 figi — (92 Fi95) | x = ((gigy) (figy — [i90)|x-

Since ¢(2) = f;(2)/9i(2) = f;(2)/g;j(2) for all z € Xy N X, the last term vanishes on Xy N X, on

the other hand it vanishes also on (X\ X, N Xg;) = X n V(g;g;) because of the factor (g;g;). O
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1.4. Regular functions on affine varieties

We end the present section with a couple of consequences of Theorem 1.4.2.
First we give a more explicit version of Proposition 1.3.12 in the case that the quasi projective
variety itself is affine. Given a quasi projective variety X, and f € K[X], let

X; = X\V(f), (1.4.4)

where V(f) := {x € X | f(z) = 0}. The following remark is easily verified.

Remark 1.4.4. Let X < A™ be closed (and hence an affine variety). Let f € K[X], and hence by
Theorem 1.4.2 there exists ]? € K[z1,...,2,] such that ﬁX = f. Let Y < A™! be the subset of
solutions of g(z1,...,2,) = 0 for all g € I(X), and the extra equation f(z1,...,2n) 2n+1 —1 = 0. Then
the map
Xy — Y
(21, -y 2n) (zl,...,zn,m)

is an isomorphism. In particular X is an open affine subset of X. Moreover, the open affine subset
Xy, for f € K[X] form a basis for the Zariski topology of X.

Notice that, by Theorem 1.4.2 and the above isomorphism, every regular function on X is given
by the restriction to X of %, where g € K[X] and m € N.

Next, we give a few remarkable consequences of Theorem 1.4.2.

Proposition 1.4.5. Let R be a finitely generated K algebra without nilpotents. There exists an affine
variety X such that K[X] = R (as K algebras).

Proof. Let aq,...,a, be generators (over K) of R, and let ¢: K[z1,...,2,] — R be the surjection of
algebras mapping z; to ;. The kernel of ¢ is an ideal I < K[z1,..., z,], which is radical because R
has no nilpotents. Let X := V(I) € A™. Then K[X] = R by Theorem 1.4.2. O

In order to introduce the next result, consider a regular map f: X — Y of (non empty) quasi
projective varieties. The pull-back f*: K[Y] — K[X] is the homomorphism of K-algebras defined by

[(p)i=pof.
Proposition 1.4.6. Let Y be an affine variety, and let X be a quasi projective variety. The map

{f: X > Y| f regulary — {¢: K[Y]— K[X] | ¢ homomorphism of K-algebras} (1.4.5)
. e 4.

s a bijection.

Proof. We may assume that Y < A" is closed; let ¢: Y < A™ be the inclusion map. Suppose that
fyg: X — Y are regular maps, and that f* = g*. Then f*(:*(z)) = ¢*(1*(z)) for i € {1,...,n},
and hence f = g. This proves injectivity of the map in (1.4.5). In order to prove surjectivity, let
v: K[Y] — K[X] be a homomorphism of K algebras. Let f; := ¢(t*(2;)), and let f: X — A™ be the
regular map defined by f(z) := (fi(x),..., fn(x)) for x € X. Then f(z) € Y for all z € X. In fact,
since Y is closed, it suffices to show that g(f(z)) = 0 for all g € I(X). Now

9(f1(@), . () = g(p(t*(21)), -, (e (2n)) = (g (21)), - -, ¥ (2n)) = 9(0) = 0.

(The second and last equality hold because ¢ is a homomorphism of K-algebras.) Thus f is a regular
map f: X — Y such that f*(:*(z;)) = ¢(t*(2;)) for i € {1,...,n}. By Theorem 1.4.2 the K-algebra
K[Y] is generated by ¢*(z1),...,t*(2,); it follows that f* = ¢. O

Corollary 1.4.7. In Proposition 1.4.5, the affine variety X such that K[X] =~ R is unique up to
isomorphism.
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1. ALGEBRAIC VARIETIES AND REGULAR MAPS

1.5 Products

We will prove that the category of quasi projective varieties has (finite) products.

First let X, Y be affine varieties. Thus, we may assume that X < A" and Y < A" are closed subsets.
Then X x Y < A™ x A™ =~ A™*" is a closed subset, and the maps X x Y — X and X xY — Y given
by the two projections are regular. One checks easily that X x Y with the two projection maps is the
product of X and Y in the category of quasi projective varieties (use Proposition 1.4.6). The ring of
regular functions of X x Y is constructed from K[X] and K[Y] as follows. Let 7x: X xY — X and
my: X xY — Y be the projections. The K-bilinear map

K[X] xK[Y] — K[X xY]

(fo) = (15.1)

induces a linear map
K[X]®x K[Y] — K[X x Y]. (1.5.2)

Proposition 1.5.1. The map in (1.5.2) is an isomorphism.

Proof. We may assume that X < A”™ and Y < A" are closed subsets. Then X x Y < A™"™ is closed
subset, and hence the map in (1.5.2) is surjective by Theorem 1.4.2. Tt remains to prove injectivity,
i.e. the following: if A < K[X] and B < K[Y] are finite-dimensional complex vector subspaces, then
the map A® B — K[X x Y] obtained by restriction of (1.5.2) is injective. Let {f1,..., fa}, {91,---, 9}
be bases of A and B. By considering the maps

X — K Yy — K®

z = (fi(2), - fal2) z = (g1(2),.. ., 9(2)) (1.5.3)

we get that there exist p1,...,p, € X and ¢1,...,¢ € Y such that the square matrices (f;(p,;)) and
(gi(g;)) are non-singular. By change of bases, we may assume that f;(p;) = 6;; and gr(qn) = Okn.
Computing the values of 7% (fi) - 7 (g;) on (ps,q:) for 1 < 4,5 < a and 1 < j,t < b we get that the
functions ..., 7% (fi) - 7§ (gj), . .. are linearly independent. Thus A® B — K[W x Z] is injective. [

Since every quasi projective variety has an open cover by affine varieties, one could try to define the
product of quasi projective varieties X and Y by gluing together the products of the affine varieties
in open coverings of X and Y. This is done in scheme theory, where schemes are algebriac varieties
defined by atlases with charts given by affine schemes. However, one wants to show more, for example
that the product of projective varieties is a projective variety. This is why we need the more elaborate
construction presented below.

Let M p11.n+1 be the vector space of complex (m + 1) x (n + 1) matrices. Let

Em’n = {[A] € ]P(.%m+17n+1) | rk A= 1}

Then ¥, , is a projective variety in P(Apt1,n4+1) = pmntmtn Ty fact the entries of a non zero
matrix A € M p4+1,n+1 define homogegeous coordinates on P(#,11 n+1), and X, ,, is the set of zeroes
of determinants of all 2 x 2 minors of A. Let [W] € P™ and [Z] € P"; then W' - Z is a complex
(m+ 1) x (n+ 1) matrix of rank 1, determined up to recsaling. Thus we have the Segre map

prox Pt Tmw
man 1.54

WL.1z) — [z (24

Proposition 1.5.2. The map in (1.5.4) is a bijection.

From now on, we identify P x P" with the projective variety ., ,. In particular P x P™ has a
Zariski topology.
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1.5. Products

Claim 1.5.3. A subset X < P™ x P" is closed if and only if there exist bihomogeneous polynomials *
Fi, ... F.eK[Woy,...,.Wp, Zo,...,7Z5]
such that
X =V (Fiy.o B) = (WL [Z]) € P x P [0 = (W3 2) = - = (W3 2)}.  (1.55)
Remark 1.5.4. If m £ 0 and n % 0, then the Zariski topology on the product P™ x P" is not the product

topology. In fact it is finer than the product topology

Ezample 1.5.5. The diagonal Apn < P™ x P" is closed. In fact, A is the set of couples ([W],[Z])
such that the matrix with rows W and Z has rank less than 2, and hence it is the zero locus of the
bihomogeneous polynomials W;Z; — W, Z; for (i, j) € {0,...,n}. Notice that this is not in contrast with
the fact that, if n & 0, the Zariski topology on P" is not Hausdorff, because of Remark 1.5.4.

Claim 1.5.6. The projections of P™ x P™ on its two factors are regular maps.

Proof. Let a;j, where (i,7) € {0,...,m} x {0,...,n}, be the homogeneous coordinates on P(#,+1,n+1)
given by the entries of a matrix A € #p,41,n+1. Then

P™ xP" = | (P xP")a,- (1.5.6)

o<ism
0<j<n

On the open subset (P™ x IP"),, ., the projections P x P" — P™ P™ x P" — P" are given by
P x P — pm P x P —s P~
[A] > [aoj, e ,amj] [A] —> [aio, ey am]
respectively. O

Proposition 1.5.7. Let X be a quasi projective variety, and let f: X — P™ and g: X — P™ be regular

maps. Then
X — Prxpm

z o~ (f(@),9(2)) (1.5.7)

18 a reqular map.

Proof. We have the open cover of P™ x P" given by (1.5.6), with open sets indicized by {0,...,m} x
{0,...,n}. By Lemma 1.3.9, it suffices to prove that, for each (i,5) € {0,...,m} x {0,...,n}, the
following hold:

L (f x g) *(P™ x P"),,,) is open in X.

2. The restriction T ) 1(]P’ P, ) ® Py
v — (@) g(@)) (158)

is regular.

We have
(f x g9) (@™ x P"),,) = X\(fTIV(W3) gV (Z))).

Both f and g are continuous, because they are regular, and hence f~'V(X;) and g~V (Y;) are closed.
Tt follows that Item (1) holds. The map

A™M AT N (P'm XP")aij

((wo,...,’[l\)i,...,wm),(Zo ..... Ej,...,zn)) — ([wo,...,wi_l,l,wi+1...,wm],[zo,...,z]'_l,1,z_7'+1,...,zn])

is an isomorphism commuting with the projections. Item (2) follows. O

LA polynomial F € K[W; Z] is bihomogeneous of degree (d,e) if F = Y ar ;WlZ7.
deg I=d
deg J=e
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1. ALGEBRAIC VARIETIES AND REGULAR MAPS

It follows that P™ x P™ with the two projections is the product of P and P” in the category of
quasi projective varieties.

Now suppose that X < P™ and Y < P™ are locally closed sets. It follows from Claim 1.5.5 that
Y xY < P™ x P" is locally closed, i.e. we have identified W x Z with a quasi-projective set. Moreover,
the projections of X x Y to X and Y are regular, because they are the restrictions of the projections
of P x P" to X x Y.

The proof of the following result is easy; we leave details to the reader.

Proposition 1.5.8. Keep notation as above. The quasi projective variety X x Y, with the projections
to the two factors, is the product of X and Y in the category of quasi projective sets.

Notice that if X < P™ and Y < P™ are closed then X x Y is closed in P™ x P™. Hence the product
of projective varieties is a projective variety. On the othar hand, we have already observed that the
product of affine varieties is an affine varietry.

Remark 1.5.9. Let X < P™ and Y < P" be locally closed sets. Let ¢o: X — X' 9: Y — Y’ be
isomorphisms, where X’ < P% and Y’ < P’ are locally closed sets. Then

XxY — X' xY’

() = (pp)¥(q) (1.5.9)

is an isomorphism. This follows from the formal property of a categorical product. Thus the isomorph-
ism class of X x Y is independent of the embeddings X < P™ and Y < P™. This is why we say that
X x Y is the product of X and Y.

Since the product of two quasi projective varieties exists, also the product X7 x ... x X,. of a finite
collection X7, ..., X, of quasi-projective varieties exists; it is given by (X7 x (X2 x (X5... x X;)...)
(we may rearrange the parenthesis arbitrarily, and we will get an isomorphic variety).

Let X be a quasi projective variety, and let Ax < X x X be the diagonal. It follows from Ex-
ample 1.5.5 that Ax is closed in X x X (this is not in contradiction with the fact that, if X is not finite,
then it is not Hausdorff, see Remark 1.5.4). This property of quasi projective varieties goes under the
name of properness. The following is a consequence of properness.

Proposition 1.5.10. Let X, Y be quasi projective varieties, and let f,g be regular maps X — Y. If
f(z) = g(z) for x in a dense subset of X, then f = g.

Proof. Let ¢: X — Y x Y be the map defined by p(z) := (f(z),g(x)). Then ¢ is regular, because
Y x Y is the categorical square of Y. Since Ay is closed, ¢~ (Ay) is closed. By hypothesis o~ 1(Ay)
contains a dense subset of X, hence it is equal to X, i.e. f(x) = g(z) for all z € X. O

1.6 Elimination theory

Let M be a topological space. Then M is quasi compact, i.e. every open covering has a finite subcovering,
if and only if M is universally closed, i.e. for any topological space T', the projection map T'x M — T
is closed, i.e. it maps closed sets to closed sets. (See tag/005M in [?].)

A quasi projective variety X is quasi compact, but it is not generally true that, for a variety T, the
projection T'x X — T is closed. In fact, let X < P" be locally closed; then Ax, the diagonal of X, is
closed in X x P™, because it is the intersection of X x X < P™ x P with the diagonal Apn < P™ x P,
which is closed. The projection X x P* — P™ maps X to X, hence if X is not closed in P, then X
is not universally closed. This does not contradict the result in topology quoted above, because the
Zariski topology of the product of quasi projective varieties is not the product topology.

The following key result states that projective varieties are the equivalent of compact topological
spaces in the category of quasi projective varieties.
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1.6. Elimination theory

Theorem 1.6.1 (Main Theorem of elimination theory). Let T' be a quasi-projective variety and let X
be a closed subset of a projective space. Then the projection

mTxX—->T
is closed.

Proof. By hypothesis we may assume that X < P” is closed. It follows that T'x X < T x P™ is closed.
Thus it suffices to prove the result for X = P™. Since T is covered by open affine subsets, we may assume
that T is affine, i.e. T is (isomorphic to) a closed subset of A™ for some m. It follows that it suffices to
prove the proposition for 7' = A™. To sum up: it suffices to prove that if X < A™ x P" is closed, then
m(X) is closed in A™, where m: A™ xP™ — A™ is the projection. We will show that (A™\7 (X)) is open.
By Claim 1.5.5 there exist F; € K[t1,...,tm, Zo,...,2Zyn] for i = 1,...,r, homogeneous as polynomial
in Xg, ..., X, such that
X={t[Z2])|0=F(t,2)=...=F.(t, 2)}.

Suppose that F; € K[t1,...,tm][Zo, ..., Zn]a; i-e. F; is homogeneous of degree d; in Zy,...,Z,. Let
t e (T\w(X)). By Hilbert’s Nullstellensatz, there exists N > 0 such that

(Rt 2), ..., Fr(t.2) 5 K[ Zo, ..., Zn]n. (1.6.10)

We may assume that N > d; for 1 <i <r. For t € A™ let

d(t
K[Zos ... Zolnedy % - % [Zos- s Zolned, B K[Zo,..., Zn]x
(Gl,...,GT.) = Z:=1Gi'Fi

Thus ®(¢) is a linear map: choose bases of domain and codomain and let M (¢) be the matrix associated
to ®(t). Clearly the entries of M(t) are elements of K[t1,...,t,]. By hypothesis ®(¢) is surjective
and hence there exists a maximal minor of M(t), say My ;j(t), such that det M ;(¢) + 0. The open
(A™\V (det M7 y)) is contained in (T\w(X)). This finishes the proof of Theorem 1.6.1. O

We will give a few corollaries of Theorem 1.6.1. First, we prove an elementary auxiliary result.

Lemma 1.6.2. Let f: X — Y be a reqular map between quasi-projective varieties. The graph of f

Lp={(z, f(z)) | pe X}
s closed in X x Y.

Proof. The map
fxIdy: X xY Y xY

is regular, and 'y = (f x Idx)~!'(Ay). Hence I'; is closed because Ay is closed in Y x Y. O

Proposition 1.6.3. Let X < P™ be closed, and let Y be a quasi-projective set. A reqular map f: X —Y
is closed.

Proof. Since closed subsets of X are projective it suffices to prove that f(X) is closed in Y. Let
m: X xY — Y be the projection map. Then f(X) = 7(I'y). By Lemma 1.6.2 and the Main Theorem
of elimination theory we get that f(X) is closed. O

Corollary 1.6.4. A locally-closed subset of P™ is projective if and only if it is closed.

Proof. Let X < P" be a locally closed subset. If it is closed, then it is projective by definition.
Conversely, suppose that X is projective. Hence there exist a closed subset Y < P™ and an isomorphism
f:Y = X. Composing f with the inclusion X < P", we get a regular map g: ¥ — P?. Then
X = g(Y) is closed by Proposition 1.6.3. O
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Remark 1.6.5. By way of contrast, notice that it is not true that a locally-closed subset of A™ is affine
if and only if it is closed. In fact the complement of a hypersurface V' (f) < A" is affine but not closed.

Corollary 1.6.6. Let X be a projective variety. A reqular map f: X — K is locally constant.
Proof. Composing f with the inclusion j: K — P! we get a regular map f: X — P!. By Proposi-
tion 1.6.3 f(X) is closed. Since f(X) # [0,1] it follows that f(X) = f(X) is a finite set. O

1.7 Grassmannians

Let V be a complex vector space of finite dimension, and let 0 < h < dim V. The Grassmannian of
h-dimensional vector subpaces of V' is the set of (complex) subvector spaces of V of dimension h:

Gr(h,V):={WcV |dimW = h}.
Notice that if h € {0,dim V'}, then Gr (h, V) is a singleton, that Gr (1,V) = P(V'), and that we have a
bijection
P(VY) — Gr(dimV —-1,V)
- ker(/)

We will identify the elements of Gr (h, V') with the points of a projective variety. Consider the Plicker
map

Gr(h,V) 2. P (/\hv)
W - AW
(this makes sense: /\hW is a 1-dimensional subspace of /\hV because dim W = h).
Proposition 1.7.1. Keep notation as above. Then & is injective, and Im P is a closed subset of
P (/\hv).
Before proving Proposition 1.7.1, we prove the result below.
Lemma 1.7.2. Let vy,...,v4 € V be linearly independent, and let o € /\hV, Then
vAa=0 Vie{l,...,a} (1.7.1)

if and only if there exists B€ N~V such that

A=V A... AU AP (1.7.2)
Proof. The non trivial statement is that if (1.7.1) holds, then (1.7.2) holds. Extend vy, ..., v, to a basis
V1,...,U,m of V. Given a subset I < {1,...,m} of cardinality s, we let v; = v;; A ... A v;,, where
I={i,...,is}and 1 < iy < ... <is < m. The collection of the v;’s is a basis of the exterior algebra
A" V. Hence
a= > e,
[1|=h

where c; are complex numbers. Since

O=v;, A= Z crv; A vy,
[I|=h
i¢l
it follows that {1,...,a} < I for all T such that ¢; & 0. Now, if {1,...,a} < I, thenv; = v1 A... AUz AY.
It follows that (1.7.2) holds.
O
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Proof of Proposition 1.7.1. For a € /\hV7 let m,, be the linear map

1% ﬁ) /\h+1V

v = VAN

It follows from Lemma 1.7.2 that if o & 0, then the kernel of m, has dimension at most h, and that
dimker(mg) = h if and only if « is decomposable, i.e. o« = wy A ... A wyp, where wy A ... A wp € V are
linearly independent. Thus

m(2) = {[a] e P (/\hv) | dim(kerma) > B}, (1.7.3)

and if [a] € Im(2?), then [a] = A" ker(my). The latter equality shows that 22 is injective. Morover,
the equality in (1.7.3) shows that Im(Z?) is closed in P(A\"V). In fact, choose a basis vy, ..., v, of
V, and let zq,...,x, be the associated dual basis. Notice that the basis of V' determines the basis
..., v1,... (where [IT = h) of A"V, and hence projective coordinates [...,Z;,...] (where [II = h) on
P(A" V). Then my, is described (with respect to the chosen bases) by a matrix of order (hil) x h with
entries linear functions in xy,...,x,. Hence the right hand side of (1.7.3) is the set of points where
all determinants of minors of order (n —h + 1) x (n — h + 1) of m, vanish. Thus Im(Z?) is equal to
the common zeroes of homogeneous polynomials (of degree n — h + 1) in the homogeneous coordinates
[...,Z,...], it follows that is closed. O

Remark 1.7.3. In the proof of Proposition 1.7.1 we exhibited polynomials defining Gr (h, V') which are
of high degree. In fact, the ideal of Gr(h,V) < ]P’(/\thl V) is generated by quadrics. In the first
non-trivial case, i.e. h¢ {0,1,dimV — 1,dim V}, i.e. Gr(2,V) with dimV > 4, we can easily describe
the Pliicker quadrics generating the (homoheneous) ideal of the Grassmannian; in fact « € /\2V is
decomposable if and only if @ A a = 0.

Remark 1.7.4. We have a bijection between Gr (k + 1,V) and the set of linear subspaces of P(V') of
dimension k:

Gr(k+1,V) — Gr(k,P(V)):={L cP(V)| L linear subspace, dim L = k}
w — P(W).

Thus by Proposition 1.7.1 we may identify Gr (k,P(V)) with a projective set.

In order to do computations, we will need to write explicitly homogeneous of the Pliicker image of
elements W € Gr (h,V). This is done as follows. Let vy,..., v, be a basis of V, and let (..., v7,...)
be the associated basis of /\h V', where I runs through subsets of {1,...,m} of cardinality h (notation
as in the proof of Lemma 1.7.2). Thus we also have associated homogeneous coordinates |[...,T7,...]
on IP’(/\h V). By associating to linearly independent vectors wy, ..., w, € V the matrix with rows the
coordinates of the w;’s in the chosen basis, we get a matrix

aixr . G1im

ap1 "t Gpm

of rank h. Viceversa, every such matrix determines the coordinates of linearly independent vectors

wy,...,wp € V. Now, the homogeneous coordinates [...,T7,...] of Z({w1,...,wy)) are given by
A1,y 0 Ay,
T = det e y
ah,’il e ah,ih
where, as usual, I = {i1,...,45} with 1 <y < ... <ip <dimV.
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Proposition 1.7.5. The Grassmannian Gr(h,V) has an open covering by pairwise intersecting open
subsets isomorphic to an affine space of dimension h- (dimV — h).

Proof. We identify Gr(h,V) with its image by the Pliicker map 2 (Gr(h,V)) < P(A" V). Let m :=

dim V, and let vq, . .., v, be a basis of V. Keep the notation introduced above. In particular [...,T7y,...]
are homogeneous coordinates on P( /\h V), where I runs through subsets of {1,...,m} of cardinality h.
Thus we have the open covering
Gr(h, V) = | Gr(h, V)1, (1.7.4)
|I|=h

where, as usual Gr(h,V); < Gr(h,V) is the open subset of points such that 77 + 0. Let I = {1,...,h}.
The map

%h,m—h(K) — Gr(h,V)I
ai1 o Alm—h (1 7 5)
—h .
= (vt Z;’n:l Qi jVh+js - - )1<i<h
ap,1  ** Ghom—h

is an isomorphism. We have similar isomorphisms
AP ~ gy (K) > Gr (b, V),

for any other multiindex J. One easily checks that for all subsets I, J < {1,...,m} of cardinality h the
interesection Gr (h,V); n Gr (h, V) is non empty. O

Corollary 1.7.6. The Grassmannian Gr(h,V) is irreducible.

Remark 1.7.7. Let E < Gr(h,V) x V be the subset of couples (v, W) such that v € W, and let
m: E — Gr(h,V) be the defined by (v, W) — W. One easily checks that F is closed, and that 7 is
a regular map. The inverse image 7~ (Gr(h,V);) is described as follows. For A € ), ,—n(K), let
w;(A) e V for i € {1,...,h} be the vector appearing in (1.7.5). Then (1.7.5) gives an isomorphism

%h,m—h(K) X Kh — Wﬁl(Gr(h,, V)])

(A1) = (wi(A),. .. wa (A, S tawi(A)) (1.7.6)

where t = (t1,...,t,) € K",

1.8 Exercises

Exercise 1.8.1. Let k be a field. Given a finite-dimensional k-vector space V define the formal power series
pv € k[[t]] as

Py := Y (dimy, Sym* V)t?

D18

d=0

where Sym? V' is the symmetric product of V. Thusif V = k[z1,...,zs]1 then S¢(k[z1,...,zn]1) = k[z1,. .., Tn]a-
1. Prove that if V. =U @ W then Py = Py - Pw.
2. Prove that if dimg V' = n then Py = (1 —¢)™" and hence (1.3.8) holds.

Exercise 1.8.2. The purpose of the present exercise is to give a different proof of the properties of the Veronese
map vy discussed in Example 1.3.6, valid if charK = 0, or more generally char K does not divide d!. Let

P(K[To, ..., Tul) *& PK[Tv,...,Tn]a) (1.8.7)
1] - (4]
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and let #; = Im(uy). The above map can be identified with the Veronese map vj. In fact, writing L €
K[To,...,Tn]1 as L = 3", a;T;, we see that [ao, ..., an] are coordinates on P(K[Ty,...,Tn]1), and they give
an identification P* — P(K[To,...,Ts]1). Moreover, let

P S PK[To,. .., Tala),
[ &, ] = by io!-f#-in!&TI

I=(i0,- . »in)
Q04 tin=d

where 77 = Tg° ... - Ti». By Newton’s formula (37 i T3)* = Y %a T7, we see that, modulo the above
T

isomorphisms, the Veronese map v is identified with p};, and hence %" is identified with #".
Now let us show that #," is closed. The key observation is that [F] € #;* if and only if a";; 00711 span
a 1-dimensional subspace of K[Zo, ..., Z,]. This may be proved by induction on deg F' and Euler’s zdentity

Zn] = (deg F') - F, (1.8.8)

valid for F' homogeneous. Now, the condition that (f;; ey az span a 1-dimensional subspace of K[Zo, ..., Z,]

is equivalent to the vanishing of determinants of all 2 x 2 minors of the matrix whose entries are the coordinates

of 0‘7;0 . ﬁZ ; thus 7" is closed.

In order to show that py is an isomorphism, we notice that if F = L%, where L € P(K[Ty, ..., T, ]1 is non

zero, then for each i € {0, ..., n} the partial derivative 2 oaT If is a multiple of L (eventually equal to 0 1f =0),

and that one at least of such (n — 1)-th partial derivative is non zero. Thus, the inverse of uy is the regular
map 0y : #;* — P(K[To,...,Tn]1) defined by

[6"’1F] £on- F +0,

azy ! az” ozn T
OF([F]):=4 oo eeennn (1.8.9)
n—1 An—1
(=1 if = +0

Exercise 1.8.3. We recall that if ¢: B — A is a homomorphism of rings, and I < A, J < B are ideals, the
contraction I¢ < B and the extension J¢ c A are the ideals defined as follows:

I°:=¢7 1, J° {Z,\@ YIM€EA bieJVi=1,. } (1.8.10)

(In other words, J° is the ideal of A generated by ¢(J).)
Let f: X — Y be a regular map between affine varieties and suppose that f*: K[Y] — K[X] is injective.

1. Let pe X. Prove that m; = my,), in particular it is maximal.
2. Let g € Y. Prove that
fHa) ={pe X |my, S me},
and conclude, by the Nulstellensatz, that f~'(q) is not empty if and only if m¢ # K[X].
Exercise 1.8.4. The left action of GL,(K) on A™ defines a left action of GL,(K) on K[z1,...,2,] as follows.
Let ¢ € K[z1,...,2x] and g € GL,(K). Let z be the column vector with entries z1,...,2,: we define g¢ €
K[z1,...,2xn] by letting
9o(X) = (g~ - 2).
Now let G < GL, (K) be a subgroup. The algebra of G-invariant polynomials is
Klz1,...,20]% := {¢K[z1,...,20] €| gp = ¢ Vg € G}.

(it is clearly a K-algebra). Now suppose that G is finite. One identifies A" /G with an affine variety proceeding
as follows.

1. Define the Reynolds operator as

K[z1,...,2n] — Tyes 7zn:|G

Klz1
¢ = % deG g¢

Prove the Reynolds identity
R(¢y) = 9R(P) Vo eK[z1,...,2,]"
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2. Let I < K[z1,...,2n] be the ideal generated by homogeneous ¢ € K[z1,...,2,]¢ of strictly positive
degree (i.e. non-constant). By Hilbert’s basis theorem there exists a finite basis {¢1,...,¢q} of I; we
may assume that each ¢; is homogeneous and G-invariant. Prove that K[z1,...,2,]¢ is generated as
K-algebra by ¢1,...,¢q. Since K[z, .. .,zn]G is an integral domain with no nilpotents it follows that
there exist an affine variety X (well-defined up to isomorphism) such that K[X] = K[z1,...,2,]¢. One
sets A" /G =: X.

3. Let v: K[z1,...,2,]¢ < K[z1,..., 2] be the inclusion map. By Proposition 1.4.6, there exist a unique
regular map
A" T X = A™/G. (1.8.11)

such that ¢ = 7*. Prove that
m(p) =7(q) if and only if ¢ = gp for some g € G,

and that 7 is surjective. [Hint: Let J < K[z1,...,2,] be an ideal. Show that J° nK[z1,...,2,]% = J
where J¢ is the extension relative to the inclusion ¢.]

Exercise 1.8.5. Keep notation and hypotheses as in Exercise 1.8.4. Describe explicitly A" /G and the quotient
map 7: A" — A"/G for the following groups G < GL,, (K):

1. n=2 G ={+1}.

2. n=2,G= <(u8c w91>> where wy, is a primitive k-th rooth of 1.
k

3. G = Sy, the group of permutation of n elements viewed in the obvious way as a subgroup of GL, (K)
(group of permutations of coordinates).

We introduce definitions that will be discussed more in general later on. Let Div(P") be the abelain
group with generators the irreducible hypersurfaces in P*. Thus an element of Div(P") is a formal
finite sum »},_, m; X;, where each m; is an integer, and each X; id an irreducible hypersurface in P™.
Let F e K[Zy,...,Z,]a be non zero. Let X < P™ be an irreducible hypersurface, and let I(X) = (G).
The multiplicity of F' along X is the maximum m such that G™ divides F, and is denoted mult x V (F).
Let F = [] F/™ be the decomposition into prime factors, where for ¢ 4 j the factors F; and Fj are

i=1
not associated. The divisor of F is the element of Div(P") defined by

div(F):= ) multy V(F) = > m;V(F). (1.8.12)
irreé(.chggers. =t

Exercise 1.8.6. Let F € K[Zo, Z1]a.

(a) Notice that unless F' = 0 the cardinality of V(F') is at most d, and it equals d if and only if mult,(F) <1
for all p € P*.

(b) Let Ay < P(K[Zo, Z1]a) be the subset of [F] such that there exists p € P* for which mult,(F) > 2. Prove
that A4 is a closed irreducible subset of P(K[To, T1]4). (Hint: let Ag « P(K[To,Ti]a) x P! be the subset
of couples ([F],[Z]) such that F has a multiple root at Z. Show that Ay is closed in P(K[To, T1]a) x P*,
and then project to the first factor.)

¢) Assume that char K does not divide d. Let p = [ao,a1] € P!. Prove that mult,(F) > 2 if and only if
P

0F(ap,a1) _ 0F(ao,a1)
6Zo B 621

= 0. (1.8.13)

(Hint: use Euler’s relation (1.8.8).)
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Chapter 2

Rational maps, dimension

2.1 Introduction

A rational function on an irreducible locally closed subset X < P" is defined by a quotient g, where
F,G e K|Zy,...,Zy,]a are homogeneous polynomials of the same degree, and G does not vanish at all
points of X. The set of rational functions on X, with addition and multiplication defined pointwise,
is a field denoted K(X), finitely generated over the subfield K of constant functions. One defines the
dimension of X as the transcendence degree of K(X) over K. The dimension is well-behaved (e.g. the
dimension of A™ or P is equal to n), and is invariant under isomorphisms. Two irreducible varieties X, Y
are birational if K(X) and K(Y") are isomorphic (as extensions of K) - this is equivalent to the existence
of isomorphic open dense subsets U < X and V < Y. This relation is weaker than isomorphism; it
plays a crucial role in algebraic geometry.

Let f: X --» Y be a rational map. The degree of f is a number (possibly o) related to the
cardinality of f~1(y) for  in an open dense subset of Y. If f factors through the inclusion of a proper
closed subset W < Y, then the degree is 0, otherwise f defines by pull-back an inclusion K(Y) ¢ K(X)
and the degree of f is equal to [K(X) : K(Y)]. Suppose that the degree is finite: if the extension
K(X) o K(Y) is separable, then the result about the cardinality of a generic fiber holds, in general it
holds with the degree replaced by the separable degree of K(X) o K(Y).

Let X < P™ be a closed subset. There exists a positive number d, called the degree of X, with the
property that, for a generic linear subspace A c P™ of dimension (n — dim X), the cardinality of A n X
is d. In order to make sense of the word “generic” (which has a precise meaning despite itself), and to
prove this statement, we introduce the Grassmannian parametrizing linear subspaces of a projective
space and we identify it with a projective variety. Along the road, we will characterize the dimension of
a closed subset of a projective space via its intersection with linear subspaces - this allows us to prove a
(highly non trivial) generalization of the well known result from linear algebra: a set of m homogeneous
linear equations in n unknowns has a non trivial solution if m < n.

2.2 Rational maps

Let X and Y be quasi projective varieties. We define a relation on the set of couples (U, ) where
U < X is open dense and ¢: U — Y is a regular map, as follows: (U, @) ~ (V, ) if the restrictions of
@ and ¥ to U NV are equal. One checks easily that ~ is an equivalence relation.

Definition 2.2.1. A rational map f: X --» T is a ~-equivalence class of couples (U, ¢) where U ¢ X
is open dense and ¢: U — Y is a regular map. Let f: X --» Y be a rational map.

1. The map f is regular at x € X (equivalently z is a regular point of f), if there exists (U, ¢) in the
equivalence class of f such that 2 € U. We let Reg(f) < X be the set of regular points of f. By
definition Reg(f) is an open subset of X.
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2. The indeterminancy set of f is Ind(f) := X\ Reg(f) (notice that Ind(f) is closed). A point z € X
is a point of indeterminancy if it belongs to Ind(f).

From now on we will consider only rational maps between irreducible quasi projective varieties. Let
f: X --+Y and g: Y --» W be rational maps between (irreducible) quasi projective varieties. It might
happen that for all € Reg(f) the image f(z) does not belong to Reg(g), and then the composition go f
makes no sense. In order to deal with compositions of reational maps, we give the following definition.

Definition 2.2.2. A rational map f: X --» Y between irreducible quasi projective varieties is dominant
if it is represented by a couple (U, ¢) such that ¢(U) is dense in Y.

Notice that if f: X --» Y is dominant and (V) is an arbitrary representative of f then (V) is
dense in Y.

Definition 2.2.3. Let f: X --» Y be a dominant rational map, and let g: Y --+ W be a rational map
(X,Y,W are irreducible). Let (U, ) and (V,) be representatives of f and g respectively. Then ¢~V
is open dense in X. We let go f: X --» W be the rational map represented by (o =1V,4 0 ¢). (The
equivalence class of (p~1V, 1 o ¢) is independent of the representatives (U, ¢) and (V,).)

Definition 2.2.4. A dominant rational map f: X --» Y between irreducible quasi projective varieties
is birational if there exists a dominant rational map ¢: Y --+ X such that go f = Idx and fog = Idy.
An irreducible quasi projective variety X is rational if it is birational to P™ for some n, it is unirational
if there exists a dominant rational map f: P"* --» X.

Ezxample 2.2.5. 1. Of course isomorphic irreducible quasi projective varieties are birational. On
the other a quasi projective (irreducible) variety is birational to any of its dense open subsets.
In particular P™ is birational to A™, although they are not isomorphic if n > 0 (if they were
isomorphic, they would be diffeomorphic as C* manifolds, but P™ is compact, A™ is not).

2. Let 0 + F € K[Zy,...,Zy]2, and let Q7! := V(F) < P*. Suppose that F is prime, i.e that
tk F > 3, and hence Q! is irreducible. We claim that Q™! is rational. In fact, after a suitable
change of coordinates, we may assume that F = ZyZ, — G, where 0 + G € K[Z1,...,Z,_1]a.

The rational maps

Qn—l _J_v_) Pn—l

[Zo,...,Zn] = [ZOa-~-7Zn—1]

and
g

P"_l N Qn—l
(To,...,Tho1] — (18, T0Th,...,ToTp-1,G(Ty,...,Th-1)]

are dominant, and they are inverses of each other. Notice that if n = 2, then f and g are regular
(see Example 1.3.5), while for n > 3, the quadric @' is not isomorphic to P"~1, because the
underlying C* manifolds are not homeomorphic.

Proposition 2.2.6. Irreducible quasi varieties X, Y are birational if and only if there exist open dense
subsets U € X and V < Y that are isomorphic.

Proof. An isomorphism ¢: U — V clearly defines a birational map f: X --» Y. Conversely, suppose
that f: X --» Y is birational with inverse g: Y --» X. Let (U, ) represent f and (V) represent g.
Then ¢~ 'V < U and ¢ ~'U c V are open dense. By hypothesis the composition

Yo (cpw_lv) oWV U

is equal to the identity on an open non-empty subset of »~'V. By Proposition 1.5.10, we get that
Vo (gjp-1v) = Idg-1y. In particular o o (¢™'V) c U ie. ¢ (¢ 'V) c ¢~ 'U, and similarly

po (Y1) =1y, »@7U)ce V.
Thus we have isomorphisms ¢~ 'V — ¢~ 1U and ¢ 'U = ¢~ 'V. O
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Many natural invariants of projective varieties do not separate between (projective) birational vari-
eties. This fact gives practical criteria that allow to establish that certain projective varieties are not
birational. On the other hand, it leads us to approach the classification of isomorphism classes of pro-
jective varieties in two steps: first we classify equivalence classes for birational equivalence, then we
distinguish isomorphim classes within each birational equivalence class.

2.3 Blow-up

Blow-up of a projective space

Let p = [vg] € P(V). The blow-up of P(V) at p is a projective variety obtained from P(V') by replacing
the point p with all the tangent directions at p, i.e. the set X, of lines containing p. In order to define
it, we notice that we have an identification

2, ={PWU)|UeGr(2,V), vueU} — P(V/[v])
U — U/[vo]

and hence ¥, is a projective space whose dimension is one less than the dimension of P(V'). The blow-up
of P(V) at p is the subset of P(V) x X, defined by

BL,(P(V)) := {(z,A) e P(V) x &), | € A}.
Claim 2.3.1. Bl,(P(V)) is closed in P(V) x X,,, and irreducible.

Proof. Let [Zy, ..., Z,] be homogeneous coordinates such that p = [1,0,...,0]. The map

]Pm—l = Ep
2.3.1
[T1,...,T,] — <{1,0,...,0,[0,Ty,..., Tn.]> ( )
is an isomorphism. With these identifications

Thus Bl,(P(V)) is closed in P(V') x X,,.
Let p: BL,(P(V)) — X, be the restriction to BL,(P(V')) of the second projection of P(V') x X,:

A | (2.3.3)
Since P"~' = J_, P’lefl we have
B, (B(V)) = Qp%m;l» (2.3.4
=
By (2.3.14) we have an isomorphism
Foar - o) (2.3.5)

([20,Z;],(t1,- o tj—1,tj41,05tn)) = ([Z0,Zjt1, s Z5t5-1,25,Z5tj 41, Zjtn]s[t1,ti—1, 1t 41,0 tn])

Thus (2.3.4) defines an open covering of BL,(P(V')) in which each open set is irreducible. Any two such
open sets have non empty intersection: it follows that BL,(P(V)) is irreducible. O

The blow-down (or contraction) map is
(2.3.6)
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Clearly 7 is regular, and

7 (z) = P, z) if z % p,
. {Zp =P(V/[w]) ifz=p. (2.3.7)

Equation (2.3.7) explains the name “blow-up at p”: the fiber of 7 over p is a blown-up (as in photo-
graphy) version of p. The map 7 is birational. In fact let

PVM\p) % BLE(V))
. . ($7<p7x>> (2.3.8)

Then ¢ is regular, and

o =Idpvy(pp o (Tl niph) = Idre—r @)\ (p} -

Since (7~ 1(P(V)\{p}) is open dense in BL,(P(V)) the (equivalence class of) the map ¢ is the (rational)
inverse of .

Blow-up of a locally-closed subset of a projective space

Let X < P(V) be a locally closed subset and p € X. We assume that dim, X > 0. Let ¢ be the map
given by (2.3.8). The blow-up of X at p is the subset of Bl,(P(V)) defined as the closure of 71 (X\{p}):

B, (X) := n= 1 (X\{p}). (2.3.9)

Notice that Bl,(X) is locally-closed in the projective variety BL,(P(V')), hence it is a quasi-projective
variety. If X is closed in P(V'), then BL,(X) is closed in BL,(IP(V')), and hence it is projective.

We let mx: BL,(X) — X be the restriction to Bl,(X) of the blow-down map w: Bl,P(V) — P(V)
(thus mp(yy = m). Let ¢x: (X\{p}) — Bl,(X) be defined by restricting the map ¢ of (2.3.8) to (X\{p}).
Then ¢x defines a rational inverse of 7.

We examine a few examples. Throughout the examples we let [Z, ..., Z,] be homogeneous co-
ordinates such that p = [1,0,...,0], and z; := Z;/Zy.

Ezample 2.3.2. Let X =P . Thus X is the affine space A" and z; = Z,;/Z, for 1 < i < n are affine
coordinates on X. For 1 < j < nlet

U =Bl (A") n p~ (P 1) (2.3.10)

where p is the map (2.3.3). Thus Bl,(A™) is the union of the open sets %; for 1 < j < n. Equation (2.3.5)
gives an isomorphism

2]

(zj,t1,...,tj_Al,th,...,tn) :) ((zjtl,...,zjtj_l,zj,z,~t,~+1,..thn),[tl,...,tj_l,1,f,j+1,...,tn]) (2.3.11)
Thus we have
Tan 0 05(25, 81, .., ti—1, tjg1, o tn) = (251,00, 2t-1, 25, Zit 41, - - -y Zjtn) (2.3.12)
and the (rational) inverse of man o ¢; is given by
(man © ¢j)_1(zl, ceeyZp) = (%’ ol Zi—;l,zj, ZZI - z—j)
Remark 2.3.3. Let m, < K[z1,...,2,] be the maximal ideal of polynomials vanishing at p. Equa-

tion (2.3.12) gives that the ideal of K[z1,. .., z,] generated by (man o ¢;)*(m,) is equal to the principal
ideal (x;). This simple fact will be the key to the universal property of blow-up.
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Ezample 2.3.4. Let X < A" be a hypersurface containing p = (0,...,0). We will give explicit equations
for the intersection of Bl,(X) with each of the open affine subsets %; < Bl,(A™) described above. Let
I(X) = (f). Expand f around the origin:

f=fm+ fm+1+ ...+ fa, fseK[Zla“-aZn]w Jfm *0.
Identify %; with A™ via (2.3.11); then

d—m

Tt (X) N U = V(" Y] 2 st ot L, o).
s=0

By Remark 2.3.3 it follows that the polynomial

d—m

D& fngs(tr, ot Lt t) (2.3.13)
s=0

vanishes on 71 (X\{0}) n%;. Since Bl,(X) is the closure of 7, (X\{0}), it follows that the polynomial
in (2.3.13) vanishes on Bl,(X) n %;. In fact, we claim that

d—m

BL(X) n % = V(D 25 fmrs(tr, .t Lt 1) (2.3.14)
s=0

In fact, suppose that ¢ € K[z;,t1,...,t—1,tj41,...,t,] vanishes on Bl,(X) n %;. Then the rational

function ¢(Z, ... Z;;l ) 24y Z-Zl .., 2+) vanishes at all points of V/(f)\V (). Let e € Ny be such that
(R, B A (2.3.15)
Zj Zj Zj Zj
is a polynomial in z1,...,2,. The polynomial in (2.3.15) vanishes on V(f), and hence it is a multiple

of f, i.e. there exists ¥ € K[z1,...,2,] such that

Z1 Zi—1 Zi+1 zZ.
e J Jj+ n
ZQD( PR » 2 PR )

2 ] ‘ ] ‘ =1/1‘f(thl,...,thj_l,Zj,thj+1,...7thn).
Zj Zj j Zj

Divide the above equality by 27", and replace Z- by ¢; for ¢ + j. We get
J

d—m
Z;(p(tl,...tj_l,Zj,f,j_H,...,tn) = ’(/J (Z Z;fm_;,_s(tl,...,tj_l,l,tj+1,...,tn)> .
s=0

Since z; does not divide the second factor of the right hand side, we get that z§ divides ¢, and hence
 is a multiple of the polynomial in the right hand side of (2.3.14).
In particular we get that

Wg(l(p) = {((& c a_(/))a [T17 s 7Tn] € ]Pm_l | fm(Th s 7Tn) = 0} (2316)

Universal property of the blow-up

Let X < P* and Y < P™ be isomorphic locally closed subsets, and let ¢: X — Y be an isomorphism.
Choose p € X, and let ¢ := ¢(p) € Y. We will show that the isomorphism between X\{p} and Y'\{q}
defined by ¢ extends to an isomorphism Bl,(X) — Bl,(Y). This means that we may speak of the
blow up of a quasi projective variety at a point without specifying an isomorphism of the variety with
a locally closed subset of a projective space.

The key point is to realize that the blow up has a universal property.
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Proposition 2.3.5 (Universal property of the blow-up). Let Y < P™ be a locally closed subset and
geY. We assume that dim,Y > 0 so that the blow-up Bly(Y) is defined. Let X be a quasi-projective
variety and F: X — Y be a regular map. Let V < Y be an open affine subset containing q and
m, < K[V] be the (mazimal) ideal of functions vanishing at q. Suppose that there exists an open affine

covering
Fv=J%
jeJ
(affine means that each %; is an affine variety) such that for every j € J the ideal of K[%;] generated
by (F|a,)*mgy is principal, generated by a function p; € C[%;] which is not a zero-divisor. Then there
exists a lift of F i.e. a reqular map F: X —: Bl,(Y) fitting into the commutative diagram

Bl,(Y)

Moreover, such a lift is unique.

Proof. Away from F~'(q) we define ' as F' := ¢y o F where ¢y : (Y\{q}) — Bl,(Y) is the rational
inverse of my. Let us show that ¢y o F extends to a regular map at all points of F~1(q). Let ¢, ...,%, €
C[V] be generators of my; < C[V]. Choose homogeneous coordinates [Zy, ..., Zy,] on P™ such that

= [1,0,...,0], and let z; = Z;/Zy be affine coordinates on P% - notice that g € P . Let pe F~'(q).
Then there ex1sts j € J such that p € %;. Let Fj := F|4,. By hypothe51s

F;k"ll)s = )\sjpj (2317)
with As; regular for 1 < s < r, and since p; is in the ideal generated by Ffir, ..., Ff¢, there exists
1 < sg < 7 such that

Asy.;(P) £ 0. (2.3.18)
Let
_ @
F 1(YZ0) - YZO

P —  Fl(p)
be the restriction of F'. The equivalence classes of i1,...,%, in Oy, generate the maximal ideal
m, C Oy,q; since the equivalence classes of z1,..., 2, in Oy, belong to m, it follows that there exist
tij € Oxp for i =1,...,m such that

F*(Z,) = HijpPj in ﬁX,ﬁ- (2319)
On the other hand the equivalence classes of 21, . . ., 2, in Oy 4 also generate mg, thus (2.3.17) and (2.3.18)

give that there exists 1 < g < m such that s, ;(p) # 0. Shrinking U ; around P we may assume that
for all p € % j we have p;, ;j(p) £ 0. By (2.3.19) the restriction of ¢y o F' to % ; is equal to

@j —> YXPn_l
p = (F), [P, pm,;(0)])

Since p;y,;(p) £ 0forallpe @j the above map is regular. Now we must check that the local extensions
glue together and that the resulting lift is unique. Both statements follow from the hypothesis that
the p;’s are not zero-divisors: this implies that no irreducible component of X is contained in F' “(q).

Now let %,% < X be open subsets such that F|g, lifts to ﬁlz % — Bl (Y) and Flg, lifts to
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Fy: Uy — Bl,(Y). The intersection % n % n (X\F~'(q)) is dense in % n % because no irreducible
component of X is contained in F~'(q). Since Filg, ~nam\r-1(q) = Folannamr-1(q) it follows that

F ] = ﬁg. Thus there exists a lift of F'. Unicity of the lift follows from unicity of the restriction of a lift
to (Y\{¢}) and the fact that no irreducible component of X is contained in F~1(q). O

Corollary 2.3.6. Let X < P* and Y < P™ be locally-closed subsets and F': X =Y be an isomorphism.
Let pe X and q := F(p) € Y. There exists a unique isomorphism G: Bl,(X) — Bl,(Y) fitting into
the commutative diagram

Bl (X) —%— Bl (Y)
-, T
X Y

L}
Proof. Let us show that F o mx: Bl,(X) — Y lifts to a regular map G: Bl,(X) — Bl,(Y). Let
[Zo, ..., Zm] be homogeneous coordinates on P™ such that ¢ = [1,0,...,0] and let z; = Z;/Z, for
i€ {1,...,m} be affine coordinates on P?} . The maximal ideal m, = C[Xg,] is generated by z1,. .., z,.

Let U := F71(Xz,), and let ®: U — Xz, be the map given by restriction of . Let ¥: 7y;' (U) —» U
be the map given by restriction of mx.

Since F is an isomorphism, U is an open affine subset of X containing p and hence ®*(z1),..., ®*(2,)
generate the maximal ideal m, < K[U].

On the other hand, let [Wy, ..., W,] be homogeneous coordinates on P™ such that p = [1,0,...,0]
and let wy, = Wy /W, for k € {1,...,n} be affine coordinates on Py, . The maximal ideal m;, = C[Xyy,]
is generated by wq, ..., w,.

Hence, there exists an open affine set V' < Xy, nU containing p such that the ideal in K[V] generated
by the restrictions of ®*(z1),...,®*(z,) to V is equal to the ideal generated by the restrictions of
Wi, ..., Wy to V.

By Remark 2.3.3 it follows that there exists an open affine covering {%;} ;cs of 7' (V) such that for
every j € J the ideal of C[%;] generated by (leﬂ;(l(v))*(q)* (z1)),- .-, (WXlﬂ;(l(V))*((I)*(ZTL)) is principal,
generated by a function which is not a zero-divisor. Hence F omx: Bl,(X) — Y lifts to a regular map
G: Bl,(X) — Bly(Y) by Proposition 2.3.6.

Symmetrically F~! o 7y lifts to a regular map H: Bl,(Y) — Bl,(X). The composition H o G is
equal to the identity map because it is the identity on the open dense subset 75! (X\{p}). By the same
argument, also the composition G o H is the identity. O

Let p1,...,pr € Y be a finite collection of distinct points. Since Bl,, (Y) — Y is an isomorphism
outside p; we may view po,...,p, as points of Bl,, (Y'), consider Bl,,(Bl,, (Y')) and iterate, blowing
up 7 times. Of course we may repeat this operation with a different ordermg of the same points. Let
Y be one of these blow-ups. Then Y enjoys the following universal property similar to that given by
Proposition 2.3.6. Let U < Y be an open affine set containing p1,...,p, and F': X — Y be a regular
map such that locally on F~'U the ideal generated by (F|p-1))*(mp, @...@my, ) (here m,, c C[U]
is the maximal ideal of p;) is principal, generated by a function which is not a zero-divisor: then F lifts
uniquely to a regular map F: X — Y. Since this property is independent of the ordering of the points
it follows that any two such blow-ups are isomorphic. From now on we will denote such a blow-up by
B1P1,~-7Pr (Y)

Ezample 2.3.7. Let p1,...,p, € P*. Then Bl,, ., P" has an open cover by affine n-dimensional spaces.

2.4 The field of rational functions

If we consider the category whose objects are irreducible quasi projective varieties, and morphisms are
dominant rational maps, we get a familiar algebraic category. In order to explain this, we introduce a
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2. RATIONAL MAPS, DIMENSION

key definition. Let X be an irreducible quasi projective variety. The field of rational functions on X is
K(X):={f: X --» K| f is a rational map} . (2.4.20)

Addition and multiplication are defined on representatives. Let f,g € K(X) be represented by (U, ¢)
and (V, 1) respectively. Then

f+g = [(UnV.ouav +Yuav)l
fg = [(UﬁV,<P|UmV'¢|UmV)]-
Ezxample 2.4.1. o K(P") ~ K(z1,...,2y,) is the purely transcendental extension of K of transcend-

ence degree n.

e Let p € K[z] be free of square factors (and degp > 1). Then t?> — p(z) is prime and hence
X :=V (t* = p(z))  A? is irreducible. Then K(z) < K(X) is an extension of degree 2. We may
ask whether K(X) is a purely trascendental extension of K. The answer is yes if degp = 1,2 (see
Example 1.3.5), no if degp > 3 (this requires new ideas).

Let f: X --» Y be a dominant rational map of irreducible quasi projective varieties. We have a
well-defined pull-back

o*
KY) — KX)
¢ = pof
(The composition is well defined because by hypothesis f is dominant.) The map f* is an inclusion of

extensions of K. Suppose that f: X --» Y and g: Y --» W are dominant rational maps of irreducible
quasi projective varieties. Then go f: X --+ W is dominant and

fFog*=(g0 ). (2.4.21)
Of course Id% : K(X) — K(X) is the identity map. We will prove the following result.

Theorem 2.4.2. By associating to each quasi projective variety its field of fractions, and to each
dominant rational map f: X --+ Y of irreducible quasi projective varieties the pull back, we get an
equivalence between the category of irreducible quasi projective varieties with homomorphisms dominant
rational maps, and the category of finitely generated field extensions of K.

What must be proved are the following two statements:

1. An extension of fields K < F is isomorphic to the filed of rational functions K(X) of a quasi
projective variety X if and only it it is finitely generated over K.

2. Let E, F be finitely generated field extensions of K, and let a: E — F be a homomorphism of
K extensions (i.e. an inclusion E < F which is the identity on K). Let Y, X be irreducible quasi
projective varieties such that K(Y'), K(X) are isomorphic to F and F respectively as extensions
of K (they exist by Item (1)). Then there exists a unique dominant rational map f: X --» Y
such that f* = a.

Item (1) is proved in Proposition 2.4.4. Ttem (2) is proved in Proposition 2.4.6.

We start by observing that we may restrict our attention to affine (irreducible) varieties. In fact,
let X be an irreducible quasi projective variety, and let Y < X be an open dense affine subset (e.g. a
prinipal open subset). We have a well-defined restriction map

K(X) --» K(Y). (2.4.22)

In fact, let f € K(X), and let (U, ) be a couple representing an element. Then U nY is an open dense
subset of Y, and the couple (U n'Y, ¢~y ) represents an element f € K(Y), which is independnet of
the representative of f. The restriction map in (2.4.22) is an isomorphism of K extensions. Hence,
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2.4. The field of rational functions

when dealing with the field of fractions of a quasi projective variety, we may assume that the variety is
affine.
Let X be an irreducible quasi projective variety. We have an inclusion of K extensions:

(field of fractions of K[X]) — K(X)

o

2 [(X\V(8), 2)]
Claim 2.4.3. Let X be an affine irreducible variety. Then (2.4.23) is an isomorphism.

(2.4.23)

Proof. We must prove that the map in (2.4.23) is surjective. Let f € K(X), and let (U, ¢) represent f.
By Remark 1.4.4, there exists 0 & v € K[X] such that the dense principal open subset X, is contained
in U. Moreover, by Remark 1.4.4 and Theorem 1.4.2, K[X[] is generated as K-algebra by K[X] and
v~ 1, hence ¢ is represented by (X, ,Y%) where « € K[X]. Let 5 :=~. Since X, = X3, we have proved
that f belongs to the image of (2.4.23). O

Proposition 2.4.4. A field extension of K is isomorphic to the field of fractions of an irreducible quasi
projective variety if and only if it is finitely generated over K.

Proof. Let X be a quasi projective variety. Let us prove that K(X) is finitely generated over K. The
field K(X) is isomorphic to the field of fractions of an open dense affine subset of X. Thus we may
assume that X < A” is closed. By Claim 2.4.3, K(X) is the field of quotients of K[X], and moreover
K[X] is generated over K by the restrictions of the coordinate functions z1,..., 2z, by Theorem 1.4.2.
Hence the restrictions of the coordinate functions z1,. .., z, to X generate K(X) over K.

Now assume that E is a finitely generated field extension of K.

In particular the transcendenece degree of E over K is finite, say m. By Corollary A.5.7, there exists
a prime polynomial P € K(z1, ..., zmn)[2m+1] such that E (as extension of K) is isomorphic to the field
K(z1, ..., 2m)[2m+1)/(P). Write

d d—1
P=zy g tazym g+ +ce, ceK(z,...,2m).

Then, for i € {1,...,d}, we have ¢; = Z—Z where a;,b; € K[z1,...,2m] and b; + 0. Let Pe Klz1,s .-y Zm+1]
be obtained from P by clearing denominators, i.e. P= (by-...bg)P. Lastly, let Q € K[z1,...,zm+1] be

obtained from P by factoring out the maximum common divisor of the coefficients of P as polynomial
in zpy41 (recall that K[z1,...,2y,] is a UFD). Notice that @ is irreducible and hence prime. Write

d d—1
Q = €02y + €12y, + o+ eq, e; € Klz1,...,2m], eo=F0.

Then X := V(Q) = A™*! is an irreducible hypersurface because @ is prime. Let z; := zi|x. We claim
that the rational functions on X represented by {Z1,...,Zm,} are algebraically independent over K. In
fact, suppose that R € K[t1,...,t,] and R(Z1,...,Z,) = 0. By the fundamental Theorem of Algebra,
for any (&1,...,&m) € (A™\V (ep)) there exists &, +1 € K such that (&1,...,&m,&m+1) € X. It follows
that R(&1,...,&m) = 0 for all (&1,...,&n) € (A™\V(ep)), and hence R - eg vanishes identically on A™.
Thus R - eg = 0, and since eg % 0 it follows that R = 0. This proves that {Z1,...,Z} are algebraically
independent over K. On the other hand Z,, 1 is algebraic over K(Z1, ..., Z,) and its minimal polynomial
equals P. Hence the field of fractions of X is isomorphic to K(z1,. .., 2m)[2m+1]/(P). O

Proposition 2.4.5. Let X and Y be irreducible quasi projective varieties. Suppose that a: K(Y) —
K(X) is an inclusion of extensions of K. There exists a unique dominant rational map f: X --» Y
such that f* = «.

Proof. We may assume that X < A™ and Y < A™ are closed. By Claim 2.4.3 K(X), K(Y) are the
fields of fractions of K[X] and K[Y] respectively, and by Theorem 1.4.2, K[X] = K[z1,...,2,]/I(X)
and K[Y] = K[wy,...,w,]/I(Y). Given p € K[z1,...,2,] and ¢ € K[wy,...,w,,] we let p := p|x and
q := qly. We have

Oé(’lUi)z ) fiagiEK[Zla"'7Zn:|7 ?z#o

Sl
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Let U := X\(V(g1) U ... U V(gm)). Then U is open and dense in X. Let

v -2 A™
s (fl(a) fm(a))
91(‘1) v gm(a)

We claim that ¢(U) < Y. In fact let h € I(Y). Since a is an inclusion of extensions of K,

a

R(f1/G1s- s Fon/Tm) = R(a(@1),. .., a(W,,)) = a(h(Wi, ..., W) = «(0) = 0.

This proves that if » € I(Y) then h vanishes on ¢(U) , i.e. $(U) c Y. Thus ¢ induces a regular map
¢: U —>Y. Let f: X --» Y be the equivalence class of (U, ¢). Then f* = a.

It is clear by the above construction that f is the unique rational (dominant) map such that f* =
o. 0

The result below follows at once from what has been proved above.

Corollary 2.4.6. Irreducible quasi projective varieties are birational if and only if their fields of rational
functions are isomorphic as extensions of K.

The result below follows from the above corollary and the proof of Proposition 2.4.4.

Proposition 2.4.7. Let X be an irreducible quasi projective variety and let m := Tr. degg K(X). Then
X s birational to an irreducible hypersurface in A™F1,

2.5 Dimension

Let X be an irreducible quasi projective variety. The dimension of X is defined to be the transcendence
degree of K(X) over K. Next, let X be an arbitrary quasi projective variety, and let X = X; u---u X,
be its irreducible decomposition.

1. The dimension of X is the maximum of the dimensions of its irreducible components. We say
that X has pure dimension n if every irreducible component of X has dimension n.

2. Let p € X. The dimension of X at p is the maximum of the dimensions of the irreducible
components of X containing p.

Ezample 2.5.1. The dimension of A™ is equal to n because {z1,...,2,} is a transcendence basis of
K(z1,...,2,) over K.

Remark 2.5.2.  (a) The dimension of X is equal to the dimension of any open dense subset U < X.
In fact, by definition it suffices to rove it for irreducible X, and in that case it holds because the
fields of rational functions K(X) and K(U) are isomorphic extensions of K. Hence the dimension
of Gr(h,V) is equal to h - (dimV — h), because it is irreducible and it contains an open subset
isomorphic to an affine space of dimension h - (dim V' — h), see Proposition 1.7.5.

(b) If dim X = 0, then X is a finite set. It suffices to prove that if X is irreducible and K(X) = K,
then X is a singleton. Let X < P™ be locally closed and irreducible, and suppose that it contains
two distinct points x1, 2. Then there exist L, M € K[Zy, ..., Z,]1 such that L(x;) = 0 % L(z2),
and M(x1) # 0 & M(x2). Then L/M defines a rational function f: X --» K| regular at z; and
X2, such that f(z1) =0 % f(z2). Thus K(X) + K.

(¢) Let f: X --» Y be a dominant map of irreducible quasi projective varieties. Then dimY < dim X,
because we have the inclusion f*: K(Y) — K(X) of field extensions of K.

Proposition 2.5.3. Let X be an irreducible quasi projective variety and Y < X be a proper closed
subset. Then dimY < dim X.
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Proof. We may assume that Y is irreducible. Since X is covered by open affine varieties, we may
assume that X is affine. Thus X < A™ is a closed (irreducible) subset, and so is Y. We may choose

a transcendence basis {f1,..., fa} of K(Y), where each f; is a regular function on Y (for example a
coordinate function). )
Let fi,..., fs € K[X] such that f;W = f;. Since Y is a proper closed subset of X, there exists a

non zero g € K[X] such that gy = 0. It suffices to prove that f1,..., fa, g are algebraically independent
over. We argue by contradiction. Suppose that there exists 0 # P € K[Sy,...,S4,T] such that
P(fl, .. .,fd,g) = 0. Since X is irreducible we may assume that P is irreducible. Restricting to Y
the equality P(fl, A fd,g) = 0, we get that P(fi,..., f4,0) = 0. Thus P(S1,...,S4,0) = 0, because
f1,- .., fa are algebraically independent. This means that T" divides P. Since P is irreducible P = T,
c € K*. Thus P(f1,...,f4,9) = 0 reads g = 0, and that is a contradiction. O

Corollary 2.5.4. A (non empty) closed subset X = A"+ has pure dimension n if and only if it is an
irreducible hypersurface. Similarly, a closed subset X < P"*1 has pure dimension n if and only if it is
an irreducible hypersurface.

Proof. Let X < A"™*! be an irreducible hypersurface. Let I(X) = (f). Reordering the coordinates
(21, -+, Zn, Zn+1) We may assume that

d d—1
f=cozpi1 +ezp g+ 4ca, €Kz, ., z], c#0, d>0.

In proving Proposition 2.4.7 we showed that the restrictions to X of the z;’s, for i = 1,...,d give a
transcendence basis of K(X). Thus dim X = n. Since the irreducible components of a hypersurface are
hypersurfaces (if f = [] f™ is the decomposition of f into prime factors, the irreducible components
of V(f) are the hypersurfaces V(f;)), it follows that a hypersurface X = A"*! is of pure dimension n.

In order to prove the converse, let X < A™t! be a closed subset of pure dimension n. Thus
every irreducible component of X is a closed subset of A”*! of dimension n. Since the union of
hypersurfaces in A"*! is a hypersurface in A”*!, it suffices to prove that each irreducible component
of Xis a hypersurface, i.e we may assume that X is irreducible. Since dim X = n < dim A"*!, there
exists a non zero f € I(X) < K[z1,...,2n41]. Since X is irreducible, the ideal I(X) is prime, and hence
there exists a prime factor g of f which vanishes on X. Thus X < V(g), dimX = n = dimV(g) (by
the result that we just proved), V(g) is irreducible, and X is closed in V(g). By Proposition 2.5.3 we
get that X = V(g). This finishes the proof for closed subsets of A?+1.

The result for closed subsets of P**! follows by a smilar proof, or by intersecting with standard
open affine subsets P . O

Proposition 2.5.5. Let X, Y be quasi projective varieties. Then dim(X xY) =dim X + dimY.

Proof. We may assume that X and Y are irreducible affine varieties. There exist transcendence bases
{fi,--o, fats {91, -, ge} Of K(X) and K(Y) respectively given by regular functions. Let 7x: X xY — X
and my: X x Y — Y be the projections. We claim that {7%(f1),...,7%(fa), 75 (q1),...,m5(ge)} is a
transcendence basis of K(X x Y).
First, by Proposition 1.5.1 K[X xY] is algebraic over the subring generated (over K) by 7% (f1), ..., 7 (ge)-
Secondly, let us show that 7% (f1),..., 7 (ge) are algebraically independent. Suppose that there is
a polynomial relation

N P (TE (1) T () - T ()™ T ()™ = 0,

where each P, .m. is a polynomial. Since gi,...,g. are algebraically independent we get that
Py .om.(f1(a),..., fa(a)) = 0 for every a € X. Since f1,...,fq are algebraically independent, it
follows that P, ... m., = 0 for every 0 < mq,...,m¢ < N, and hence P = 0. This proves that
% (f1),...,m(ge) are algebraically independent. O
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Chapter 3

Projective methods

3.1 Introduction

3.2 Maps of finite degree

Definition 3.2.1. Let f: X --+ Y be a rational map of irreducible quasi-projective varieties. The
degree of f is given by

deg f 0 if f is not dominant,
egf =
& [K(X): f*(K(Y))] if f is dominant (hence pull-back of rational functions makes sense).

If f is dominant, the pull-back f*: K(Y) — K(X) is an embedding of fields; abusing notation we
denote the image by K(Y'). We recall that

[K(X) : K(Y)] = dimg ) K(X).

Thus 0 < deg f < oo if and only if f is dominant and dim X = dimY’, or equivalently K(X) is a finite
extension of K(Y).

Example 3.2.2. Let X < A™*! be an irreducible hypersurface such that I(X) = (P), where
P = aongrl + alziﬁ + -+ ag, a; €K[z1,...,2,], ag#0.

Let f: X — A™ be the projection map f(z) = (z1,...,2,). Then deg f = d. In fact suppose that d = 0.
Then Im f = V(ag) and hence f is not dominant. If d > 0, then K(X) = K(z1, ..., zn)[2n+1]/(P), and
hence [K(X) : K(z1,...,2,)] =d.

Definition 3.2.3. Let f: X --+ Y be a rational map of irreducible quasi-projective varieties, of finite
degree (hence K(X) is a finite extension of K(Y')). The separable degree of f is equal to 0 if deg f = 0,
and if deg f # 0 it is the separable degree [K(X) : K(Y)]s, see Theorem A.5.3. We denote it by deg, f.

Example 3.2.4. Let X < A™*! and f: X — A" be as in Example 3.2.2. Suppose that d + 0, and hence
deg f =d > 0. If charK = 0, then K(X) is a separable extension of K(z1,..., z,), and hence deg, f =

deg f = d. If char K = p > 0, then there is a maximum r > 0 such that P = Q(z1,..., 2,25, ), where

Q<XKlz1,...,2n, w]. Then 95%1 #+ 0. It follows that the maximal separable extension of K(z1, ..., z,)

in K(X) is obtained by adjoining zﬁll. Since the minimal polynomial of zf;;l is f—o (the minimal
d deg f

polynomial is monic), the separable degree deg, f is equal to deg,, @ = = o
Below is the main result of the present section.

Proposition 3.2.5. Let f: X — Y be a regular map between irreducible quasi-projective varieties.
Suppose that deg f < 0. There exists an open dense YO 'Y such that

IfHq}| = deg, f VYqeY".
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3. PROJECTIVE METHODS

Ezxample 3.2.6. Let us check the statement of Proposition 3.2.5 for the map f: X — A" of Example 3.2.2.
Let @Q € K|[z1,...,2n,w] be as in Example 3.2.4, and let Y := V(Q) < A™. Let h: X — Y be defined
by h(z) = (z1,.. .,zn,zZ;l), and let g: Y — A™ be the projection g(z1,..., zn,w) = (21,...,2,). Then
f=goh.

The non zero polynomial 0Q/0w has degree in w strictly smaller than the degree in w of @, hence
it is not a multiple of the prime polynomial Q. It follows that V(Q, dQ/0w) is a proper closed subset
of X and hence it has dimension strictly smaller than dim X = n. Therefore, the closure

A= f(V(Q,0Q/0w))

is a proper closed subset of A™ and hence U := (A™\ A\V (ag)) is an open dense subset of A™. Let a € U.
Then |g~1(a)| = deg, f, because Q(a,w) € K[w] is a polynomial of degree deg, f with simple roots.
Since f~1(a) = h™1(g71(a)), and h is bijective (since char K = p, every elemnt of ]K has exactly one
p-th root), we get that |f~!(a)| = deg, f.

The proof of Proposition 3.2.5 follows some preliminary results.

Let f: X - Y and g: W — Y be regular dominant maps of irreducible varieties. Suppose that there
exists an isomorphism of fields ¢: K(W) — K(X) which is the identity on K(Y). Let h: X --» W be
the birational map such that h* = ¢ (see Proposition 2.4.6). Since ¢ is the identity on K(Y), we have
a commutative diagram

Lemma 3.2.7. Keeping notation and hypotheses as above, there exists a dense open subset Y° c YV
such that, for all y € y°, the inverse image f~1(y) is contained in Reg(h), and the map h defines a
bijection
fy) — 97')
T —  h(z).

Proof. Let h~': W --» X be the inverse of h. By Proposition 2.2.6, there exist open dense subsets
Ux < Reg(h) and Uy < Reg(h™!) such that the restriction of i defines an isomorphism Uy —— Uy,
with inverse the restriction of h~! to Uy, (this result is not in the statement of the proposition, but in
the proof). Let

YO = Y\f(X\Ux)\g(W\Uw).

Since X\Ux, W\Uw are closed proper subsets of the irreducible varieties X, Y, and dim X = dimY =
dim W, the open Y° < Y is non empty, and hence dense (Y is irreducible). One easily checks that the
Lemma, holds for the Y° that we have just defined. O

Next, we consider a more general version of Example 3.2.2. Let Y be an affine variety. Let P €
K(Y)[t] be an irreducible polynomial:

P=tttait™ 4. +aq

Since Y is affine K(Y) is the field of fractions of K[Y]. Thus there exists 0 # b € K[Y] such that
b-a;e f*(K[Y]) forall 1 <i<d. Let ¢g:=b, ¢; :=b-a;, 1 <i<dand

Q= cot? + 1t + -+ g e K[Y][E]. (3.2.1)
Let m: Y x A’ > Y be the projection.

Lemma 3.2.8. Keep hypotheses and notation as above. Assume moreover that

dp
P At 4 (d—1)art?2 + -+ agq 0.
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3.2. Maps of finite degree

(If char K this holds as soon as d > 0, if char K = p it holds if and only if there exists i € {1,...,d},
which is not a multiple of p, such that a; +0.)

(a) There is one and only one irreducible component V(Q); of V(Q) which dominates Y, i.e. such
that m(V(Q);) =Y; call it V, and let g: V — Y be the map defined by 7.

(b) The extension of fields K(V) > K(Y') given by the dominant map g: V — Y is generated by the
restriction of the function t to V, and P is the minimal polynomial of t over K(Y).

(c) There is an open dense U <Y such that g~ (y)| = d for every y € U.

Proof. (a): We have m(V(Q)) > Y\V(cg), and Y\V(cg) is dense in Y because ¢y # 0. It follows that
there exists at least one irreducible component V(Q)o of V such that m(V(Q)o) =Y. Let g € I(V(Q)o)-
We claim that

Qlg in K(Y)[¢]. (3.2.2)

(Notice: we do not claim that Q|g in K[Y][t].) In fact suppose that (3.2.2) does not hold. Then Q
and ¢ are coprime (in K(Y)[¢]) because @ is prime, and hence there exist a, 8 € K(Y)[t] such that
a-Q+ f-g=1. Multiplying by 0 # v € K[Y][¢] such that a- v, 5 - v € K[Y][t] we get that

(@-7MQ+(B-7)g="r-

It follows that if ¢ € V(Q)o then v(g) = 0. Since v # 0 we get that 7(V(Q)o) # Y: that is a
contradiction. This proves (3.2.2). Let I(V(Q)o) = (91,--.,6-). From (3.2.2) we get that there exist
hi,...,h, € K[Y][t] and my,...,m, € K[Y] such that

m;-gi=Q hyy m;#0, i=1,...,r (323)

Set m = my - -+ - my. Then V(Q)o\V(m) = V(Q)\V(m) by (3.2.3), and hence V(Q)o is the unique
irreducible component of V(@) dominating Y.

(b): This is clear by construction.

(c): Let
dQ d—1 d—2
e deot®™ + (d — D)eat®™ " + -+ + cq—1 € K[Y][2].
be the derivative of @) with respect to t. By hypothesis % #+ 0, and deg, % < d = deg, Q. Thus @
and % are coprime in K(Y)[¢] and hence there exist u, v € K(Y)[t] such that
dQ
. — =1
pQtv.—
Arguing as above we get that there exists a proper closed C' < Y such that
—1 dQ
7T (Y\C)nV(Q)nV i . (3.2.4)
Now let U := (Y\C\V (co)\V (m)): then |77 1(q)| = d and 7= 1(q) = V for every q € U. O

Remark 3.2.9. If K[Y] is a UFD we may factor out the ged {co, . .., cq} and hence by renaming the ¢;’s
we may assume that ged {co,...,cq} = 1. It follows that V(Q) is irreducible (the proof is the same as
the one for hypersurfaces in A™). The problem is that in general K[Y] will not be a UFD (an example:
Y = V(xiwa — 2374) < A* and Q = 21y — 23), and hence there might be no way of “reducing” the
polynomial of (3.2.1) in order to get that V(Q) is irreducible.
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3. PROJECTIVE METHODS

Proof of Proposition 3.2.5. Suppose that deg f = 0. Then f(X) # Y and Y° := Y\ f(X) will do.

Now suppose that deg f > 0. We construct, via Lemma 3.2.8, a dominant map g: W — Y of
irreducible varieties such that the extension K(W) > K(Y) is isomorphic to the extension K(X) o K(Y),
and so that |g~!(y)| = deg, f for y in an open dense subset of Y. Then Proposition 3.2.5 follows from
Lemma 3.2.7.

Since Y is covered by open affine sets we may assume that Y itself is affine. The extension of
fields K(X) o K(Y) is algebraic and finitely generated. Let K(X)® o K(Y) be the maximal separable
extension of K(Y) in K(X). Let d := [K(X)* : K(Y)] = deg, f. By Theorem A.5.3, there exists a
primitive element £ of K(X)® over K(Y'). Let

P=tttait™ '+ a4, aeK(Y)

be the minimal polynomial of {. Let @ € K[Y][t] be the polynomial in (3.2.1), obtained by clearing
denominators of ay,...,aq. Let V < V(Q) be the unique irreducible component dominating Y, and let
g: V. — Y be the restriction of 7, see Lemma 3.2.8. By Item (b) of that lemma, the extension of fields
K(X)®* o K(Y) and K(V) o K(Y) are isomorphic.

HK(X) =K(X), let W:=V.

If K(X)® £+ K(X), then charK = p > 0, and if a4, . .., a;, are generators of K(X) over K(X)?®, there
exist B1,...,0m € K(X)® and 71, ...,7, € N such that af” = f; for i € {1,...,m}, see Theorem A.5.3.

We may view f1,..., B, as rational functions on V', because the extension of fields K(X)* > K(Y)
and K(V) o K(Y) are isomorphic. Replacing Y by an open dense subset % and V by ¢~ }(%)
we may assume that f; are regular functions for ¢ € {1,...,m} (recall that dimV = dimY’). Let

W cY x Al x A™ be the subset defined by
W= {(y,t,21,...,2m) €Y x Al x A™ | (y,t) e W, zip” = G}

In both cases (K(X) separable or not separable over K(Y')) we let g: W — Y be the projection map.
By construction the extension of fields K(X) o K(Y) and K(W) o K(Y) are isomorphic, hence by

Lemma 3.2.7 it suffices to prove that there exists an open dense U < Y such that |~ (y)| = d for y € U.

This follows from Lemma 3.2.8, because if char K = p, the equation 2’ = /3 has one solution. O

Definition 3.2.10. We introduce some terminology. Let Y be a quasi-projective set and & a property
that might or might not hold for a given y € Y (formally &2 is a subset of Y'). We say that property &
holds for the generic point of Y if there exists an open dense Y° — Y such that property &2 holds for
all y e YO,

Example 3.2.11. 1. The generic point of Y is smooth.
2. If f: X — Y is a map of quasi-projective varieties and deg f < oo then |f~! {q} | = deg f for the

generic g€ Y.

3.3 Degree of a closed subset of P

Let X be an irreducible quasi-projective variety. The codimension of a closed subset Y < X is equal
to dim X — dimY, and is denoted by cod(Y, X). Below is the main result of the present section.

Theorem 3.3.1. Let X < P" be closed, and let ¢ := cod(X,P™).
1. If 0 < k < c and A € Gr(k,P™) is generic, then A does not intersect X .
2. If c< k <n and A € Gr(k,P™), then A does intersect X .

3. There exists a strictly positive integer deg X such that for a generic A € Gr(c,P™) the intersection
A N X has cardinality deg X .

The proof of the Items in Theorem 3.3.1 will follow from some preliminary results.
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3.3. Degree of a closed subset of P

Ezample 3.3.2. Let X < P™ be a hypersurface. Thus ¢ = cod(X,P") = 1. Item (1) of Theorem 3.3.1
is trivially verified, because P™\X is an open dense subset of P™. It is also straightforward to check
that Item (2) holds. In fact let A = P(WW), where W is a vector subspace of dimension at least 2. If
X = V(F), thenA n X = V(Fjy), and since dim W > 2, the non constant homogeneous polynomial
Fiw has non trvial zeroes, i.e. A n X is not empty. Regarding Item (3): let F' be a generator of
the homogeneous ideal I(X); thus F' is determined up to multiplication by a non zero factor. Then
deg X = deg F' - see Exercise 3.6.1.

Given 0 < k < nlet Ix(k) € X x Gr(k,P™) be defined by
P (k) = {(p.A) € X x Gr(k,P") | pe A}
Restricting to I'x (k) the projections of X x Gr(k,P"), we get regular maps

I'x (k) (3.3.1)

X / \Gr(k,]P’")

If A € Gr(k,P"), then p~1(A) is identified with A n X. Hence Theorem 3.3.1 is a statement about the
fibers of the map p. Hence we must start by studying I'x (k). The result below is essentially obtained
by considering the fibers of the map 7, which are all alike.

Proposition 3.3.3. Let X < P" be closed and irreducible. Then T'x (k) is closed irreducible of dimen-
sion
dimTx (k) = dim X + k(n — k). (3.3.2)
Proof. A straightforward computation shows that I'x (k) is closed. Let 0 < i < n. We identify P’ with
K", as usual. We have an isomorphism
Xz, x Gr(k,K") % Tx(k) n (P, x Gr(k,P"))
(p, W) — (p,p+ W)

Notice that W is a k-dimensional vector subspace of K™. Moreover p + W denotes the closure in P™ of
the affine subspace p + W < P~ K". Omitting those indices i such that X < V(Z;), we get that
I'x (k) is covered by open irreducible subsets of dimension

dim(Xz, x Gr(k,K")) = dim X + dim Gr(k,K") = dim X + k(n — k).

Since X is irreducible Xz, n Xz, # & for every couple (i, j) of indices such that Xz, and Xz, are non
empty. It follows that I'"x (k) is irreducible, of dimension given by (3.3.2). O

Corollary 3.3.4. Let X < P™ be closed. Then T'x (k) is closed of dimension
dimI'x (k) = dim X + k(n — k). (3.3.3)

If k < cod(X,P™) then
dimT'x (k) < dim Gr(k,P™) (3.3.4)

with equality if and only if k = cod(X,P™).
Proof. Let X = X7 u---u X, be the irreducible decomposition of X. Then
Fx(k) = FXl(k) U v er(k)

Thus (3.3.3) follows from Proposition 3.3.3. Let’s prove (3.3.4). Let ¢ := cod(X,P") and X; such that
c=n—dimX;. Then

dimTx,(¢c) =n—c+c(n—c) = (c+1)(n—c) = dim Gr(c, P™).
This gives (3.3.4). O
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Proof of Item (a) of Theorem 3.3.1. By Corollary 3.3.4, the image of the map p in (3.3.1) is a proper
closed subset of Gr(k,P"). Hence for generic A € Gr(k,P"), the fiber p~!(A) = A n X is empty. O

The result below will be useful in proving Items (b), (c¢) of Theorem 3.3.1, and also in other circum-
stances.

Proposition 3.3.5. Let X < P" be closed. Suppose that p € P"\X and that H < P™\{p} is a
hyperplane. Let
Ep) > H
z = (paynH

be the projection. Then m(X) is a closed subset of H and dim7(X) = dim X.
Proof. We may assume that X is irreducible. Since m|x is regular and X is projective 7(.X) is closed by

Proposition 1.6.3. It remains to prove that dim 7(X) = dim X. We may assume that p = [0,...,0,1],
H =V (Z,), and X is not contained in V(Z;). We have

7T([ZQ, .. ,Zn]) = [Zo, ey Zn—1]~

Let Y := m(X). We have an injection of fields 7*: K(Y) — K(X), and we must prove that [K(X) :
7*(K(Y))] < oo. The field K(Y) is generated (over K) by

(Z1/Z0) 1y s (Zn1/Z0) -

On the other hand K(X) is generated by

(Z1/Z0) x5+ (Zn-1/20)x,(Zn/ Z0) | x-

Since 7*((Zi/Zo)v) = (Zi/ Z0)| x, it suffices to prove that (Z,,/Zo)|x is algebraic over (Z1/Z0)|x, - - -, (Zn-1/20)|x -
There exists F € I(X) such that F(p) # 0 because p ¢ X. Since p = [0,...,0,1] we get that

F=aOZ,‘f+alfo_1 + -+ agq, aiEK[Zo,...7Zn,1]i, ag # 0.
Dividing by Z¢ and restricting to X we get that
ao - ((Zn/20)1x)" + @1 - (Zn/Z0)x)" "+ +Ta =0 (3.3.5)

where @; := (aj/Zg)|X for 1 < j < d. Since ag # 0, Equation (3.3.5) shows that (Z,,/Zp)|x is algebraic
over (Zl/ZO)\Xa---a(Zn—l/ZO)|X~ D

Proof of Item (b) of Theorem 3.3.1. The proof is by induction on cod(X,P™). If cod(X,P™) = 0 the
result is trivial (if you don’t like to start from cod(X,P™) = 0 you may begin from cod(X,P") = 1,
i.e. X a hypersurface). Let’s prove the inductive step. Let p € A. If p € X there is nothing to prove;
thus we may assume that p ¢ X. Choose a hyperplane H < P™ not containing p, and let 7 be projection
from p, as in (3.3.6). Then Y := 7(X) ¢ H ~ P"! is closed and dimY = dim X by Proposition 3.3.5.
Thus cod(Y, P~ 1) = (cod(X,P") —1). Let A’ := 7(A\ {p}). Then A’ = H is a linear subspace with
dimA’ = (dim A — 1), and hence dim A’ > cod(Y,P"~!). By the inductive hypothesis it follows that
A nY is not empty. Let y € AnY. Since y € w(X) there exists z € X such that n(z) = y. By
definition of 7, we have x € {(p,y). Since p € A and y € A (because A’ = A n H), it follows that z € A.
Thus z € A n X. O

Proof of Item (c) of Theorem 3.8.1. We start by defining the degree of a closed X c P". First assume
that X is irreducible. Let ¢ := cod(X,P™). Let

I'x(c) - Gr(e,P7)

oA o 3 (3.3.6)
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Since I'x(¢) and Gr(c,P™) are varieties we have a well-defined degw. By Corollary 3.3.4 we have
dim'x (¢) = dim Gr(c¢,P™): thus degm < 00. The degree of X is defined to be

deg X := deg(T'x(c) — Gr(c,P™)). (3.3.7)

In general let X = X7 U --- U X, be the irreducible decomposition of X. The degree of X is defined to
be
deg X := Z deg X;. (3.3.8)
dim X;=dim X
If X is irreducible, Item (c) of Theorem 3.3.1 follows from Proposition 3.2.5 applied to the map =

of (3.3.6). In general let X = X; U --- U X, be the irreducible decomposition of X. By Item (a) of
Theorem 3.3.1, for generic A € Gr(c, P™)

AnX, =gif dimX; <dimX, An(X;nX;)=gifi#j

It follows that for A generic
AnX = |_| An X,
dim X;=dim X

and hence Item (c) follows from the case X irreducible. O

Remark 3.3.6. Theorem 3.3.1 gives a characterization of the dimension of a closed X < P" via its
intersections with linear subspaces.

The degree of a closed subset of a projctive space may be considered as a first, very rough, measure
of its complexity. The (classical) result below gives a lower bound of the degree.

Proposition 3.3.7. Let X < P" be closed, irreducible and non degenerate, i.e. spanning the whole
projective space. Then
deg X = cod(X,P") + 1. (3.3.9)

Proof. By induction on ¢ := cod(X,P"). If ¢ + 0, then X = P", and certainly (3.3.9) holds. If ¢ = 1,
then X is a hypersurface. Let I(X) = (F). Then degF > 2, because X is non degenerate. Since
deg X = deg F' by Exercise 3.6.1, we get that (3.3.9) holds in this case as well.

Let us prove the inductive step. Thus we assume that ¢ > 2. Since the generic A € Gr(c,P")
intersects X in deg X points, it follows that for a generic p € X, the generic A € Gr(c, P™) containing p
intersects X in deg X points. The idea is to project X from p to a hyperplane H =~ P"~! not containing
p, and compare the degree of X and the degree of the image, which has codimension ¢ — 1 in P*"~!, and
hence satisfies the inequality in (3.3.9).

Explicitly, choose homogeneous coordinates such that p = [0,...,0,1], and H = V(Z,). The
projection of X from p to H is the rational map

X Jf_) ]mel
[Z] e [Z()v"'vanl]

Let Bl,(P™) be the blow up of P™ in p, and let p: BL,(P") — X,, where ¥, is the set of lines
containing p, see (2.3.3). We may identify ¥, with H, by mapping a line in ¥, with its intersection
with H. Let X := BL,(X) < BL,(P"), and let : X — P"~! be the restriction of p. We have a

commutative diagram
X
[N
s

X . Lyprt

Let Y := Im(®). Then Y is closed and irreducible, because X is projective and irreducible. We claim
that dimY = dim X. Let ¥: X — Y be the map defined by @. Since 1 is surjective, we have an
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injection ¥*(K(Y)) < K()N() By our hypothesis on p, the variety X is not a cone with vertex p, and
hence there exists F' € I(X), homogeneous of degree d, which is not an element of K[Zy, ..., Z,_1], i.e.

F:Cle'Zleie-i-...-Fad, aiEK[Z(),...,Z”_l]i, ,€<d, Qe :*:O

Dividing F by Z¢, we get that

d—e
Zl Zn—1> <Zn> <Zl Zn—l)
ae | —,..-, = +...taq | =—,---, =0.
< (Zo Zo ) \Z N4 ))

It follows that the rational function 7* (%‘X> is algebraic on ¥*(K(Y)), and hence K(X) is algebaric

over ¥*(K(Y)). This proves that that dim Y = dim X. Thus cod(Y,P"~!) = ¢—1, and by the inductive
hypothesis deg Y > ¢. On the other hand, let A be a generic dimension-(c — 1) linear subspace of P"~1.
Then

[AnY|=degY, [KA,p)n X|=degX.

(The second equality holds because (A, p) is a generic dimension-c linear subspace of P containing p.)
Again by genericity, the fiber of ¢ over each point of A 'Y does not intersect the exceptional set of
7: X — X, ie. 77 1(p); it follows that

deg X =[(A,ppn X|Z|AnY|+1=degY +1>c+1.

3.4 Intersection of closed subsets of a projective space

Theorem 3.3.1 shows that the dimension of a closed subset of a projective space is determined by the
intersections of the subset with linear subspaces. Interesting consequences of this fact are proved in the
present section.

First we define the join of two closed subsets X,Y < PV such that

(Xyn(Y) =g, (3.4.1)
where (X)) and (Y") are the linear subspaces generated by X and Y respectively.

Definition 3.4.1. The join of X and Y is the subset of PV swept out by the lines joining a point of
X to a point of Y:

JX, V)= |J <@y (3.4.2)

TeX,yeY

Lemma 3.4.2. Let X,Y < PV be closed subsets such that (3.4.1) holds. Then

1. J(Y,W) is closed,

2. if X and Y are irreducible J(X,Y) is irreducible,

3. dimJ(X,Y)=dimX +dimY + 1.
Proof. Let m := dim{(X) and n := dim{(Y"). There exist homogeneous coordinates

[S0, -y Sm, Loy Tny Uoy - -, Up)
on PV such that
(X>=A{[So,---,5m,0,...,0]}, <>={[0,...,0,T0,...,Ts,0,...,0]}.
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3.4. Intersection of closed subsets of a projective space

Then
J(Xay):{[SO,;vaTOaanaO730]|[S]eX7 [T]EY} (343)

Ttem (1) follows at once. Let p € (J(Y,W)\X\Y). By (3.4.1) there is unique couple (¢1(p), p2(p)) €
X x Y such that p € {(v1(p), p2(p)), and the map

(J(X,Y)\X\Y) %  XxY

b = (p1(p), p2(p)) (3.4.4)

is regular, with fibers isomorphic to K*. Moreover for any 0 < ¢ < m and 0 < j < n the inverse image
¢ H(Xs, x Y7,) is isomorphic to Xg, x Y7, x K*. Items (2) and (3) follow. O

Proposition 3.4.3. Let X < P™ be closed, irreducible of strictly positive dimension. Let H < P™ a
hyperplane not containing X. Then X n H is not empty and every irreducible component of X n H
has dimension equal to (dim X — 1).

Proof. The intersection is non empty by Theorem 3.3.1. First we will prove a weaker result, namely
that
dimX n H =dim X — 1. (3.4.5)

Let ¢ := cod(X,P™). Then (3.4.5) is equivalent to cod(X n H,H) = ¢. Since X n H & X we have
dim X nH < dim X and hence cod(X nH, H) > ¢. By Theorem 3.3.1 applied to the closed (XnH) ¢ H
it suffices to prove that if L ¢ H is an arbitrary linear subspace with dim L = ¢ then Ln (X n H) # .
By Theorem 3.3.1 applied to X we have L n X # (J: since L ¢ H we have Ln X ¢ L n (X n H).
This proves (3.4.5). The proposition states a stronger result namely that every irreducible component
of X n H has dimension equal to (dim X — 1). The proof is by induction on cod(X,P™), the initial case
being cod(X,P™) = 1 (Notice that if cod(X,P™) = 0 the statement of the prosition is trivially true). If
cod(X,P") = 1 then X is a hypersurface by Corollary 2.5.4 and hence X n H is a hypersurface in H:
by Corollary 2.5.4 every irreducible component of X n H has coddimension one in H. Let’s prove the
inductive step. We assume that cod(X,P") = ¢ > 2. Suppose that W7 is an irreducible component of
X n H. Pick a point p € H\X and a hyperplane H’' not containing p and different from H. Let

P\{p} ~> H'
q — (p,q)nH

be the projection. We will consider m,(X) n m,(H). Let X n H = W1 U --- U W, be the irreducible
decomposition of X n H. Let us prove that there exists p such that

mp(Wh) & mp(W;) Yie{2,...,r}. (3.4.6)

In fact, let ¢ € Wi\ J;_, Wi, and let i € {2,...,r}. Then J(g, W;) is defined, and by Lemma 3.4.2, it is
closed irreducible. Moreover, by Lemma 3.4.2

Since H X, dimW,; < dim X — 1 and since cod(X,P") > 2 we have dim W; < dim H — 2. Thus
(3.4.7) gives that J(q, W;) # H. Hence there exists p € H\|J;_, J(¢, W;). Then m,(q) ¢ m,(W;) for
i€{2,...,r}, and hence (3.4.6) holds.

Each of m,(W1),...,m,(W,) is closed, and

mp(X) nmp(H) = mp(Wh) u ... (W),

Moreover, by (3.4.6) it follows that m, (W) is an irreducible component of m,(X) n7,(H). By Propos-
ition 3.3.5 we have dim 7, X = dim X and hence cod(m,(X), H') = (cod(X,P™) — 1). By the inductive
hypothesis we get that cod(m,(W1),7,(X)) = 1. Since dim 7, (W) = dim W3 and dim7,(X) = dim X
(by Proposition 3.3.5) we get that cod(Wy, X) = 1. O
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Corollary 3.4.4. Let X < P" be closed of codimension c. Let A € Gr(c,P™). Then X n A is not empty
and every irreducible component of X n A has dimension at least (dim X — ¢).
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The proposition below is a remarkable generalization of the well-known linear algebra result: “a
system of n homogeneous linear equations in (n + 1) unknowns has at a non-trivial solution”.

Proposition 3.4.5. Let Y, W < P™ be closed and suppose that (AimY +dim W) =n. ThenY nW £ ¥
and moreover every irreducible component of Y n W has dimension at least (dimY + dim W — n).

Proof of Proposition 3.4.5. Let [so, ..., Sn,t0,---,t,] be homogeneous coordinates on P?"*1. We have
two embeddings

P _1> p2n+1 P L p2n+l

(3.4.8)
[X07...,Xn] [and [80,...,87“0,...,0] [X07...,Xn] [and [07...,0,X0,...,Xn]
Since the images of i and j are disjoint linear subspaces of P?"*! the join J(i(Y),j(W)) is defined. We
will intersect J(i(Y'), j(W)) with the linear subspace of P?"*1 defined by

A= V(So—to,...78n—tn).

We have an isomorphism

~

YW - AnJGEY),5(W)) (3.4.9)
[Xov.. . Xn] = [Xoveeos X Xos. s X -
By Lemma 3.4.2 the closed J(i(Y),j(W)) < P?"*! has dimension (dimY + dim W + 1). On the other
hand A is a codimension-(n + 1) linear subspace of P?"*1; by Corollary 3.4.4 A n J(i(Y), j((W)) is not
empty and every irreducible component of AnJ(i(Y"), j((W)) has dimension at least (dim Y +dim W —n).
Isomorphism (3.4.9) gives that Y n W is not empty and every irreducible component of ¥ n W has
dimension at least (dimY + dim W — n). O

Ezample 3.4.6. Let n = 2 and X < P" be a smooth hypersurface. Then X is irreducible. In fact
suppose that X =Y u W where Y, W are proper closed subsets of X. Then Y and W are of pure
dimension (n — 1) and hence Y n W is not empty by Proposition 3.4.5. Let p € Y n W: as is easily
checked X is singular at p, that is a contradiction.

3.5 Dimension of fibers

The following key result is a particular case of Krull’s HauptidealSatz (valid for arbitrary Noetherian
rings).

Theorem 3.5.1. Let X be an irreducible quasi projective variety and 0 %+ f € K[X]. Every irreducible
component of V(f) has dimension (dim X — 1).

Proof. We may assume that X is affine. Thus there exists n such that X < A" is closed. By The-
orem 1.4.2 there exists f € K[z1,...,2,] such that f = fjx. We must prove that, if Y is an irreducible

component of V(f), then dimY = dim X — 1. We view A" as the open affine set Py, < P", and we let
X, V( f ),Y < P" be the closures of X, V ( f ) and Y respectively. Let d be the degree of the hypersurface
c

V(f) = P" Let N := ((“t") — 1) and let

P vi PN

(Zo,-. s Zn) = (28,287 2,,...,29]
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be the Veronese map. Then v/} defines an isomophism X — v(X). Since V(f) is a hypersurface of

degree d there exists a hyperplane H = PV such that v~!(H) = V(f). Thus v/ defines an isomorph-

ism X nV(f) — v(X) n H. Tt follows that v(W) is an irreducible component of v(X) n H. By
Proposition 3.4.4 we have

dimW = dimW = dimy(W) =dim X — 1 = dim X — 1.
O

Proposition 3.5.2. Let f: X — Y be a reqular map of quasi-projective varieties. Then the following
hold:

(a) If zo € X, the dimension at xg of every irreducible component of f~1(f(z0)) is at least dim,, X —
dimf(mo) Y.

(b) Assume that X,Y are irreducible, f is projective and dominant. There exists an open dense
U <Y such that for all y € U the fiber f~1(y) has pure dimension dim X — dimY'.

(c) Assume that f is projective. The function

y % N
y — dimfl(y)

is upper-semicontinuous, i.e. given k € N the set {y € Y | dim f~1(y) = k} is closed.

Proof. (a): We may assume that Y is affine. Let dimy(,,) Y = m. Then there exist ¢1,...,¢m € K[Y]
such that f(zo) is an irreducible component of V(¢1, ..., ¢m) (in fact choose 0 # ¢1 € I({f(z0)}), then
choose ¢ € I({f(x0)}) not vanishing on any irreducible component of V(¢;) etc.). Thus, by shrinking
Y around f(xo), we may assume that {zo} = V(¢1,..., ), and hence

SN (@0) =V (f*b1,. .., [Fbm.

By repeated application of Theorem 3.5.1 every irreducible component of V(f*¢1,..., f*¢,,) has di-
mension at xg at least (dimg, X —m) = (dimg, X — dimy ) Y).

(b): By induction on e := dimX — dimY. Suppose that e = 0, i.e. dimX = dimY. By our
hypotheses 0 < deg f < o0, hence in this case the assertion holds by Proposition 3.2.5.

Let us prove the inductive step. Suppose that e > 0. Since f is projective and dominant, it is
surjective. Hence for all y € Y, we have dim f~1(y) > e by Item (a) (more precisely, every irreducible
component of f~1(y) has dimension at least e). Since f is projective, we may assume that X < PV x Y’
is closed, and f = mx, where m: PN x Y — Y is the projection map. Let p: PV x Y — PV be the
other projection. Let yo € Y, and let H < PV be a hyperplane that does not contain f~!(yy). Then
W = H x Y is a proper closed subset of X. Let g: W — Y be the restriction of the projection m
(i.e. the restriction of f). The map g is projective, and 7(W) = Y, because, given y € Y, we have
p(g7 () = p(f~Y(y)) n H, and f~1(y) is a closed subset of PV of dimension at least e > 0. Let
W = Wi u...u W, be the decomposition into irreducible components. Each W; is closed in P x Y,
hence g(W;) is closed for every i € {1,...,r}. Let

U:=Y\[Jg(Wi) + Yg(Wi).

Then U is open dense in Y. Shrinking ¥ we may assume that U =Y, i.e. g(W;) =Y forallie {1,...,r}.
Every W, has dimension dim X — 1 by Proposition 3.5.1 (H is locally the zero set of single non zero
function). Let g;: W; — Y be the restriction of g. Then dim W; — dimY = e — 1, and hence by the
inductive hypothesis, there exists an open dense Yy(i) = Y such that g~!(y) has pure dimension e — 1
for all y € Yy(7). Let

YO = ﬁYO(l)
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Clearly Yj is open and dense in Y. Let y € Y. Then
T
Hoplg™ () = | rle ()
i=1

The right hand side is the intersection of the hyperplane H with closed subset of PV all of whose
components have dimension at least e. The right hand side is a union of irreducible closed subsets of
dimension e — 1. It follows that g~!(y) has pure dimension e.

(c): Let y € Y. Then dim f~1(y) > k if and only if An f~1(y) is not empty for all A € Gr(N —k,PV),
by Theorem 3.3.1. Hence

{yeY |dim f(y) = k} = ﬂ T(AxY n X).
AeGr(N—k,PN)

Hence the left hand side is closed by Elimination Theory (A x Y and X are closed in PV x V).
O

Ezxample 3.5.3. The function a of Proposition 3.5.2 is not constant in general. A typical example is
provided by the blow-up of P™ at pg € P™, i.e. the set

Bl,,P" := {(p,¢) € P" x Gr(1,P") : £ o {po,p}}.
As is easily checked Bl,,P" is closed in P™ x Gr(1,P™). Let
f: Bl P =P, (p,f) —p

be projection; then

f—l {p} _ <p07p> lfp # Do,
{€e Gr(1,P") :po et} if p=po.

Thus
0 if p # po,
n—1 if p=pp.

dim,, f71 {p} = {

3.6 Exercises

Exercise 3.6.1. Let X c P" be a hypersurface, and let I(X) = (F).

(a) Let A(F) < Gr(1,P™) be the subset of lines P(W) such that there exist p € P(W) for which mult,(F') > 2.
- see Exercise 1.8.6. Prove that A(F) is a proper closed subset of Gr(1,P"). (Hint: for the proof that
A(F) is closed, see Exercise 1.8.6, for the proof that it is a proper subset, see the proof of Lemma 3.2.8.)

(b) Prove that deg X = deg F. (Hint: recall Item (b) of Exercise 1.8.6.)
Exercise 3.6.2. Let X < P" be a hypersurface. Prove that
deg X = max{|A n X|| A € Gr(1,P") such that A n X is finite}. (3.6.1)
(An analogous result holds for a closed pure dimensional X < P" of any codimension, see Proposition ?7.)

Exercise 3.6.3. Let Ay  P(K[To, T1]4) be the subset of [F] for which there exist p € P* such that mult, (F) >
2 - see Exercise 1.8.6.

(a) Prove that Ag4 is an irreducible hypersurface in P(K[Tb,71]4)-
(b) Prove that Ay has degree 2d — 2.
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Exercise 3.6.4. Let R be an integral domain. Let F' € R[Ty,T1]|m and G € R[Ty,T1]n; we assume
throughout that m,n are not both 0. The resultant %y, »(F,G) is the element of R defined as follows.
Consider the map of free R-modules

Lo (F,G
R[To,T1]n—1 ® R[To, T1]m—1 S R[To, T1 ]mtn—1 (3.6.2)
(@, 7) - - F+U.-G

and let Sy, »(F,G) be the matrix of L,, ,(F,G) relative to the basis
(T57170)a (T07172T1a O)a R (OaTornil)a (05 T(’)mile)a BRI (O7T17n71)

of the domain and the basis

TgnJrnfl7 T5n+n72T1, o T0T1m+n72, Tlernfl
of the codomain. Then
R (F, G) := det Sy (F, G). (3.6.3)
Explicitly: if
F =) aTy T, G=)> bTy T (3.6.4)
i=0 =0
then
ao 0 o0 by 0 e 0
a ao e 0 by by -+ 0
ao cee bo
B n(F,G) =det | am  am-1 -+ : by byg - | (3.6.5)
0 am - = 0 by :
0 0 : 0 0
0 0 o ay, 0 0 by,

Now let k be a field and let K be an algebraic closure of k. Let F € k[Ty, T1]m and G € k[Ty, T1]n-

(a) Prove that Z, »(F,G) = 0 if and only if there exists H € k[T, T1]q with d > 0 which divides F’
and G in k[To,Tl].

(b) Prove that %Z,, »(F,G) = 0 if and only if there exists a common non-trivial root of F' and G in
P}, i.e. a non zero (Tp,T1) € K? such that F(Ty, T1) = G(Ty,T1) = 0.

(¢) Suppose that char K does not divide d. Give an explicit homogeneous polynomial of degree (2d—2)
in the coefficients ¢; of

d
F =) Ty Tf
i=0
which vanishes if and only if there exists p € Pk such that mult,(F) > 2. (Hint: recall Item (d)
of Exercise 1.8.6.) Compare to Item (b) of Exercise 3.6.3.

Exercise 3.6.5. Let C, — P" be the the image of the Veronese map v,: P* — P" given by vn([s,t]) =
[s™, s"ilt, ...,t"]. Prove that degC, = n. Notice that %, is irreducible and non degenerate. Thus %, has
the minimum degree that an irreducible nondegenerate (closed) curve can have according to Proposition 3.3.7.
Prove that if X < P" is closed, irreducible, non degenerate, and deg X = n, then X is projectively equivalent
to Gn.
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Exercise 3.6.6. We recall that a closed X < P" is a cone with vertex p, if whenever z € (X\{p}), the line
{p,x) is contained in X. Equivalently, there is a closed Y < H, where H c P" is a hyperplane not containing

p, such that X is the union of the lines {p,y), for y € Y. Suppose that (notation as above), Y is irreducible,

and non degenerate in H. Prove that deg X = degY. From this and the previous exercise, deduce that given

any 0 < ¢ < n, there exists closed irreducible non degenerate X — P" such that deg X = ¢ + 1 (the minimum

according to Proposition 3.3.7).

Exercise 3.6.7. Let A, B c P*T**! be disjoint linear subspaces of dimensions a and b respectively. Let €, c A
and €, < B be closed irreducible non degenerate curves of degrees a and b respectively (see Exercise 3.6.5).
Choose an isomorphism f: €, — %, (they are both isomorphic to P* according toExercise 3.6.5), and let

Xﬂ,,b = U <$,f($)>

TEG

Explicitly, up to a change of homogegenous coordinates

Xap = {[As® As® o A s, us® L ] | [N, ] € P, [s,t] € P

(i) Prove that X, is closed, irreducible, of dimension 2, non degenerate.

(ii) Prove that deg X, = a + b. Thus X, has the minimum degree according to Proposition 3.3.7. Show

that X, is not a cone, except in the degenerate case a = 0 or b = 0.

Let X < P™ be a closed subset. For k € {0,...,n}, we let

be

Fi(X) := {A e Gr(k,P") | A c X}

the set of k dimensional linear spaces contained in X. Thus Fy(X) = X. The first interesting case

is F1(X), i.e. the set of lines contained in X. By solving the following exercises, one proves interesting
results about F(X).

Exercise 3.6.8. Let X c P" be a closed subset. Prove that Fj(X) is a closed subset of Gr(k,P"), arguing as
follows:

1. If X = P", then Fy(P") = Gr(k,P"). If X is not P", then X = V(P1) n...n V(P) and Fp(X) =
Fr(V(P1)) n...n Fx(V(P.)). Hence it suffices to prove the result for X = V(P) c P" a hypersurface.

2. Since we have the open covering of Gr(k,P") given by (1.7.4), it suffices to show that the intersection
Fi(V(P)) nGr(k,P"); is closed for every multiindex I < {0,...,n} of cardinality k + 1. Prove by explicit
computation that Fy(V(P)) n Gr(k,P™)s is closed.

Exercise 3.6.9. Let Li(K[Zo,...,Zn]a) € Gr(k,P") x P(K[Zo,...,Zx]a) be

Ly (K[Zo,...,Znla) := {(A,[P]) | A c V(P)}.

Prove that Ly (K[Zo, ..., Zn]a) is closed, arguing as follows:
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1. Since we have the open covering

Cr(k,P") x P(K[Zo, ..., Zola) = | J Gr(k,P")r x P(K[Zo, ..., Zula),
|I|=k+1

in order to prove that Ly (K[Zo, ..., Zxr]a) is closed it suffices to show that the intersection of Ly (K[ Zo, ..., Zn]4)
with the open subset indicized by I, call it Lx(K[Zo, ..., Zn]d)1, is closed.

2. Let I =1{0,...,k}. Identify Gr(k,P™); with Mgt1,n—r(K) via the isomorphism in (1.7.5). Then
Ly (K[Zo, ..., Zn]a)r = {(A,[P]) | Cs(A,P) =0 VJ}. (3.6.6)

Since each C;(A, P) is a polynomial in the entries of A and (the coefficients) of P, homogeneous in P,
we get that Lg(K[Zo, ..., Zy]a)r is closed.
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Exercise 3.6.10. Prove that if k < n then Lg(K[Zo,..., Zn]q) is irreducible and

dim Ly(K[Zo, ..., Zn]a) = dimP(K[Zo, ..., Znla) + (k + 1) - (n— k) — (d ' ’“) (3.6.7)
arguing as follows:
1. Show that
Le(K[Zo, ..., Zn]a)1 0 Lk(K[Zo, ..., Zn]a)r ¥ &
for any two subsets I, I' = {0,...,n}.
2. Since each Li(K[Zo, ..., Zn]q)r is open, and any two have non empty intersection by the previous item,

it will suffice to show that each Ly(K[Zo,...,Zn]4)r is irreducible of dimension given by (3.6.7). For
PeK[Zo,...,Zn]a, let
P= % PxzZ",
deg K=d
where K runs through multiindices K = (ko, ..., k) of degree d. Rewrite (3.6.6) as

Li(K[Zo,..., Za)a)1 = {(A,[P]) | D, Dux(A)Px =0 VJ},
deg K=d

where Dy k(A) is a polynomial in the entries of the matrix A.

3. By the previous item, Li(K[Zo,...,Zn]a)r is the set of couples (A,[P]), where P is any non trivial

solution of (d:k) homogeneous linear equations. Show the system of linear equations has maximum rank

for each A by observing that the restriction map

K[Zo,...,Zn]la — K[Xo, -5 Akla
P — P(/\()UJ()(A) + ...+ /\kwk(A))
is surjective, where w;(A) = v; + Z;":_lh ai jvpy; for ¢ € {0,...,k}, so that A4 (the linear subspace

corresponding to A) is the span of [wo(A4)],..., [wk(4)].

4. Given A, by the previous item there exists a (d:k) X (d:k) minor of the matrix (D (A))J,x, call it m(A)

with non zero determinant. Let Myi1,n—k(K)m © Mit1,n—1(K) be the open subset of points such the
minor m(A) has non zero determinant. Show that the open subset

Lk (]K[Zo7 ey Zn]d)[ M {A € Mk+1’n,k(K) | det m(A) =+= 0} X P(K[ZQ, ey Zn]d) (368)

is isomorphic to {A € Mi41,n—r(K) | det m(A) + 0} x P", where

r=PK[Zo, ..., Zn]a) — (d;;k)'

Conclude from this that Ly (K[Zo,..., Zn]a) is irreducible, of dimension given by (3.6.7).
Exercise 3.6.11. Let k < n. Prove that the subset of P(K[Zo, ..., Zn]q4) defined by
([P BK Zo,.... Zula) | Fu(X) + &) (3.6.9)

is closed, irreducible, of dimension at most equal to

dimP(K[Zo, ..., Zn]a) + (K + 1) - (n — k) — (d—l:k)

In particular, show that for all d > 2n—2 there exist hypersurfaces V(P) c P" defined by a degree d homogeneous
P which do not contain a line.
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Chapter 4

Tangent space, smooth points

4.1 Introduction

One definition of tangent space of a C® manifold M at a point x € M is as the real vector space of
derivations of the space & 4 of germs of C* functions at x. We will give an analogous definition of the
Zariski tangent space of a quasi projective variety. The advantage of such an abstract definition is that
it is intrinsic by definition. On the other hand, we will identify the Zariski tangent space at a point a
of a closed subset X < A" with the classical embedded tangent space, defined by the common zeroes
of the linear approximations at a of polynomials in a basis of the ideal I(X).

A fundamental difference between quasi projective varieties and smooth manifolds is that the di-
mension of the tangent space at a point might depend on the point, even for an irreducible variety. The
points where the dimension has a local minimum are the so-called smooth points of the variety. If the
field K is C, in a neighborhood of a smooth point the variety is naturally a complex manifold.

4.2 The local ring of a variety at a point

Let X be a quasi projective variety. We start by defining the ring of germs of regular functions at
rze X.

Definition 4.2.1. Let X be a quasi projective variety, and let x € X. Let (U, ¢) and (V, 1) be couples
where U,V are open subsets of X containing z, and ¢ € K[U], ¢ € K[V]. Then (U, ¢) ~ (V, ) if there
exists an open subset W < X containing x such that W c U n'V and ¢\ = ¢w-

One checks easily that ~ is an equivalence relation: an equivalence class for the realtion ~ is a
germ of regular function of X at x. We may define a sum and a product on the set of germs of regular
functions of X at x by setting

[(U7 ¢)] + [(‘/7 d))] = [(U N V7 ¢|UOV + w|UmV)]7 (421)

and
(U, )] - [(V,¥)] := [(U N ‘/a(b\UnV '77[}|U0V)]' (4.2.2)

Of course one has to check that the equivalence class of the sum and product is independent of the
choice of representatives: this is easy, we leave details to the reader. With these operations, the set of
germs of regular functions of X at z is a ring.

Definition 4.2.2. Let X be a quasi projective variety, and let z € X. The local ring of X at x is the
ring of germs of regular functions of X at z, and is denoted Ox .

We have a natural homomorphism of rings

K[X] % Ox.
f = (X, f)]
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Lemma 4.2.3. Suppose that X is an affine variety, and let x € X. If ¢ € Ox, then there exist

fy9 € K[X], with g(z) £ 0, such that ¢ = %.

Proof. Let ¢ be represented by (U, h), where U < X is open, and « € U. Since the principal open affine
subsets of X form a basis of the Zariski topology, there exists a € K[X] such that X, c U and z € X,
(see Remark 1.4.4). Thus ¢ = [(Xa,x,)]. By Remark 1.4.4, there exist f € K[X] and m € N such

that h is the restriction to X, of aim Then ¢ = p’ZiQ). O

There is a well-defined surjective homomorphism

Ox., — K

(U.6)] — oa) (424)

The kernel

of (4.2.4) is a maximal ideal, because (4.2.4) is a surjection to a field.

Proposition 4.2.4. With notationas above, m, is the unique mazimal ideal of Ox ,, and hence Ox ,
is a local ring. Moreover, Ox , is Noetherian.

Proof. Let f = [(U,¢)] € (Ox o\my). Then W := (U\V(¢)) is an open subset of X containing = and
hence g := [(W, (¢|lw) '] belongs to Ox ... Since gf = 1 we get that f is invertible. It follows that m,
contains any proper ideal of Ox , and hence is the unique maximal ideal of Ox ;.

In order to prove that Ox , is Noetherian, we notice that if U < X is Zariski open and contains z,
then the natural homomorphism Oy, — Ox . is an isomorphism. Since X is covered by open affine
subsets, it follows that we may assume that X is affine. Let I < Ox , be an ideal. Let p be the
homomorphism in (4.2.3). Then p~1(I) is a finitely generated ideal, because K[X] is Noetherian. Let
fi,--., fr be generators of p~1(I). Then p(f1),...,p(f.) generate I. In fact let ¢ € I. By Lemma 4.2.3,

there exist f,g € K[X], with g(z) £ 0, such that ¢ = %. We have f = Y_;a;f;, and hence

Y= Z;l=1 pp((agi))P(fi)- O

4.3 The Zariski tangent space

The homomorphism (4.2.4) equips K with a structure of 0x ;-module. Moreover Ox . is a K-algebra.
Thus it makes sense to speak of K-derivations of Ox , to K.

Definition 4.3.1. Let X be a quasi projective variety, and let x € X. The Zariski tangent space to X
at x is Derg(Ox 4, K), and will be denoted by ©,X. Thus ©,X is an Ox z-module (see Section ?7?),
and since m, annihilates every derivation Ox , — K, it is a complex vector space.

Lemma 4.3.2. Let a € A™. The complex linear map

O,A" — K™

D = (D(z),...,D(z)) (4.3.5)

s an isomorphism.

Proof. The formal partial derivative =2~ defined by (A.6.1) defines an element of ©,A™ by the familiar

0zm
formula 5 .
2 (Do~ 2 () - gla) — f(a) - £ (a)
Ozm \ g ' g(a)? '
(See Example A.6.3.) Since afm (2j) = 6, the map in (4.3.5) is surjective.
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Let’s prove that the map in (4.3.5) is injective. Assume that D € Ox , is mapped to 0 by the map
in (4.3.5), i.e. D(z;) =0for je {1,...,n}. Let f,ge K[z,...,2,], with g(a) & 0. Then

/\ _ D(f)-gla) — f(a) Dlg)
b <g) - g(a)? |

(See Example A.6.3.) Hence it suffices to show that D(f) = 0 for every f € K[z1,...,2,]. Consider the
first-order expansion of f around a i.e. write

f=fla)+ an ci(#z —a) + R, Rem?. (4.3.6)
i=1

Since D is zero on constants (because D is a K-derivation) and D(z;) = 0 for all j it follows that
D(f) = D(R), and the latter vanishes by Leibniz’ rule and the hypothesis D(z;) = 0 for all j. O

The differential of a regular map at a point of the domain is defined by the usual procedure.
Explicitly, let f: X — Y be a regular map of quasi projective varieties, let x € X and y := f(x). There
is a well-defined pull-back homomorphism

ﬁy,y f—*> ﬁX,x (437)
[(U7 ¢)] = [(filU,qso (f|f*1U))]

The differential of f at x is the linear map of complex vector spaces

r,x Y& T,Y (43.8)
D — (9= D(f*¢))

The differential has the customary functorial properties. Explicitly, suppose that we have

f1 f2
Xl *>X24)X3, .’E1€X1, (E2:f1(.’£1).
Since (fa 0 f1)* = fi o f we have

d(fQ o fl) (],‘1) = dfg (.132) O dfl (],‘1) . (439)
Moreover d1dx (x) = Idp, x for z € X.
Remark 4.3.3. Tt follows from the above that if f is an isomorphism, then df (z): T, X — Tj(,)Y is an
isomorphism, in particular dim 7, X = dim7,Y".

The next result shows how to compute the Zariski tangent space of a closed subset of A™. Since
every point x of a quasi projective variety X is contained in an open affine subset U, and ©,X = 0,U
(because restriction defines an identification Oy , = Oy ), the result will allow to compute the Zariski
tangent space in general.

Proposition 4.3.4. Let v: X — A" be the inclusion of a closed subset and a € X. The differential
di(a): ©,X — O,A" is injective and, identifying ©,A™ with K" via (4.3.5), we have

Imdj(a)—{v—(vl,...,vn)eK"|Z(gj(a)-vi—o erI(X)}. (4.3.10)
i=1 """

Proof. The differential di(a) is injective because the pull-back ¢*: Opn , — Ox o is surjective. Let
D € Derg(Ox o, K). If fe I(X) c K[z1,...,2,], then du(D)(f) = D(:*f) = D(0) = 0. Hence Im de(a)
is contained in the right-hand side of (4.3.10). Let’s prove that Imdi(a) contains the right-hand side
of (4.3.10). Let D e Derg(Oyn 4,K) belong to the right hand side of (4.3.10), i.e. D(f) = 0 for all
f e I(X). By Item (3) of Example A.6.3 it follows that 13(5) = 0 whenever f,g € K[z,...,2,] and

f e I(X) (of course we assume that g(a) + 0). Thus D descends to a K-derivation D e Derg(Ox.q,K),
and D = duy(a)(D). O
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Remark 4.3.5. With the hypotheses of Proposition 4.3.5, suppose that I(X) is generated by fi,..., fi.
Then

Imdj(a) = {U—(vl,...,vn)eK"|i?}(a)-vi—0 ke{L...,r}}.
i=1 "7

In fact, the right hand side of the above equation is equal to the right hand side of (4.3.10), because if
of;(a
f =5 gifis then Z(a) = 37, g;(a) 2.

Ezample 4.3.6. Let f € K[z1,...,2,] be a polynomial without multiple factors, i.e. such that 4/(f) =
(f), and let X = V(f). Let a € X; by Remark 4.3.5 Zariski’s tangent space to X is the subspace of K"
defined by

3 af(a)-vizo.

821-

i=1

Hence
n—1 lf(%(a)77§f(a)):*:0a

n if (£-(a),..., 2 (a)) = 0.

dimO,X = {

Let us show that

of of ) (4.3.11)

X\V<%,...7M

is an open dense subset of X (it is obviously open, the point is that it is dense), i.e. dim©, X =n — 1
for a in an open dense subset of X.
First assume that f is irreducible. First we notice that there exists i € {1,...,n} such that

i—f +0. (4.3.12)

In fact assume the contrary. It follows that charK = p > 0, and that there exists a polynomial

g € K[z1,...,2,] such that f = g(2},...,2F). Let g = >, asz!, where I runs through a (finite)

collection of multiindices. Since K is algebraically closed, there exists a (unique) p-th root a}/ P Let

h =73, a}/pzl. Then f = h(z1,...,2,)P (recall that (a + b)? = aP + bP), and this is a contradiction

because f is irreducible. This proves that there exists ¢ € {1,...,n} such that (4.3.12) holds.
Reordering the coordinates, we may assume that ¢ = n. hence

f=azd +a128 4 +ag, a;eK[z,...,2n 1], ao#0, d=>0.

Thus
of

Zn

=dagz™ ' + (d—1)a1z3 2+ +ag_1 0.

The degree in z, of f is d, i.e. f has degree d as element of K[z1,...,2,-1][2,]. On the other hand, Z—f
is non zero and its degree in z, is strictly smaller than d. Thus f { i—f, and hence the set in (4.3.11) is
dense in X (recall that f is irreducible).

In general, let f = f1---- - f,. be the decomposition of f as product of prime factors. Let X; = V(f;).
Then

X=X,u---UX,

is the irreducible decomposition of X. As shown above, for each i € {1,...,r}
of; aof;
X;\V <fj,7fj> + .
Al Zn
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Hence there exists a € X; such that f “H(a) # 0 for a certain 1 < h < n. We may assume in addition
that a does not belong to any other 1rreduc1ble component of X. It follows that

ﬁ( af] ka

Zh by

This proves that the open set in(4.3.11) has non empty intersection with every irreducible component
of X, and hence is dense in X.

Notice also that if a belongs to more than one irreducible component of X, then all partial derivatives
of f vanish at a. In other words, any point in the open dense subset of points a such that dim©, = n—1
belongs to a single irreducible component of X.

The result below shows that the behaviour of the tangent space examined in the above example is
typical of what happens in general.

Proposition 4.3.7. Let X be a quasi projective variety. The function

X — N

r = dim6,X (4.3.13)

18 Zariski upper-semicontinuous, i.e. for every k € N
={reX|dmO,X >k}
1s closed in X.

Proof. Since X has an open affine covering, we may suppose that X < A" is closed. Let I(X) =
(f1,.--, fr). For x € A™ let

J(f1,- o o)) :=

” o
Le@) - (o)

be the Jacobian matrix of (f1,..., fs) at . By Proposition 4.3.5 we have that

X ={xe X |rkJ(f1,...,fr)(®) <n—k}. (4.3.14)
Given multi-indices I = {1 < i1 < ... < @y < st and J = {1 < j; < ... < jm < n} let
J(f1, ..., fs)(x)r,5 be the m x m minor of J(f1,..., fr)(x) with rows corresponding to I and columns

corresponding to J (if m > min{r,n} we set J(f1,..., fs)(x)r,; = 0). We may rewrite (4.3.14) as
Xk =XnV ( . ,det J(fl, ‘e ,fr)((ﬂ)[’J, .. ')|I|=|J\=”*k+1 .

It follows that X} is closed. O

4.4 Cotangent space

Let X be a quasi projective variety, and let x € X. The cotangent space to X at x is the dual complex
vector space of the tangent space ©,X, and is denoted Qx (x):

Qx(z) := (0, X)". (4.4.1)

We define a map

Ox .« -4, Qx(x) (4.4.2)
as follows. Let f € Ox , be represented by (U, ). The codomain of the differential d¢(z): ©,U —
O4(x)K is identified with with K, because of the isomorphism in (4.3.5), and hence d¢(z) € (©,U)".
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Since U < Z is an open subset containing z, the differential at x of the inclusion map defines an
identification ©,U — 0, X. Thus d¢(z) € (0,X)" = Qx(x). One checks immediately that if (V,)
is another representative of f then dy(z) = d¢(z). We let

df (z) := do(x), (U, ¢) any representative of f.

Remark 4.4.1. We equip Qx (z) with a structure of Ox ,-module by composing the evaluation map
Ox, — K given by (4.2.4) and scalar multiplication of the complex vector-space Qz(a). With this
structure (4.4.2) is a derivation over K.

Remark 4.4.2. Let f € K[z1,...,2,] and a € A™. Then the familiar formula

)= 3] @)

holds. In fact this follows from the first-order Taylor expansion of f at a:

+ Z 621 i) + Z myj (Zz — ai)(zj — aj), m;; € K[Z1, ey Zn] (443)

1<i,j<n

Remark 4.4.3. Let X < A" be closed, and let a € X. Identify ©,A™ with K™ via Lemma 4.3.2. By
Remark 4.4.2 we have the identification

T,X = Ann{df(a) | f € I(X)}.

Let X be a quasi projective variety, and let x € X. Let m, < Ox, be the maximal ideal. By
Leibiniz’ rule dé(x) = 0 if ¢ € m2 (recall that d: Ox , — Qx(z) is a derivation over K). Thus we have
an induced K-linear map

my/m2 M Qe (a) (4.4.4)
[¢]  —  dé(a)

Proposition 4.4.4. Keep notation as above. Then §(x) is an isomorphism of complex vector spaces.

Proof. First we prove that d(x) is surjective. If X = A", surjectivity follows at once from Lemma 4.3.2.
In general, we may assume that X is a closed subset of A™, and surjectivity follows from Proposi-
tion 4.3.5.

In order to prove injectivity of é(x), we must show that if ¢ € m, is such that d¢(z)(D) = 0 for all
De @wX , then ¢ € m2. We may suppose that X is a closed subset of A™. In order to avoid confusion,
we let x = a = (ay,...,a,). Let (U, f/g) be a representative of ¢, where f,g € K[X], and f(a) =0

g(a) £ 0. Tt will sufﬁce to prove that f € m2. Since 0 = d¢(a) = g(a)~*df (a) we have df(a) = 0. By
Theorem 1.4.2 there exists f € Klz1,..., 2] such that f‘X = f. By Proposition 4.3.5 we may identify
0, X with the subspace of T,K"™ = K" given by (4.3.10). By hypothesis df(a)(D) =0forall De ©,X,
ie.

df(a) € Ann (0,X) < Qyn(z).
By (4.3.10) there exists h € I(X) such that df(a) = dh(a). Then (f — h)x = f and d(f — h)(a) =

Thus (f — h) € K|z1,...,2,] has vanishing value and differential at a. It follows (first-order Taylor
expansion of f — h at a) that

(f_h)e(21—a1,...,zn—an)2.

Since h € I(X) we get that f € m2. O
The following result is an immediate consequence of Corollary A.7.2.

Corollary 4.4.5. Let X be a quasi-projective variety and p € X. Let fi,...,fn € Ox, be germs
vanishing at p i.e. belonging to the mazimal ideal m, < Ox p,, and suppose that 6(f1),-..,0(fn) generate
Qx(p). Then fi,..., fn generate the mazimal ideal m, € Oz,.
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4.5. Smooth points

4.5 Smooth points

Definition 4.5.1. Let X be a quasi projective variety, and let z € X. Then X is smooth at x if
dim©,X = dim, X, it is singular at x otherwise. The set of smooth points of X is denoted by X*™.
The set of singular points of X is denoted by sing X.

Ezxample 4.5.2. Let X < A™ be a hypersurface. By Corollary 2.5.4, the dimension of X is equal to
n — 1, and hence the set of smooth points of X is an open dense subset of X by Example 4.3.6. By the
last sentence in Example 4.3.6, X is locally irreducible at any of its smooth points.

The main result of the present section extends the picture for hypersurfaces to the general case.
Theorem 4.5.3. Let X be a quasi projective variety. Then the following hold:

1. The set X®™ of smooth points of X is an open dense subset of X.

2. For x € X we have dim©,X > dim, X.

8. X s locally irreducible at any of its smooth points, i.e. if X is smooth at a, there is a single
irreducible component of X containing a.

We will prove Theorem 4.5.3 at the end of the section. First we go through some preliminary results.
Our first result proves a weaker version of Item (1) of Theorem 4.5.3, and proves Item (2) of the
same theorem.

Proposition 4.5.4. Let X be a quasi projective variety. Then the following hold:
1. The set of smooth points of X contains an open dense subset of X.

2. For x € X we have dim©,X > dim, X.

Proof. Suppose that X is irreducible of dimension d. By Proposition 2.4.7 there is a birational map
g: X -—=» Y, where Y < A%*! is a hypersurface. By Proposition 2.2.6 there exist open dense subsets
Uc X and V < Y such that g is regular on U, and it defines an isomorphism f: U — V. By
Example 4.5.2, the set of smooth points Y™ of Y is open and dense in Y. Since V is open and dense
in Y the intersection Y™ n V is open and dense dense in Y and hence f~1(Y*™ A V) is an open dense
subset of X. Since f~1(Y*™ n V) is contained in U™, we have proved that the set of smooth points
of X contains an open dense subset of X. We have proved that Item (1) holds if X is irreducible. In
general, let X = X7 U --- U X, be the irreducible decomposition of X. Let

X0 = (x\ | x0) = (0 x)
i#] i#]
By the result that was just proved, (XJQ)S’[n contains an open dense subset of smooth points. Every
smooth point of XjQ is a smooth point of X, because X]O is open in X. Thus Ui(XZQ)Sm is an open dense
subset of X, containing an open dense subset of X. This proves Item (1).

Let us prove Item (2). Let o € X, and let Xy be an irreducible component of X containing
xo such that dim Xy = dim,, X. By Item (1) X§™ contains an open dense subset of points = such
that dim©,Xy = dim, Xy, and hence by Proposition 4.3.7 we have dim©,X, > dim, Xy for all
xr € X. In particular dim©,,Xy > dim,, Xo = dim,, X. Since ©,,X¢ < O,,X, it follows that
dim 0,,X > dim,, X. O]

The next result involves more machinery. We will give an algebraic version of the (analytic) Implicit
Function Theorem. The algebraic replacement for the ring of analytic functions defined in a neighbor-
hood of 0 € A™ is the ring K[[z1,. .., 2,]] of formal power series in z1, ..., 2z, with complex coefficients.
We have inclusions

K[z1,...,2n] € Opn o < K[[21,- ., 2n]]- (4.5.1)

(The second inclusion is obtained by developing % as convergent power series centered at 0, where
frg€XK[z1,...,2,] and g(0) £ 0.) We will need the following elementary results.
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Lemma 4.5.5. Let m < K[zq,...,2,], W < Oano and m” < K[[21,...,2,]] be the ideals generated
by 21,...,2n in the corresponding ring. Then for every i = 0 we have (m")! A Opn g = (W')E, and
(m) A K[z,...,2,] = mb.

Proof. By induction on ¢. For ¢ = 0 the statement is trivially true. The proof of the inductive step
is the same in both cases. For definiteness let us show that (m”)*l n Oyn g = (M)l assuming
that (m”)" N Opn o = (m')". The non trivial inclusion is (m”)**1 N Opn g < (m’)*+1. Assume that
fe ")t A Oung. Then f e (m”)" A Opn o, and hence f € (m') by the inductive hypothesis. Thus

we may write
f=> 052,

11l
where the sum is over all multiindices J = (ji,...,Jn) of weight |J| = >"_, js = i, and ay € Oan
for all J. Since f € (m”)"*1 we have a;(0) = 0 for all J. It follows that oy € m’ for all J, and hence
fem)tt, O

Proposition 4.5.6 (Formal Implicit Function Theorem). Let ¢ € K[[21,...,2,]], and suppose that

p=z1tpa+...+0q+ ..., wacK[z1, .., 2n]a (4.5.2)
Given a € K[[21, ..., 2n]], there exists a unique B € K[[21,...,2,]] such that

Proof. Write 8 = Bo+81+...+B4+..., where Bq € K[z1,...,2,]4, and the ;s are the indeterminates.
Expand the product - ¢, and solve for By by requiring that 3 - ¢ have the same linear term modulo
Za,...,%n as a, then solve for 31 by requiring that 3-¢ have the same quadratic term modulo (2o, . . . , 2, )?
as a , etc. By (4.5.2) there is one and only one solution at each stage. O

Corollary 4.5.7. With hypotheses as in Proposition 4.5.7, the natural map K[[z2, ..., zn]] = K[[21,- - -, 2:]]/(¢)
s an isomorphism.

Proposition 4.5.8. Let fi,..., fr € K[z1,...,2,] and a € A™. Suppose that
(i) each f; vanishes at a, and
(ii) the differentials df(a),...,dfr(a) are linearly independent.
Then V (f1,..., fx) = X 0Y, where
1. X,Y are closed in A™, a € X, while Y does not contain a;

2. X isirreducible of dimension n—k, it is smooth at a, and To(X) = Ann({dfi(a), ..., dfrx(a))) (as
subspace of T,A™).

Moreover, there exists a principal open affine set Ay containing a such that fl‘m, .. .,fk‘m generate
9 g
the ideal of X n Ay.

Proof. By changing affine coordinates, if necessary, we may assume that a = 0, and that df;(0) = z; for
ie{l,...,k}. Let J' < Oyn o be the ideal generated by fi,..., fx (to be consistent with our notation,
we should write J' = (o(f1),...,0(fr))), let J := J nK[z1,...,2,], and let J” < K[[z1,...,2,]] be
the ideal generated by f1,..., fi. Lastly, let I < K[z1,..., z,] be the ideal generated by fi,..., fr. We
claim that

Jgclcld (4.5.4)

for a suitable g € K|z1,...,2,] with g(0) # 0. In fact, the second inclusion is trivially true. In order
to prove the first inclusion, let hq,...,h, be generators of the ideal J < K|z1,...,2,]. By definition
of J, there exist a;,g; € K[z1,...,2y], for i € {1,...,7}, such that a; € I, ¢;(0) + 0, and h; = %
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Hence the second inclusion in (4.5.4) holds with g = g1 - ... g,. This proves (4.5.4), and hence we have
V(J)c V() < (V(J)uV(g)). It follows that, letting X := V(J), there exists a closed Y < V(g) such
that

V(fi,.oo fr) =X UY, 0¢Y. (4.5.5)

Let us prove that J is a prime ideal, so that in particular X is irreducible. First, we claim that
J'AOpng=1T. (4.5.6)

The non trivial inclusion to be proved is J” n Oang < J'. Let f € J” n Ogn . Then there exist
aq,...,a € K[[z1,...,2,]] such that f = Z§=1 a;fj. Given s € N, let a5 be the MacLaurin polynomial

of a; of degree s, i.e. such that (a; — o) € (m”)**!, where m” is as in Lemma 4.5.5. Then

k k
F=>10f+ 3 (05— ad)fy
j=1 j=1

Both addends are in Oan . In addition, the first addend belongs to J’, and the second one belongs
to (m”)**1. By Lemma 4.5.5, it follows that the second one belongs to (m’)**1. Hence f e (., (I’ +
(m/)*t1). By Corollary A.8.2, it follows that f € I’. This proves (4.5.6). By (4.5.6) and the definition
of J, we have an inclusion

Klz1,. .., 20]/d € K[[21,-- -, 2n]]/J".

Hence, in order to prove that J is prime, it suffices to show that K[[z1, ..., 2,]]/J” is an integral domain.
In fact we will see that the natural map

K[2ks1,---52n] — K[[21, .-, 20]]/T” (4.5.7)

is an isomorphism of rings. This follows from the algebraic version of the Implicit Function Theorem, i.e.
Proposition 4.5.7. In fact, by Proposition 4.5.7, the natural map K[[z2,...,2,]] = K[[21,- .-, 2a]]/(f1)
is an isomorphism. Let i € {2,. .., k}. Given the identification K[[z1,...,2,]]/(f1) = K[[22, ..., zx]], the
image of f; under the quotient map K[[z1,...,2,]] = K[[21,...,2x]]/(f1) is an element z; + f/, where
fl e (m”)? (notation as in Lemma 4.5.5). Iterating, we get that the map in (4.5.7) is an isomorphism of
rings. As explained above, this proves that J is a prime ideal. In particular X is irreducible. Moreover,
since zp41, ..., 2y € K[X], the isomorphism in (4.5.7) shows that K(X) has transcendence degree n —k,
i.e. X has dimension n—k. Since fi, ..., fr vanish on X, and their differentials are linearly independent,
it follows that dim ©y(X) < (n — k) = dimg X. Hence dim 0y (X) = (n — k) = dimg X, by Item (2) of
Proposition 4.5.4, i.e. X is smooth at 0, and ©g(X) < ©gA" is the annihilator of df;(0), ..., df,(0). This
proves Items (1) and (2). The last statement in the proposition holds with the polynomial g appearing
in (4.5.4). O

Corollary 4.5.9. Let X < A™ be a Zariski closed subset. Let a be a smooth point of X, and let
k =n —dim, X. Then following hold:

1. there exist f1,..., fx € K[z1,...,2,] with linerly independent differentials df;(a),...,dfx(a), and
a Zariski open affine subset U = A" containing a, such that I(X nU) = (fiu,---, frjw);

2. there is a unique irreducible component of X containing a.

Proof. Since X is smooth at a, and dim, X = n—k, there exist f1, ..., fxr € I(X) such that df; (a), ..., dfx(a)
are linearly independent. Of course X < V(fi,..., fx). By Proposition 4.5.9 there is a unique irre-
ducible component of V(f1,..., fx) containing a, call it Y, and dimY = n — k. Every irreducible
component of X containing a is contained in Y. Since dim, X = n — k, there exists (at least) one
irreducible component of X containing a of dimension n — k. Let X’ be such an irreducible component;
by Proposition 2.5.3, X’ = Y. It follows that there is a single component of X containing a, and it is
equal to the unique irreducible component of V(f1,..., fx) containing a. Hence the corollary follows
from Proposition 4.5.9. O
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Proof of Theorem 4.5.3. Ttem (2) has been proved in Proposition 4.5.4. Item (3) follows at once from
Corollary 4.5.9, because X is covered by open affine subset.

In order to prove Item (1), let X = | J,.; X; be the irreducible decomposition of X. Since X is
covered by open affine subset, Corollary 4.5.9 gives that

X e X\ (X Xy). (4.5.8)

i,5el

(S5
The right hand side of (4.5.8) is an open dense subset of X. Let X? be an irreducible component of the
right hand side of (4.5.8). Thus X? < X; is the complement of the intersection of X; with the other
irreducible componets of X. The set of smooth points of X? is non empty by Proposition 4.5.4, and
it is open by upper semicontinuity of the dimension of ©,X ( Proposition 4.3.7), because dim, X is
independent of z € X?. Hence X*™ is an open dense subset of the open dense subset of X given by the
right hand side of (4.5.8), and hence is open and dense in X. O

4.6 Rational maps on smooth curves
A curve is a quasi-projective variety of pure dimension 1. Below is the main result of the present section.

Proposition 4.6.1. Let X be a smooth curve, andY be a projective variety. A rational map f: X --»Y
s reqular.

We start with a preliminary result.

Lemma 4.6.2. Let X be a smooth curve, and pe X. Let t € Ox p be a germ vanishing at p, with non
zero differential at p (a local parameter at p). If f € Ox , is non zero, there exist a unit u € Ox , and
an exponent e € N such that f = u - t°.

Proof. Since X is a smooth curve, the cotangent space Q,(X) has dimension 1. By Corollary 4.4.5,
the germ ¢ generates the maximal ideal m,, i.e. m, = (¢). Thus m; = (t') for every i € N. By Krull’s
Theorem A.8.2, there exists e € N such that f € mj and f ¢ mf,“. Then f = w-t¢, where u(p) + 0, and
hence v is a unit. O

Proof of Proposition 4.6.1. Since X is smooth, it is locally irreducible by Theorem 4.5.3. Hence we may
assume that X is irreducible. Since every quasi-projective variety is a union of open affine varieties we
may assume in addition that X < A™ is closed. By hypothesis Y < P" is closed. Let g: X --+ P™ be
the composition of f and the inclusion map Y < P™. The key point is to show that g is regular.

There exists an open dense U < X such that g is regular on U, and there exist ¢y, ..., ¢, € C[U]
such that

9(z) = [po(z),...,pn(x)]  Vael. (4.6.1)
For i € {0,...,n} locally we have
pi = % i, B; € C[X] (4.6.2)

and B;(x) # 0 for all x € U. By shrinking U if necessary, we may assume that (4.6.2) holds on all of U
(recall that X is irreducible).

The complement X\U is a finite set. In order to prove that g is regular, we must show that for
each p € (X\U) there exist an open % < (U u {p}) containing p and a regular G: % — P" such that
Gleanwh) = 9w \wh):

Let i € {0,...,n} be such that ¢; # 0, i.e. a; #+ 0. Applying Lemma 4.6.2 to «; and §;, we get that
there exist an open %; < (U v {p}) containing p such that on %;\{p} we have p; = u; - t¢, where w; is
everwhere non zero and e; € Z. Let % be the intersection of the %;’s. On % \{p} we have

gla) =1[..,u; -t .. ] Vo e (%\{p}). (4.6.3)
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(Some of the ¢;’s might be zero.) Let e := min{e; | ¢; + 0}. The map

y <, P

x> [t %0(p),. -]

is regular on 7%, and its restriction to Z\{p} is equal to the restriction of g. This proves that g is
regular. We also see that for each p € (X\U) the image g(p) is in the closure of Y. Since Y is closed,
the map ¢ restricts to a regular map ¢g: X — Y which is equal to original map f on U. O

Corollary 4.6.3. Let X,Y be smooth projective curves. A birational map f: X --+Y is an isomorph-
18m.

4.7 Birational models of curves

Desingularization
Definition 4.7.1. A regular map f: X — Y of quasi-projective varieties is
(a) a closed immersion if f(X) is closed in Y and f defines an isomorphism between X and f(X).

(b) projective if there exists a decomposition f = 7o j, where j: X — P™ x Y is a closed immersion,
and 7: P" x Y — Y is the projection.

Remark 4.7.2. (1) If X is projective then a regular map f: X — Y is projective. In fact assume that
X < P" is closed. Let )
X L pPrxy
zoo— (2, f(2))
and let 7: P" x Y — Y be the projection. Then f = wo j, and f is projective because the graph
I'r € X xY is closed by Lemma 1.6.2, and X x Y is closed in P" x Y.

(2) If f: X > Y is projective and Y is projective, then X is projective. In fact by hypothesis there
exists a closed immersion j: X < P™ x Y. Since Y is projective so is P* x Y and hence X is
isomorphic to the projective set j(X) c P* x Y.

(3) Let f: X — Y be projective and let W < Y be locally closed (and hence a quasi-projective
variety). The restriction of f to f~1(W) defines a projective map f~1(W) — Y.

Definition 4.7.3. Let X be a quasi-projective variety. A regular map f: X > Xisa desingularization
of X if the following hold:

1. X is smooth and f71(X®™) is dense in X.
2. The restriction of f to f~1(X*™) defines an isomorphism f~!(X*m) —» X™,
3. The map f is projective.

Example 4.7.4. If X is smooth, the identity Idx: X — X is a desingularization. Of course a desingu-
larization of X is interesting only if X is not smooth.

A slightly less trivial example is provided by a quasi-projective variety X whose irreducible com-
ponents, say Xi,...,X,, are smooth. Let X; 1 ... X, be the disjoint union of the X;’s (make sense
of this), and let f: (X; u...u X, ) — X be the tautological map. Then f is a desingularization of X.

Suppose that charK ¢ {2,3}, and let X < P? be the curve X := V(ZoZ? — ZyZ3 + Z}). A
straightforward computation gives that X is irreducible and sing X = [1,0, 0] (either you compute the
intersection of sing X with each standard affine space IP’QZi, or you apply Exercise 5.5.2). The map

(4.7.1)
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is a desingularization of X. Item (1) of Definition 4.7.3 holds because the domain is smooth and
irreducible. In order to check that Item (2) of Definition 4.7.3 holds we and that f~1([1,0,0]) =
{[17 1]7 []—7 _1]} The map

X\{[Loo0} - P

[Zo, 21, 23] '~ [Z1,2s). (4.7.2)

has image contained in (P*\{[1,1],[1, —1]} and one checks at once that it is the inverse of the restriction
of f to PY\f~1([1,0,0]): thus Item (2) of Definition 4.7.3 holds. Lastly, the map f is projective because
the domain is projective.

Remark 4.7.5. Let f: X — X be a desingularization. Since f is projective the image f(X) is closed in
X by the Main Theorem of Elimination Theory 1.6.1, and hence is equal to X because it contains the
open dense subset of smooth points. This explains in part why we require that the desingularization
map is projective (Items (1) and (2) of Definition 4.7.3 hold for the inclusion map X — X).

Remark 4.7.6. A desingularization is, in general, not unique.

Desingularization of plane curves

The main result of the present subsection is the proof that there exists a resolution of singularities for
plane projective curves.

Proposition 4.7.7. Let X = P2 be a hypersurface. There exists a desingularization f: X > X.

The formal proof of Proposition 4.7.7 will be given at the end of the present subsection. Let us start
by outlining the algorithm that gives a desingularization of X:

Step 1 If X is smooth let X = X and f :=1Idx, otherwise go to Step 2.

Step 2 The singular set of X is finite because dim X = 1. Let sing X = {p1,...,p.} and X; :=
Bly, ... p. X. If X is smooth let X = X; and f := mx, otherwise iterate.

What must be proved is that the algorithm terminates i.e. that we eventually reach a blow-up X,, which
is smooth. In order to accomplish this we will need a measure of how singular a curve X is at a point
p. One such measure is the multiplicity of X at p.

Definition 4.7.8. Let X be a quasi-projective variety and p € X*™ be a smooth point of X. Let
f € Ox,p. The multiplicity of (vanishing of) f at p is equal to the sup of the set of I € N such that
fe mé - we denote it by mult, f. Let Y < X be a proper closed subset and suppose that there exists
an affine open set U c X containing p such that I(Y n U) < C[U] is a principal ideal generated by f:
the multiplicity of vanishing of Y at p is equal to mult, f - we will denote it mult, Y, thus dropping X
from the notation. (One has to check that this definition is independent of the open affine U, we leave
details to the reader!.)

Ezample 4.7.9. Let 0 + f € K[z1,...,2,]. Then multy f = m if and only if

f=fmz,oyzn)+ oo+ falzr, .oy 2n),  fs€Clwy,...,wnls, fm £0, (4.7.3)

i.e. it equals the degree of the first non-zero term in the MacLaurin expansion of f.

Remark 4.7.10. Let X be a quasi-projective variety and p € X®™ be a smooth point of X. Let Y ¢ X
be proper a closed subset and suppose that there exists an affine open set U < X containing p such
that I(X nU) c C[U] is a principal ideal generated by f. Then

1. pe Y if and only if mult, Y > 0, and

2. pis a singular point of Y if and only if mult, f > 1.

L As a matter of fact mult, Y is independent of the embedding Y < X; we will not need this result
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Let X < A2 be a hypersurface containing 0 and 7x: Blg X — X be the blow-down map. Thus
Blp(X) is a closed subset of A% x ¥ (notation as in Subsection ??). We make the identification
(see (2.3.1))

PL = o
(11, T2]  —  {(0,0),(T1,T3))

Let f be a generator of I(X) and let f,,, be as in (4.7.3), with a = (0,0). Then (see (2.3.16))
7% (0) = {(0,[T1, To]) | fn(T1, To) = O}. (4.7.5)

(This makes sense because of Identification (4.7.4).) We have Bly(X) < Blg A% and Blg A? is the union
of the two open affine planes %, % given by (2.3.10). Moreover, as shown in Example 2.3.4,

(4.7.4)

I(Blo(X) n %)
I(Blo(X) @) 62/2)

Fn(Lit2) + 21 fmsn (1, t2) + oo 4 2™ fa(1,t2), (4.7.6)
fm(tla 1) + ZQfm+1(t17 ].) + ...+ Zg_mfd(tl, ].) (477)

where t; := T /T and tg := T»/T} are the standard affine coordinates on IP’lTZ and P%«l respectively.

In particular Bly(X) is locally a hypersurface in the smooth surface Bly(A?) (i.e. there is an open
affine covering of Blg(A2) such that the ideal of the intersection of Bly(X) with each open set is principal)
and hence the multiplicity of vanishing of Bly(X) at an arbitrary ¢ € Bly(A?) makes sense. We chose
0 € X for conveniece but it is clear that similar descriptions apply to Bl,(X) for an arbitrary a € X.
In particular the multiplicity of vanishing of Bl,(X) at an arbitrary ¢ € Bl, A? makes sense.

Lemma 4.7.11. Let X < A? be a hypersurface and suppose that 0 € X. Let m := mult, X. For all
qe w5 (0) we have

multy Blo(X) < m = multy X. (4.7.8)
If there exists q € my'(0) such that (4.7.8) is an equality then
I(X) = (l(zl, z9)™ + fm+1(2’1, 2’2) + ...+ fd(Zl, 22)), (479)
where | € K[z1, 22]1 is non zero, and fs € K[21, 22]s for se {(m +1),...,d}.

Proof. Expand f in series of MacLaurin, as in (4.7.3); then f,, + 0 and hence there exist non-zero
li, ..., lm € C[z1, 22]1 such that

=l ln
By (4.7.5) ¢ = (0,V(l;)) = {0} x P! for a certain i € {1,...,m}. After a homogeneous change of affine
coordinates we may assume that [; = zo and hence

0% frn = alz{”_lzg + ...t apzy. (4.7.10)

We have ¢ € % and the ideal of Blg(X) n % is generated by the polynomial in the right hand side
of (4.7.6). By (4.7.10) we get that

I(Bl()(X) N %1) = (a1t2 + agtg + ...+ amt’Q” + Zlfm+1(1,t2) + ...+ Zf_mfd(17t2)).
The lemma follows because ¢ is the point with (z1,t2)-coordinates equal to 0 O

Proof of Proposition 4.7.7. The proof is by contradiction. Let X be singular. We will assume that the
curves X1, Xo,...,X;, ... described at the beginning of the present subsection are singular for all 7 € N.
We recall that X is the blow-up of X at sing X and that X is the blow-up of X;_; at sing X;_; fori > 2.
Now notice that X7 < Blging x P?, X2 © Bliing x, (Blsing x P?) and and so on. Let A; := Blgyg x P?,
Ay := Blsing x, (Blsing x ]P’Q) and so on. Then A; is a projective surface which has an open cover by affine
planes (this is analogous to Example 2.3.7) #;; such that the ideal I(X; n%;;) < C[#;;] is principal with
generator computed inductively by applying the procedure of Example 2.3.2. In particular mult, X;
is defined for any g € A;. For i = 1 (we set Xg = X) let mx,_,: X; — X;_1 be the blow-down map.
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Then sing X; < ﬂ;(j_l(sing X;—1). The hypothesis that the curves X, Xs,..., X;,... are all singular

and Lemma 4.7.8 give that we may choose p; € sing X; for ¢ = 1,2,... such that 7x,(p;+1) = p;. Let
Y i) © Ai be an open affine plan as above containing p;. Let

T (Xi 0 Wj) = Xi 0 W (4.7.11)

be the restriction of the blow-down map 7x,; applying Lemma 4.7.8 with ¢ = p;+1 and a = p; we get
that mult,,, , X;+1 < mult,, X;. On the other hand mult,, X; > 2 for all 7 by Remark 5.5.1. It follows
that there exists ¢ € N such that

2<m=mult,, X; =multy,,, X;11 =...=mult,,, X, =... (4.7.12)

By Lemma 4.7.8 there exist affine coordinates (21, 22) on #; ;) (notation as above) such that p; has
coordinates (0,0) and

I(sz%):(f)v f:'zén"_ferl""'”"'fdv fsec[zla22]5~ (4713)

Now notice that the restriction of f to V(z2) does not vanish because X; is irreducible and m > 2.
Thus
multo(f|v(z,)) = min{(m +1) < s < d| fs(1,0) + 0} < oo. (4.7.14)

We have 7r)_(1 (pi) = {(0,[T1,T>]) | T5" = 0} and hence p;+1 = (0,[1,0]). Moreover (see (4.7.6)) the ideal
I(Xip1 0 Wigr,ji+1)) © C[#i41,j(i+1)] 18 generated by

g =t 4 21 frp1 (L) + .o 4 25 fa(1,t2). (4.7.15)
It follows that
multo(gly (¢,)) = min{(m + 1) < s < d| fs(1,0) F 0} —m = multo(f|v(z,)) — m- (4.7.16)

Iterating this procedure we get a contradiction because the multiplicity of vanishing of a function at a
point of a smooth variety is a non-negative integer. O

Smooth projective representative of a birational class
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Chapter 5

Smooth points: deeper properties

5.1 Local invertibility of regular maps

In the present subsection we prove the following analogue, in the category of quasi-projective varieties,
of the local invertibility results valid for C® or holomorphic maps.

Theorem 5.1.1. Let f: X — Y be a projective map of quasi-projective sets. Let p € X and suppose
that the following hold:

1. f7H(f () = {p}-
2. df(p): ©,X — O5;,)Y is injective.

Then there exists an open U < Y containing f(p) such that the restriction of f to f~Y(U) is an
isomorphism to a closed subset of U.

Before proving Theorem 5.1.1 we give some preliminary result. Let ¢: A — B be a homomorphism
of rings. By setting a-b := ¢(a)b we equip B with a structure of A-module: we say that B is finite over
A if it is a finitely generated A-module. Let X,Y be affine varieties, and let f: X — Y be a regular
map; the pull back f*: K[Y] — K[X] is a homomorphism of rings, hence (with f understood) it makes
sense to state that K[X] is finite over K[Y].

Lemma 5.1.2. Let f: X — Y be a projective map of quasi projective varieties. Let yo € Y and suppose
that f=Y(yo) is finite. There exists an open affine Yo < Y containing yo such that Xo := f~1(Yp) is
affine and K[Xo] is finite over K[Y].

Proof. By Definition 4.7.1 we may assume that X < P™ x Y is closed and f is the restriction of
the projection 7: P* x Y — Y. Since X n (P" x yo) is finite there exists homogeneous coordinates
[Zo,...,Zy] on P™ such that X n (V(Zy) x {yo}) = &. The intersection X n (V(Zy) x Y) is a closed
subset of P x Y. By Elimination Theory (i.e. Theorem 1.6.1) C' := w(X n (V(Zy) x Y)) is closed in Y.
Hence (Y\C) is an open subset of Y containing yo. Let Y, < (Y\C) be an open affine subset containing
yo. Then X, := X n (P" x Yy) = f~1(Ys) is a closed subset of the affine set P x Yy and hence is
affine. It remains to prove that K[X,] is finite over K[Y,]. The proof is by induction on n. If n =0
then K[X,] = K[Y%] and there is nothing to prove. Let’s prove the inductive step. Since X, is closed
in P x Y, there exist F; € K[X,][Zo, ..., Zn]a, for i =1,...,r such that

X, =V(F,...,F).
(See Claim 1.5.5.) Since X, n (V(Zp) x {yo}) is empty we have
V(Fl(yo)(O, Zl7 ey Zn), e ,FT(yo)(O, Zl7 ey Zn)) = @
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By Hilbert’s Nullstellensatz, there exists M > 0 such that
(Z1,. o Zo)M < (FL(10)(0, Z1,..., Zn), ..., Fr(90)(0, Z1, . .., Z0)).
It follows (see the proof of Theorem 1.6.1) that, shrinking Y, around yo, we may assume that
ZM L ZM e (B0, 20, ... Zy)s . (0, 24, ..., Z). (5.1.1)

(Actually we may arrange so that (5.1.1) holds for the original Y, - but we do not need this). Equa-
tion (5.1.1) gives that there exists

G = (Z,IQ/I + AlZiwfl + ...+ A]u) € (Fl, ce ,FT), Al € K[Y*][Zo, .. ~7Zn—1]i~

Thus G|x, = 0: dividing by Z}! and setting z; 1= Z;/Zy, a; = Ai/Zs € Clz1, ..., 2zn—1] we get that

(M + a2+ +am)lx, = 0. (5.1.2)

Let @ :=[0,...,0,1] € P". The product of projection from @ and Idy,

(P\{P}) x Y, Pl x Y,
([Zos--- Zalip) —  ([Zos-- ) Zn-1],p)

is not projective but the restriction of p to X, is projective. In fact locally over open sets of a covering
Ujes Uj of Yy we may embed X, as a closed subset of P! x U; so that p is the restriction of the
projection (P! x U;) — U;. Thus the image p(Xy) is a closed subset of P"~! x Z,. Since the fiber of
p(Xy) — Y over yo is finite we may assume (possibly after shrinking Y, and X, ) that p(X) is affine
(we just proved it). The ring K[X,] is obtained from K[p(X] by adding z,. Equation (5.1.2) gives
that K[X] is finite over K[p(X4]. By the inductive hypothesis K[p(X] is finite over K[Y,] (possibly
after shrinking K[Y%]): it follows that K[X,] is finite over K[Y]. O

Proof of Theorem 5.1.1. Since f is projective it has closed image: thus we may assume that f is sur-
jective. By Lemma 5.1.2 we may assume that X and Y are affine and that K[X] is finite over K[Y].
By surjectivity of f the pull-back defines an inclusion f*: K[Y] — K[X]. We will prove that there
exists an open affine % < Y containing ¢ such that f*|4 : K[%] — K[f~'%] is surjective: that will
give that flo : f~1% — % is an isomorphism. Let ¢ := f(p). By Item (1) and the Nullstellensatz we

have
m, =4/ f*m/K[X]. (5.1.3)

Here f*myK[X] is the ideal of K[X] generated by f*¢ for ) € m, (we will use similar notation in the
course of the proof). Let m, = (¢1,...,¢n). Item (2) gives that for each 1 < i < n there exist an affine
open U; containing p and v; € K[Y] such that (¢; — f*¢;)|y, € m2K[U;]. Since f is closed it follows
that there exists a principal open affine Y} neighborhood of ¢ (thus h € K[Y] with h(g) % 0) such that

(6i — F*0i)l 1 vy e K[ fTH(Y)] VI<i<n. (5.1.4)
Let’s prove by “descending induction” on k that
mPK[f 1 (Va)] < fHFm K[ (Ya)] VI<E. (5.1.5)

By (5.1.3) there exists N > 0 such that (5.1.5) holds for k = N. Let’s prove the “inductive step”: we
assume that (5.1.5) holds with k > 2 and we prove that it holds with k replaced by (k —1). Let

o=, ey ... ol e mETIK[FT (V). (5.1.6)
|L|=k—1

By (5.1.4) we may write ¢; = f*1); +€; where ; € m2K[f~!(Y},)] for i = 1,..., n: substituting in (5.1.6)
and invoking the inductive hypothesis we get that ¢ € f*m,K[f~!(Y})]. We have proved (5.1.5). Since
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K[f~'(Yn)] = K[Y](p#ne) (the localization of K[Y] with respect to the multiplicative system of powers
of f*h) we get that

1= {p e K[f ' (V)] | ¢(p) = 0} = frm K[f~(¥3)]. (5.1.7)

Now notice that K[f~1(Y})] is a finite K[Y}]-module because K[f~1Y] is a finite K[Y]-module. We
will apply Nakayama’s Lemma to the finitely generated K[Y;,]-module

M = K[f " (Ya)]/f*K[Y4]

and the ideal m,. We claim that M < m,M. In fact since K < f*K[Y}] every element of M is
represented by « € I, (notation as in (5.1.7)) and @ € m;M by (5.1.5). By Lemma A.7.2 there exists
© € my such that

(1+ @)K[f 1Y) © f*K[V2]. (5.1.8)

The open affine Yj,(11,) © Y contains ¢ (because ¢(q) = 0). By (5.1.8) we get that

K[filyh(lﬂp)] = f*K[Yh(1+cp)]'
O

Ezample 5.1.3. Suppose that X < P" is closed irreducible and r € (P™\X). Let H < P™ be a hyperplane
not containing r. Projection

X 5 H

p — rynH

is a projective map with finite fibers. Let p € X and suppose that the projective tangent space T)X
does not contain the line {r,p): then df(p) is injective. Suppose in addition that #=1(w(p)) = {p}:
by Theorem 5.1.1 we get that 7 is birational onto its image. As long as dim©,(X) < n, and X has
codimension at least 2, there exists a point r such that the two conditions above hold. Iterating we
get that if dim X = m we can choose a projection from a linear space of dimension (n — m — 2) giving
a birational map from ¢: X — Y where Y < P™*! is a hypersurface, and such that ¢ restricts to an
isomorphism from a neighborood of p to a neighborhood of ¢(p).

5.2 Local factoriality
The result below is of fundamental importance.

Theorem 5.2.1. Let X be a smooth quasi projective variety. Let D ¢ X be a closed subset of pure
codimension 1, and let a € D. There exists an open affine subset U ¢ X containing a such that the
ideal I(D n U) < K[U] is principal.

Remark 5.2.2. If we assume that D is smooth at a, then Theorem 5.2.1 follows from Proposition 4.5.9
and Corollary 4.5.9. In fact, replacing X by a suitable open affine subset containing a, we may assume
that X is affine. Hence there exists an embedding X < A™ as closed subset. Thus D < A™ is also
closed. Applying Proposition 4.5.9 and Corollary 4.5.9 to X and D, we get that there exist an open
affine subset U < A™ containing a, and functions fi, ..., fr+1 € K[U], such that

I(XQU):(flv"'afk)v I(DQU):(flv"',karl)'

Since principal open affine sets form a basis for thge Zariski topology, we may assume that U is a
principal open set, say U = A™\V(p). Hence also U n X is an open principal set, in particular it is
affine. Moreover the image of f;11 in K[X n U] is a generator of the ideal of D n X n U.

Proof of Theorem 5.2.1. O
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The statement of Theorem 5.2.1 is summarized by stating that a smooth quasi projective variety is
locally factorial.

EXPLAIN

The result below follows from Theorem 5.2.1, actually the weak version in Remark 5.2.2 suffices.

Proposition 5.2.3. Let X be a smooth quasi projective variety, and let f: X --+ P™ be a rational map.
The indeterminacy set Ind(f) has codimension at least 2 in X.

First we prove the following.

Proof of Proposition 5.2.3. The indeterminacy set Ind(f) is a proper closed subset of X. We argue by
contradiction. Suppose that D is a codimension 1 irreducible closed subset of X contained in Ind(f).
Let a be a smooth point of D. By Lemma 5.2.2 there exist an open affine subset U < X containing
a and ¢ € K[U] such that I(D n U) < K[U] is generated by ¢. Since X is smooth at a, there is a
unique irreducible component of X containing a, hence we may assume that U is irreducible. There
exist fo,..., fn € K[U] such that V(fy,..., fn) is a proper subset of U, and

f(@) =[fo(@),.... fu@)] Voe (U\V(fo,...,[n))-

5.3 Smooth points of maps
Let f: X — Y be a regular map of quasi projective varieties.
Definition 5.3.1. Let z € X. The map f is smooth at x if
1. x is a smooth point of X, y := f(z) is a smooth point of Y,
2. and the differential df (z): ©,X — 0,Y is surjective.

The following result explains why we might be interested in the points at which a regular map is
smooth.

Proposition 5.3.2. Let f: X — Y be a regular map of quasi-projective varieties. Suppose that x € X
and that f is smooth at x. Then f~1{f(x)} is smooth at x and

dim, f~'(f(z)) = dim, X — dimj(, Y.

Proof. We may assume that X and Y are affine. Let n := dimY, and let y := f(x). There exists r
such that Y < A™*" is closed. By Corollary 4.5.9 there exist a Zariski open U < A™'" containing
and ¢1,...,0, € K[21,...,2,4+] such that

1. déy(y),...,do,(y) are linearly independent, and
2. V(pr,....¢:) nU =Y AU.
Let ¢y, ...,1n € K[21, ..., znsr] be such that 0 = ¢y (y) = ... = ¢, (y) and
{dor(y), .-, dor(y), dvi(y), ... dn(y)}

is a basis of the cotangent space of A" at y (we may choose the 1;’s to be coordinate functions if
we wish). By Proposition 4.5.9 V(¢1,...,¢,¥1,...,1%,) has dimension zero at y. Thus shrinking the
open set U above, if necessary, we may assume that

V(w17"'7¢n7¢17'--5¢7‘)mU:{y}- (531)
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5.3. Smooth points of maps

Let 9, := Yiy- By (5.3.1) we have that

FH ) = VW), (W) (5:3.2)
We have d(f*(¢;))(z) = f*di,;(y). By hypothesis df (z) is surjective, i.e. the transpose

df (z)t
Qv (y) 9 0y (x)

is injective. Since di;(y), ..., d,,(y) are linearly independent, it follows that d(f*v,)(z), ..., d(f*¥,)(x)
are linearly independent. Let m := dim, X. Since X is affine, there exists s such that that X < A™*s
is closed. By hypothesis X is smooth at z, and hence by Corollary 4.5.9 there exist a Zariski open
U < A™*S containing x and 1, ..., 15 € K[21, ..., 2mys] such that

L.V(@r,...,0s) n U =X n%, and
2. dipy(x),...,dps(x) are linearly independent.

Since X is closed in A™** there exist @1, ..., ¢, € K[z1,..., 2mts] such that ¢;|x = f*¢,. By (5.3.2)
we have that

fﬁl{y}m@/ =V({W1,.. Vs, 01,y 0n) NU .

Applying Proposition 4.5.9 we get that V(¢1,...,%s, ©1,..., %) is smooth at x of dimension m —n =
dim, X — dim, Y. O]

The result below is elementary.

Claim 5.3.3. Let f: X — Y be a regular map of quasi-projective sets. The set of smooth points of f
18 open in X.

Proof. The set of points x € X such that (1) of Definition 5.3.1 holds is equal to X*™ ~ f~1(Y*™) and
hence is open by Theorem 4.5.3. Thus it remains to prove that the set of x € X*™ n f~1(Y*™) such that
df (z) is not surjective is closed in X5 n f=1(Y*™). It suffices to prove it for X and Y affine, smooth.
By Corollary 4.5.9 we may assume that Y is irreducible of dimension d. Thus we must check that the
set

{zeX| rkdf(z) <(d—-1)} (5.3.3)

is closed in X. By hypothesis X < A™ and Y < A™ are closed. Via the identification provided
by Proposition 4.3.5 the differential df (x) gets identified with the Jacobian matrix Jf(z). It follows
that (5.3.3) is the set of zeroes of determinants of d x d minors of Jf(z), and hence is closed. O

A point that is smooth for a regular map f: X — Y is relative version of smooth point of a variety,
because X is smooth at a point z if and only if the constant map X — {yo} is smooth at x. We have
proved that the set of smooth points of a quasi projective variety is an open dense subset.

By analogy, one might expect density of the set of points at which a dominant map of irreducible
quasi projective varietes is smooth. (We must assume that the map is dominant, otherwise the differen-
tial is never a surjection for trivial reasons, and if the domain has more than one irreducible component,
then again the set of smooth points of the map can be non dense for trivial reaons.) It turns out that
even under the above hypotheses, the set of smooth points of a map might be empty. The Frobenius
map is the archetypical example. Suppose that charK = p, and let Al £, Al be given by F(z) = 2P;
then F' is dominant, but the differential is zero everywhere.

The result below provides the hypothesis that guarantee density of the set of smooth points of a
dominant map between irreducible varieties - in particular the hypothesis is satisfied if char K = 0.

Proposition 5.3.4. Let f: X — Y be a regular dominant map of irreducible quasi-projective varieties
- thus f*: K(Y) — K(X) is an embedding of field extensions of K. Suppose that K(X) is a separably
generated extension of K(Y). Then the set of smooth points of f is an open dense subset of X.
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Before proving the above result we associate a geometric object to a derivation D € Derg (K(X), K(X)),
where X is an irreducible quasi projective variety. This allows to derive Proposition 5.3.4 from Propos-
ition A.6.4. Let x € X. We recall that Ox , < K(X). Suppose that

D(Ox ) € Ox 4. (5.3.4)
Then we may define a tangent vector D(z) € ©, X by setting

D(x)
Oxo —> K (5.3.5)

¢ = D(@)(x)
)

The result below shows that an element of Derg (K(X),
an open dense subset U ¢ X (the open U depends on

(X)) may be thought of as a vector field on

Claim 5.3.5. Let X be an irreducible quasi-projective variety and D € Derg(K(X),K(X)). There
exists an open dense U < X such that for all x € U Equation (5.3.4) holds and hence the tangent vector
D(x) € ©,X is defined.

Proof. We may assume that X is affine. Thus K(X) is the fraction field of K[X]. Let fi,..., f, be
generators of the K-algebra K[X]. There exists 0 + g € K[X] such that g-D(f;) e K[X] fori=1,...,r.
Let U := X, = (X\V(g)). Then X is an affine open dense subset of X, and its ring of regular functions
is the subring of K(X) given by

K[U] = {h/g" | he K[X], k= 0}.

Thus (A.6.4) gives that D(K[U]) < K[U]. Applying (A.6.4) again it follows that (5.3.4) holds for
zelU. O

Proof of Proposition 5.3.4. We know that the set of smooth points of f is open, we must prove that
it is non-empty. We are free to replace X and Y by open dense subsets X° and Y respectively (of
course we require that f(X°) < Y°): in the course of the proof we will rename X° and Y° by X
and Y respectively. In particular we may assume that X and Y are smooth. By Theorem A.5.6,
there exists a separating transcendence basis ¢y, ..., ¢, of K(Y) over K. Replacing Y by the open
dense subset Y° of points where each of ¢1,...,¢,, is regular we may assume that ¢i,...,¢d,, are
regular (of course we replace X by f~1YY). Since f is dominant f*¢i,..., f*¢,, are algebraically
independent in K(X). Let t1,...,14, be a separating transcendence basis of K(X) over K(Y) (it
exeists by hypothesis). Then ¢1,...,dm,¥1,...,1¥, is a separating transcendence basis of K(X) over
K, and hence by Proposition A.6.4 there exist D; € Derg (K(X),K(X)) for j = 1,...,m such that

1 ifi=j
Di(f*¢;) = 6;; = ’
5(f71) = 0 {0 if i # j.

By Claim 5.3.5, we may assume that D;(0x ;) € Ox , for every x € X (after shrinking X'). Then D;
defines a tangent vector D;(x) € ©,X for each x € X. Let 2 € X: we claim that df(z) is surjective. In
fact let y := f(x). Then df*¢1(y),...,df *¢m(y) are linearly independent because

(Dj(x), f*pi) = dij. (5.3.6)
In particular d¢1 (y), . . .,dom(y) are linearly independent. Since m = dimY and Y is smooth it follows
that {d¢1(y),...,dom(y)} is a basis of Qy (y). This proves that the transpose of df (z) is injective and

hence df (x) is surjective. O
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5.4 Regular values

Definition 5.4.1. Let f: X — Y be a regular map between quasi-projective sets. A point y € Y is a
regular value of f if f is smooth at each x € f~{y}.

Theorem 5.4.2 (Sard’s theorem for quasi-projective varieties). Let f: X — Y be a regqular map of
quasi-projective varieties over a field K of characteristic 0. Suppose that X is smooth. Then the set of
reqular values of f contains an open dense subset of Y.

Proof. One checks easily that it suffices to prove the theorem for X and Y irreducible. If f is not
dominant then every point of the open dense set (Y\f(X)) is a regular value of f. Now suppose that
f: X — Y is dominant. By Proposition 5.3.4 the open set

XY= {z e X | df(z) is surjective}
is dense in X. Let C be an irreducible component of X\X?; we claim that f(C) # Y. In fact suppose
the contrary. Applying Proposition 5.3.4 to fic we get that there exists an open dense C° c C'sm such
that

df(x)|@xc: @tC’ g @f(w)Y

is surjective. That contradicts the definition of X°. This proves that f(C) # Y. It follows that

FX\X0) £ Y.
Thus Y\ f(X\X0?) is an open dense subset of regular values of Y. O

The following result shows, at least in the case of maps of finite degree, that if a map is projective
then the fibers of “nearby” regular values all look alike.

Proposition 5.4.3. Let f: X — Y be a regular projective map between irreducible quasi projective
varieties of the same dimension. If y € Y is a regular value of f, the cardinality of f=1(y) is equal to
deg f. In particular, if there exists a reqular value of f, then K(X) is an algebaric separable extension

of K(Y).

Before proving Proposition 5.4.3, we examine an example that was discussed in Section 3.2. It will
convince the reader that Proposition 5.4.3 should be true.

Ezample 5.4.4. Let Y be an affine variety, and let P € K[Y'][¢] be an irreducible polynomial:
PItd-‘raltdil—F"'—Fad.

Let X :=V(P)c Y x Al and let f: X — Y be the projection, given by f(y,t) = y. The closure of X
in Y x P! is equal to X, because the leading coefficient of P (in t) is equal to 1. Hence the map f is
projective. Clearly dim X = dimY, and deg f = d.

Next, we notice that yy € Y is a regular value of f if and only if Y is smooth at 3, and %(ZJO, &) *0
for all £ which are solutions of the degree d polynomial P(yg,t) = 0. Hence, if yg is a regular value of
f, then all solutions of the equation P(yo,t) = 0 have multiplicity 1, and therefore there are d = deg f
of them.

Proof of Proposition 5.4.3. Since f is projective, we may assume that X < Y x PV is closed, and f is
the projection map given by f(y,t) = y. The proof is by induction on N. If N = 0, the statement is
trivially true. The inductive step starts from N = 2, hence the case N = 1 must be examined separately.

O
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5.5 Exercises

Exercise 5.5.1. Let n > 2, and let X < P" be a smooth hypersurface. Prove that X is irreducible. Notice
that this property is peculiar to hypersurfaces in P". If Y is a quasi-projective variety of pure dimension, we
may define a hypersurface in Y to be a closed X c Y of pure dimension equal to dimY — 1. Give examples of
projective smooth Y of dimension at leats 2 and a reducible smooth hypersurfaces X c Y.

Exercise 5.5.2. Let X < P" be a hypersurface, and let I(X) = (F).
1. Prove that if [a] is a singular point of X, then all the partial derivatives
equality (1.8.8).
2. Show that if char K does not divide the degree of X, then the converse holds, i.e. if all the partial derivatives
aaF—Z(:L) vanish, then [a] is a singular point of X. (Recall that deg X = deg F'.)

OF (a)
0Z;

vanish. (Hint: use Euler’s
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Chapter 6

Some classical results

6.1 Beézout’s Theorem

Definition 6.1.1. Let X be a quasi-projective variety. Let Y, W < X be locally-closed. Let pe Y nW.
We say that Y and W intersect transversely at p (or are transverse at p) if the following hold:

1. X, Y, and W are smooth at p.
2. The natural map T,Y @ T,W — T, X is surjective.

We say that Y and W intersect transversely (in symbols Y AW) if given any irreducible component V'
of Y n W there exists p € V' such that Y and W are transverse at p.

Ezample 6.1.2. Let (z,y) be affine coordinates on AZ. Then V(y) and V(y —2?(z —1)) do not intersect
transversely at (0,0), they intersect transversely at (1,0).

Remark 6.1.3. 1. Suppose that Y, W < X are locally closed, pe Y n W and Y, W are transverse
at p. Then (dimY + dimW — dim X) > 0 (obvious) and by ?? there is a unique irreducible
component of Y n W containing p, call it V. Moreover V is smooth at p of dimension equal to
(dimY + dim W — dim Z).

2. Suppose that Y, W < X intersect transversely. Let V be an irreducible component of Y n W.
Since the set of p € V' such that such that (1) and (2) of Definition 6.1.1 holds is an open subset
of V' (that is easily checked) it follows that there is an open dense subset of p € V' such that such
that (1) and (2) of Definition 6.1.1 holds.

Theorem 6.1.4 (Transverse Bézout’s theorem). Let X,Y < P be closed subsets which intersect
transversely. Then
deg X nY =deg X -degV

unless dim X + dimY < n (in that case X n'Y = & by Remark 6.1.3).
The key element in the proof (that we will give) of Theorem ?7? is the following degree computation.

Proposition 6.1.5. Let X,Y < PV be closed irreducible subsets such that (3.4.1) holds. Then
deg J(X,Y) =deg X - degY.

Proof. Since (J(X,Y)) = (X,Y) we might as well assume that (X,Y) =PV Let
cx = cod(X, (X)), cy :=cod(Y,(Y)), cy:=cod(J(X,Y),PV).

We have
n=dm(X)+ dim{¥Y)+1, dimJ(X,Y)=dimX +dimY + 1.
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Subtracting we get that c; = cx + cz. Let A € (X) and T" € {(Z) be linear subspaces such that
dimA =cx, dimI'=cyz, AMNX, T'nZ

Then
AN X| =degX, T Y| =deg?, dim{A, T) = ex +cy + 1.

The intersection of (A,T") and J(X,Y) is transverse and it equals

JANX,TnY)= (] ®a. (6.1.1)
pPEANX
gel'nY

Let H c PN be a hyperplane transverse to each of the finite lines appearing in the right-hand side of
(6.1.1) and such that HnAnX =HnT nY = . Then

dim H n{A,T) =cx + cy.
Moreover the linear space H n {A,T") intersects transversely J(X,Y). It follows that
deg J(X,Y) = |(Hn{ATH) n J(X,Y)| =deg X - deg Y.
O

Proof of Theorem ?7?. If dim X + dimY < n then X nY = ¢, and there is nothing to prove. Thus we
may assume that
e:=dimX +dimY —n > 0. (6.1.2)

As the reader will easily check we may assume that X and Y are irreducible. Then e is the dimension
of every irreducible component of X n'Y - see Item (1) of Remark 6.1.3. Let 4,j: P® — P?"*! be as
in (3.4.8). Let A = P?"*! be given by

A= V(W()*ZO,...,WTL*ZTL).

We recall that we have an isomorphism

Xny An J(i(X),5(Y))

6.1.3
oo Za] > [Zove- Zon Zoeros 2] (6.1.3)

Since XY the linear space A intersects transversely J(i(X),j(Y)) (check it). Now let T' = P™ be a
linear space transverse to X n'Y (such a I' exists by ?7). Thus

TNnXnY|=deg(XnY) (6.1.4)

by ??. On the other hand ' := J(i(T'),j(P")) is a lincar subspace of P2"*! the linear subspace
I' n A has codimension (n + 1 + €) (in P?"*!) and it intersects transversely (check it) the closed
J(i(X),j(Y)) « P21 of dimension (n + 1 + e). Thus

T A A~ JGE(X),5(Y))| = deg J(i(X), j(Y)) = deg X - deg Y (6.1.5)

(The second equality follows from Proposition 6.1.5.) Isomorphism (6.1.3) defines a bijective cor-
respondence between ' n X n'Y and I' n A n J(i(X),j(Y)): thus (6.1.4) and (6.1.5) give that
deg(X nY) =deg X -degY. O

We will apply Beézout’s Theorem in order to compute of the number of flexes of a plane curve i.e. a
hypersurface C' = P2. First we go through a couple of definitions. Let X = A" be a hypersurface: thus

I(X) = (f), feXKlz,...,2n)

Let pe A" and L < A" be a line containing p.
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6.1. Bezout’s Theorem

Definition 6.1.6. The multiplicity of intersection of X and L at p, denoted mult,(L n X) is the
multiplicity with which f|; vanishes at p.

Thus mult,(L n X) > 1 if and only if p € X, mult,(L n X) > 2 if and only if L belongs to the
embedded affine tangent space p + 7, X. Now let X < P" be a hypersurface, p € P" and L < P" be a
line containing p. One defines the multiplicity of intersection of X and L at p by choosing a standard
open affine space P} containing p and setting mult,(L n X) := mult,(Les n Xg) - this makes sense
because mult,(Ls N Xg) is independent of ®.

Definition 6.1.7. A curve C < P? has an inflection point at p (or p is a flex of C) if there exists a line
L < P? such that mult,(L n C) > 3.

Remark 6.1.8. An easy local computation gives that p € C' is a flex of C if and only if one of the
following holds:

1. C is smooth at p and mult,((p + 1,C) n C = 3.
2. C is singular at p.

Definition 6.1.9. A flex p of a curve C' < P? is ordinary if C is smooth at p and moreover mult,((p +
T,C)nC = 3.

Remark 6.1.10. Let Cy 1=V (Z§ — Z{§ — Z§) = PZ. Let p = (1,1,0). Then p is a flex of Cy if and only
if d > 3: it is ordinary if and only if d = 3.

Let C < PZ be a curve. Let I(C) = (F). We let

oF oF oF
072 020071 0Z00Zo

f) oF oF

Hp :=det | 37,57, 272 32,073
oF f) oF

972020 022071 = 073

(Hp is the Hessian curve of F.) Let d := deg F; then Hr € C[Zy, Z1, Z2]3(q—2)- One should notice that
the locus V(Hp) depends on C and not on the homogeneous coordinates (needed to make snese of the
partial derivatives).

Proposition 6.1.11. Let C < PZ be a curve and let F be generator of the homogeneous ideal I(C).
The following hold:

1. The set of flexes of C is equal to C n V(HF).
2. The set of flexes of C is finite unless C' contains a line.
3. If all flexes of C' are ordinary then the number of flexes is equal to 3deg C - (deg C — 2).

Proof. (1): Let p € C. We must prove that p € V(Hp) if and only if p is a flex of C. We may assume
that p = [1,0,0]. Since p € C' we have

F=Z0 1+ 232 fo+ .. + fa, fi € C[Zy, Zs);. (6.1.6)

It follows that

Siid-—i)d—i—-1)f; N (d—idE S (d-i)2k

d N Ofs d 2 d 2%

Hp(1,21,22) = det i (d— Z)% i azfg i azlgm (6.1.7)
d N Ofi d 0% f; d 0%
i (d— Z)% i 9m1£1}2 izt Uamfg
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Suppose that p € singC. Then the first row (and first column) of Hg(1,0,0) vanish and hence p €
V(HF). Next suppose that C is smooth at p. We may assume that f; = Zs. It follows that Hr(1,0,0) =
0%f2(0,0)/0Z%. Thus Hp(1,0,0) = 0 if and only if p is a flex of C. (2): It is clear that if C' contains
a line then every point of the line is a flex of C. Now suppose that the set of flexes of C is infinite.
By Item (1) the set of flexes of C' is a closed subset of C: it follows that it contains an irreducible
component Cy of C. The generic point of Cy is smooth and hence locally (away from the finite set
Cp n sing C) there exist affine coordinates (z,y) such that Cp is the graph of a holomorphic function
@(x). Since every point of Cj is a flex we get that ¢” = 0 and hence Cj is a line. (3): Let pe C be a
flex. We may assume that p = [1,0,0] and hence (6.1.6) holds. The curve C' is smooth at p because
the flex is ordinary: thus we may assume that f; = Zs. Since p is an ordinary flex of C' we have

fo=a1Z17Z5 + ax 73, f3 =002} + 012329 + b2 2173 + b3 Z3, by * 0.

By (6.1.7) we get that

0 0 (d — 1) + (d — 2)@1.’131
Hp(1,21,0) = det 0 6bo 1 * (mod x?).
(d — 1) + (d — 2)&11‘1 * *

Thus Hr(1,21,0) = 6(d — 1)%?bgx; (mod z%). It follows that Hr has no multiple factors and hence
V(HFp) is a curve of degree equal to deg Hr = 3(deg C' — 2) and the intersection of the curves C and
V(HF) is transverse. By Beézout we get that

{PeC|pisaflex of C}| = 3degC - (deg C — 2).

Corollary 6.1.12. Let C < PZ be a smooth cubic curve. Then C has exactly 9 flezes.

Proof. By Proposition 6.1.12 it suffices to show that every flex of C' is ordinary. Let p be a flex of C.
Then C is smooth at p by hypothesis. Let L := T,C" then mult,(L n C) > 3 because p is a flex of C.
Let I(C) = (F): thus 0 % F € C[Zy, Z1, Z2]3. We have L = P(U) where U < C3 is a vector subspace
of dimension 2. The restriction F|y is a degree-3 polynomial function which is non-zero because the
curve C is irreducible (see Example 3.4.6). Thus mult,(L n C) < 3; since mult,(L n C) > 3 we get that
mult, (L n C) = 3 i.e. p is an ordinary flex. O

6.2 Cubic surfaces

We will prove the following classical result.
Theorem 6.2.1. A smooth cubic surface in ]P’% contains 27 lines.

The proof will be given after a series of preliminary results. Let S < P2 be a surface: we let
F(S):={LeGr(1,P})| L S}.

Proposition 6.2.2. Let G € K[Zy, Z1, Z>]5 be such that V(G) is a smooth cubic curve. The cubic
surface S =V (Z3 — G) = P3 is smooth! and it contains 27 lines.

Proof. Let F := (23 — G). Then V(0F/0Zy,...,0F/0Z3) = & because V(G) is a smooth cubic curve.
It follows that S is smooth. Since py := [0,0,0, 1] does not belong to S the projection from py defines
a regular map
S — V(%)
(20,21, Z2, 23]  [Zo, 21, Z2]

1Here charK + 3.

78



6.2. Cubic surfaces

(We drop the last (zero) coordinate of points of V(Z3).) Suppose that L < S is a line: we claim
that (L) is an inflexional tangent of the cubic curve V(G). The key point is the following: S has an
automorphism of order 3 namely

S BN S
(Zo, 21,22, 23]  —  [Zo, 21, Zo,wZ3]

where w = exp(2my/—1/3). Notice that m o ¢ = 7 and that the cubic curve V(G) is the fixed locus of
. Let L < S be a line. The cubic curve V(G) is irreducible becuse it is smooth - see Example 3.4.6
- and hence L is not contained in V(Z3). It follows that L n V(Z3) contains a single point, call it g.
Let’s show that

m(L) nV(G) = {q}. (6.2.1)

Let A = {po, L) be the plane spanned by py and L: thus (L) = Ap n V(Z3). The lines ¢(L) and
©?(L) are contained in Az, and L, p(L), *(L) are pairwise distinct because L ¢ V(Z3). It follows that
AnS = Lup(L)ue?(L): since {q} = p(L)nS = ©?(L)n S we get that (6.2.1) holds. Equation (6.2.1)
proves that 7(L) is an inflexional tangent of the cubic curve V(G). Thus we have a map

Fi(S) % {RcV(Zs)| R an inflexional tangent of V(G)}
L — (L)

By Corollary 6.1.12 we know that V(G) has 9 inflexional tangents and hence in order to finish the proof
it will suffice to show that p is surjective and each fiber has cardinality 3. Let R an inflexional tangent
of V(G). Let ¢ be the inflexion point of V(G) on R: thus R n V(G) = {q}. Let us extend Z3 (on
AR) to homogeneous coordinates Yy, Y7, Z3 on AR such that ¢ = [1,0,0]. The cubic curve S n Ag has
equation aZ3 — BY for a certain (0,0) # (a, 3) € C2. We have o & 0 because S does not contain the
point [0,0,0,1] and we have 8 £ 0 because V(G) contains no lines: it follows that S n Ag consists of
3 distinct lines as claimed. O

Next let %; < P(K[Zy, Z1, Z2, Z3]aq) be the subset of [F]| where F' has no multiple factors: as is
easily checked %, is a dense open subset of P(K[Zy, Z1, Z2, Z3]a). Clearly %, is the parameter space
for degree-d surfaces in P2. Let

Rq = {(L,S) e Gr(1,PL) x % | L < S}.

We have two projections

R
Gr(1,P3) Uy
Notice that
w(#q) = {S € %, | S contains a line}. (6.2.2)

Claim 6.2.3. Keep notation as above. Then %q is closed in Gr(1,P%) x %, moreover it is smooth
irreducible of codimension (d + 1).

Proof. Let
Gr(1,P2), :={L e Gr(1,P}) | L nV(Zy, Z1) = &}.

Then Gr(1,P2);, is one of the principal open subsets (isomorphic to A*) that cover Gr(1,P2) - see
Section ??. We will describe p~'Gr(1,P2);,. First we recall how to describe lines that belong to
Gr(1,P3),. Let r = (ry,...,74) € Al: we let

LT = ]P)(<(1, 0, ’I“1,7“2), (0, 1,T3, T‘4)>).

79



6. SOME CLASSICAL RESULTS

Then Gr(1,P3);, is the set whose elements are the lines L,.. Given F € K[Zy, Z1, Z2, Z3]q4 we may write

d
F(X\ i, Ary + prs, Arg + pry) Z (r, F)XT0 it

=0
Clearly
ptGr(1,P%);, = {(L,, V(F)) € Gr(1,P¥), x % | 0 = Ag(r, F) = Ay (r, F) = ... = Ag(r, F)}.
Let A;: A* x K[Zy, Z1, Zo, Z3]a — K be the function with value A;(r, F) at (r, F). Then A; is a
polynomial function and hence p~!Gr(1,P?);, is a closed subset of Gr(1,P?);, x . Let fo,...,fn
be the coefficients of F' (here N +1 = (d + 3)!/3!d!): then A; € K[r1,...,74][fo,-.., fn]1 1. A; is
homogeneous of degree 1in fy, ..., fv. When we fix r the (d + 1) homogeneous equations in fo, ..., fx

are linearly independent - this is easily checked. It follows that there is an open cover {7, ;};jes, of
Gr(1,P3);, such that
RC/RERC/WES £

for all j € Jy. A similar picture holds for all principal open subsets of the covering of Gr(1,P2) defined
in Section??. The claim follows. 0

Proposition 6.2.4. Keep notation as above and assume that d = 3. Let (L, S) € %4 and suppose that
S is smooth at all points of L. Then dr(L,S): O, gy#q — Os%, is injective.

Proof. Choose homogeneous coordinates Zy, ..., Z, such that L = V(Z5,Z3). Let I(S) = (F): thus
0+ FeK[Zy,...,Z4]q- Throughout the present proof we will adopt the notation introduced in the
proof of Claim 6.2.4. We have L = Lg. The proof of Claim 6.2.4 gives that O, r) G)(LF)A(% X Uy is
given by

Ann{dAy(0,F),...,dAq(0, F)). (6.2.3)

(This is because the differentials dAg (0, F), ..., dA4(0, F) are linearly independent.) Let v € ker dn(L, S).
Then v = (vy,...,v4) € OgA*: since A? is an affine space there exists a regular (affine if we wish so)
map v: Al — A% such that y(0) = 0 and 7/(0) = v. By (6.2.3) we get that

d
0=— F(\u A+ pys, Az + pya) =
dt |t=0
oF OF
A (A, 14,0,0)(Avy + pos) + o7 — (A, 11,0,0)(Avg + pvg).  (6.2.4)

Now suppose that v £ 0: we will arrive at a contradiction. Both (Fz (A, 1,0,0) and £ ”F 7, (A, 11,0,0) are
homogeneous polynomials of degree (d — 1): equation (6.2.4) gives that they have a common factor
because d = deg F' > 3. It follows that there exists 0 & (Ao, io) € C? such that

oF
0= 7()‘07/10)070) =

F
— (A 0,0).
aZQ ( 05 Mo, Y, )

0
073
On the other hand since L = V(Zs2,7Z5) < V(F) there exists G, H € K[Zy,...,Z3]4—1 such that
F = GZy + HZ3: it follows that

oF
0= 7()\()’/1105070) =

F
A 0,0).
621 ( 0y M0, Y, )

oF
074
Since F' generates I(S) it follows that S is singular at [Ag, 10,0, 0] € L: that contradicts our hypothesis.
O
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6.2. Cubic surfaces

Proof of Theorem 6.2.1. Let % < %3 be the open subset whose elements are smooth cubic surfaces.
Let %9 := n ' and let m°: %9 — % be the restriction of 7. Then Im 7 is the set of smooth cubic
surfaces which contain a line: it is non-empty by Proposition 6.2.2. Since 7° is a projective map Im 7°
is a closed subset of 4. Let S be a smooth point of Im 7% and (S, L) € (7°)~%(S). Since %5 is smooth
of dimension equal to dimK[Z, ..., Z3]5 (see Claim 6.2.4) and injectivity of the differential dn(L,.S)
(see Proposition 6.2.4) we get that

dimK[Z, ..., Z3]3 < dimg Im 7°.

It follows that Im7° = %4 i.e. every smooth cubic surface contains a line. The map 7° is a proper
(when we consider the euclidean topology) map of smooth varieties because it is projective and it is
a local homeomorphism by Proposition 6.2.4. Thus Proposition 7?7 gives that the number of lines on
a smooth cubic surface is independent of the surface: by Proposition 6.2.2 we get that every smooth
cubic contains 27 lines. O

Theorem 6.2.5. Let S < P3 be an irreducible cubic surface; then S is rational unless possibly if it is
the cone over a smooth cubic (plane) curve.

Proof. Suppose that S is smooth. By Theorem 6.2.1, there exist skew lines L, M < S. We define a
rational map

f:S-->LxM=~P! xP!

as follows. Let p € S\(L u M): there exists a unique line R, containing p and intersecting L and M.
We set
f(p) = (Ry nL,R, n M).

Let (S\(L u M), $) represent f. Since Fy(S) is finite the generic fiber of ¢ is a single point and it
follows that dim ¢(S\(L u M)) = 2; since L x M is irreducible 2-dimensional we get that f is dominant.
Moreover since the generic fiber of ¢ consists of one point f is birational. Since P! x P! is rational we
have proved that a smooth cubic is rational. Now suppose that S is singular but is not a cone over a
smooth cubic curve; then there exists pg € S of multiplicity 2. Projection from py defines a birational
map 7: S --» P2 O

Exercises
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Appendix A

Algebra a la carte

A.1 Introduction

In what follows, rings are always commutative with 1. The proofs of the results below are contained in
most Algebra textbooks (e.g. Lang [?]).
A.2 Unique factorization

Theorem A.2.1. Let R be a UFD. Then R[t] is a UFD. Moreover a polynomial p = agt? + a1 +
...+ aq is prime if and only if

1. p is prime when viewed as element of K|[t], where K is the field of fractions of R,
2. and the greatest common divisor of ag,a1,...,aq is 1.
Corollary A.2.2. The ring K[x1,...,2,] is a unique factorization domain.
Proof. By induction on n. If n = 0, the ring is a field, and hence it is trivially a UFD. The inductive

step follows from Theorem A.2.2, because K[z1,...,z,] = K[z1,...,2,-1][t]. O

A.3 Noetherian rings

Definition A.3.1. A (commutative unitary) ring R is Noetherian if every ideal of R is finitely gener-
ated.

Ezample A.3.2. A field K is Noetherian, because the only ideals are {0} = (0) and K = (1). The ring
Z is Noetherian, because every ideal has a single generator.

Lemma A.3.3. A (commutative unitary) ring R is Noetherian if and only if every ascending chain
Ipclic...cl,,c...

of ideals of R (here I, is defiend for allm e N, and I,,, < I,,,+1 for all m € N) is stationary, i.e. there
exists mo € N such hat L, = Ip,, for m = mg.

Proof. Suppose that R is Noetherian. The union I := |, .y Im is an ideal because the {I,,} form a
chain. By Noetherianity I is finitely generated, say I = (a1, ..., a,). There exists mg such that a; € I,
for j € {1,...,r}, and hence I = I,,,,. Let m = myg; then I,, ¢ I and I < I,,, hence I = I,,,. Thus
I, = I, for m = mg.

Now suppose that every ascending chain of ideals of R is stationary. Let I < R be an ideal. Suppose
that I is not finitely generated. Let a; € I. Then (a;) & I because I is not finitely generated; let
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A. ALGEBRA A LA CARTE

as € (I\(a1)). Then (a1,a2) < I because I is not finitely generated. Iterating, we get a non stationary
chain of ideals (contained in I)

(a1)

This is a contradiction. O

n
B
8

n
n
B
:
n

Ezample A.3.4. The ring Hol(K) of entire functions of one variable is not Noetherian. In fact let

fm € Hol(K) be defined by
0 52
fm(z) = H (1 — TLQ) s m = 1.

Then (fim) € (fm+1)- Thus (f1) < (f2) © ... < (f;m) < ... is a non-stationary ascending chain of ideals,
and hence Hol(K) is not Noetherian by Lemma A.3.3.
Theorem A.3.5. Let R be a Noetherian commutative ring. Then R[t] is Noetherian.

Proof. For a non zero f € R[t], we let {(f) be the leading coefficient of f, i.e. if f = > c;t’ with
¢m £ 0, then £(f) = cpp.

Let I < R[t]. We must prove that I is finitely generated. If I = (0) there is nothing to prove and
hence we may assume I # (0). Thus the set

(1) :={(f) [0 # fel}
is non-empty and it makes sense to define
J:={I)<R

as the ideal of R generated by ¢(I). By hypothesis J is finitely generated: J = (¢1,...,c¢s). Since J is
generated by £(I) we may assume that each generator is the leading coefficient of a polynomial in I,
i.e. for each 1 <4 < s there exists f; € I such that £(f;) = ¢;. Let

4= g e S}

Let H := I n{fe R[t]|degf <d}. Then H is a submodule of {f € R[t] |deg f < d} ~ R¥*! (as
R-modules). Since R is Noetherian every submodule of R4+ is finitely generated (argue by induction
on d; if d = 0 it holds by definition of Noetherian ring, if d > 0 consider the projection R4*! — R) and
hence

H=(g1,...,9t)-

Let us prove that
I: (fla"'afsvglv"‘agt)~

In fact let f e I. If degf < d then f € H and hence f € (g1,...,9:) < (f1,--+, fss91,---,9¢). Now
suppose that deg f > d. Then ((f) = >,;_, a;c;. Let

S
hi=f— ) i/ deslif,
=1

Then degh < deg f. Since >;_, a;tde/=de8fi f, e (f1,..., fs,q1,...,9:) it suffices to prove that h e I.
If deg h < d we are done, otherwise we iterate until we get down to a polynomial of degree less or equal
to d. O

Theorem A.3.6 (Hilbert’s basis Theorem). Every ideal of K[x1,...,x,] is finitely generated.

Proof. By induction on n. If n = 0, the ring is a field, and hence is Noetherian. The inductive step
follows from Theorem A.3.5, because K[z1,...,z,] = K[z1,...,2,-1][t]. O
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A.4 The Nullstellensatz

If Y < A™ is a subset, we let I(Y) := {f € K[z1,...,2,] | fly = 0}. We recall that the radical of an
ideal I ina ring R, is the set of elements a € R such that o™ € I for some m € N. As is easily checked,
the radical is an ideal; it is denoted by /T,

Theorem A.4.1 (Hilbert’s Nullstellensatz, Chapter X of [?]). Let I < K[z1,..., 2z,] be an ideal. Then
I(V(I)) = I
Before discussing the proof of the Nullstellensatz, we introduce some notation. For (aq,...,a,) € A",

let
Mg = (21 —a1,...,2n —apn) = {f €K[z1,...,2,] | fla1,...,a,) =0}. (A4.1)

Notice that m, is the kernel of the surjective homomorphism

K[z1, ..., 2n] 4, K

f —  flai,...,an),
and hence is a maximal ideal. The Nullstellensatz is a consequence of the following result.

Proposition A.4.2. Anideal m < K[z1,..., z,] is mazimal if and only if there exists (ay,...,a,) € A"
such that m = m,.

Proof for uncountable K. We know that m, is maximal. Now suppose that m < K[z1,...,2,] is a
maximal ideal. Let .
Klz1,...,2n] — K[z1,...,2,]/m = E

be the quotient map. Notice that m n K = {0} because m # (1). Thus ¢(K) is a copy of K and hence
E is a field extension of K. For i € {1,...,n} let Z; := ¢(z;). We claim that

for all i € {1,...,n} there exists a; € K (meaning a; € ¢(K)) such that Z; = a;. (A4.2)
In fact suppose that Z; ¢ K. Let c € K; since Z; # ¢ and E is a field (z; — ¢) ™! exists. The field E is
a quotient of K[zy,...,2,] - a K-vector space of countable dimension - thus E as vector space over K
has a countable basis. Since K is uncountable we get that {(Z; — ¢) "1 }.cx is a set of linearly dependent
elements, and hence there exist pairwise distinct complex numbers c¢y,...,¢s € K and A1,..., A € K*
such that s
DMz —en)t =0 (A.4.3)
h=1

Multiplying both sides by [];_,(Zi — ¢;) we get that

S

i Ah H(?Z — Cj) =0. (A.4.4)

h=1  j+h

The polynomial ¢ € K[t] defined by

S

pi=> M]]t-¢)

h=1  j+h

is non-zero. In fact ¢(c1) = A\ Hiqg(cl —¢;) £ 0. B (A.4.4) we have ¢(z;) = 0; since ¢ + 0, Z;
is algebraic over K, and hence Z; € K because K is algebraically closed. This is a contradiction, and
hence (A.4.2) holds. Thus

(zi —a;) e kerp = m, i=1,...,n.
Since m, is generated by (21 — ay),..., (2, — ap) it follows that m, < m. The ideal m, is maximal and
so is m: this implies that m = m,. O
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Corollary A.4.3 (Weak Nullstellensatz). Let I < K[z1,...,2,] be an ideal. Then V(I) = & if and
only if I = (1).

Proof. If I = (1), then V(I) = . Assume that V(I) = &J. Suppose that I # (1). Then there exists a
maximal ideal m < K[zy, ..., z,] containing I. Since I  m, V(I) o V(m). By Proposition A.4.2 there
exists @ € K™ such that m = m, and hence V(m) = V(m,) = {(a1,...,a,)}. Thus a € V(I) and hence
V(I) # . This is a contradiction, and hence I = (1). O

Proof of Hilbert’s Nullsetellensatz (Rabinowitz’s trick). Let f € I(V(I)). By Hilbert’s basis theorem
I=(g91,...,95) for g1,...,9s €K[z1,...,2,]. Let J € K[z1,..., 2y, w] be the ideal

Ji=(g1,-..,9s, [ -w—1).

Since f € I(V(I)) we have V(J) = & and hence by the Weak Nullstellensatz J = (1). Thus there exist
hi,...,hs,h € K[z1,..., 2y, y] such that

Ylhigi+h(f-w—1) =1
=1

Replacing w by 1/f(z) in the above equality we get

;h (Z f(1Z)) 9i(z) = 1. (A.4.5)

Let d >> 0: multiplying both sides of (A.4.5) by f¢ we get that
Zﬁz (Z)gl(z) :fd(z)? EiEK[zlw-wZn}
i=1

Thus f € V1. O

If K is not algebariaclly closed, then the statement of Theorem A.4.1 is no longer true. For example,
if K=TRand I := (22 + 1) < R[z], then V(I) = ¢ but I # (1). There is a modified version of
Proposition A.4.2 which holds for an arbitrary field k: it states that if m < k[x1,...,2,] is a maximal
ideal then k[x1,...,z,]/m is an algebraic extension of k, see Chapter X of [?].

A.5 Extensions of fields

An extension of fields F' < E is algebraic if every a € E is the root of a non zero polynomial ¢ € F[z].
If this is the case, the set of polynomials vanishing on « is a non zero ideal F[z], and hence it is
generated by a unique monic poylnomial ¢, which is the minimal polynomial of o over F. Of course
 is irreducible, hence prime. The subfield of F' generated by F' and « is isomorphic to the quotient
F[=)/(9).

An extension is an algebraic closure of F, if it is algebraic over F', and every polynomial in F'[z] has
a root in E.

Theorem A.5.1 (Chapter VII in [?]). An algebraic closure exists, and is unique up to isomorphism,
i.e. if E1, Eo are two algebriac closures, there exists an isomorphism E, — Ey which is the identity
on F.

One denotes “the” algebraic closure of F' by F'%, or by F. Notice that a non costant polynomial in
F[z] decomposes in F as a product of polynomials of degree 1 (it has a root, hence it is divisible by a
linear term, if the quotient is not constant it has a root hence it is divisible...)

Let [E : F] be the dimension of E as vector space over F' - the degree of E over F. Notice that
if [E : F] is finite, then E is an algebraic extension of F. Suppose that E is algebraic over F. One
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defines another degree of E over F' as follows. Let o: F < L be an embedding into a field which is an
algebraic closure of o(F'). An extension of o to E is an embedding ¢: £/ < L such that o|p = 0. The
number of such extensions is independent of the embedding o: F' — L, and is the separable degree of
E over F - one denotes it by [E : F];.

Ezample A.5.2. Let ¢ € F|z] be an irreducible monic polynomial, and let E = F|[z]/(¢). Let @ € E be
the class of z: by construction the minimal polynomial of « is equal to ¢.

Let o: F — L be an embedding into a field which is an algebraic closure of o(F). An extension
of o to E is determined by its value on «, and moreover such value can be chosen to be any root of
¢ in L. Hence the separable degree of E over F is the number of roots of ¢ in F (not counted with
multiplicity).

If the formal derivative ‘fo is not the zero polynomial, then since its degree is strictly smaller than
deg p, and ¢ is prime, the ideal (¢, fl—f) is equal to F'[z], and thus ¢, i—f have no common roots. It
follows that all the roots of ¢ have multiplicity 1, and the separable degree of E over F is equal to
deg ¢, which is also the degree of E over F. Hence in this case [E : F]| = [E : F|,.

The formal derivative ‘;—f is the zero polynomial only if char FF = p > 0, and ¢ = ¢(zP), where
¥ € F|z], i.e. all monomials appearing in f have exponent a multiple of p. Iterating, we may write
@ = p(zP"), where p € F[z] is such that % is not the zero polynomial. Hence the numer of roots of ¢
is equal to the degree of hp, and thus [E : F|; = degp.

Since [E: F] =degp =p"-degp = [E : Fs, we see (at least in this case) that the separable degree
divides the degree. Moreover, let § = a? . Then E® := F[f] is a separable extension of F such that
[E°: F]=[E:F]s, and the extension E > E* is obtained by adjoining p-th roots, and iterating.

The result below states that the example given above is typical.

Theorem A.5.3 (Chapter VII in [?]). Let E O F be a finite extension of fields, i.e. [E : F] is finite.
There exists a maximal separable extension E° D F, containing all subfields of E over F which are
separable. The separable degree [E : Fs is equal to the degree of the extension E* > F. The extension
E® o F has a primitive element, i.e. there exists B € E° generating E° over F. Suppose that E° + E;
then char F = p > 0, and if a € E, the minimal polynomial of a over E® is equal to zP" — ~ for some
r >0, and ye E°.

Ezxample A.54. Let E = Fp(w, z), and let F' = Fp(wP, 2P). Then E® = F (in this case one says that
FE o F is a purely inseparable extension, and there is no primitive elemnt of E over F.

Elements aq,...,a, € E are algebraically dependent over F' is there exists a non zero polynomial
® e Flz,...,2,] such that ®(ay,...,a,) = 0 (strictly speaking, we should say that the set {a, ..., a,}
is algebraically dependent over F'). A collection {c;}ier of elements of E is algebraically independent
over F' if there does not exist a non empty finite {i1,...,i,} < I such that «;,,...,a; are algebraically
dependent (with the usual abuse of language, we also say that the «;’s are algebraically independent).
A transcendence basis of E over F is a maximal set of algebraically independent elements of E over F.
There always exists a transcendence basis, by Zorn’s Lemma. One proves that any two transcendence
bases have the same cardinality, which is the transcendence degree of E over F; we denote it by
Tr.degr(E). An extension is algebraic if and only if its transcendence degree is zero.

Every finitely generated extension £ © F' can be obtained as a composition of extensions F' ¢ K
and K c E, where F' c K is a purely transcendental extension, i.e. there exists a transcendence basis
{aq,...,an} of K over F such that K = F(ay,...,ay) (thus F(aq,...,ay) is isomorphic to the field
of rational functions in n indeterminates with coefficients in F'), and F < K is a finitely generated
algebraic extension.

Definition A.5.5. Let F O F be an extension of fields. A transcendence basis {a1,...,a,} of E over
F is separating if E is a separable extension of the subfield F(ay,...,ay). The extension E D F is
separably generated if there exists a separating transcendence basis of E over F.

Theorem A.5.6 (Thm 26.2 in [?]). IfK is an algebrically closed field, any finitely generated extension
FE o K is separably generated.
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Proof. Let ay,...,a, be a transcendence basis of E over K. Hence the field F' := K(ay,...,q,) is
isomorphic to the field of rational functions in n indeterminates, and E S F is a finite extension. Let
B1, ..., 0, be elements of E algebraic over F, which generate F over F. If all such §;’s are separable
over F' (i.e. the subfield of E generated by F and j; is separable over F'), then E is separable over F
(see Chapter VII in [?]).

Suppose that one of the 3;’s is not separable over F'. Then char F' = char K = p > 0. We may reorder
the f;’s so that each of f1,..., (s is separable over F', and each of the Bs11,..., [, is not separable
over I'. We find suitable replacements of the a;’s so that E is a separable extension of the subfield
generated by the new transcendence basis. Since (5.1 is algebraic over F', there exists a polynomial
® e K[z1,...,2n+1] such that

CD(Oq, ce ,Oén,ﬁs+1) =0.

We may, and will, assume that ® is irreducible. We claim that there exists ¢ € {1,...,n} such that
g—f £ 0. In fact, suppose the contrary. Then all partial derivatives of ® are zero, because 5541 is not
separable over F' (see Example A.5.2). Write

P = 2 arz!,

Ies

where .# is a set of multiindices, and we assume that a; + 0 for every I € #. Since <& + 0

0z
for all ¢ € {1,...,n + 1}, it follows that each I € .# is equal to pJ, for a multiindex J. On the
other hand there exists a (unique) p-th root of aj, because K is algebraically closed. It follows that
® = WP, This is a contradiction because @ is irreducible, and hence we have proved that there exists i €

{1,...,n} such that 3—2 #+ 0. Then «; is algebraic and separable over F’ := K(ay,..., Q.. ., @, Bst1)-
Thus a1,...,0;,...,04, Bs+1 is a new transcendence basis of E over K, and E is generated over F' by
B1,...,Bs, i, Bsta, ..., Br. Moreover, each of 3,..., s, q; is separable over F’'. Iterating, we get the
Theorem. O

Corollary A.5.7. Let E © K be a finitely generated extension of fields, and suppose that K is algebra-
ically closed. Let m be the transcendence degree of E over K. Then there exists a prime polynomial P €
K(z1, ...y 2m)[2m+1] such that E (as extension of K) is isomorphic to the field K(z1, . .., zm)[zm+1]/(P).

A.6 Derivations

Let R be a ring (commutative with unit), and let M be an R-module.

Definition A.6.1. A derivation from R to M is a map D: R — M such that additivity and Leibinitz’
rule hold, i.e. for all a,b € R,

D(a+b) = D(a) + D(b), D(ab) =bD(a)+ aD(b).

If k is a field and R is a k-algebra a k-derivation (or derivation over k) D: R — M is a derivation such
that D(c) = 0 for all ¢ € k. We let Der(R, M) be the set of derivations from R to M. If R is a k-algebra
we let Derg (R, M) < Der(R, M) be the subset of k-derivations.

Ezample A.6.2. Let k be a field, and let f = > ;as2’ be a polynomial in k[z1,...,2,], where the
summation is over multiindices I, a;y € K for every I, and a; is almost always zero. The formal
derivative of f with respect to z,, is defined by the familar formula

aif = Y nagE e g G e, (A.6.1)
M r st >0
The map i
k21, zn] =3 klz1,.. ., 20 (A.6.2)
of
f — 02Zm
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is a k-derivation of the k algebra to istelf. We claim that Dery(k[z1,...,2n], k[21,...,2n]) is freely

generated (as k[z1,...,2,] module) by 6—‘;, ce % In fact there is no relation between %, ce %
because 5;’ = 0jm, and moreover, given a k derivation
D: k[z1,...,20] = k[21,- ., 2n]

we have D = 3" _| am%, where a, 1= D(z,).
Ezxample A.6.3. Let D: R — M be a derivation.

1. By Leibniz we have D(1) = D(1-1) = D(1) + D(1) and hence D(1) = 0.

2. Suppose that g € R is invertible. Then

0=D(1)=D(g-g") =g 'Dg+fD(g") (A.6.3)

and hence D(g~!) = —¢g72D(f).

3. Suppose that f,g € R and that g is invertible. By Item (2) we get that the following familiar
formula holds:

D(f-g7")=g7*(D(f) g— [ Dlg)). (A.6.4)

Let D, D’ € Der(R, M) and z € R we let

R 2E M
A6.5
a +— D(a)+ D'(a) ( )
and
zD
R = M (A.6.6)

a +— zD(a)

Both D + D’ and zD are derivations and with these operations Der(R, M) is an R-module. If R is a
k-algebra then Dery (R, M) is an R-submodule of Der(R, M).

Next we suppose that F O F' is an extension of fields, and we consider Derp(FE, E). Notice that
Derp(E, F) is a vector space over F.

Proposition A.6.4. Suppose that E © F is a finitely and separably generated extension of fields. Let

i, - .., an be a separating transcendence basis of E over F'. Then the map of E-vector spaces
Derp(E,E) —> E™
’ A6.7
D —  (D(aq),...,D(ay)) ( )

s an isomorphism.

Proof. Let K := F(a1,...,a,) € E. Since ag, ..., q, is a separating transcendence basis of E over F,
and F is finitely generated (over F'), there exists an element 8 € E primitive over K. Let P € K[z] be
the minimal polynomial of 5. In particular

%(5) +0. (A.6.8)

(The inequality holds because E is a separable extension of K.)
Since K is a purely transcendental extension of F' we have an isomorphism of E-vector spaces

Derp(K,E) — E™
D —  (D(a1),...,D(an)).
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Equivalently every D € Derp (K, E) is given by
D(¢) = i GEL,
() ; ¢ @

and the ¢;’s may be chosen arbitrarily. Thus we must show that the restriction map

Derp(E,E) —> Derp(K,E)

I8 R D (A.6.9)

defines an isomorphism of E-vector spaces.

Let us prove that the restriction map is injective. Let P = Z;‘l:o a;z%"*, where ag = 1 (recall that
P is the minimal polynomila of § over K). Suppose that D € Derp(E, E); by the equality in (A.6.8)
we get that

d—1i

d—1

d d
0=D(P(8)) = Y, D(a:)B"" + Y, D(B)ai(d —i)B""~" = 3" D(a;)8*" + D(B)
=0

i=0 =0

dP

o

By the inequality in (A.6.8), we can divide and we get

D) - - (Z D(aimm—i) E O (A.6.10)

This proves that the map in (A.6.9) is injective.
In order to prove surjectivity, we extend a derivation D € Derp (K, F) to a derivation in Derp(FE, E)
by defining its value on § via (A.6.10). O

Corollary A.6.5. Keep hypotheses and notation as above. Then Trdeg, K = dimg Dery (K, K).

A.7 Nakayama’s Lemma

Let R be a ring, M be an R-module, and I < R be an ideal. We let IM < M be the submodule of
finite sums »}, . femi, where fi, € I and my, € M for every k € K.

Lemma A.7.1 (Nakayama’s Lemma). Let R be a ring and M a finitely generated R-module. Let I ¢ R
be an ideal and suppose that M < IM (i.e. M = IM ). Then there exists ¢ € I such that (1+¢)M =0
i.e. (1+@)m =0 forallme M.

Proof. Let my,...,m, be generators of M. By hypothesis there exist a;; € I for 1 <4, j < r such that

T
m; = Z aijmj.
Jj=1

Let A be the r x r-matrix with entries in R given by A := (d;; — a;j), where d;; is the Kronecker
symbol i.e. 4;; = 1if ¢ = j and is 0 otherwise. Let B be the r x 1-matrix with entries mq,...,m,.
Then A - B = 0: multiplying by the matrix of cofactors A¢ we get that det A-m; =0 fori=1,... 7.
Expanding det A we get that det A = 1 + ¢ where ¢ € I. O

Corollary A.7.2. Let R be a local ring with maximal ideal m and M a finitely generated R-module.
Suppose that the quotient module M /mM is generated by the classes of my,...,m, € M. Then M is
generated by my, ..., M.

Proof. Let N € M be the submodule generated by myq, ..., m, and P := M /N be the quotient module.
We must prove that P = 0. The module P is finitely generated over R because M is, and moreover
P < mP by hypothesis. By Nakayama’s Lemma there exists ¢ € m such that (1 + ¢)P = 0. Since
(1 + ¢) does not belong to m it is invertible (it generates all of R because m contains all non-trivial
ideals of R) and hence it follows that P = 0. O
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A.8 Order of vanishing

The prototype of a Noetherian local ring (R, m) is the ring Ox , of germs of regular functions of a quasi
projective variety X at a point x € X, with maximal ideal m,, see Proposition 4.2.4. The following
result of Krull can be interpreted as stating that a non zero element of O , can not vanish to arbitrary
high order at x. In other words, elements of Ox , behave like analytic functions (as opposed to C®
functions).

Theorem A.8.1 (Krull). Let (R, m) be a Noetherian local ring. Then

[(m = {0}.

=0

Proof. Since R is Noetherian the ideal m is finitely generated; say m = (a1,...,a,). Let b e ()5, m’.
Let i > 0; since b € m® there exists P; € R[Xy,...,X,]; such that P;(ai,...,a,) = b. Let J
R[X1,...,X,] be the ideal generated by the P;’s. Since R is Noetherian so is R[X;,...,X,]. Thus
J is finitely generated and hence there exists N > 0 such that J = (Fp,..., Py). Thus there exists

QN+1—1' S R[Xl, ‘e aXn]N+1—i for i = 0, ey N such that PN+1 = Zivzo QN+1—iPi~ It follows that
N N
b= Pnii(ar,...,an) = Z Qni1-ilal,...,an)Pi(as,... a,) = bZ Qny1-i(a1,...,a,). (A8.11)
i=0 1=0
Now Qni1-i(a1,...,a,) € m for i = 0,..., N and hence € := Zi]\io Qn+1—i(a,...,a,) € m. Equal-

ity (A.8.11) gives that (1 — €)b = 0: since € € m the element (1 — €) is invertible and hence b=0. O

Corollary A.8.2. Let (R,m) be a Noetherian local ring, and let 3 < R be an ideal. Then

()3 +m') = {0}

120

Proof. Let S := R/J. Then S is a Noetherian local ring, with maximal ideal mg := J+m. The corollary
follows by applying Theorem A.8.2 to (S, mg). O
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