Esercizi 5

1) Sia $g(x) = \frac{1}{\sqrt{x}}$ per x in (0,1), e g(x) = 0 altrove. Sia $\{x_k\}$ una successione di numeri reali. Dimostrare che appartiene a $L^1(\mathbf{R})$ la funzione

$$f(x) = \sum_{k=1}^{+\infty} \frac{g(x - x_k)}{2^k}.$$

Calcolare l'integrale di f su \mathbf{R} ed il limite di f(x) per x tendente a x_k da destra.

2) Sia

$$f_n(x) = \left(1 - \frac{x}{n}\right)^n \chi_{[0,n]}(x).$$

Dimostrare che f_n converge in $L^1([0,+\infty))$ a $f(x) = e^{-x}$.

3) Sia

$$f_n(x) = \frac{e^{-x}}{1 + (x - n)^2}$$

Trovare il limite di f_n in $L^1([0,+\infty))$, in $L^p([0,+\infty))$ (per p>1), ed in $L^\infty([0,+\infty))$.

4) Sia $\alpha > 0$ e sia

$$f_n(x) = \frac{1}{n^{\alpha}} \chi_{[n,2n]}(x).$$

Per quali $q \ge 1$ la successione f_n converge a zero in $L^q(\mathbf{R})$? Per quali $q \ge 1$ è in $L^q(\mathbf{R})$ la funzione

$$g(x) = \sum_{n=1}^{+\infty} f_n(x) ?$$

Per quali $\alpha > 0$ la successione f_n converge a zero in misura?

5) Siano α e β numeri reali positivi, e sia

$$f(x) = \begin{cases} \frac{1}{x^{\alpha}} & \text{se } 0 < x < 1, \\ \frac{1}{x^{\beta}} & \text{se } x \ge 1. \end{cases}$$

Per quali α e β la funzione f appartiene a $L^p((0,+\infty))$?

- **6)** Sia f in $L^1((0, +\infty))$. Dimostrare che se esiste il limite di f a $+\infty$, allora tale limite è 0. Trovare una f in $L^1((0, +\infty))$ tale che il limite a $+\infty$ non esiste.
 - 7) Trovare una funzione continua f in $L^1(\mathbf{R})\backslash L^2(\mathbf{R})$ e una funzione continua g in $L^2(\mathbf{R})\backslash L^1(\mathbf{R})$.
- 8) Siano $1 \le p < q \le +\infty$, e sia f in $L^p(\mathbf{R}) \cap L^q(\mathbf{R})$. Dimostrare che f appartiene a $L^r(\mathbf{R})$ per ogni r in [p,q], e che si ha

$$\left(\int_{\mathbf{R}} |f(x)|^r dx\right)^{\frac{1}{r}} \leq \left(\int_{\mathbf{R}} |f(x)|^p dx\right)^{\frac{\alpha}{p}} \left(\int_{\mathbf{R}} |f(x)|^q dx\right)^{\frac{1-\alpha}{q}} \qquad \frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}.$$

9) Sia f in $L^p((0,1))$ per ogni $p \ge 1$ tale che

$$\left(\int_{(0,1)} |f(x)|^p dx\right)^{\frac{1}{p}} \le K, \qquad \forall p \ge 1.$$

Dimostrare che f è in $L^{\infty}((0,1))$ e che ess $\sup_{(0,1)} |f(x)| \leq K$. Trovare un esempio di funzione che è in tutti gli spazi $L^p((0,1))$, ma non in $L^{\infty}((0,1))$.

10) Sia $p \ge 1$ ed E un insieme misurabile di misura finita. Una funzione misurabile $f: E \to \bar{\mathbf{R}}$ si dice appartenere allo spazio di Marcinkiewicz $M^p(E)$ (detto anche "spazio L^p -debole") se esiste una costante non negativa C tale che

$$m(\lbrace x \in E : |f(x)| \ge t \rbrace) \le \frac{C}{t^n}, \quad \forall t > 0.$$

Dimostrare che $L^p(E) \subset M^p(E)$ e che l'inclusione è stretta.