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CHAPTER 1

Motivations for the problem and basic tools

1.1. Motivations

Here we want to study parabolic equations whose simplest model is the
so called (Nonhomogeneous) Heat Equation

’LLt—AU:f,

subject to suitable initial and boundary conditions. Here ¢t > 0 and x € Q
which is an open subset of RY. The unknown is the function u : Qx (0,7 +
R, where T is a positive, possibly infinity, constant, and A is the usual
Laplace Operator with respect to the space variables, that is

n
Au = E Ug,;z;,
=1

while the function f: Q x (0,7) — R is a given datum.

Historically, the study of parabolic equations followed a parallel path
with respect to the elliptic theory: so many results of the elliptic framework
(harmonic properties, maximum principles, representations of solution, ...)
turn out to have a (usually more complicated @) parabolic counterpart.

However, unfortunately (or by chance...) the statement Every elliptic
problem becomes parabolic just with time is, in general, false.

On the other hand, a natural question is the reverse one: is it true that
every parabolic problem turns out to become elliptic with time? We will try
to give an answer to this problem at the end of the last part of the final
class (If I can...).

In any case, the physical interpretation is much more clear and so these
type of equations turned out to admit many many applications in a wide
variety of fields as, among others, Thermodynamics (¢a va sans dire...),
Statistics (Brownian Motion), Fluid Mechanics (Navier-Stokes equations. . .
there is a prize about it!), Finance (Black-Scholes equation. .. here there is
not a prize anymore. .. ®), an so on.

The heat equation can be considered as diffusion equation and it was
firstly studied to describe the evolution in time of the density uw of some
quantity such as heat or chemical concentration. If w C € is a smooth

IFor instance it is still not known if the N-S equation which describes the flow of air
around an airplane has a solution &
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subregion, the rate of change of the total quantity within w should equal the
negative of the flux through dw, that is

i udx:—/ F-vdo,
dt w dw

F being the flux density. Thus,
Ut = —diVF,

as w is arbitrary. In many applications F' turns out to be proportional to
Vu, that leads to uy — AAwu = 0, that is the Heat Equation for A = 1;

(11) Ut — Au = 0.

Let us explicitly remark that the heat equation involves one derivative
with respect to the time and two with respect to z. Consequently, we can
easily check that, if u solves (1.1), then so does u(\z, \?t), for A € R; this

2
inhomogeneity suggests that the ratio % is important to study this type

of equations and that an explicit radial solution can be searched of the form
u(z,t) = U(?), where r = |z|, and v is the new unknown.

Let us formally motivate the introduction of the so called fundamental
solution for (1.1).

It is quicker to search for radial solutions through the invariant scaling

r=lyl = tfém, which yields, after few calculations to derive the radial
form of (1.1):

N 1 N-—-1

—v 4 —rv +0"+ —0 =0,

2 2 T
which, multiplying the equation by V=1, turns out to be equivalent to

1
(’I”N_lvl), + §(T‘NU)/ — 0’

that is,

1
PNl 4 §TNU =a,
for some constant a. Now assuming that we look for solutions vanishing at

infinity with its derivatives we conclude that a = 0. Thus

and so, finally

2

v=">be 7,(b>0).
With a suitable choice of the contants (chosen in such a way that the
total mass of ®(x,t) on RY is equal to 1 for every ¢ > 0) we can write the
classic fundamental solution for problem (1.1), that is

1 _ =2

(1.2) O(x,t) = e i (z e RN t>0).
(4mt) =z
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The fundamental solution can be used to represent solutions for initial-
boundary value problems (Cauchy problems) of the type
{ut—Au—O in RY x (0,00)

(1.3) u(x,0) =g.

In fact the following result holds true
THEOREM 1.1. Let g € C(RN) N L®(RY), then

(14) uwt) = [ 0= pt)aly) do

belongs to C°(RY x (0,00)), solves the equation in (1.3) and

lim  wu(z,t) = g(xg), (zg € RV).
Ll t) = gla) (20 € RY)

Proor. [E], p. 47. O

If we have a nonhomogeneous smooth forcing term f the representation
formula is more complicated (but just a little bit...) and involves the so
called superposition Duhamel Principle. In fact, if we assume for simplicity
f € C3RY x [0,00)) (i.e., two continuous derivatives in space and one in
time) with compact support, then the representation formula for the solution
to problem

(15) {ut—Au:f in RY x (0, 00)

u(m, 0) =9
will be

t
o) = [ wla=y ) dy+ [ [ @@=t = 9)f5) duds

REMARK 1.2. In view of Theorem 1.1 we sometimes say that the funda-
mental solution solves

{@t—ACD:O in RY x (0, 00)

(16) ®(z,0) = do,

where dy denotes the Dirac mass at 0. Notice moreover that, from (1.4), we
derive that for nonnegative data g # 0 the solution turns out to be strictly
positive for all € RY, and ¢t > 0. This is a key feature for parabolic
solutions which have the so called infinite propagation speed. If the initial
temperature is nonnegative and positive somewhere, then at any positive
time t the temperature is positive anywhere. This fact turns out to play an
essential difference with other types of evolution equations such, for instance,
Hyperbolic Equations.

As we said many features of harmonic functions are inherited by solu-
tions of the heat equation. For example, the parabolic mean value formula.
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THEOREM 1.3 (Mean value formula). Let Q be a smooth, connected,
bounded open set of RN, and Q = Q x (0,T), T > 0. Assume u € C?(£2 x

(0, 7)) N C(Q) solves the heat equation in Q. Then we have
1 |z —y?
£)=—0 dyd
u(z,t) = 15 /E(x’t;r) u(y, ) 7z Wds
for every E(x,t;r) C Q, where
1
E(x,t;r) = {(y,s) ERVXR:s<t,®(x—y,s—1t)> N},

r

1s the so-called heat ball.

FI1GURE 1. The heat ball

PRrROOF. See [E], p. 52. O

As for harmonic functions, from the mean value formula a maximum
principle follows.

THEOREM 1.4 (Strong Maximum Principle). Let 2 be a smooth, con-
nected, bounded open set of RN, and Q = Q x (0,T), T > 0. Assume
u € C2(Qx (0,T))NC(Q) solves the heat equation in Q. Then, if we denote
I'=Q\(22x (0,T]), we have

i)
maxu = maxu,
0 r

ii) If u attains its maxzimum at (vo,to) € Q, then u is constant in
Q x [O,to].

PRrROOF. See [E], p. 54. O
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Theorem 1.4 has a very suggestive interpretation: with constant data on
the boundary, the solution keeps itself constant until something happens to
change this quiet status (think about a change of boundary conditions from
to on). In some sense, a solution behaves in a very intuitive way since the
past turns out to be independent on the future. This fact is strongly related
to the irreversibility of the heat equation, that is on the ill-posedness of the
final-boundary value problem

(1.7) {ut —Au=0 in Qx(0,7)

u(z,T) = g.

Looking for solutions to problem (1.7) is, in some sense, equivalent to
find out an initial datum such that the corresponding solution of the Cauchy
problem coincides with ¢ at time 7. However, because of the strong reg-
ularization of the solution emphasized by Theorem 1.1, if g is not smooth
enough there is no chance to solve (1.7). So this should convince us that the
use of the symbol ¢t to denote the last variable of the unknown w is not just
a mere chance.

Of course, once the maximum principle is at hand, uniqueness of the
solution follows by difference:

THEOREM 1.5 (Uniqueness on bounded domains). Let g € C(I), f €
C(Q). Then there exists at most one solution u € C?(Q) N C(Q) of the
initial boundary problem for the heat equation.

PROOF. See [E], p. 57. O

What happens if the domain is unbounded, for example is the whole
RN? In this case uniqueness is no longer true, but we can recover it (as well
as the maximum principle), by adding a suitable control on the solution for
large |x|.

THEOREM 1.6 (Maximum principle in unbounded domains). If u is a
solution of the heat equation in RN x (0,T) (with initial datum g), and u is
such that

(1.8) u(z,t) < Aetlel”
for some constants A > 0 and a > 0, then

sup  u(z,t) = sup g(z).
RN x[0,7] RN

PRrROOF. See [E], p. 57. O
This maximum principle then implies as before the uniqueness of the

solutions of the Cauchy problem in the class of functions whose absolute
value satisfies (1.8).
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Notation and remarks. Let us spend a few words on how positive
constant will be denoted hereafter. If no otherwise specified, we will write
C' to denote any positive constant (possibly different) which only depends
on the data, that is on quantities that are fixed in the assumptions (IV,
Q, @, p, and so on...). In any case such constants never depend on the
different indexes having a limit we often introduce. Finally, for the sake
of simplification of the notation we will indicate the time derivative of a
function v with uy, % or ¢’ depending on the context.

For the convenience of the reader in Appendix A we recall some basic
results of measure and integration theory we will always assume to be known
in the following.

1.2. Functional spaces involving time

Since we want to study an equation involving one derivative in time and
two in space, the right functional setting should be C! in time and C? in
space, and, in fact, this is the classical setting we mentioned above.

However, as in the elliptic case, we would like to solve problems with
less regular data. Due to this fact, we will deal with the weak theory of
parabolic problems, so that, to our aims, it would be sufficient a functional
setting involving zero derivatives in time (Lebesgue regularity) and just one
in space (Sobolev regularity).

Let us just recall that, if £ and F' are Banach spaces,then the function

f: B - F
z = flz),

is said to be Fréchet differentiable at a € E, if there exist a linear bounded
map D from E to F such that

|f(a+h) = fla) = Da(h)||r

=0.
||l z—0 Al &

Given a real Banach space V', we will denote by C*°(R; V') the space of
functions u : R — V' which are infinitely many times Fréchet differentiable
and by C§°(R; V) the space of functions in C*°(R; V') having compact sup-
port. As we mentioned above, for a,b € R, C*°([a, b]; V') will be the space of
the restrictions to [a, b] of functions of C§°(R; V'), and C([a, b]; V) the space
of all continuous functions from [a, b] into V.

We recall that a function u : [a,b] — V is said to be Lebesgue measurable

kn
if there exists a sequence {u,} of step functions (i.e. u, = Z ajx Ar for a
j=1
finite number &, of Borel subsets A} C [a,b] and with a} € V') converging
to u almost everywhere with respect to the Lebesgue measure in [a, b].
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Then for 1 < p < oo, LP(a,b; V) is the space of measurable functions
u : [a,b] — V such that

1
b »
follsiasy = ([ 1l )" <o
a

while L*(a,b; V') is the space of measurable functions such that:

[[ul oo (a,b;v) = sup [luflv < occ.
a,b
Of course both spaces are meant to be quotiented, as usual, with respect to
the almost everywhere equivalence. The reader can find a presentation of
these topics in [DL].

Let us recall that, for 1 < p < oo, LP(a,b; V') is a Banach space. More-
over, for 1 < p < oo and if the dual space V' of V is separable, then the
dual space of L?(a,b; V) can be identified with L? (a,b; V).

For our purpose V will mainly be either the Lebesgue space LP(2) or
the Sobolev space Wol’p(Q), with 1 < p < oo and Q will be a bounded open
set of R, Since, in this case, V' is separable, we have that LP(a, b; LP(Q)) =
LP((a,b) x Q)), the ordinary Lebesgue space defined in (a,b) x Q. Note
that LP(a,b; W, (2)) consists of all functions u : [a,b] x @ — R which
belong to LP((a,b) x )) and such that Vu = (ug,,...,uz,) belongs to
(LP((a,b) x Q))". Moreover,

. 1
p
</ /|Vu|p dxdt)
a JQ

defines an equivalent norm by Poincaré inequality.

Given a function u in LP(a, b; V') it is possible to define a time derivative
of u in the space of vector valued distributions D’(a, b; V') which is the space
of linear continuous functions from C§°(a,b) into V' (see [Sc| for further
details). In fact, the definition is the following:

b
<ut,¢>=—/ wiedt, ¥ e CF(ah),

where the equality is meant in V. If u € C'(a,b; V) this definition clearly
coincides with the Fréchet derivative of u. In the following, u; is said to
belong to a space Li(a,b;V) (V being a Banach space) if there exists a
function z € L9(a, b; V) ND'(a,b; V) such that:

b
<ut,w>:—/ wipy dt = (z,0), ¥ 1 € C5(a,b).

ou
In the following, we will also use sometimes the notation e instead of u;.

We recall the following classical embedding result
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THEOREM 1.7. Let H be an Hilbert space such that:
V — H<—V.

dense
x Let uw € LP(a,b; V') be such that uy, defined as above in the distributional
sense, belongs to L (a,b; V). Then u belongs to C([a,b]; H).

SKETCH OF THE PROOF. We give a sketch of the proof of this result in
the particular case p = 2 and V = H} () (in this case the pivot space H
will be L%(€)). A complete proof of Theorem 1.7 can be found in [DL]. for
simplicity we also choose a =0, and b =1T.

Extend u to the larger interval [—o,T + o], for 0 > 0, and define the
regularizations u®* = n® % u, where n° is a mollifier on R. One can easily

check that,
(1.9) u® —u in L2(0,T; H(Q)),
' uf — u; in L2(0,T; H-Y(Q)).

Then, for €,6 > 0,

d

Sl (@) = w (1) 72(0) = 2(uf (1) — g (), u" () — () L2(0)-
Thus, integrating between s and ¢ we have

[[us(t) — UJ@)H%%Q) = [|u*(s) — Ué(S)H%z(Q)
(1.10) ,
42 [ Qui(r) = (). () = () gy
S
for all 0 < s,t < T. Now, as a consequence of (1.9), for a.e. s € (0,7), we
have
uf(s) — u(s) in L*(Q).

So that, for these s, from (1.10), using both Cauchy-Schwartz and Young’s
inequality, we can write

sup [|uf(t) — u’(t)| 20 < Ilu(s) — u’(s)l[72(0y
0<t<T

T
+ [ ) =) sy + () = () dr = (e.6),

thanks to (1.9) (here w(e,d) tends to zero as € and ¢ tend to zero).
So uf converges to a function v in C([0,T]; L3()); since we know that

u(t) — u(t) for a.e. t, we deduce that v = u a.e.
O

This result also allows us to deduce, for functions u and v enjoying these
properties, the integration by parts formula:

b b
(1.11) / (v,ug) dt +/ (u,vg) dt = (u(b),v(b)) — (u(a),v(a)),
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where (-, -) is the duality between V and V"’ and (-, ) the scalar product in H.
Notice that the terms appearing in (1.11) make sense thanks to Theorem 1.7.
The proof of (1.11) relies on the fact that C5°(a, b; V') is dense in the space
of functions u € LP(a,b; V) such that u; € L” (a,b; V') endowed with the
norm |Jul| = [lul|Le(ap;v) + lwell 1o (4 pv7), together with the fact that (1.11)
is true for u, v € C§°(a,b; V) by the theory of integration and derivation in
Banach spaces. Note however that in this context (1.11) is subject to the
satisfication of the hypotheses of Theorem 1.7; if, for instance, V = VVO1 P(Q),
then
W@ o I3(Q) W (@)

dense
only if p > ]\%\_fz, for the sake of simplicity we will often work under this

bound, that actually turns out to be only technical to our purposes.

1.2.1. Further useful results. Here we give some further results that
will be very useful in what follows; the first one contains a generalization
of the integration by parts formula (1.11) where the time derivative of a

function is less regular than there; its proof can be found in [DP] (see also
[CW]).

LEMMA 1.8. Let f : R — R be a continuous piecewise C function such
that f( ) =0 and f' is compactly supported on R; let us denote F(s) =
Jo f(r)dr. If u e LP(0,T; W, YP(Q)) is such that ug € L' (0,T; W17 (Q)) +
LY Q) and if ¢ € C(Q), then we have

/0<ut, ) dt = /F (T) da
_/Q (u(0)) dx—/q/)t ) dzdt.

Now we state three embedding theorems that will play a central role
in our work; the first one is the well-known Gagliardo-Nirenberg embedding
theorem followed by an important consequence of it for the evolution case,
while the second one is an Aubin-Simon type result that we state in a form
general enough to our purpose; the third one is a useful generalization of
Theorem 1.7.

THEOREM 1.9 (Gagliardo-Nirenberg). Let v be a function in Wol’q(Q) N
LP(Q) with g > 1, p > 1. Then there exists a positive constant C, depending
on N, q and p, such that

(1.12)

||U||LW(Q < CHVUH (L9()) N”UHLP(Q

for every 0 and v satisfying

g N p
PROOF. See [N], Lecture II. O

1 1 1 1-6
0<0<1, 1<v<+oo, :9<—>+,
i
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A consequence of the previous result is the following embedding result:

COROLLARY 1.10. Let v € L%(0,T; WOI"I(Q)) N L®(0,T; LP(Q)), with

g>1,p>1. Thenv e L?(Q) wztha—q L and
(1.13) /Q|U|U dxdt < C”UHLWOO(O,T;LP(Q)) /Q |Vo|? dxdt .

PRrROOF. By virtue of Theorem 1.9, we can write

o 1 190'
/ ol < CI90]% g 012

that is, integrating between 0 and T’

(BT A NIe / Vo350 o)l .

now, since v € L4(0,T; W 19(Q)) N L0, T; LP(9)), we have

o 9o
//|v| < Il e )/ 1015 dt.

Now we choose

N
g4 _
g

 N+p

so that ap
Y= 1—WNo ="
ol =gq, ( Jo N

and (1.14) becomes

T w T
L L < Ol oy [ 1900y

ap
/Q ol < C Il o0 /Q V.

that is

]

REMARK 1.11. Let us explicitly remark that Corollary 1.10 gives us a
little gain on the a priori summability of the involved function (actually this
is a consequence of the Gagliardo-Nirenberg inequality, not a consequence
of a Petitta’s inequality ©). As an example, let us think about a function
u € L(0,T; L*(Q)) N L?(0,T; Hi()); in this case the solution turns out

to belong to L2 ¥ (Q).

THEOREM 1.12. Let u™ be a sequence bounded in L1(0,T; Wol’q(Q)) such
that u} is bounded in L' (Q) + L¥ (0, T; W15 (Q)) with q,s > 1, then u™ is
relatively strongly compact in L*(Q), that is, up to subsequences, u™ strongly

converges in L1(Q) to some function u.

PROOF. See [Si], Corollary 4.

O
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Let us define, for every p > 1, the space SP as
(1.15)  SP = {u € LP(0, T; Wy P ()); ur € LY(Q) + LP (0, T; W' (Q))},
endowed with its natural norm
[ullse = [l oo mawtr ) + 1l Lo o 0w 10 @)) 421 (@)
We have the following trace result:

THEOREM 1.13. Let p > 1, then we have the following continuous injec-
tion

SP — C(0,T; LY()).
PRrROOF. See [Po], Theorem 1.1. O






CHAPTER 2

Weak solutions

Let Q C RY be a bounded open set, N > 2, t > 0; we denote by @Q; the
cylinder  x (0,t). If t = T we will often write @ for Q7. In this chapter
we are interested in the study existence, uniqueness, and regularity of the
solution of the linear parabolic problem

ug+ L(u)=f in Qx (0,7),
(2.1) u(0) = uo, in €,
u=0 on 00 x (0,7),

where
L(u) = —=div(A(z,t)Vu),

and A is a matrix with bounded, measurable entries, such that

(2.2) |A(z, t)¢| < BIE],
for any ¢ € RN, with 8 > 0, and
(2:3) Al )6 - € > aléP,

for any ¢ € RN, with o > 0. As we will see such results strongly depend on
the regularity of the data f, ug and A.

We first deal existence, uniqueness and (weak) regularity for linear prob-
lems in the framework of Hilbert spaces, that is f € L2(0,T; H~(Q)) and
uy € H&(Q) For such data the solution is supposed to be in the space
L>®(0,T; L*(Q)) N L2(0,T; H (), with u; € L*(0,T; H1(Q)). Moreover,
we expect the solutions to belong to C(0,T;L?(f2)) to give sense at the
initial value uyg.

Indeed if we formally multiply the equation in (2.1) by w and using (2.3),
integrating on 2 and between 0 and ¢ (here 0 < ¢t < T'), we obtain, using
also Young’s inequality,

t t
/ (wryu) + a / Vul? < / 1 o el
0 Q 0

< W llz2or 1@ 1wl L2071 (02))

1 9 a 2
< %”f”L%O,T;H*HQ)) + §HUHL2(O,T;H3(Q))'

13
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Which, thanks to the fact that

t ¢
1
/ (ug,uy = / 7£u2,
using (1.11) yields

1 o
2/Qu2(t)+ Q/Qt IVul> < O 220701 () + 1wl 20y)-

Now, since the right hand side does not depend on t we easily deduce that
the same inequality holds true for any 0 <t < T, and so

L2 - Y2

5 L>(0,T;L2(Q)) o L2(0,T;H} ()
(2.4) 2 2 ’

< CUI 1320 mem-1(ay) + luol32(q);

which thanks to Theorem 1.7 it gives the desired regularity result.
The energy estimates can also be useful to prove the so-called backward
UNLGUENESS.

THEOREM 2.1 (Backward uniqueness). Let u and 4 be two solutions in
Q such that u(x,T) = a(z,T). Then u =1 in Q.

PRrROOF. See [E], p. 64. O

REMARK 2.2. Let us stress the fact that, as a difference with the elliptic
case, here it is not so easy to face the problem with a Laz-Milgram type
approach (or with minimizing some functional) because of the features of
the involved functional spaces and of the operator itself. Indeed, roughly
speaking, the supposed involved bilinear form would turn out to be, for
instance, not continuous on LQ(O, T, HOI(Q)), not coercive on

W = {u e L*(0,T; Hy(Q)),u; € L*(0,T; H ()},
and L2(0,T; H}(2)) N L>=(0,T; L?(€)) is not an Hilbert space.
2.1. Galerkin Method: Existence and uniqueness of a weak
solution
Let us first give our definition for weak solutions to problem (2.1)

DEFINITION 2.3. We say that a function u € L?(0,T; H(92)), such that
ug € L2(0,T; H1(Q)) is a weak solution for problem (2.1) if
(2.5)

T
/0 (u, <P>H—1(Q),Hg(g)+/Q Az, t)Vu-Vo = (f,90) 12(0,1,1-1(02)),L2(0,T:HL ()

for all ¢ € L?(0,T; H}(Q)) such that ¢, € L2(0,T; H1(Q)), ¢(T) = 0, and
u(z,0) = up in the sense of L?(12).
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REMARK 2.4. Observe that, taking into account Theorem 1.7, we can
easily see that all terms in Definition 2.3 turn out to make sense.

Moreover, as shown in [E| (actually it is not so difficult to check), if
f € L*(Q), u is a weak solution for problem (2.1) if and only if

26) WO + [ A OVuVo= [ fi

for any v € H}(Q) and a.e. in 0 <t < T, with u(0) = ug. We will often
denote by (-, -) the duality product between H~1(Q) and HE(Q), while (-, )
will be occasionally used to indicate the inner product in L?(2).

Now we state our first existence and uniqueness result. Here, for the
sake of simplicity, we choose f € L?(Q). We will use the so called Galerkin
Method which relies on the approximation of our problem by mean of fi-
nite dimensional problems. For another possible approach, based on the
Hille-Yosida theorem and on the fact that the Laplace operator is maximal
monotone, see [B], Chapters 7 and 10.

THEOREM 2.5. Let f € L*(Q), and ug € L*(Q2). Then there erists a
unique weak solution for problem (2.1).

ProoFr. We will consider a sequence of functions wg(x), (k = 1,...)
which satisfy
i) {wy} is an orthogonal basis of HE (1),
ii) {wy} is an orthonormal basis of L?(Q).
Observe that the construction of such a sequence is always possible; as an
example (see [E]) we can take wg(x) as a sequence for —A in H}(2) (after
a suitable normalization).
Fix now an integer m. We will look for a function u,, : [0,T] — HE(Q)
of the form

(2.7) walt) = 3 d (D,
k=1

and we want to select the coefficients such that

(2.8) d,(0) = (uo,wi)  (k=1,...,m)
and
(2.9 () + [ Ast) V- T = (),
Q
ae. on0<t<T, k=1,...,m. In other words, we look for the solutions

of the projections of problem (2.1) to the finite dimensional subspaces of
HE(Q) spanned by {wi}(k=1,...,m).

During this proof, for the convenience of the reader we will use the
following notation

Aty 0,1) = /Q Az, )V - V.
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We split the proof of this result in four steps.

Step 1. Construction of approximate solutions.

Assume that wu,, has the structure (2.7); since wy is orthonormal in
L?(€2), then

and
a (U, Wi, t E ekl dl

where e*(t) = a(wy, wy, t)(k, 1 =1,... ,m). Finally, if f* = (f(t),wy) is the
projection of the datum f, then (2.9) becomes the linear system of ODE

m

@dfn +Ze“ D), (1) = F*(1),

for k = 1,...,m, subject to the 1n1t1a1 condition (2.8). According to the
standard existence theory for ordinary differential equations, there exists a
unique absolutely continuous function d,,(t) = (d.,,, ..., d.,) satisfying (2.8)
and the ODE for a.e. 0 <t < T. Then u,, is the desired approximate
solution since it turns out to solve (2.9).

Step 2. Energy Estimates.

Multiply the equation (2.9) by d¥ (¢) and sum over k between 1 and
m. Then, integrating between 0 and T', we find, recalling that (ul,, ) =
1dg2 and using (2.3)

2 dt Ym>
/ dt/u —i—a/ Vi, | < /fum

Thus, reasoning as in the proof of (2.4) we can check that
(210) ||UW||L°°(O,T;L2(Q)) + HumHLQ(O,T;Hé(Q)) < C(Hf||L2(Q) + ||UOH%Q(Q))’

(here we also used that [|u,(0)[|r2(q) < lluollz2(q))-
Finally, using the fact that wy is an orthogonal basis in HJ(£2), we can
fix any v € H}(Q) such that [0l (@) < 1, and deduce from the equation

(2.9), after a few easy calculations

[y, 0)| < O fllp20) + [tml| 13 (0))
that is
[l z-10) < CIfllz2(9) + lumll i)
whose square integrated between 0 and 7', gathered together with (2.10),
yields
(2.11) el 20 m-1(0y) < CUS 2y + ol F2(0y)-

Step 3. Existence of a solution.
From (2.10) we deduce that there exists a function u € L%(0,T; H} (1)),
such that u,, converges weakly to u in L?(0,T; H}(£2)); moreover u/,, weakly
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converges to some function n in L?(0,T; H~1(Q2)) (one can easily check by
using its definition that n = u’). Then, we can pass to the limit in the weak
formulation of u,,, that is in

(2.12)

T
/0 (U 90>H—1(Q),H3(9)+/Q Az, t)Vum Vo = (f,0) 12(0,1;1-1(2)),L2(0.T;H (@)

for any ¢ € L2(0,T; H}(Q)), such that ¢’ € L*(0,T; H1()), with p(T) =
0, to obtain (2.5).

To check that the initial value is achieved we use (1.11) in (2.5) and
(2.12), obtaining respectively

T
_/O <80,au>H1(Q),H&(Q)_/QU(O)SO(O)—F/QA(x,t)VU.V(P:/Qf(p’

and
T

_/ <¢’7um>H—1(Q)7H(}(Q)—/Um(o)(p(o)‘i'/ A(x,t)VumVWZ/ f‘p
0 Q Q Q

Now, since u,,(0) — up in L?(€2), and ¢(0) is arbitrary we conclude that
up = u(0).

Step 4. Uniqueness of the solution.

Let u and v be two solutions of problem (2.1) in the sense of Definition
2.3; if we take u — v as test function in the weak formulation for both » and
v (by a density argument we can see that this function can be chosen as test
in (2.5) even if it does not satisfy, a priori, (u —v)(T) = 0). By subtracting,
using that (u — v)(0) = 0, we obtain

1u—v2 u—v)?
g J ol [ v <o

that implies ©u = v a.e. in Q.






CHAPTER 3
Regularity

3.1. Regularity for finite energy solutions
In this section, we will be concerned with regularity and existence results

for solutions of parabolic problem (2.1).

Let us state a first improvement on the regularity of such solutions.

THEOREM 3.1 (Improved regularity). Let ug € H}(Q) and f € L*(Q).
Then the weak solution u of (2.1) satisfies

we L2(0,T; H2(9) 0 L=(0,T; HY(Q)), o' € LA(Q),
with continuous estimates with respect to the data.

PrOOF. [E], Theorem 5, pag. 360. O

The previous statement gives a first standard regularity result in the
Hilbertian case, but what happens if we know something more (or something
less) on the datum f? For instance, what is the best Lebesgue space which
the solution turns out to belong to?

We will prove the following

THEOREM 3.2. Assume (2.2), (2.3), ug € L*(Q), and let f belong to
L™(0,7; LYQ)) with r and q belonging to [1,+0o0] and such that

(3.13) LN
. o, <L

Then there exists a weak solution of (2.1) belonging to L*°(Q). Moreover
there exists a positive constant d, depending only from the data (and hence
independent on ), such that

(3.14) [ull (@) < d.

Notice that assumption (3.13) implies that r € (1, +o0] and ¢ € (%, —i—oo].
To give an idea, let us represent the summability of the datum f €
1 1
L™(0,7; L)) in a diagram with axes — and — . Since r, g € [1, +00], then
q r
all the possible cases of summability are inside of the square [0, 1] x [0,1]

1
(we use the notation — = 0).
00

19
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If f belongs to L"(0,T; L1(2)) where r and ¢ are large enough, that is,
if
1 N

(3.15) ~to < 1 (zone 1 in Figure 1 below),
r q

then every weak solution u belonging to
Va(Q) = L>(0, T; L*(9)) N L*(0, T; Hy (2)

belongs also to L>(Q) (see Theorem 3.2 above). This fact was proved by
Aronson and Serrin in the nonlinear case (see [AS]), while can be found in
the linear setting in some earlier papers as, among the others, [LU] and [A].

NI_\

2 N+2 11
N q

FIGURE 1. Classical regularity results.

In order to prove that the solutions of (2.1) are bounded when the
summability exponents of f are in the zone 1 in the figure 1, we enunci-
ate a very well known lemma due to Guido Stampacchia ([S]).

LEMMA 3.3. Let us suppose that ¢ is a real, nonnegative and nonin-
creasing function satisfying

(3.16) o(h) < (hck)g [(B)Y ¥ h>Ek> k,

where C' and § are positive constants and v > 1. Then there exists a positive
constant d such that

o(ko +d) = 0.
Let us give the proof of Theorem 3.2

PROOF OF THEOREM 3.2. For the sake of simplicity, we will restrict
ourselves to the case ug = 0, f > 0 and r = ¢, so that the solution u is
nonnegative thanks to the maximum principle, and

For k£ > 0, define
(3.17) A ={(z,t) € Q : u(zx, s) > k},
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and take Gk (u) as a test function in (2.1), where Gi(s) = (s — k). Inte-
grating in (0,¢] x €, where ¢t < T, and using assumption (2.3) we get

/ Gr(w)(t)dz + o / / IVGr(w)|2dadt < | fGp(uw)dzdt.
@

Taking the supremum for ¢ € (0, 7] on the right, we have (since both f and
G (u) are nonnegative)

/Gk dx+a// VG ()| d:vdt</ FGr(u)dadt,

which implies
/Gk dx</ka(u)d:rdt,
Q

and

VG () [2dadt < / £ (u)dadt.
Qt
Taking the supremum on ¢ in (0, 7] on the left, and summing up, we therefore
get

318) o I xoaiion + VG| < [ Gk e
By Corollary 1.10, since

N+2 —
/Q G drdt < 1G] P g 120 IVCEW] 20

we have
N+2
N
/ Gr(w)? N drdt < C (/ ka(u))
Q
Using Hoélder inequality with exponents 232 A+, 2 and Zjifvif, and observing that

both integrals are on Ay, we have

[N

N+4
2N

Gk(u)2NN+2dxdt§C< f%dxdt> < Gr(w) ¥ dxdt) ,
Ag

Ak A

from which it follows
o
2N 44
Gr(uw)*'~ dzdt < C < FNT dy dt)
A

N +2 > %Vif, a further use of the Holder inequality yields

Ay

Since ¢ >

2<J]VV+2) N+4 2(N+2)
G (u)? Ndrdt<C Hf||Lq 2, meas(Ag) ¥ Na
Ay

If h > k > 0, we then deduce, since Gi(u) > h —k on A, C Ay,

Ned_2N42)
2552 < G (u)? N2 dedt < C'meas(Ag) ~ Ng
A

meas(Ap) (h — k)
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Setting ¢(h) = meas(Ap) we then have

c Nid  2(N+2)
p(h) < w@(k) N Na
(h— k)™~
Ifq > % we can apply Lemma 3.3, to conclude that there exists a constant
d, depending only on g, || f|za(g) and «, such that ¢(d) = 0, that is

|l oo (@) < d.

What happens if r and ¢ do not satisfy (3.15) but satisfy

2 N . N N
(3.19) 2< -+ —<min<{2+—,2+ — 7, r>1,

r q T 2
that is, zone 2 and 3 in Figure 17 Ladyzenskaja, Solonnikov and Ural’ceva
(see Theorem 9.1, cap. 3 in [LSU]) proved that any weak solution of (2.1)
belonging to V5(Q) satisfies also

(3.20) u(z, )" € Va(Q),

where 7y is a constant greater than one that is given by an explicit formula
in terms of N, r and q. This value of v and Theorem 1.10 will then imply
that

s _ (N+2)gr

(3.21) u € L(Q), S =N 50— 2ar

A natural question that arises is whether there exists at least a solution
of (2.1) belonging to V2(Q) if the summability exponents (r,q) of f satisfy
(3.19).

If (3.19) holds with » > 2 (zone 3 in Figure 1) then the function f
belongs also to the space L?(0,T; H~1(£2)), so that it is very easy to deduce
the existence of at least such a weak solution.

If otherwise (3.19) holds with r < 2 (zone 2 in Figure 1) then f does
not belong to L2(0,T; L2 (Q)), but again there exists at least a solution
of (2.1) belonging to V2(Q) as proved in [LSU] for linear operators (see
[BDGO)] for more general nonlinear operators).

Indeed in [LSU] (Theorem 4.1 cap. 3) it is proved the previous existence
result when the summability exponent of f satisfies

1 N 1 N 2N

r+2q_ Ty E[N—i—Q’
but this implies that the result is true for every choice of exponents (r,q)
satisfying

2] , rell,2],

1 N N 2N
22 4 <14 — >
(3.22) r+2q_ +4’ q_N+2’

see zones 2, 3 and 4 in Figure 2.
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4
2

N+2 1
2N

2 4
N q

FIcURE 2. Existence results, zone 2, 3 and 4.

Notice that the previous zone includes strictly zone 2 and 3 of Figure 1.
The theorem is thus the following.

THEOREM 3.4. Let u be a solution of (2.1), and suppose that f belongs
to LY(Q) with v and q satisfying (3.19). Then u belongs to L*(Q), with s
given by (3.21).

PRrROOF. For the sake of simplicity, we take ug = 0 and f > 0, so that
u > 0. We will also prove the result in the case r = ¢, so that ¢ satisfies the
inequalities

2(N +2) N +2
3.23 —- L <g< —
(3.23) N1 S¢ 5
and the value of s becomes s = ]@SE);(].

We fix v > 0 and choose Tj(u)*Y*! as test function; here Tj(s) =
min(s k). Integrating on (0,¢]), with 0 < t < T we have, denoting with
) the primitive function of T (s)??*™! which is zero in zero,

/@k Dda-+a(27+1) / VT () 2Ty (w) P dadt < | f T(w)?+ davdt.
t Qt

Reasoning as in the proof of Theorem 3.2, we first take the supremum on ¢
in (0,7] on the right, and then on the left. We obtain

1Ok (W)l Loo (0,521 () —i—/Q (VT (u) | Ty (u)*dxdt < C /Q f T (w)*dadt.

Since O (u) > C Tj(u)?72, and since |VTj(u)|? Ty (u)? = C |V (Tj(u) +1?
we then have

T () e o222y + 19T 22 < © /Q f T(w) Hdadt.
Setting v = Ty (u)?*! and recalling Corollary 1.10, we have

g N+2 ¥ 2
/Qq) N dmdtSHUHLOO(O,T;LQ(Q)) ||VU||L2(Q)
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from which it follows
N+2

/ VN drdt < C </ fv?rllda:dt> "
Q Q

Recalling that f belongs to L(Q) and using Holder inequality, we obtain

N+2
N+2 7 29+1 N¢’
/Q V2N dadt <C ||f”L¢IIV(Q) </Q 1 3T d:cdt) -

We now choose v such that

,27+1_2N+2
v+1 N 7’

that is

P
T T a(Nt2-29)

The condition v > 0 is satisfied if and only if
2(N
AN+2) _ N+2
N +4 2
which is true by (3.23). Since ¢ < %, the exponent JX,J(;,Q is smaller than 1,

so that we obtain
</ 1)2% d:z:dt)
Q

Recalling the definition of v, and the choice of v, we then have

1_N+2

(N+2)q Nq’ N+2
(/ Ty (u) N+2=2a dxdt) <C HfHLéV(Q).
Q
Letting k£ tend to infinity we then have, by Fatou lemma,
Nt2 N2
HUHL?](Q) <C HfHL(]JV(Q)v

as desired. O

1— N2

N+2
< ClIf Yo

_ (N+2)q
T N42-2¢°

with s

What happens in the remaining zone (i.e., zone 4 in Figure 2) where, as just
said, there exists at least a weak solution belonging to V2(Q)?
Moreover, what happens outside of these zones? Are there other zones where
there exist V2(Q) solutions?
In addition, where it is not reasonable to expect solutions in V2(Q), as for
example when r and ¢ are not too large (that is just for ¢ < (2*)), and also
when this regularity occurs, which is the starting regularity which ensures
more summability properties of the solutions (of all the solutions) and which
is the possibly optimal Lebesgue summability exponent of the solutions?
Recall that outside zone 1 in Figure 1 it is possible to show examples
of unbounded solutions: does the same happen with the previous regularity
results?



3.2. L1(Q) DATA 25

Surprisingly there are no exhaustive answers to these questions in lit-
erature. We just mention a regularity result concerning data f belong-
ing to L?(0,T; H~1(2)) N L"(0, T; L9(Q2)) and solutions in the energy space
L%(0,T; HL(2)) (see GM]). The remaning open questions has been recently
faced in [BPP].

REMARK 3.5. The theorem proved for elliptic equations stated the fol-
lowing: if f belongs to L4(Q2) and ¢ > %, then u belongs to L*>°(Q); if
]3—_]\1:2 <qg< %, then u belongs to L"(£2), with r = N]quq. Observe that the
bounds on the exponents, as well as the summability result on the solutions,
in the parabolic case can be derived from those in the elliptic case by making
the substitution N — N + 2 (i.e., taking into account the elliptic exponents
for two more space dimensions). The fact that “adding one dimension”
yields “add 2 to the exponents” is due to the fact that (heuristically) the
only time derivative counts “one half” than the double space derivatives.

3.2. L'(Q) data

If f belongs to L'(Q), then none of the results of the preceding section
can be applied, and in general a solution in the “energy space” V52(Q) does
not exist. As for elliptic equations, one can then reason by approximation,
choosing a sequence of regular (say, bounded) data converging to f, and
proving a priori estimates in order to prove existence of solutions in the
sense of distributions. Since in this case the solution u is not an admissible
test function, the energy methods used in order to prove uniqueness are no
longer available; furthermore, the nonzero elliptic solution z given by Serrin
counterexample is a nonzero parabolic solution with z itself as initial datum,
and is different from the solution obtained by approximation.

As Stampacchia did in the elliptic framework, we are now going to in-
troduce a method to select the right solution for the parabolic problem.

This notion starts from the clever idea to test the problem with smooth
solutions of the dual problem. The argument is so powerful that allow us to
prove existence of solutions (in this duality sense) even with very irregular
data, namely measures.

Let us straightforwardly extend this definition to the parabolic case.

DEFINITION 3.6. Let f € LY(Q) and ug € LY(Q) A function u € L*(Q)
is a duality solution of problem

up — div(A(z,t)Vu) = f in Q x (0,T),
(3.24) u(0) = up in €,
u=0 on 00 x (0,T),

if

(3.25) —/ uow(0) dx—l—/ ug dxdt:/ fw dz,
Q Q Q
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for every g € L*°(Q), where w is the solution of the backward problem

—w; — div(A*(z,t)Vw) = ¢ in (0,T) x Q,
(3.26) w(z, T)=0 in Q,
w(z,t) =0 on (0,7) x 09,

where A*(x,t) is the transposed matrix of A(z,1t).

REMARK 3.7. Notice that all terms in (3.25) are well defined thanks to
Theorem 3.2. Moreover, it is quite easy to check that any duality solution
of problem (3.24) actually turns out to be a distributional solution of the
same problem. Finally recall that any duality solution turns out to coincide
with the renormalized solution of the same problem (see [Pe]); this notion
introduced in [DMOP] for the elliptic case, and then adapted to the para-
bolic case in [Pe], is the right one to ensure uniqueness also in the nonlinear
framework. Finally notice that solutions of a forward parabolic problem
and its associated backward problem are the same through the change of
variable ¢t — —t.

A unique duality solution for problem (3.24) exists, in fact we have the
following

THEOREM 3.8. Let f € L'(Q) andug € LY(), then there exists a unique
duality solution of problem (3.24).

PROOF. Let us fix r, ¢ € R such that

N 2
r,qg>1, —+-<2,
q r

and let us consider g € L"(0,7;L(2)). Let w be the weak solution of
problem (3.26); we know that w is bounded (Theorem 3.2) and continuous
with values in L?(Q2) (Theorem 2.5). We actually have

[wll Lo @) < Cllgllr(0.1;00(0));
therefore, the linear functional

A:L7(0,T; L)) — R,

A(g):/wa dx—i—/ﬂuow(O),

is well-defined and continuous, since

defined by

A < (If @) + llwolloe@)llwlle(@) < Cllgllro,riza@)-

So, by Riesz’s representation theorem there exists a unique u belonging to
L7 (0,T; LY (Q)) such that

A(g) :/ ug dzxdt,
Q
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for any g € L"(0,T; LI(2)). So we have that, if f € L'(Q) and ug € L' (),
then there exists a (unique by construction) duality solution of problem
(3.24). Note that since u belongs to L™ (0,T; L% (2)), the bounds on r and
q imply that u belongs to L(0,T; L™(Q2)) with ¢ and 7 such that

2 N
—+—>N.
o T

N+2

If r = g, then 0 = 7 satisfies 7 < 5= (once again, the elliptic exponent
% becomes the parabolic one with the substitution N +— N + 2). g






CHAPTER 4

Asymptotic behavior of the solutions

4.1. Naive idea and main assumptions

Let us give a naive idea of what happens to a solution for large times.
Let u(z,t) be the solution of the 1-D heat equation

Up — Ugpye =0 in (0<t<oo)x(0<z<l)
u(0,x) = up(x) on 0<z<1,
u(t,0) =u(t,1) =0 in 0<t< oo,

with smooth ug (ug(0) = up(1) = 0). Since we can write the initial datum
ug as the uniform convergent series

o0
uo(x) = Z ap sin(nrzx),
n=1
then the solution u(x,t) is the explicitly given by
> 2.2
u(z,t) = Zane*” ™tsin(nra),
n=1

and so, u(x,t) tends to zero (with exponential rate!) as ¢ — co. Let us just
emphasize (actually, my mom too should be able to easily check it!) that
z(x) = 0 solves the associated elliptic Laplace equation

{—zm:O in (0<z<1)
z2(0) = z(1) = 0.

That is, the solution u tends to something constant (in time), and so its
derivative with repect to ¢ converges, in some sense, to zero.

A large number of papers has been devoted to the study of asymptotic
behavior for solutions of parabolic problems under various assumptions and
in different contexts: for a review on classical results see [F] and the refer-
ences therein. More recently in [Pel] and [LP] the case of nonlinear mono-
tone operators, and quasilinear problems with nonlinear absorbing terms
having natural growth, have been considered; in particular, in [Pel], we
dealt with nonnegative measures p absolutely continuous with respect to
the parabolic p-capacity (the so called soft measures). Here we analyze the
case of linear operators with nonnegative data regular enough, following the
outlines of [Pel].

29
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Let © € RN be a bounded open set, N > 2, T > 0; as usual, we
denote by @ the cylinder (0,7") x Q. We are interested in the study of the
asymptotic behavior with respect to the time variable ¢ of the solution of
the linear parabolic problem

ug+ L(u) = f in (0,T) x Q,
(4.27) u(0) = uo, in €,

u=20 on (0,T) x 09,
with f € L*(Q), uo € L*(Q2), and

L(u) = —div(A(z)Vu),
where A is a matrix with bounded, measurable entries, and satisfying the
ellipticity assumption
(4.28) A(z)€ - € > alef,
for any & € RN, with a > 0.
First observe that by Theorem 2.5 a unique solution is well defined for

all ¢ > 0.
Let us state our main result:

THEOREM 4.1. Let 0 < f € L?(Q) be independent on the variable t. Let
u(x,t) be the solution of problem (4.27) with ug € L?(Q), and let v(x) be
the solution of the corresponding elliptic problem

Liw)=f inQ,
(4.29) {v =0 on 9.

tilgloou(x,t) =v(x),
strongly in L*(Q).

We first observe that, since f € L?(Q) is independent on time, then the
solution v of the elliptic problem (4.29) is also the unique solution of the
parabolic problem (4.27), with ug = v, for any fixed T' > 0.

We then have the following comparison principle for solutions of para-
bolic problems.

LEMMA 4.2. Let 0 < f € L?*(Q) be independent on time, and let ug and
uy in L2(Q) be such that 0 < ug < uy. If w and z are solutions of (4.27)
with w(0) = ug and z(0) = uy, then 0 < w(x,t) < z(z,t) for every t > 0.

ProoF. Let u = z —w. Then u solves
w4+ L(u) =0 in (0,T) x Q,
u(0) = u3 —up, in €,
u=20 on (0,T) x 0N.
Since u; — ug > 0, then v > 0 by the maximum principle, and so z > w.

The fact that w > 0 follows again from the maximum principle since both
f and wug are nonnegative. O
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PROOF OF THEOREM 4.1. We split the proof in few steps.

Step 1. We suppose that ug = 0.

Observe that u(z,t) > 0 for every ¢t > 0 by Lemma 4.2. Therefore, if we
consider s > 0, since we have that both u(z,t) and u(x,t + s) are solutions
of problem (4.27) with, respectively, 0 and u(z,s) > 0 as initial datum,
then again by Lemma 4.2 we deduce that u(x,t + s) > u(x,t) for t,s > 0.
Therefore u is a monotone nondecreasing function in ¢ and so it converges
to a function ¥(z) almost everywhere as ¢ tends to infinity. Since v is a
solution of (4.27) with v > 0 itself as initial datum, Lemma 4.2 yields that
u(z,t) < wv(x) for every t. Therefore, since 0 < u(z,t) < v(x), we have that
u(z,-) converges to ¥ strongly in L?(f2) (actually, in the same space that v
belongs to).

Now, let us consider u"(z,t) as the solution of

—div(A(z)Vu™) = f in (0,1) x Q,
(4.30) u™(0,2) = u(n,x) in Q
"=0 on (0,1) x 9.
We clearly have u(x,t) = u™(xz,t —n) for t € [n,n + 1] (since both u(zx,t)
and u"(x,t — n) solve the same problem with the same data), and so
u(z,n) =u"(z,0) <u"(x,t) <u(z,1) =u(z,n+1),
for every t in [0, 1]. Since both u(x,n) and u(x,n+ 1) converge to v(x), then

lim u"(z,t) =0(z), Vtel0,1],

n—-+00

and the convergence is strong in L?(£2). Choosing u™ as test function, we
then have

/Q(u”(l))zdx—/Q(u"(O))Qd:UjLoz/Ol/Q |V, |?dedt < /01/Q fudzdt.

The uniform boundedness of u™(x,-) in L?(2) (which implies the bound-
edness of u™ in L2(Q2 x (0,1))) then easily implies that u™ is bounded in
L%(0,1; HY(2)). Therefore u" converges weakly in the same space to @
(there is no need of extracting subsequences since the limit is independent
on the chosen subsequence). We now fix a function ¢ in H}(£2), and choose
it as test function in the equation satisfied by u™. We have, since ¢; = 0,

o(z )dm—/ u"(0) p(x)dx

// Az ".Veodzdt = // [ pdadt.

Since both u"(1) and u™(0) converge to ¥ in L*(2), we have

lim A u"™(1) p(z)dx — /Q u"(0) p(x)dx = 0,

n—-+o0o
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while we clearly have

1
lim // fedxdt = lim /fgodxdt:/ fede.
n—+oo Jq /O n—+oo Jo Q

Finally, the weak convergence of u” to ¥ implies
1
lim // A(x)Vu" - Vo drdt = / A(z)Vv - Vedz.
n—+o0 JoJo Q

Therefore,
/ A(z) Vo -Vepdr = / fodr, Yoc HHQ),
Q Q

so that v is a solution of (4.29); by uniqueness, ¥ = v, as desired.

Step 2. We suppose up(x) = Av(x) for some A > 1.
Since Av is a solution of
2+ L(z)=Af in(0,T) x Q,
z(0) = Av, in Q,
z2=0 on (0,7) x 09,
and since A\f > f (being f nonnegative), then we have 0 < u(x,t) < Av(x)
for every ¢ > 0. Therefore, since for every s > 0 the function u(z,t+s) is a

solution of (4.27) with the same datum f, and initial datum u(z,t) < Av =
u(z,0), we have (by Lemma 4.2)

0 <u(z,t+s) <u(z,t),

for every t > 0 and s > 0. Thus, the function t — u(x,t) is decreasing, and
so u(z,t) converges (strongly in L%(€)) to some function #(z) as ¢ tends to
infinity. The same argument as in Step 1 implies that v = v.

Step 3. We suppose 0 < ug(z) < Av(z) for some A > 1.
Let u(x,t) be the solution of (4.27). Then, by Lemma 4.2, we have

w(z,t) <u(z,t) < z(x,t),

where w(z,t) is the solution of (4.27) with w(z,0) = 0, and z(x,t) is the
solution of (4.27) with z(x,0) = Av(x). We have proved in Step 1 that
w(z,t) converges to v(x) strongly in L?(Q) as t tends to infinity, and we
have proved in Step 2 that z(z,t) converges to v(x) strongly in L?(Q2) as t
tends to infinity. Therefore, u(x,t) converges to v(z) strongly in L?(€) as t
tends to infinity.

Step 4. We suppose 0 < ugp(x), and f # 0.

We first observe that, since f > 0 and f # 0, then the strong maximum
principle for elliptic equations implies v > 0 in Q. Therefore, Av(z) tends
to infinity everywhere in ) as A tends to infinity. Define now

upA(2) = min(ug(z), Av(z)),
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so that, by Lebesgue theorem, wug \ converges to ug strongly in L?(Q) as A
tends to infinity. If u” is the solution of

up + L(u*) = f in (0,T) x Q,

u*(0) = ug y, in Q,

ut =0 on (0,7) x 09,
then, for every fixed A, uy(z,t) converges to v(z) as ¢ tends to infinity thanks
to Step 3. If u is the solution of (4.27) with initial datum wug, then u — u? is
a solution of (4.27) with f = 0 and initial datum wug — ug . Therefore
(4.31) lu(t) = ()2 < luo = uwonllz2@),  Vt>0.
Given € > 0, we first choose A such that

uo — uoallL2(0) <&

and then t. > 0 such that

[ur(t) = vllge) <&, VE>te.
Therefore, if ¢ > t., from (4.31) we have

[u(t) = vllz20) < llu(t) = u (Bl 2() + [0 (E) = vll2() < 2,
and this implies the result.
Step 5. We suppose 0 < ugp(x), and f = 0.
If ¢ > 0, and u® is the solution of
ui + L(u®) =¢ in (0,7) x Q,
u®(0) = uo, in Q,
u® =0 on (0,T) x 09,
and u is the solution of problem (4.27) with f = 0, then Lemma 4.2 implies
(4.32) 0 < u(z,t) < u(z,t) < ul(x,t),
for every € < 1. By Step 5, u® tends to v¢, the solution of
{L(vs) =¢ in (),
v =0, on 0f).

Therefore,
0 <limsup u(z,t) < 1tlim u®(z,t) = v°(x),

t—+o0 —+oo
for every € < 1. Since v® tends to zero as € tends to zero, we have that
u(x,t) tends to zero as t tends to infinity (and the convergence is strong in
L?() by Lebesgue theorem thanks to (4.32)).

Step 6. We suppose ug in L?(Q).
If ug > v we define z(z,t) = u(x,t) — v(z), which solves problem (4.27)

with ug — v as initial data and f = 0. Since z(z,t) tends to zero in L?*(Q) as
t diverges thanks to Step 5 (being z(z,0) > 0), we have that u(z,t) tends
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to v(x). If ug < v, then z(z,t) = v(z) — u(z,t) solves problem (4.27) with
f = 0 and a nonnegative initial datum, so that (again by Step 5), z(x,t)
tends to zero and so u(z,t) tends to v(x).

Now, if u® and u® solve problem (4.27) with, respectively, max (ug,v)
and min (ug, v) as initial data, then, by Lemma 4.2, we have

u(x,t) < u(z,t) < u®(x,t)
for any t, and this concludes the proof since the result holds true for both
u® and u®.
O



APPENDIX A

Basic tools in integration and measure theory

We set by RY the N-Euclidian space (simply R if N = 1) on which
the standard Lebesgue measure is defined on the o-algebra of Lebesgue
measurable sets. The scalar product between two vectors a,b in RV will
be denoted by a - b or simply ab in most cases. Given a bounded open set
Q of RV, whose boundary will be denoted by 99, and given a positive T,
we shall consider the cylinder Q7 = (0,7) x Q (or simply @ where there
is no possibility of confusion), setting by Cy(Q) and C3°(Q), the space of
continuous, respectively C'°°; functions with compact support in €2, while
C(Q) will denote functions that are continuous in the whole closed set €;
moreover we will indicate by C§°([0,T] x ) (resp. C5°([0,T) x §)) the set
of all C* functions with compact support on the set [0,7] x Q) (resp. on
[0,T) x Q).

For the sake of simplicity here we will denote by D any bounded open
subset of RV, We will deal with the space M (D) of Radon measures y on D
that, by means of Riesz’s representation theorem, turns out to coincide with
the dual space of Cy(D) with the topology of locally uniform convergence;
we shall identify the element p in M (D) with the real valued additive set
function associated, which is defined on the o-algebra of Borel subsets of D
and is finite on compact subsets. Thus with 4+ and p~ we mean, respec-
tively, the positive and the negative variation of the Hahn decomposition of
i, that is 4 = p™ — p~, while the total variation of x will be denoted by
lu| = pwt + p. Since we will always deal with the subset of M (D) of the
measures with bounded total variation on D, to simplify the notation we
will denote also by M (D) this subset. The restriction of a measure p on a
subset F is denoted by pl_ E and is defined as follows:

(u_E)(B)=wu(EnNB), for every Borel subset B C D.

If p = pul_ E we will say that y is concentrated on F.

For 1 < p < oo, we denote by LP(D) the space of Lebesgue measur-
able functions (in fact, equivalence classes, since almost everywhere equal
functions are identified) u : D — R such that, if p < co

1
p
o) = ( /Q uf? dx) < o0,

or which are essentially bounded (w.r.t. Lebesgue measure) if p = co. For
the definition, the main properties and results on Lebesgue spaces we refer

35



36 A. BASIC TOOLS IN INTEGRATION AND MEASURE THEORY

3}
to [B]. For a function v in a Lebesgue space we set by a—u (or simply ug;)
T

its partial derivative in the direction x; defined in the sense of distributions,
that is

<umi730> = / upy,; dz,
D

and we denote by Vu = (ug,,...,us, ) the gradient of u defined this way.

The Sobolev space W!P(D) with 1 < p < oo, is the space of func-
tions u in LP(D) such that Vu € (LP(D))", endowed with its natural norm
ullwirpy = llulle(p) + VUl Le(py, While Wol’p(D) will indicate the closure
of C§°(D) with respect to this norm. We still follow [B] for basic results on
Sobolev spaces. Let us just recall that, for 1 < p < oo, the dual space of
LP(D) can be identified with L? (D), where p/ = 1% is the Holder conjugate
exponent of p, and that the dual space of Wol’p(D) is denoted by W~12'(D).
By a well known result, any element of 7' € W~ (D) can be written in
the form T = —div(G) where G € (L” (D))VN.

For every 0 < p < oo, we introduce the Marcinkiewicz space MP(D) of
measurable functions f such that there exists ¢ > 0, with

meas{z : |f(z)] > k} < ]?Cp’

for every positive k; it turns out to be a Banach space endowed with the
norm

[ Fllasooy = inf {e > 05 meas{o: [ f(2)] = k} < (£)"}

Let us recall that, since D is bounded, then for p > 1 we have the following
continuous embeddings

L¥(D) — M?(D) — LP (D),

for every ¢ € (0,p — 1].

We already said that we refer to [B] for most basic tools in Lebesgue
theory and Sobolev spaces; however, among them, let us recall explicitly
some that will play a crucial role in the methods we use.

(1) Generalized Young’s inequality: for 1 < p < oo, p' = p%l and any
positive € we have:
a? 1
ab<el—+ ——, Va,b>0.
p ey

(2) Hélder’s inequality: for 1 < p < oo, p' = I%, we have, for every
f € LP(D) and every g € L” (D):

[isae= ([ rf\p)’l’( L)

=
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(3) Let 1 <p < oo, p' = L5, {fu} C LP(D), {gn} C L (D) be such
that f, strongly converges to f in LP(D) and g, weakly converges
to g in L (D). Then

lim fngn dac—/fgdx.
D

n—oo

The same conclusmn holds true if p = 1, p’ = co and the weak
convergence of g, is replaced by the x-weak convergence in L>°(D).
Moreover, if f, strongly converges to zero in LP(D), and g, is
bounded in L¥ (D), we also have

lim fn gn dx =10.
n—oo
(4) Let f, converge to f in measure and suppose that:
3C >0, ¢g>1: ||fn||Lq(D) <C, Vn.
Then
fn — f strongly in L*(D), for every 1 < s < g.

(5) Fatou’s lemma: Let {f,} c L'(D ) be a sequence such that f,, — f
a.e. in D and f,, > h(z) with h(z) € L' (D), then

/ fdxr< liminf/ fn dz.
D e

(6) Generalized Lebesgue theorem: Let 1 < p < oo, and let {f,} C
LP(D) be a sequence such that f, — f a.e. in D and |f,| < gn
with g, strongly convergent in LP(D), then f € LP(D) and f,
strongly converges to f in LP(D).

(7) Let {f,} € LY(D) and f € L'(D) be such that, f, > 0, f, — f
a.e. in D, and

lim fn dm—/ f dz,

n—oo

then f, strongly converges to f in L'(D).
(8) Vitali’s theorem: Let 1 < p < oo, and let {f,} C LP(D) be a
sequence such that f,, — f a.e. in D and

(A.33) hm sup/ | fn|P dx = 0.
meas(E)—0 n
Then f € LP(D) and f, strongly converges to f in LP(D).
(9) Let {f,} € LY(D) and {g,} C L>°(D) be two sequences such that
fn — f weakly in LY(D),
gn — ¢ a.e. in D and x-weakly in L>(D).
Then

lim fngn d:z:—/fgda;.
D

n—oo
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REMARK A.1. Property (A.33) is the so called equi-integrability prop-
erty of the sequence {|f,|P}. We recall that Dunford-Pettis theorem ensures
that a sequence in L'(D) is weakly convergent in L!(D) if and only if it is
equi-integrable. Moreover, results (4), (6) and (7) can be proven as an easy
consequences of Vitali’s theorem and so we will refer to them as Vitali’s
theorem as well. For the same reason we will refer to result (9) as Egorov
theorem.

For functions in the Sobolev space VVO1 P(D) we will often use Sobolev’s
theorem stating that, if p < N, Wol’p(D) continuously injects into LP" (D)
with p* = NN—f}; ifp=N, I/VO1 P(D) continuously injects into LI(D) for every
g < oo, while, if p > N, Wol’p(D) continuously injects into C(D). Let us
also recall Rellich’s theorem stating that, if p < N, the injection of W&’p(D)
into L4(D) is compact for every 1 < ¢ < p*, and Poincaré’s inequality, that
is, there exists C' > 0 such that

lulle(py < ClIVull(zopy

for every u € Wol’p(D), so that || Vul|(1»(py)~ can be used as equivalent norm
on Wy*(D).
We will often use the following result due to G. Stampacchia.
THEOREM A.2. Let G : R — R be a Lipschitz function such that G(0) =
0. Then for every u € Wol’p(D) we have G(u) € Wol’p(D) and VG(u) =
G'(u)Vu almost everywhere in D.

PROOF. See [S]. O

Theorem A.2 has an important consequence, that is
Vu=0 a.e. in F. ={x:u(zr) =c},

for every ¢ > 0. Hence, we are able to consider the composition of function
in I/VO1 P(D) with some useful auxiliary function. One of the most used will be

the truncation function at level k > 0, that is T (s) = max(—k, min(k, s));
‘Tk(s)
kL — —

—k
T
I
I

I

I

|

k s
— — 41—k

thus, if w € WyP(D), we have that Typ(u) € WyP(D) and VTi(u) =
Vux(u<ky a-e. on D, for every k > 0.
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