Secondo fogli di esecizi

March 14, 2017

Esercizio 1. Dimostrare che $O(2n+1) \cong SO(2n+1) \times \mathbb{Z}/2\mathbb{Z}$ sia come gruppo che come varietà. Dimostrare che $O(2n) \cong SO(2n) \times \mathbb{Z}/2\mathbb{Z}$ come varietà e che $O(2n) \cong SO(2n) \times \mathbb{Z}/2\mathbb{Z}$ come gruppo. Dimostrare che $U(n) \cong (SU(n) \times S^1)/(\mathbb{Z}/n\mathbb{Z})$ sia come gruppo che come varietà.

Esercizio 2. Dimostrare che O(n) è generato da riflessioni.

Esercizio 3. Determinare in centro di $Spin_n(\mathbb{R})$.

Esercizio 4. Sia $A \subset GL(n,\mathbb{R})$ il sottogruppo delle matrici diagonali a coefficienti positivi, $N \subset GL(n,\mathbb{R})$ il sottogruppo delle matrici unitriangolari superiori. Dimostrare che se K = O(n), la mappa di moltiplicazione $K \times A \times N \to GL(n,\mathbb{R}), (k,a,n) \mapsto kan$ è un diffeomeorfismo. Dedurre che come spazio topologico $GL(n,\mathbb{R}) \cong O(n) \times \mathbb{R}^{n(n+1)/2}$. Formulare, se possibile, un analogo complesso dei risultati precedenti.

Esercizio 5. Sia $M = \mathbb{R}$ con coordinata x. Si considerino i campi vettoriali

$$X_x^{(i)} = x^i \frac{d}{dx}, \quad i = 0, 1, 2.$$

Calcolare in ciascun caso , per ogni (x_0,t_0) , le curve integrali massimali $\gamma_{x_0,t_0}^{(i)}$ tali che $\gamma_{x_0,t_0}^{(i)}(x_0)=t_0$.

Esercizio 6. Sia $M=\mathbb{R}^2$ con coordinate x_1,x_2 . Si risolva l'analogo dell'esercizio 5 per i campi vettoriali

$$X_{x_1,x_2}^{(0)} = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2}, \quad X_{x_1,x_2}^{(1)} = x_1 \frac{\partial}{\partial x_1} - x_2 \frac{\partial}{\partial x_2}, \quad X_{x_1,x_2}^{(2)} = x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1} \quad .$$