Argomenti della Lezione

21 ottobre 2011

9. Criterio di Cauchy

9.1. Il teorema di Bolzano-Weierstrass.

Definizione 9.1. Un punto x si dice punto di accumulazione di una successione $\{a_1, a_2, ...\}$ se comunque si scelga $\varepsilon > 0$ esistono infiniti indici $\{k_1, k_2, ...\}$ tali che i corrispondenti termini della successione appartengono a $(x - \varepsilon, x + \varepsilon)$.

Esempio 9.2. Se $\{a_1, a_2, \dots\}$ é convergente ad ℓ allora ℓ é anche l'unico punto di accumulazione della successione.

La successione (non convergente) dei numeri naturali non ha alcun punto di accumulazione.

La successione $\{1, -1, 1, -1, \dots\}$ ha due punti di accumulazione: -1 e 1.

Teorema 9.3. Ogni successione $\{a_1, a_2, \dots\}$ limitata ammette almeno un punto di accumulazione.

DIMOSTRAZIONE. Indichiamo con $[\alpha_1, \beta_1]$ un intervallo che contenga tutti i termini della successione: detto c il punto medio

$$c = \frac{\alpha_1 + \beta_1}{2}$$

indichiamo con $[\alpha_2, \beta_2]$ quella delle due metá determinate da c che contiene ancora infiniti termini della successione.

Cosí proseguendo costruiamo la successione $\{[\alpha_n, \beta_n]\}$ di intervalli

- chiusi,
- limitati,
- incapsulati.

Tenuto conto dell'assioma degli intervalli incapsulati valido sui numeri reali riesce

$$\bigcap_{k=1}^{\infty} [\alpha_k, \beta_k] \neq \emptyset$$

é anche evidente che tale intersezione non vuota contenga un solo numero reale x.

Tale numero é punto di accumulazione per la successione: infatti scelto $\varepsilon>0$ é evidente che esiste n_ε tale che

$$[\alpha_{n_{\varepsilon}}, \beta_{n_{\varepsilon}}] \subseteq (x - \varepsilon, x + \varepsilon)$$

Tenuto conto che $[\alpha_{n_{\varepsilon}}, \beta_{n_{\varepsilon}}]$ contiene infiniti termini della successione ne segue che anche $(x - \varepsilon, x + \varepsilon)$ ne contiene infiniti.

Corollario 9.4. Le successioni convergenti hanno uno ed un solo punto di accumulazione.

9.2. Criterio di Cauchy.

Teorema 9.5 (Criterio di convergenza di Cauchy.). Una successione $\{a_1, a_2, \dots\}$ é convergente se e solo se per ogni scelta di $\varepsilon > 0$ esiste una soglia n_{ε} tale che

$$\forall n, m \geq n_{\varepsilon} : |a_n - a_m| \leq \varepsilon$$

DIMOSTRAZIONE.

Necessitá

Supponiamo che la successione $\{a_1, a_2, \dots\}$ sia convergente e proviamo che allora soddisfa la condizione del teorema:

detto ℓ il limite e scelto $\sigma > 0$ esiste una soglia n_{σ} tale che

$$\forall n \geq n_{\sigma} : |a_n - \ell| \leq \sigma$$

allora, dalla disuguaglianza triangolare si ha

$$\forall n, m \ge n_{\sigma}: |a_n - a_m| \le |a_n - \ell| + |\ell - a_m| \le 2\sigma$$

La condizione del teorema viene soddisfatta scegliendo $\sigma=\varepsilon/2$.

Sufficienza

La condizione del teorema implica che la successione $\{a_1, a_2, \dots\}$ é limitata: infatti, scelto ad esempio $\varepsilon = 1$ esiste una soglia \overline{n} tale che

$$\forall n \leq \overline{n}: |a_n - a_{\overline{n}}| \leq 1 \quad \rightarrow \quad a_n \in [a_{\overline{n}} - 1, a_{\overline{n}} + 1]$$

Indicato con [a, b] un intervallo che contenga i primi $\{a_1, a_2, \ldots, a_{\overline{n}-1}\}$, e con $[\alpha, \beta]$ un intervallo che contenga sia [a, b] che $[a_{\overline{n}} - 1, a_{\overline{n}} + 1]$ si riconosce che

$$\forall k: \ a_k \in [\alpha, \beta]$$

cioé si riconosce che la successione $\{a_1, a_2, \dots\}$ é limitata.

Sia ℓ un punto di accumulazione per la successione, punto esistente in base al precedente teorema di Bolzano.

Si tratta di riconoscere che tale numero ha le proprietá di limite per la successione: fissato comunque $\sigma > 0$ esistono infiniti indici k_1, k_2, \ldots tali che

$$a_{k_n} \in (\ell - \sigma, \ell + \sigma)$$

Sia inoltre n_{σ} una soglia tale che

$$\forall r, s \ge n_{\sigma} : |a_r - a_s| \le \sigma$$

Sia $\overline{k_{\sigma}} \ge n_{\sigma}$ un indice tale che $a_{\overline{k_{\sigma}}} \in (\ell - \sigma, \ell + \sigma)$: allora per ogni $n \ge \overline{k_{\sigma}}$ riesce

$$a_n \in (\ell - 2\sigma, \ell + 2\sigma)$$

Scelto σ in modo che $2\sigma \leq \varepsilon$ si riconosce che ℓ soddisfa la proprietá di limite.

9.3. Le serie.

Teorema 9.6. Ogni serie assolutamente convergente é convergente.

DIMOSTRAZIONE. Indichiamo con

$$S_n = \sum_{k=1}^n a_k, \qquad M_n = \sum_{k=1}^n |a_k|$$

Dire che la serie é assolutamente equivale a dire che la successione $\{M_1, M_2, M_3, \dots\}$ soddisfa il criterio di convergenza di Cauchy. Tenuto presente che la disuguaglianza triangolare implica, per $n \leq m$,

$$|S_n - S_m| \le M_m - M_n$$

il fatto che la $\{M_1, M_2, M_3, \dots\}$ verifichi il criterio di Cauchy implica che lo verifica, di conseguenza, anche la successione $\{S_1, S_2, S_3, \dots\}$.

Quindi la convergenza della $\{M_1,M_2,M_3,\dots\}$ implica la convergenza della $\{S_1,S_2,S_3,\dots\}$