Corso di Algebra 1 - A. Machì

Prova scritta del 4 Giugno 2007

1. In un gruppo G, dimostrare che se H e K sono sottogruppi di G e Ha=Kb, allora H=K.

Soluzione. Si ha $Hab^{-1} = K$. La classe laterale di Hab^{-1} contiene l'unità perché è uguale a K che è un sottogruppo, e quindi contiene l'unità. Ma l'unica classe di H che contiene l'unità è H stesso. Quindi H = K.

2. Determinare i possibili omomorfismi del gruppo D_4 nel gruppo di Klein V.

Soluzione. D_4 ha 4 sottogruppi normali (i tre sottogruppi di ordine 4 e il centro Z) che sono quindi i possibili nuclei di omomorfismi). Se $H \leq D_4$, |H| = 4 e $V = \{1, a, b, c\}$, vi sono tre omomorfismi di nucleo H, con immagini $\{1, a\}, \{1, b\}, \{1, c\}$. Con nucleo Z, l'immagine è tutto V.

- **3.** Dimostrare che il polinomio $x^4 + 1$:
- i) è irriducibile sui razionali;

Soluzione. $x \to x+1$: $(x+1)^4+1=x^4+4x^3+6x^2+4x+2$, e applicare Eisenstein.

- ii) si spezza su $Z_5[x]$. Soluzione. $(x^2-2)(x^2+2)$.
- 4. Dimostrare che nell'anello $Z[\sqrt{-3}]$, 2 è irriducibile ma non è primo.

Soluzione. 2 divide $4=(1-\sqrt{-3})(1+\sqrt{-3})$ ma non divide alcuno dei fattori: se $1-\sqrt{-3}=2(a+b\sqrt{-3})$, si avrebbe $2a=1,\ 2b=-1$, e a e b non interi.

5. Sia R un anello, $r \in R$, e sia $r^n = 0$. Dimostrare che r è contenuto in tutti gli ideali primi di R.

Soluzione. Sia P un ideale primo. Poiché $0 \in P$, e $r^n = 0 \in P$, si ha $0 = r^n = r \cdot r^{n-1} \in P$, da cui o $r \in P$, oppure $r^{n-1} \in P$. Nel primo caso siamo arrivati. Nel secondo, $r \cdot r^{n-2} \in P$, e si procede come sopra.