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Abstract

We show that, for every cellular automaton over a group of the form
H x, K with H finitely generated and K finite, there is a conjugate
cellular automaton over H. From this we find an extension of Amoroso
and Patt’s result on the decidability of the invertibility problem.

1 Introduction

Cellular automata are uniform lattices of devices, whose global evolution is
determined by local interactions. They are very well suited for simulations
of large systems in physics, biology, and economics.

The classical definition of a cellular automaton involves a finite set of states
Q, a dimension d, a finite set N C Z¢ and a local transition function
f: QN = @, such that the future state of a point i on the lattice Z¢ is the
value of f on the present states of the points j € 4 + N. There is a more
general definition, as in [10] and [3], where the lattice is the Cayley graph
of a finitely generated group. This group is called the tessellation group of
the cellular automaton. The local evolution function of a cellular automaton
induces a global evolution function on the space of the configurations of the
automaton.

A conjugacy from a cellular automaton to another is a homeomorphism of
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their configuration spaces such that the image of the successor of a config-
uration of the first automaton is the successor of its image in the second
automaton. The properties of cellular automata that are not changed by
conjugacies are called invariants; they are very important in the study of
dynamics.

It is expecially interesting to determine whether a given cellular automaton
is invertible, that is, if its global evolution function is bijective. Invertibility
is of course an invariant, because conjugacies are bijections.

We show that the finite part of the tessellation group is unessential to the
dynamics: that is, if the tessellation group is a semi-direct product H x, K
with H finitely generated and K finite and normal, then there is a conjugate
cellular automaton whose tessellation group is H. This allows us to translate
some cellular automata into other cellular automata with a simpler tessella-
tion group, thus giving a tool that can be used in solving problems where
the structure of the tessellation group is of fundamental importance. More-
over, the fact that this transformation is computable allows us to obtain an
extension of the classical results of [1] and [7] about the decidability of the
invertibility problem.

2 Cellular automata over finitely generated
groups

Definition 2.1 Let G be a group. A set of generators for G is a set S such
that any element of G can be written as a finite product of elements of S and
their inverses. G is finitely generated if it admits a finite set of generators.

Every finite group is finitely generated. For every d > 0, the group Z? is
finitely generated, the standard base S = {é;...é,} being a finite set of gen-
erators.

The Cayley graph of a finitely generated group G with respect to a finite set
of generators S is the graph whose nodes are the elements of the group, and
such that there is an edge from node g to node h if and only if h = gt for
some t € SUS™L. For example, the Cayley graph of Z? is the square grid on
the plane.

It is possible to define a metric on a finitely generated group G by fixing a
finite set of generators S for G, putting S™! = {27!, z € S}, and defin-
ing ||g]|$, the length of g in G with respect to S, as the minimum number
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of elements in S U S ! needed to obtain g as a product of these elements,
that is, the length of the shortest path from 1 to g in the Cayley graph of
G w.r.t. S. Then the distance between a and b in G w.r.t. S is the quan-
tity d§(a,b) = [l '0]|§, and Dfs(g) is the set of those h € G such that
d$(g,h) <r. We write DFg for DFg(1).

For example, if G = Z? and S = {é1, &}, then ||z||§ = |z1| + || and
d§(z,y) = |ly — z|l1 = |y1 — 21| + |y2 — 22|; the disk DF(z) is called the von
Neumann neighborhood of range r of point x.

If G and/or S are clear from the context, we will sometimes omit them. Ob-
serve that, since S is finite, Df(g) is finite for any g € G, r > 0.

An alphabet is a finite set with 2 or more elements. Any alphabet A is a
discrete topological space. Elements of A% are called configurations of A
over GG, or simply configurations where the context is clear. If ¢ is a config-
uration, then the value of ¢ over g € G is denoted by c,; the restriction of ¢
to X C G is denoted by cx

For any alphabet A and finitely generated G, A® is compact by Tychonoff’s
theorem. The product topology on A is induced by many distances, such
as:

ds(en,cn) = 3~ " ogsFene, ) &

with the conventions min () = +oo, 27> = 0.

We observe that all these distances induce the same topology regardless of S:
indeed the projections, being in this case evaluations at a point, are obviously
continuous with respect to dg; moreover, by definition of product space and
product topology, any topology that makes the projections continuous must
contain all the sets made of all the configurations ¢ that agree with a given
configuration ¢ over a finite set of elements of G, and in particular must
contain all the disks of dg, since the D are finite by construction.

It is then easy to understand that continuity for a function ¢ : A% — (A")¢
is defined in the following way: for every N > 0 there exists K > 0 such
that, if ¢; and ¢, are equal over D%, then ¢(c;) and ¢(cp) are equal over DS .

Definition 2.2 Let C = A%, A alphabet, G finitely generated group. A shift
subspace, or briefly subshift, of C is a compact subset X C C that is stable
under the natural action of G over C defined by:

(), =cg Vie G VgelG (2)



The shift subspace X = C 1is called the full shift over G.

For a non-trivial example, consider G = Z, A = {0,1}, and let X be the
set of those ¢ € A% such that ¢;c; 1 # 11 for every i € Z: then X is a shift
subspace, because it is clearly stable under the action of Z and because no
configuration with two consecutive 1s can be the limit of a sequence in X.
Observe that, for every g € G, the map &, : C — C defined by ®,(c) = ¢*
is continuous: so (C,®,) is a dynamical system for every g € GG. Hence, a
subshift is a subset X C C such that, for every g € G, (X, ®,) is a dynamical
subsystem of (C, ®,).

Definition 2.3 A pattern of range r is a function p € APF . A pattern p of
range r occurs in a configuration c if there exists g € G such that, for every
i € DY, (¢9); = p;- A pattern p is forbidden for a set X of configurations if
it does not occur in any of the elements of X. For a set F of patterns, Xr is
the set of all the configurations such that no element of F occurs in any of
the elements of Xr.

It is a well known result (see [3] and [8]) that X is a shift subspace for every
set F of patterns and that every shift subspace X has a characterizing set of
forbidden patterns F such that X = X.

If X = Xz for a finite set F, we say that X is of finite type: in this case,
it is not restrictive to suppose F C APir for some M > 0. The shift X of
the example above is obviously of finite type: indeed, if xyz is the pattern
pE ADT such that p1=12,p =y and p; = z, then X = Xyp11,110,111}-

Definition 2.4 Let C = A%, A alphabet, G finitely generated group. A
function F' : C — C is local if there exist a number r € N and a function
f: AIPPI 5 A such that, for any g € G,

(F(©)y = £ ({nepsty) (3)

The number r is called the range of the local function F.

Of course, if F is local of range r, then F is local of range r’ for every r' > r.
The well known Hedlund’s Theorem (see [4], [8], or [3]) states that F is local
if and only if F' is continuous and commutes with the “natural” action (2).
Observe that ®, is local if and only if ¢ commutes with every other element
of G.

If F is local and invertible, then F~! is local too. This fact, known as
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Richardson’s Lemma in the classical case (see [9]), depends on Hedlund’s
Theorem and the easily proven fact that a continuous invertible function
between compact metric spaces has a continuous inverse.

Definition 2.5 Let C = A%, A alphabet, G finitely generated group. A
cellular automaton over G is a triple (X, r, f) where X C C is a shift subspace,
r > 0 an integer, f a function from APl into A such that the function F
defined by (3) satisfies F(X) C X.

A is called the alphabet of the cellular automaton. G is called the tessellation
group of the cellular automaton. f is called the local evolution function of
the cellular automaton. The function F : X — X defined by (3) is called the
global evolution function of the cellular automaton.

Roughly speaking, a cellular automaton can be seen as a network of identical
devices placed on the nodes of the Cayley graph of its tessellation group,
each one outputting signals in the alphabet at integer time steps in a way
such that output of a device at a given time depends only on the output of
“neighboring” devices at the previous time.

If X is of finite type, we will say that (X, r, f) is of finite type.

Local evolution functions of cellular automata must not be confused with
local functions over configurations: indeed, the global evolution function of
a cellular automaton is local because it is defined from a local evolution
function.

3 Semi-direct products of groups
and conjugate cellular automata

Definition 3.1 Let H and K be groups. Let T be a homeomorphism of H
into the group Aut(K) of automorphisms of K. The semi-direct product of
H by K with respect to 7 is the group H X, K of the ordered pairs (h, k),
h € H, k € K, with the operation (hy,k1)(ha, k2) = (h1ha, Thy(k1)ks). If
T, = idg for every h € H, we speak of direct product of H and K and
simply write H X K.

It is not hard to prove that H x, K is a group, just remember that for
homomorphisms the product of o and S is S o a, hence 7,4, = Th, © Th,-
Definition 3.1 easily extends to products with a finite number of factors.

5



It is well known that every finitely generated Abelian group is isomorphic to
a finite direct product of cyclic groups; that is, for every finitely generated
Abelian group G there exist N, ny, ..., n; such that G =2 ZN X Zy, X ... X Ly, .
The number N is called the rank of the finitely generated Abelian group Gj
isomorphic finitely generated Abelian groups have the same rank.

If H is generated by S and K is generated by 7', then H x K is generated by
(S x {1x})U ({1} x T). This is still true for semi-direct products because
of:

Lemma 3.2 Let H, K be groups. Let T : H — Aut(K) be a homomorphism.
Then in H %, K, for every h,i € H, k,j € K, we have:

1. (h,1x)(6, 5) = (hi, 5) = (h, k) (i, 7s(k™1)])
(h, k)(i, §) = (h, 1x)(i, (k) )
(h, k)(1a, 5) = (h, kj)

Proof:

Immediate consequence of the definition and of the fact that 7 is a homo-
morphism, so in particular 7, = idx and 7,(1x) = 1x for all h € H. O
From Lemma 3.2 follows that, if A = s1s9...5s, and k = t1ty...t,,, then
(h, k) = (s1,1K)(S2, 1) - - - (Sn, 1) (Lmr, t1) (L, t2) - - - (1, tr). From now on,
given a set S of generators for H and a set T of generators for K, we will
always consider the semi-direct product H X, K as generated by (S x{1x})U

{1g} xT).

2.
3.

Definition 3.3 Let (X,r, f) be a cellular automaton with alphabet A and
tessellation group G, and (X',r', f') be a cellular automaton with alphabet
A’ and tessellation group G'. Let F' and F' be the global evolution functions
of (X,r, f) and (X', 7', f) respectively. We say that (X,r, f) and (X', 7', f')
are conjugate if there exists a homeomorphism ¢ : X — X' such that poF =
F'oy. The map ¢ is called a conjugacy between (X,r, f) and (X', 7', f').

Our goal is, given a cellular automaton of a certain kind, to find a conjugate
cellular automaton with a less complicated tessellation group. To do this, we
plan to transfer some of the complexity of the structure from the tessellation
group to the alphabet. This is possible if the tessellation group has a finite



Figure 1: A configuration of a cellular automaton with tessellation group
Z x Zs3 and alphabet {0,1}. White represents 0 and black 1.

part, in the sense that it is isomorphic to a product H x, K with H finitely
generated and K finite.
We start by observing an intuitive but interesting property.

Proposition 3.4 Let C = A%, A alphabet, G finitely generated group. Sup-

pose G = H x, K with H finitely generated and K finite. Put C = A¢ =
Afx K ol — (AK)H Then the map ¢ : C — C' given by:

((e(e)n)k =cry VYhe HVEEK (4)

18 a homeomorphism.

Proof:

We observe that, since K is finite, AX is an alphabet and the product topol-
ogy is actually the discrete one.

The map ¢ is invertible, its inverse ¢ being given by:

(w(c'))(h,k) =) Vke KVhe H (5)
Suppose that ¢; and ¢y agree on Dfﬁ}{f . Let h € DTH : there is a writing of

h as product of elements of S having at most length r. Let k£ € K: every
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writing of £ as a product of elements of 7" having minimal length cannot have
more than |K| elements, because if £ = t;t5...t, with n > |K|, then there
exist ¢ and j > 7 such that ¢,...¢; =¢1...¢;, sothat K =t .. . ¢it;41 ... 8y 1
a shorter writing; but this implies that (h, k) has a writing of length at most
r + | K| as a product of elements of (S x {1x}) U ({15} x T'). Hence, for all
keK,

((p(er))n)e = (e1)mry = (c2)(npy = (((c2))n)n

and so (¢(c1))n = (¢(c2))p. This proves that, if ¢; and ¢, agree on DZ* K

r+| K|
then ¢(c1) and p(co) agree on DX: hence ¢ is continuous.

Now, suppose that ¢ and ¢, agree over D. Let (h,k) € DF*%_ Let
(h,k) = (h1,k1) ... (hn, k,) be a writing of (h, k) as product of elements of
(S x{1x})U({1g} x T) of minimal length n: then h = h; ... h, is a writing
of h as a product of elements of SU{1g} of length n < r, so there must exist
a writing of k£ as a product of elements of S of length m < n < r. Hence
h € DF and so:

(WD) mwy = ((Dn)k = ((R)n)r = ((c2)) i)

This proves that, if ¢| and ¢, agree on DX then 1(c}) and 9 (c}) agree on
DHEx-K: hence 1) is continuous. [J
The homeomorphism of Proposition 3.4 has an important property.

Proposition 3.5 Let C, C' and ¢ as in Proposition 3.4. Let X C C.
1. If X is a shift subspace, then o(X) C C' is a shift subspace.
2. If X is a shift of finite type, then ©(X) is a shift of finite type.
To prove this, we make use of
Lemma 3.6 Let H, K, C, C', ¢ and ¢ as in Proposition 3.4. Let h € H.
1. For every c € C, (p(c))* = p(ch1x)),
2. For every ¢ € C', (v(c))®1x) = 4((c)h).

Proof:
Let : € H, j € K. Then by part 1 of Lemma 3.2:

(((p()Mi); = ((e()n)s



C(hi,j)
= C(h,1k)(5,5)
(C(halK))(Z.’j)

= ((p(c™))y);

and:

((¢(CI))(h’1K))(i,j)

o~~~ o~ o~

From the arbitrariness of 7 and j the thesis follows. [

Proof of Proposition 3.5:

Since ¢ is a homeomorphism, Y = ¢(X) is compact in C'.

Let ¢ € Y: then ¢ = ¢(c) for one and only one ¢ € X. Let h € H: by
Lemma 3.6 we have (c')* = (¢(c))* = p(c®'x)). But %) € X because
¢ € X and X is a subshift: hence (¢)" € Y. From the arbitrariness of ¢ € Y,
h € H follows that Y C (' is a shift subspace.

This proves point 1.

Suppose X = X for a finite set F: we can suppose F C AP% for some
M > 0. Put:

F o= {p'e(AK)Dﬁ:apef:akeK:
Vie H:Vj€eK:(i,j) € D5 — (0)nwmy = Payj) )

F' C (AK)Pit is clearly finite; we want to show that ¢(X) = Xz

Suppose ¢’ & ¢(X). Then ¥(c') ¢ X, so there are g = (h, k) € G, p € F such
that ((¢(c'))?)pg, = p. Put (p}); = (p(c))1x)), ;y for i € DY, j € K:
from point 2 of Lemma 3.2 follows that if (i,7) € D then (p})ru); =
(DN mryy = ((()) M) a4y = Pragy s0 that p' € F'; moreover, for
all i € DI, j € K we have (((¢)"):); = ((¢(¢)™ %)) = (p});, so the
pattern p’ € F' occurs in ¢

Suppose that a pattern p’ € F' occurs in ¢’. Then there is h € H such that,
for every ¢ € DI j € K we have (((¢)");); = (p);. In particular, given the
structure of F', there are p € F, k € K such that, for every i € H, j € K
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such that (i,7) € D$;, we have ((¢(c'))®1%)); - k);) = P(ij)- But then by
point 2 of Lemma 3.2 ((o(¢'))®*)); jy = p ;) for every i € H, j € K such
that (i,5) € DS, thus () € Xz = X and so ¢ & p(X).

This proves point 2. [

We observe that Proposition 3.5 cannot be reversed, because ¥ (Y’) can pos-
sibly not be a shift subspace of C, even if Y C (' is a shift of finite type
and the product is direct. (This is not surprising, because a less complicated
tessellation group means less restrictive conditions for commutation with the
group action.)

To prove this, take H = Z, K = Z,, A = {a,b}. Let f;, : Zy — A be the
function such that f.,(0) =z, fz,(1) = y: then A%2 = {fa0, fav, foa, fv}- Let
Y ={c € (A%2)%: (()n)1 = b Vh € Z}: then Y = X{orf.0,0051,.) 1S 2 shift
of finite type. But (YY) = {c € A%*%2 : ¢ 1) = b Vh € Z} is not a shift
subspace, because if ¢ € A”*%* is such that ¢, = a if k = 0 and ¢pp) = b
if k = 1, then ¢ € ¥(Y) but ¢V & (V).

The way to the main result of this paper is now paved.

Theorem 3.7 Let G be a finitely generated group. If G = H x, K with H
finitely generated and K finite, then every cellular automaton (X,r, f) over

G is conjugate to a cellular automaton (X', 7', f') over H in a way such that,
if (X,r, f) is of finite type, then (X', ', f') is of finite type too.

Proof:

Let (X, 7, f) be a cellular automaton over G = H x, K. Let F be its global
evolution function. Let C, C', ¢ and 1 as in Proposition 3.4.

By Proposition 3.5, ¢(X) is a shift subspace of C' and is of finite type if X
is of finite type. We define F' : C' — C' by F' = p o F o). Since F sends X
into X, F” sends ¢(X) into ¢(X);

Suppose we know ¢; for every i € Dﬁd x| (h)-

Then, for every k € K we know the value of (c}), € A for every i € DfIHK\ (h).
Then, a fortiori, we know the value of 1(c')¢ k) for every s € H, k € K such
that (i, k) € D271 ((h, 1k)).

This is sufficient to compute (F(1(c'))) k) for every k € K.

This means that (@(F(¢(c')))n)r is determined for every k € K.

As a consequence, if we know ¢, for every u € Dﬂ| K‘(h), then we know
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Figure 2: The cellular automaton with tessellation group Z and alphabet
{0,1}% conjugate to the cellular automaton of Figure 1 constructed with
the technique of Theorem 3.7. The configuration corresponds to that of
Figure 1 too.

(F'())n-

This proves that F' is local with range ' < r + |K|. Let f’ be such that
(F'"()n = f' ((C;)ueDﬂ,’(h)): then (X, r, f) and {(p(X), 7', f') are conjugate,
©|x being a conjugacy between the two cellular automata. O

Another way to prove that F' is local is by showing that it commutes with
the action of H over AX: since F' is continuous by construction, the thesis
follows by Hedlund’s Theorem. Indeed, for every ¢ € (AX)H, h € H we have
by Lemma 3.6:

F'(c") = o(F



4 The invertibility problem

A cellular automaton is nwvertible if its global evotion function is bijective.
Invertible cellular automata represent a vast area of research, and are the
subject of the monograph [11].

Let X C C be a shift subspace. The invertibility problem for X states: given
a cellular automaton of the form (X, r, f), determine if its global evolution
function is bijective. If X is the full shift, we speak of invertibility problem
over (.

It has been proved by Amoroso and Patt in [1] that this problem is decidable
if the tessellation group is Z; [3] contains an extension to the case of shifts
of finite type. On the other hand, Kari in [7] proved that the problem is
undecidable if the tessellation group is Z? (and hence if it has the form
H x 72 for some group H: in particular, if it is isomorphic to Z¢ with d > 1).
Moreover, the problem is obviously decidable if the tessellation group is finite,
because in this case the set of possible F’s is finite and we only need to check
if a finite set of functions contains the inverse of the automaton’s.

This almost covers all possible Abelian finitely generated groups, with the
exception of those of the form Z x Z,,, x ... X Zy,.

We are going to show that, in this last case, the invertibility problem is
decidable. To do this, we prove:

Theorem 4.1 If T is computable and if the word problem is decidable over H
and Hx . K, then the construction of f' from f in Theorem 3.7 is computable.

Before proving the theorem, we make some considerations on its hypotheses.
First of all, we observe that the computability of 7 is a necessary condition
for the product of H x, K to be computable.

Next, we briefly speak about the word problem. Given a finitely generated
group G and a finite set .S of generators for G, we say that the word problem
is decidable over G if the set of all the finite sequences over S U S~ ! that
reduce to the empty word is recursive. Equivalently, decidability of the word
problem means that an algorithm exists to decide if two finite sequences of
symbols over S U S~! represent the same element of the group. The list of
groups with decidable word problem is not too restricted, since it includes
finite groups, free groups, and finite direct products of groups with decidable
word problem: in particular, every finitely generated Abelian group has a
decidable word problem.

Proof of Theorem 4.1:
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The proof of Theorem 3.7 already contains a suggestion for the construction
algorithm. We are now going to explain it in detail.

We choose to represent (F”(c')), by the sequence of its values ((F'(c'))n)ks
for £ in K. Our procedure is:

INPUT: the list {(c)i);cpn 1k (R)

+

OUTPUT: the value (F'(c"))y

X = an empty list
for £ in K:
s = a list of |[DF*~K| elements of A
for 7 in Dﬁ_m(h):
for j in K:
if (i,7) in DF*%((h, k)):
replace with ((c’);); the element of s
in the position corresponding to (h, k)~ (4, 5)
in the defined ordering of DH*~¥
end if
end for
end for
append f(s) to X
end for
return X

First of all, we observe that, since 7 is computable, the multiplications are
all computable, and because the word problem is decidable over H and over
H x, K, the fact that an element appears in a finite subset of one of these
groups is obviously decidable; so our procedure is actually an algorithm. We
must now show that it correctly computes (F'(c))p.

We observe that:

(F())hky) = f (<C(i,j)>(i,j)eDﬁ°<TK((h,1c)))

thus:
(F@E)nry = f(((w(C'))u,j)>(,~,j)eDf*fK(<h,k»)
= ({ D penres )
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and so:

(F)x = £ (D) spen =)
But for each £ in K, the cycle over 7 transforms the sequence s in the sequence
(D)) i.yepix=(nry because if (i,7) € DF*%((h,k)) then surely i €
Dfﬂ K| and j € K, so that the double iteration over 7 and j surely catches all
the elements in DZ*K((h k)): hence the next instruction appends to the list
X precisely the value f (((cg)j)(i,j)eDngK((h’k))) = ((F'(¢))n)k- In the end,

the returned list X is precisely the sequence ((F'(¢'))n)k; --- (F'(¢")n)
U

From Theorems 3.7 and 4.1 we obtain:

kx|

Theorem 4.2 Let G = H x, K, with H finitely generated and K finite.
Suppose that T is computable, and the word problem is decidable over H and
over H X, K. Then the following are true:

1. If invertibility of cellular automata over H is decidable, then invertibil-
ity of cellular automata over G is decidable too.

2. If invertibility of cellular automata of finite type with tessellation group
H is decidable, then invertibility of cellular automata of finite type with
tessellation group G is decidable too.

Theorems 3.7 and 4.1 give us a technique to decide the invertibility of a cel-
lular automaton over a finitely generated Abelian group with rank 1, because
in this case the conditions over 7 = idxg, H = Z and H X, K = Z x K are
trivially satisfied.

Consider a cellular automaton whose tessellation group is Z X Zy,, X ... X Zy, :
by applying Theorem 3.7 with H = Z and K = Z,,, X ... X Z,, we find a con-
jugate cellular automaton over Z, and the construction is computable because
of Theorem 4.1. But because of Amoroso and Patt’s theorem, invertibility
for the new cellular automaton is decidable, and because of conjugacy, it is
equivalent to invertibility of the original cellular automaton.

This, together with Kari’s theorem, proves:

Theorem 4.3 Let G be a finitely generated Abelian group. Then invertibility
for cellular automata over G is decidable if and only if G has al most rank
1.
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We remark that our procedure is applicable even if the tessellation group is
not Abelian. For example, invertibility of cellular automata with tessellation
group Z x S3, where S3 is the group of permutation of three distinct objects,
is still decidable. We state this in our last claim, extending those of Section
1.6 of [3].

Theorem 4.4 Let G = Z x, K with K finite. Let A be an alphabet. Let
X C A% be a shift of finite type. Then the invertibility problem for X is
decidable.

5 Conclusions

Theorem 3.7 says that the “finite part” of the tessellation group is unessential
to the dynamics, because it can be seen as a component of the alphabet
instead of the group. This implies that the Abelian case essentially reduces
to the classical case, where the tessellation group is finite or is Z¢ for some
d > 0: hence, study of “non-classical” cellular automata dynamics should be
oriented to the case of non-Abelian tessellation group.

On the other hand, Theorem 4.2 says that the question of the decidability
of the invertibility problem has a known answer for cellular automata over
Abelian groups: further study of the question should then consider either
special subcases of the classical case or cellular automata over non-Abelian
groups; in this last case, the most interesting groups are perhaps the free
groups with two or more (but still finitely many) generators.
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