Geometria I a.a. 2014/15.

Alcune osservazioni sulla dualità in spazi proiettivi

Il principio di dualità negli spazi proiettivi può essere trattato elegantemente utilizzando la nozione di annullatore ([Abate] pp 171-172 ed esercizio 8C.2). Riprendiamo da [Sernesi], prima del teorema 26.2. La discussione fatta sino a questo punto dimostra che δ^{-1} induce un'applicazione biunivoca

$$\Sigma:\{$$
 sottospazi di $P(V)\} \longrightarrow \{$ sottospazi di $P(V^\vee)\}$

che associa a S il sottospazio $\delta^{-1}(\Lambda_1(S))$. Quest'applicazione scambia le inclusioni e manda sottospazi di dimensione k in sottospazi di dimensione n-k-1. Sin qui nulla di nuovo. L'osservazione fondamentale è che

se
$$S = P(W)$$
 allora $\Sigma(S) = P(W^0)$.

Dimostrazione. È bene richiamare la definizione di W^0 : $W^0 := \{F \in V^{\vee} \mid F(\underline{w}) = 0\}$ $0 \forall \underline{w} \in W$ }. Facciamo vedere che $P(W^0) \subset \Sigma(S)$. Se $[F] \in P(W^0)$ allora è chiaro che $F(w) = 0 \ \forall w \in W$ e quindi $W \subset \text{Ker}F$; ne segue che S(=P(W)) è contenuto nell'iperpiano P(KerF) definito da F il che vuol dire, per definizione, che $P(\text{Ker}F) \subset \Lambda_1(S)$ o, equivalentemente, che $[F] \in \delta^{-1}(\Lambda_1(S)) \equiv \Sigma(S)$ che è quello che dovevamo dimostrare. Viceversa, se $[F] \in \Sigma(S) = \delta^{-1}(\Lambda_1(S))$, allora $[F] \in P(W^0)$: ciò segue subito dalla Prop. 26.1 di [S].

Conclusione: l'applicazione Σ è indotta dall'applicazione

$$(\)^0:\{ \text{ sottospazi di } V\} \longrightarrow \{ \text{ sottospazi di } V^\vee \}$$

che associa a $W \leq V$ il suo annullatore $W^0 \leq V^{\vee}$. Per l'esercizio 8C.2 in [Abate], che è poi uno degli esercizi del settimo compito a casa, sappiamo che se U e Wsono sottospazi di V allora

- $\bullet \ \ U \subset W \Rightarrow W^0 \subset U^0$
- $(W \cap U)^0 = W^0 + U^0$ $(W + U)^0 = W^0 \cap U^0$

il che implica che Σ scambia le inclusioni (già lo sapevamo) e scambia spazio congiungente con spazio intersezione. Un'analoga osservazione vale ovviamente per Σ^{-1} : infatti Σ^{-1} associa al sottospazio proiettivo P(R), con R un sottospazio vettoriale di V^{\vee} , il sottospazio proiettivo $P({}^{0}R)$. Una proposizione grafica

$$T(S_{h_1},\ldots,S_{h_k};\cup,\cap,\subset,\supset)$$

è una proposizione che coinvolge i sottospazi proiettivi di dimensione h_1, \ldots, h_k la nozione di spazio congiungente, di spazio intersezione, di contenere ed di essere contenuto. La proposizione grafica duale

$$T^*(S_{n-h_1-1},\ldots,S_{n-h_k-1};\cap,\cup,\supset,\subset)$$

è ottenuta scambiando sottospazi di dimensione h_j con sottospazi di dimensione $n-h_j-1$, spazi congiungenti con spazi intersezione e contenere con essere con-

Principio di dualità:

se $T(S_{h_1},\ldots,S_{h_k};\cup,\cap,\subset,\supset)$ è una proposizione grafica vera, allora è anche vera la proposizione duale $T^*(S_{n-h_1-1},\ldots,S_{n-h_k-1};\cap,\cup,\supset,\subset)$.

Dimostrazione.

Dato che P(V) e $P(V^{\vee})$ sono isomorfi, ne segue che se $T(S_{h_1},\ldots,S_{h_k};\cup,\cap,\subset,\supset)$ è vera allora è anche vera la proposizione $T(S_{h_1}^{\vee},\ldots,S_{h_k}^{\vee};\cup,\cap,\subset,\supset)$. Applichiamo ora Σ^{-1} ai sottospazi che intervengono in T; utizzando le proprietà di Σ^{-1} otteniamo che è anche vera

$$T(\Sigma^{-1}(S_{h_1}^{\vee}),\ldots,\Sigma^{-1}(S_{h_k}^{\vee});\cap,\cup,\supset,\subset);$$

ma quest'ultima proposizione è proprio T^* .

Esempio. (Sernesi p. 317.) Sia T la proposizione: due punti distinti sono congiunti da una retta. T può essere scritta come segue:

$$P \neq Q \Rightarrow L(P,Q) = S_1$$

Ora P e Q sono due S_0 (distinti) e n-0-1=n-1; quindi per individuare la proposizione duale dobbiamo sostituire punti distinti con iperpiani distinti; poi dobbiamo scambiare spazio congiungente di dimensione 1 con spazio intersezione di dimensione n-1-1=n-2; ne segue che la duale di T è:

T*: due iperpiani distinti si intersecano in un sottospazio di codimensione 2.