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1 Introduction

1.1. Let Hg be the Siegel upper half space, i.e. the set of complex symmetric
matrices τ whose imaginary part is positive definite and Sp(2g, R) be the real
symplectic group. Sp(2g, R) acts transitively on Hg via

σ · τ = (Aτ + B)(Cτ + D)−1

where σ =
(

AB
CD

)
is in Sp(2g, R).

Let Γ be a subgroup of finite index of the integral symplectic group and k an
half integer, thus a holomorphic function f defined on Hg is called a modular
form of weight k and multiplier χ for Γ if

f(σ · τ) = f((Aτ + B)(Cτ + D)−1) = χ(σ)det(Cτ + D)kf(τ)

for all σ ∈ Γ. In the genus 1 case we require also the holomorphicity of f at
the cusps. We denote by [Γ, k, χ] the vector space spanned by such forms.

Let q denote an even positive integer, m an element of q−1Zg/Zg for some
g ≥ 1, a Thetanullwert is defined by

θ

[
m
0

]
(qτ) =

∑
p∈Zg

exp(πit(p + m)qτ(p + m)). (1)

This is one of the simplest example of modular forms of weight 1
2 for Γg(q, 2q)

and a suitable multiplier.
These Thetanullwerte induce well defined maps

Θg(q) : Γg(q, 2q)\Hg −→ Pqg−1 (2)

that are embeddings for all g if q ≥ 4, cf.[?], [?] and generically injective if q = 2,
cf.[?]
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1.2. Really, we know more, in fact, let Rg(q) be the ring generated by such
Thetanullwerte. It is a well known fact that its integral closure Sg(q) is the ring
of modular forms S(Γ(q, 2q), χ), with χ equal to the multiplier relative to the
Thetanullwerte,cf. [?] and[?]. The map Θg(q) extends to the boundary of the
Satake’s compactification of Γg(q, 2q)\Hg that is Proj(Sg(q)).

In the ring Rg(q) there are some standard relations. they are the quartic
Riemann’s relations and linear equations X−m = Xm with m ∈ q−1Z/Z.

Let (Qg(q) be the ring defined by the above equations, in this note we proceed
to compare the associate projective varieties Proj(Rg(q)) and Proj(Qg(q)). The
final result of [?], page 202, states that Θg(q)(Proj(Rg(q))) is an irreducible
component of Proj(Qg(q)) when q ≥ 6.

We shall show that , if q 6= 2s, Proj(Qg(q)) is not irreducible and hence it
cannot be isomorphic to Θg(q)(Proj(Rg(q))) .

In the last section, from a detailed analysis of Proj(Q1(6) , we shall show
how to reconstruct the ring of modular forms.

Finally, in this case we shall exibit an explicit relation in the Thetanullwerte
that is not a consequence of Riemann’s relations.

2 Riemann-Mumford’s relations

2.1. We fix representatives for the characteristics. We choose the entries in the
set

F(q) =
[
0,

1
q
, . . . ,

q − 1
q

]
and we set 1−m for the only characteristic n such that m + n ≡ 0 mod 1.

In this section we shall consider the projective variety Proj(Qg(q)) defined
in Pqg−1 by the equations

Xm = X1−m (1)

( ∑
c∈F(2)g

exp(4πi tc
′
c) Xa′+d+cXb′+d+c

)( ∑
c∈F(2)g

exp(4πi tc
′
c) Xa+cXb+c

)
=

( ∑
c∈F(2)g

exp(4πi tc
′
c) Xa+d+cXb+d+c

)( ∑
c∈F(2)g

exp(4πi tc
′
c) Xa′+cXb′+c

)
(2)

with c
′ ∈ F(2)g and m,a, a

′
, b, b

′
, d ∈ F(q)g satisfying a + b ≡ a

′
+ b

′
mod 1
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The link between these varieties and Proj(Rg(q)) is consequence of the works
of Mumford and Kempf, cf. [?] and [?]. In fact we have

Theorem 1. a) For all q ≥ 3, Θg(q) is an immersion of Γg(q, 2q)\Hg in Pqg−1.
b) if q is even and q ≥ 6 then Im(Θg(q)) is a Zariski open subset of

Proj(Qg(q)).

A proof of the above theorem can be found in [?] . Really in [?] the first
statement is for q ≥ 4

We recall that in the case q = 3 the injectivity of the map is proved in
[?], then we proved in [?] the injectivity on the tangent spaces. Moreover the
case q = 2 has been extensively studied in [?] and[?]. In [?] there are some
inaccuracies, so at the moment we can say that the map Θg(2) is generically
injective and it is injective when g ≤ 3. Moreover we have to mention that when
q is even the maps Θg(q) extend to the boundary of the Satake compactification

2.2. According to the above facts, when q is even, Θg(q)(ProjSg(q)) = ProjRg(q)
is an irreducible reduced component of Proj(Qg(q)) .

Clearly we would like to show that equations ?? and ?? define (ProjRg(q)).
Unluckely we will get a negative answer.

For example, from this labyrinth of polynomial relations, when g = 1 and
q = 6, identifying X1 with X5 and X2 with X4, we obtain 2 relations, namely

X2
0X1X3 + X0X2X

2
3 = 2X2

1X2
2 (3)

and
X3

0X2 + X1X
3
3 = X4

1 + X4
2 (4)

(We multiplied the indices by 6 to avoid heavier notations ).
The projective line of equations X1 = X2 = 0 is contained in ProjQ6 which

is not irreducible.
We shall prove that this is a general fact, when q ≡ 2 mod. 4. In fact, if we set

Xa = 0 when a 6∈ F(2)g, the equations become trivial unless {a′
+d, b

′
+d, a, b}

or {a′
, b

′
, a + d, b + d} are in F(2)g.

Each of these configurations implies that 2d ∈ F(2)g, and, in these cases, we
get d ∈ F(2)g.

We remark that these are exactly the quartic relations among Thetanullwerte
with half integral characteristics and,it is a well known fact, that these relations
do not exist .

To be clearer , it can be easily verified that the equations (??) become( ∑
c∈F(2)g

exp(4πi tc
′
c) Xa′+cXb′+c

)( ∑
c∈F(2)g

exp(4πi tc
′
c)Xa+cXb+c

)
=
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( ∑
c∈F(2)g

exp(4πi tc
′
c) Xa+cXb+c

)( ∑
c∈F(2)g

exp(4πi tc
′
c)Xa′+cXb′+c

)
. (5)

These are obviously tautological, so we proved the following

Theorem 2. Let us assume q ≡ 2 mod 4, then , for any g the projective variety
Proj(Qg(q)) defined by the equations ?? and ?? has more than an irreducible
component. In particular it contains a linear variety of dimension at least 2g−1.

Really, with some modifications we can prove more, in fact we have

Theorem 3. Let us assume q 6= 2s for some positive integer s > 1, then , for
any g the projective variety Proj(Qg(q)) defined by the equations ?? and ?? has
more than an irreducible component.

Proof. Let us assume q = 2so , with o an odd number bigger than 1 and
Proj(Qg(q)) irreducible.

If we set Xa = 0 when a 6∈ F(2s)g, also in these cases the equations (23)
become trivial unless {a′

+ d, b
′
+ d, a, b} or {a′

, b
′
, a + d, b + d} are in F2s)g.

Each of these configurations implies that 2d ∈ F(2s)g, and we get d ∈
F(2s)g.These are exactly the equations defining Proj(Qg(2s);

Thus, if Lq is the linear space defined by Xa = 0 when a 6∈ F(2s)g, we have

Lq ∩ Proj(Qg(q)) = Proj(Qg(2s) (6)

Now if Proj(Qg(q)) is irreducible we know that its dimension is exactly
(1/2)g(g + 1) and in any case Proj(Qg(2s) has dimension bigger or equal to
(1/2)g(g + 1), since ProjRg(q) is an irreducible component, thus we get a con-
tradiction once we prove that the inclusion

Lq ∩ Proj(Qg(q)) ⊂ Proj(Qg(q))

is proper.
Let τ ∈ Hg be purely imaginary, i.e. τ = iy, we verify that Θg(q)(iy) in

Pqg−1 has all entries different from 0. This is an immediate consequence of the
definition of Thetanullwerte, since

θ

[
m
0

]
(iqy) =

∑
p∈Zg

exp(−πqy[p + m])

is the convergent sum of positive terms.
This shows that

Θg(q)(iy) 6∈ Lq.

These results are useful for a better understanding of the variety ProjSg(q)
at least for small values of g. This will be discuss in the next section



On the varieties defined by Riemann-Mumford’s relations 5

3 An example

3.1. Using the results of the last section we will obtain a good description of
ProjS1(6). We know that it has exactly 24 cusps. It is a Riemann surface
of genus 13, since it is a Galois covering of degree 12 of ProjS1(2) ∼= P1 and
ramifies only on the 6 cusps of ProjS1(2).

Let Y1 and Y2 the quartics defined by ?? and ??, thus ProjQ1(6) = Y1 ∩ Y2

contains 4 lines L1 , L2 , L3 , L4 of equations

X1 = 0, X2 = 0; X2 −X0 = 0, X3 −X1 = 0;

X2 − φ4X0 = 0, X3 − φ8X1 = 0; X2 − φ8X0 = 0, X3 − φ4X1 = 0

with φ = exp
(

2πi
12

)
. Thus we can write

ProjQ1(6) = L1 ∪ L2 ∪ L3 ∪ L4 ∪ C

It has exactly 24 singular points. They are

[1, 0, 0, 1] , [1, 0, 0,−1] , [1, 0, 0, i] , [1, 0, 0,−i] , [0, 0, 0, 1] , [1, 0, 0, 0]

[1, 0, 1, 0] , [1, i, 1, i] , [1,−i, 1,−i] , [1, 1, 1, 1] , [1,−1, 1,−1] , [0, 1, 0, 1]

[1, 0, φ4, 0] , [1, φ, φ4,−i] , [1, φ7, φ4, i] , [1, φ−2, φ4,−1] , [1, φ4, φ4, 1] , [0, φ4, 0, 1]

[1, 0, φ8, 0] , [1, φ−1, φ8,−i] , [1, φ5, φ8, i] , [1, φ2, φ8,−1] , [1, φ8, φ8, 1] , [0, φ8, 0, 1]

The first set of six points are contained in L1; the second, the third and the
fourth set in L2 , L3 , L4 respectively.

Since Θg(q) is Γg/Γg(q, 2q)-equivariant and it can be easily verified that the
above points have non trivial stabilizer for the action of Γ1(2, 4)/Γ1(6, 12), they
are the image of the cusps, and have the same singularity.

Hence to prove that ProjS1(6) ∼= ProjR1(6) it is enough to check that a
singularity is nodal.

This can be easily verified at the point [1, 0, 0, 0]. In fact passing to affine
coordinates, we have the following equations

xz + yz2 = 2x2y2 (7)

and
y + xz3 = x4 + y4. (8)
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Then obtaining y in the second equation and substituting in the first we get
that the principal tangent have equation xz = 0.

Thus ProjS1(6) ∼= ProjR1(6) is a curve in P3 whose automorphism group
has order divisible for

|Γ1/± Γ1(6, 12)| = 288.

3.2. A priori we cannot say that ProjS1(6) ∼= C, in fact we have not shown that
C is irreducible.

Since C is smooth, it is enough to show that it is connected.
We observe that the quartic Y2 is smooth and the effective divisor C induces

a linear system on the quartic that is equivalent to

(4H − L1 − L2 − L3 − L4).

Here with H we denote the hyperplane section of P3 restricted to Y2.
Let us consider the linear system H − Li, i = 1 . . . 4. These induce maps

fi : Y2 → P1 that describe one dimensional families of cubics curves in the
quartic surface.

Each of these systems is without base points ; in fact this can be easily
proved for points of the quartic that are not on the line and for the points on
the line we remark that if one is a base point then it should be a singular point
of Y2, but this is impossible.

Consequently the linear system (4H − L1 − L2 − L3 − L4) is without base
points and thus it induces a morphism

f : Y2 → Pn.

Moreover we have that dim (f(Y2)) = 2, in fact each of the maps fi the generic
fiber is a cubic and the generic fiber of the map

f1 × f2 : Y2 → P1 × P1

is finite, since is the intersection of two cubics contained in the quartic surface
that are not in the same plane.

As a consequence of Zariski’s Main Theorem , cf [?] p.280 Ex.11.3, we get
that all divisors in |4H −L1−L2−L3−L4|,and in particular C, are connected.
Hence we get

ProjS1(6) ∼= C.

We are grateful to Marco Manetti that suggested us this proof.
Really one could prove more, in fact with some computation it is possible

to show that the divisor (4H − L1 − L2 − L3 − L4) satisfies the condition of a
criterion (Nakai-Moishezon) of ampleness.
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3.3. Now we shall treat the relations in R1(6); in particular we look for relations
that are not induced by Riemann’s relations.

For this reason we analyze the graded rings Q1(6) and S1(6).
About the first graded ring we have that its Poincaré serie is

P (t) =
∞∑

k=0

dimQ1(6)ktk =
(1− t4)2

(1− t)4
. (9)

Thus we have

dimQ1(6)4 = 33, dimQ1(6)6 = 65. (10)

Moreover from [?] p.61 , we get

P ′(s) =
∞∑

k=0

dimS1(6)2ksk =
1 + 10s + 13s2

(1− s)2
. (11)

Consequently we get

dimS1(6)4 = dim [Γ1(6, 12), 2, id] = 36, dimS1(6)6 = dim [Γ1(6, 12), 3, id] = 60.

Hence we have that the Thetanullwerte satisfy some relations in degree 6,
in fact, using the decomposition of these spaces with respect to some characters
of Γ1(2, 4).
Theorem 4. The following relation holds

2

(
θ

[
1
0

]4
(6τ)− θ

[
2
0

]4
(6τ)

)
θ

[
1
0

]
(6τ)θ

[
2
0

]
(6τ)−

(
θ

[
0
0

]4
(6τ)− θ

[
3
0

]4
(6τ)

)
θ

[
0
0

]
(6τ)θ

[
3
0

]
(6τ). (12)

This relation is not induced from Riemann’s relations.

Proof. To avoid problem induced by the multiplier we shall consider the modular
form

g(τ) =

2

(
θ

[
1
0

]4
− θ

[
2
0

]4)
θ

[
1
0

]2
θ

[
2
0

]2
−

(
θ

[
0
0

]4
− θ

[
3
0

]4)
θ

[
0
0

]
)θ
[

3
0

]
θ

[
1
0

]
θ

[
2
0

]
(13)
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g(τ) is a cusp form, since it vanishes at all 24 cusps of ProjS1(6). An easy ,
but rather tedious computation, involving the Fourier coefficients of g(τ), shows
that its vanishing at the cusps is so high that g(τ) ≡ 0,

Elementary computations show that the projective lines L1, L2, L3, L4 are
not contained in the surface Y3 of degree 6 defined by the equation ??, conse-
quently the above relation is not induced from Riemann’s relations.

We remark that the curve Y1 ∩ Y2 ∩ Y3 is isomorphic to Proj(S1(6)).

However we have numerical evidence that we did not give a complete de-
scription of all relations among the Thetanullwerte, however we can find all
other relations using the action of Γ1/Γ1(6, 12).
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Università di Roma La Sapienza
Piazzale Aldo Moro 2
I-00185 Roma
Italy
e-mail: salvati@mat.uniroma1.it


