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Abstract. In this paper we consider theta series with the highest order
of vanishing at the cusp ∞. When the level is a power of 2, these theta
series are the m-th powers of a certain theta function with characteristic,
related to the lattice

√
2kZm. Instead if the level is a power of 3, these

theta series are the m/2-th powers of a theta series associated to the
2−dimensional root lattice A2 with characteristic. These modular forms
have also many representations as theta series related to different lattices;
we prove that the lattices of level a power of 2, respectively a power of
3, that afford these theta series, are lattices constructed from binary,
respectively ternary codes.

1. Introduction

In a recent paper [8], Imamoglu and Kohnen have studied the m-th power
of the Riemann theta function ϑ in relation with the number rm(n) of rep-
resentations of a positive integer n as a sum of m integral squares. Their
result is interesting, since, for each m, the computation of rm(n) does not
require any pre-knowledge of rm(n′) for n′ < n . One of the main tool
used in this proof was that ϑm has highest order of vanishing at one cusp
or, better, that a translate of ϑ has highest order of vanishing at the cusp
∞; subsequently Kohnen and the second author extended the result to the
integral representations of the lattice D+

m, [9].

In this paper we want to treat the problem of theta series with the highest
order of vanishing at the cusp∞. When the level is a power of 2, these theta
series are the m-th powers of a certain theta function with characteristic,
related to the quadratic form 2k1m or, in the language of lattices, to the
lattice

√
2kZm. Instead if the level is a power of 3, these theta series are the

m/2-th powers of a theta series associated to the 2−dimensional root lattice
A2 with characteristic. These modular forms have also many representations
as theta series related to different lattices.
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Let L be an integral lattice of rank m. We denote by (·, ·) its associated
scalar product, and we say as usual that L is even if (x, x) ≡ 0 mod 2. We
define the dual lattice by

L′ = {x ∈ L⊗Q | (x, y) ∈ Z, for all y ∈ L}.
If L is even, we define the level of L as the minimal positive integer l such
that the lattice

√
lL′ is an even lattice.

It is a standard method to exploit the properties of the thetas series that
can be attached to a lattice to derive some interesting arithmetic properties
of this lattice. For example one can derive bounds for the minimum, which
turn out to be tight for small levels and dimension. Also the consideration
of the shadow of odd lattices and of its theta series has lead to interesting
results, and the property that a lattice contains designs is controlled by
theta series with spherical coefficients.

In this paper, we shall consider cosets of L/2L, L/3L and their theta
series. In the case of unimodular lattices, among the cosets of L/2L, there is
a fundamental one, the so called canonical class, cf [11], that is characterised
by the property that all vectors w in this coset satisfy (v, w) ≡ (v, v) mod
2, for all v ∈ L. In this paper we shall consider more general cosets.

For any coset 2L + w, we set

m(w) := min
x∈2L+w

(x, x)

and for any coset 3L + v, we set

n(v) := min
x∈3L+v

(x, x).

We shall prove that for even lattices of level 2k,

m(w) ≤ m2k−1.

Similarly for even lattice of level 3k, we will get

n(v) ≤ 3km.

Both these estimates are sharp. Moreover, we shall characterise the lattices
that have a coset reaching these bounds to be the lattices obtained from
binary and ternary codes. For a fixed level, the theta series associated to
this coset is the same for all these lattices, while their homogeneous theta
series may of course vary.

Of special interest is the case of odd unimodular lattices; in this case we
get m(w) ≤ m and this coset exists if and only if the lattice is isometric to
Zm and 2L + w is the canonical class. This extends the results of [El1] and
[El2].
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2. Some basic facts about modular forms

Let H be the upper half complex plane. The group Γ(1) := SL(2, Z) acts
on it by fractional linear transformations:

z → σ · z :=
az + b

cz + d
σ :=

(
a b
c d

)
∈ Γ(1).

For any positive integer N , we denote by Γ(N) the subgroup of Γ(1) defined
by σ ≡ 12 mod N . We have that the index of Γ(N) in Γ(1) is

i(N) := N3
∏
p/N

(1− p−2).

We shall use also the intermediate subgroup Γ0(N) defined in Γ(1) by the
condition c ≡ 0 mod N and its subgroup Γ1(N) defined in Γ0(N) by the
conditions a ≡ d ≡ 1 mod N .

Let Γ, k and χ be respectively a subgroup of finite index of Γ(1), a positive
integer and a character of Γ, then a modular form relative to Γ of weight
k and character χ is a holomorphic function f : H → C such that for all
σ ∈ Γ

f(σ · z) = χ(σ)(cz + d)kf(z)

and f is holomorphic at the cusps. They form a finite dimensional vector
space that we denote by [Γ, k, χ]. The graded ring of modular forms

A(Γ, χ) := ⊕∞
k=0[Γ, k, (χ)k]

is finitely generated and normal. We shall omit the character if it is trivial.

The projective variety associated to the ring of modular forms is the
Satake compactification of H/Γ. Set theoretically this is the union of H/Γ
and a finite number of cusps, which set we denote by C. In the Γ(N)- case,
we have that the number of cusps is equal to the index of ±Γ1(N) in Γ(1).

This is 1, 3 and c(N) := i(N)
2N

, according as N is 1, 2 or > 2.

For N = 1, 2, 4, the ring A(Γ(N)) is generated by suitable polynomials in
the theta functions with half integral characteristics ϑ(a,b) defined by

ϑ(a,b)(z) :=
∑
n∈Z

eπi((n+a)2z+2b(n+a)) (z ∈ H a, b = 0,
1

2
).

The theta function ϑ(1/2,1/2) is identically zero. Only the theta function
ϑ(1/2,0)(z) vanishes at the cusp ∞, in fact it has the following expansion

ϑ(1/2,0)(z) = 2eπiz/4
∑
n≥0

e2πi
n(n+1)

2
z (z ∈ H).
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On the theta functions with half integral characteristics acts the group Γ(1).
The action can be described on the generators by

(1) ϑ(a,b)(−
1

z
) =

√
z

i
ϑ(b,−a)(z)

where the square root is chosen to be positive on the positive imaginary
axis. Moreover we have

ϑ(0,0)(z + 1) = ϑ(0,1/2)(z)

ϑ(0,1/2)(z + 1) = ϑ(0,0)(z)

ϑ(1/2,0)(z + 1) = eπi/4ϑ(1/2,0)(z).

From these transformation formulae, it follows that ϑ(a,b)(z)4 belong to
[Γ(2), 2], see [7].

Any modular form f of weight k relative to Γ(N) has a Fourier expansion
of the form:

f(z) =
∑
n≥0

a(n)e2πinz/N (z ∈ H).

For such modular forms we will define the vanishing order at infinity
v∞(f) putting

v∞(f) := min
a(n) 6=0

(n/N).

Moreover we define the slope sl(f) setting

sl(f) := k/v∞(f).

The following result is rather well known, but we repeat it for sake of com-
pleteness:

Proposition 2.1. Let f ∈ [Γ(N), k, χ], assume χ has finite order, then f
vanishes identically

(1) if N = 1 and sl(f) < 12,
(2) if N = 2 and sl(f) < 4,
(3) if N > 2 and sl(f) < 12

c(N)
.

Proof. It follows easily from the classical formula computing the degree of
the divisor associated to f . With the notations of [10], if f ∈ [Γ(N), k] with
k even is non-zero, ([10][Theorem 2.3.3, Theorem 4.2.11]):

(2)
∑

a∈H/Γ(N)∪C

νa(f) =
kN

12
|C|
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(with the definition of [10], ν∞(f) = Nv∞(f)), and from the fact that
H/Γ(2) and H/Γ(N) have respectively 3 and c(N) cusps. In case the char-
acter χ is non trivial (in our situations it is quadratic) or the weight is odd,
we replace f by f 2 or by a suitable power of f .

If N = 1, 2, 4, we have simple examples showing that these estimates are
sharp: the modular form

∆(z) = (ϑ(1/2,0)(z))ϑ(0,1/2)(z))ϑ(0,0)(z)))8

is in [Γ(1), 12] and sl(∆) = 12, the modular form ϑ(1/2,0)(z)4 is in [Γ(2), 2]
and has slope 4 and the modular form ϑ(1/2,0)(2z)2 is in [Γ(4), 1] and has
slope 2. We could exhibit examples also for other few cases. In general these
examples are not so easy to obtain; in fact theta functions or more generally
theta series will not reach the sharp bound, since, geometrically speaking,
they do not separate cusps. For example ϑ(1/2,0)(4z)2 is in [Γ(8), 1] and has
slope 1 ( instead of 1/2). However, as we shall see in next section we can
give a sharp bound for theta series.

3. Lattices and their associated theta series

For any lattice L we define the theta series

ϑL(z) =
∑
x∈L

eπi(x·x)z (z ∈ H).

We shall consider also theta series with rational characteristic. We pro-
ceed as it follows: for any w ∈ L, we set

ϑL,w/q =
∑

x∈L+w/q

eπi(x·x)z (z ∈ H).

Obviously this definition depends only on cosets qL+w, and clearly, ϑZ,1(z) =
ϑ(1/2,0)(z). We will be mainly interested in the cases q = 2, 3. In the first
case we will speak of theta series with half characteristic

ϑL,w/2(z) =
∑

x∈L+w/2

eπi(x·x)z (z ∈ H).

In the second case we will speak of theta series with one third integral
characteristic

ϑL,v/3(z) =
∑

x∈L+v/3

eπi(x·x)z (z ∈ H).

Let A2 denote the 2-dimensional root lattice with Gram matrix

(
2 1
1 2

)
in

the basis (e1, e2) and let e := e1 + e2. We have



6 CHRISTINE BACHOC AND RICCARDO SALVATI MANNI

ϑA2,e/3(z) = eπi 2
3
z(3 + 3eπi2z + 6eπi4z + 6eπi8z + . . . ).(3)

From the inversion formula, cf.[1], page 24, we can calculate that

ϑA2,e/3(−
1

z
) =

(z

i

) 1√
3

∑
y∈A′2

e2πi(y,e)eπi(y,y)z(4)

=
(z

i

) 1√
3
(1− 3eπi 2

3
z + 6eπi2z + . . . ).(5)

We now state our main theorems:

Theorem 3.1. Let L be an even lattice of rank m, of level 2k, k ≥ 0,
then m(w) ≤ 2k−1m. Moreover, if for some w ∈ L, m(w) = 2k−1m, then
ϑL,w/2(z) = λϑ(1/2,0)(2

k−1z)m for some λ ∈ R∗.

Theorem 3.2. Let L be an even lattice of rank m, of level 3k, k ≥ 0, then
n(v) ≤ 3km. Moreover, if for some v ∈ L, n(v) = 3km, then m is even, and
ϑL,v/3(z) = λϑA2,e/3(3

k−1z)m/2 for some λ ∈ R∗.

Proof. The proofs of the two theorems are very similar. We shall give all de-
tails for theorem 3.1. For theorem 3.2 the same proof can be easily adapted.
We can assume that the rank m is even, otherwise we replace L by L⊕ L.
According to Theorem 1.3.13 in Andrianov’s book [1, page 23], when L is
unimodular, we have that ϑL,w/2(2z) is in [Γ(2), m/2]. Similarly if L is even
of level N , ϑL,w(z) belongs to [Γ(N), m/2, χ] for some quadratic character
χ.

Let us assume that L is unimodular. Then, ϑL,w/2(2z) has weight m/2
and vanishing at ∞ of m(w)/4, so we have from Proposition 2.1 (1)

sl(ϑL,w/2(2z)) =
2m

m(w)
≥ 4.

Hence m(w) ≤ m/2.
Now we assume that for some w ∈ L, m(w) = m/2. Then ϑL,w/2(z) and

ϑ(1/2,0)(z/2)m have the same weight and vanishing order at ∞. Moreover
ϑm

(1/2,0) does not have other zeros, so ϑL,w/2(z)/ϑ(1/2,0)(z/2)m is a holomor-
phic modular function, also at the cusps, hence it is a constant.

The case of level 2 is exactly the same. For the levels N = 2k with
k > 1, we need a sharper estimate for the slope of theta series. In the
already cited theorem in [1], the transformation formula shows that the
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theta series ϑL,w/2 vanishes not only at the cusp∞, but also at all its Γ0(N)-

conjugates. Indeed, a matrix M =

(
a b
c d

)
∈ Γ0(N) transforms L + w/2

into L + aw/2 = L + w/2 because ad ≡ 1 mod 2 hence a ≡ 1 mod 2
(in the case of level 3 we have L + aw/2 = L ± w/2). So the vanishing
order is equal at all these cusps. The cardinality of the orbit of the cusp ∞
under the action of Γ0(N) is equal to the index of ±Γ1(N) in Γ0(N), that
is φ(N)/2 = 2k−2. Here φ is the Euler function.

Because of this result for theta series and again from (2) we have:

Proposition 3.1. Let L be an even lattice of level 2k and rank m, and let
f ∈ [Γ(2k), m/2, χ] be a theta series of the form ϑL,w/2(z). Then it vanishes
identically if

sl(f) <
6φ(2k)

c(2k)
= 23−k.

From this fact the proof of the theorem easily follows.

Remark 3.1. As we wrote the proof of theorem 3.2 is similar. Also in this
case a proposition similar to proposition 3.1 holds. Obviously for the slope
we get the bound

6φ(3k)

c(3k)
= 32−k.

Remark 3.2. These precise estimates can be obtained, since, in both cases
the theta series ϑL,w/2(z) and ϑL,v/3(z) have equal vanishing at all cusps
Γ0(q

k)-conjugate to the cusp ∞, q = 2, 3. In all other cases, this is false
since we would have different vanishing, since the characteristics will change
by a factor a ∈ (Z/qZ)∗. This is one of the main obstructions to further
generalisations of the results of this paper.

Of special interest is the case of odd unimodular lattices. Replacing L by√
2L, an odd unimodular lattice becomes an even lattice of level 4, so we

have:

Corollary 3.1. Let L be an odd unimodular lattice of rank m, we have
m(w) ≤ m. Moreover, if for some w ∈ L, m(w) = m, then ϑL,w/2(z) =
λϑ(1/2,0)(z)m for some λ ∈ R∗.

There are well-known lattices for which the estimate is sharp, namely
E8, D4, Zm, A2. They are special cases of a more general family of lattices
described in next sections.
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Moreover, the natural question is to characterise the cases when this es-
timate is sharp. This is done in sections 5 and 8.

4. Lattices from binary codes

We describe some lattices for which there exists elements w with the
maximal value for m(w) according to Theorem 3.1.

We recall what is usually meant by “a lattice constructed from a binary
code”. Let C ⊂ Fn

2 be a linear binary code of length m. We denote 1 the
all-one word. We define

LC := {(x1, . . . , xm) ∈ Zn | (x1, . . . , xm) mod 2 ∈ C}.
We have the following result:

Theorem 4.1. Let C be a binary code with 1 ∈ C. Let w := (1, 1 . . . , 1) ∈
LC. We have m(w) = m and:

ϑLC ,w/2(z) =
|C|
2m

ϑ(1/2,0)(z)m.

Proof: Sending 0 ∈ F2 to 0 ∈ Z and 1 ∈ F2 to −1 ∈ Z, we define a lifting
map c → c̃ from Fm

2 to Zm. We have

LC + w/2 = ∪c∈C(2Z)m + c̃ + w/2.

The vectors c̃ + w/2 have their coordinates equal to ±1/2. Hence, for every
c, a suitable isometry σ of the form (x1, . . . , xm) → (ε1x1, . . . , εmxm) with
εi = ±1 sends (2Z)m + c̃ + w/2 to (2Z)m + w/2. We derive

ϑLC ,w/2 = |C|ϑ(2Z)m,w/2.

It is immediate that∑
x∈2Zn+w/2

eπi(x,x)z = (
∑
n∈Z

eπi(2n+1/2)2)m = 1/2mϑ(1/2,0)(z)m

hence the formula.

Remark 4.1. In the case L = Zn, w = (1, 1, . . . , 1) defines the only coset of
norm m; this is not true for the other lattices. For example, when L = Dm,
w′ = (−1, 1, . . . , 1) satisfies m(w′) = m but w′ 6= w mod 2L.

From the previous theorem, an easy way to construct a lattice L contain-
ing an element w with m(w) = 2k−1m is the following: take L =

√
2k−1LC

with C a binary code.

Let us discuss in which cases such a lattice L is even of level 2k.
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(1) k = 0. Then L = 1√
2
LC is even unimodular if and only if C = C⊥

and C is doubly even.
(2) k = 1. Then L = LC is even if and only if C is even.

(3) k > 1. Then L =
√

2k−1LC is always even.

Moreover, we need that 2k(x, x) ∈ 2Z for all x ∈ L′. Since L′ = 1√
2k−1

LC
′

and since L′C = 1
2
LC⊥ , we need (x, x) ∈ 4Z for all x ∈ LC⊥ . This leads to

the condition that C⊥ is doubly even.

Let {e1, . . . , em} denote the canonical basis of Zm. If an even lattice L
has the form L = 1√

2
LC , the elements {

√
2e1, . . . ,

√
2em} provide pairwise

orthogonal elements of norm 2 in L, also called roots.

Conversely, an even lattice L containing m pairwise orthogonal roots is
easily seen to be isometric to a lattice of the form L = 1√

2
LC .

Standard examples are the following: C = F2(1, 1, . . . , 1) leads to L =
LC = Dm. The lattice E8 arises from the extended Hamming code; the
Golay code of length 24 leads to the even unimodular lattice in dimension
24 with root system A24

1 .

5. The lattices with the largest m(w)

Here we characterise all lattices that reach the bounds of Theorem 3.1.

Theorem 5.1. Let L be an even lattice of rank m and level 2k, k ≥ 0, such
that there exists w ∈ L with m(w) = 2k−1m. Then L =

√
2k−1M , and there

exists a binary code C such that M = LC. Moreover, C has the following
properties:

(1) If k = 0, C = C⊥ and C is doubly even.
(2) If k = 1, C⊥ is doubly even and 1 ∈ C⊥.
(3) If k > 1, C⊥ is doubly even.

In all cases, w :=
√

2k−1(1, 1, . . . , 1) ∈ L and satisfies m(w) = 2k−1m.

Proof. From Theorem 3.1, we have ϑL,w/2(z) = λϑ(1/2,0)(2
k−1z)m for some

λ ∈ R∗. We recall the inversion formula for ϑL,w/2(z) ([3, Prop 3.1]):

(6) ϑL,w/2(−
1

z
) =

(√
z

i

)m
1√

det(L)

∑
x∈L′

e2πi(x,w/2)eπiz(x,x).

Taking account of the inversion formula (1) for ϑ(1/2,0) we obtain:

(7)
1√

det(L)

∑
x∈L′

e2πi(x,w/2)eπiz(x,x) =
λ

2(k−1)m/2
ϑ(0,1/2)

( z

2k−1

)m

.
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Since the constant coefficients of the left and right hand side must be
equal, we have in fact:

(8)
∑
x∈L′

e2πi(x,w/2)eπiz(x,x) = ϑ(0,1/2)

( z

2k−1

)m

.

It is worth noticing that this argument in fact calculates the value of λ.
We have:

ϑ(0,1/2)(z)m = (1 + 2
∑
n≥1

(−1)neπin2z)m = 1− 2meπiz + . . . .

Now we compare the second coefficient in (8). The notation Li stands for
Li := {x ∈ L | (x, x) = i}, and we set S := L′1/2k−1 . We obtain:

(9)
∑
x∈S

eπi(x,w) = −2m.

The first easy consequence of (9) is that S is non empty, but we need more:
we want to prove that S contains m pairwise orthogonal elements. We first
notice that, if x belongs to S, (x, w) can take only the values 0,±1,±2.
Indeed, since L has level 2k, 2kx ∈ L and hence, (w ± 2k+1x)2 ≥ w2 which
leads to |(x, w)| ≤ 2. We partition S into two subsets: S0 := {x ∈ S |
(x, w) = 0,±2} and S1 := {x ∈ S | (x, w) = ±1}. The first set contributes
to (9) by +1 and the second by −1. Obviously, vectors go by pairs ±x. So
(9) tells us that S1 contains at least 2m pairs of elements. Moreover, let us
prove that, if x 6= ±x′ ∈ S, we have (x, x′) = 0,±1/2k. Since L has level 2k,
for any y ∈ L′, 2k−1(y, y) ∈ Z. Hence, if x 6= ±x′, (x ± x′)2 ≥ 1/2k−1, and
therefore |(x, x′)| ≤ 1/2k. Finally, 2kx ∈ L implies (x, x′) ∈ 1/2kZ.

Now assume (x1, . . . , xs) is a maximal chain of pairwise orthogonal el-
ements in S1. Of course s ≤ m and we want to prove that s = m.
To any x ∈ S1 not in this chain, we can associate an index i such that
(x, xi) = ±1/2k (from the previous discussion) otherwise we could increase
the chain. If, without loss of generality, (x, xi) = −1/2k, then x′ = x − xi

is another element of S but this one belongs to S0. So the pair (x, x′) con-
tributes to 0 in the sum (9). Since the chain itself contribute to −2s, this
proves that we must have s = m.

We have found a sublattice of L′ isometric to
(

1√
2k−1

Z
)m

. This proves

that (up to isometry) L ⊂
(√

2k−1Z
)m

. In the case k = 0, i.e. the even

unimodular lattices, we have found m pairwise orthogonal roots in L = L′,
so we are in case (2) described in previous section.
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Let us assume k > 0. Let M := 1√
2k−1

L; M is an integral lattice and

M ⊂ Zm. Moreover, since 2kL′ ⊂ L and
(

1√
2k−1

Z
)m

⊂ L′, we also have

(2Z)m ⊂ M . This obviously means that M = LC for some binary code C.
The condition 2k(x, x) ∈ 2Z for all x ∈ L′ is equivalent to: 2(x, x) ∈ 2Z for
all x ∈ M ′. Since M ′ = (LC)′ = 1

2
LC⊥ , it leads to the condition that C⊥ is

doubly even. When k > 1, L is automatically even; when k = 1, L = LC is
even if and only if 1 ∈ C⊥.

In all the cases, the code C⊥ is doubly even, which guaranties that 1 ∈ C,
and hence w :=

√
2k−1(1, 1, . . . , 1) ∈ L. ¿From Theorem 4.1, m(w) =

2k−1m.

As a consequence, we obtain in the case of unimodular lattices a strength-
ening of Elkies result ([4]):

Corollary 5.1. The lattice Zm is the unimodular lattice of dimension m that
contains a coset of minimal norm m. Moreover, this coset is the canonical
class.

Proof. Let U be such a unimodular lattice. From Theorem 3.1, U must
be odd. Consider the lattice L :=

√
2U , which is even of level 4. The

assumption on U implies that L contains an element w with m(w) = 2m.
From previous theorem, L =

√
2M with M ⊂ Zm. Hence M = U = Zm.

6. Lower bound

In some cases we can give a lower bound for the maximum of the pos-
sible m(w). For this reason we need to introduce theta series with double
characteristics. For w ∈ L and l ∈ L′ ⊗Q , we set

ϑL,w/2,l(z) =
∑

x∈L+w/2

eπi[(x·x)z+2(x·l)] (z ∈ H).

Now let L be an even unimodular lattice such that 2L ⊂ Zm and one
vector of the form (1, 1, . . . , 1) + 2Zm is in 2L. We shall denote this vector
by w0. We remark that all even unimodular 24 dimensional lattices have
these properties .

Let d be the order of (1/2)L′/Zm, then we have
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∑
x∈(1/2)L′/Zm

e2πi(x·(w0/2))ϑZm,w0,x(z) =

∑
x∈(1/2)L′/Zm

∑
y∈Zm

eπi[((y+w0/2)·(y+w0/2))z+2(x·y)].

Using the orthogonality of the characters we get

d
∑
y∈2L

eπi((y+w0/2)·(y+w0/2))z = d ϑ2L,w0(z) (z ∈ H).

We know that the theta series ϑZm,w,x(z) have vanishing at the cusp ∞
equal to m/8. For a linear combination the vanishing order cannot decrease,
thus for the above described lattices, we have that m(w0/2) ≥ m/4.

Unfortunately this estimate is not sharp, since we know that for even
unimodular 24 dimensional lattices we have max m(w) ≥ 8. This is the
case of the Leech lattice.

7. Lattices from ternary codes

We describe some lattices for which there exists elements v with the max-
imal value for n(v) according to Theorem 3.2.

Let C ⊂ Fn
3 be a linear ternary code of length n. Using the isomorphism

A2/3A
′
2 ' Z/3Z, we can lift a ternary code to a sublattice of An

2 :

LC := {(x1, . . . , xn) ∈ An
2 | (x1, . . . , xn) mod (3A′

2)
n ∈ C}.

The resulting lattice is of dimension m = 2n, and is even since it is a
sublattice of An

2 . It has level 3, 9 or 27; the case of level 3 corresponds to
C⊥ ⊂ C.

It is worth noticing that e/3 ∈ A′
2 and hence (e, e, . . . , e) ∈ LC . We have

the following result:

Theorem 7.1. Let C be a ternary code. Let v := (e, e . . . , e) ∈ LC. We
have n(v) = m and:

ϑLC ,v/3(z) =
|C|
3m/2

ϑA2,e/3(z)m/2.

Proof: We fix a preimage ã ∈ A2 of each element a ∈ F3 in the following
way: [0̃, 1̃, 2̃] = [0,−e1,−e2], and define in an obvious way c̃ for all c ∈ Fn

3 .
Then

LC + v/3 = ∪c∈C(v/3 + c̃ + (3A′
2)

n).

The coordinates of v/3 + c̃ belong to {e/3, e/3− e1, e/3− e2}. These three
vectors have the same norm 2/3, moreover they are transitively permuted
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by the automorphism group of A2. Let σi ∈ Aut(A2) such that e/3 =
σi(e/3 + c̃i) and let σ := (σ1, . . . , σn). Obviously, σ ∈ Aut((3A′

2)
n), and

hence v/3 + c̃ + (3A′
2)

n = σ(v/3 + (3A′
2)

n). As a consequence, the classes
v/3 + c̃ + (3A′

2)
n and v/3 + (3A′

2)
n have the same theta series, and

ϑLC ,v/3(z) = |C|ϑ3A′2,e(z)m/2.

Moreover, the decomposition A2 = 3A′
2 ∪ (3A′

2 − e1) ∪ (3A′
2 − e2) and the

transitive action of Aut(A2) on {e/3, e/3− e1, e/3− e2} show that

ϑA2,e/3(z) = 3ϑ3A′2,e/3(z)

hence the formula.

8. The lattices with the largest n(v)

Here we characterise all lattices that reach the bounds of Theorem 3.2.

Theorem 8.1. Let L be an even lattice of rank m and level 3k, k ≥ 0,
such that there exists v ∈ L with n(v) = 3km. Then L =

√
3kM , and there

exists a ternary code C such that M = LC. Moreover, C has the following
properties:

(1) If k = 0, C = C⊥

(2) If k > 0, C⊥ ⊂ C.

Proof. From Theorem 3.2, we have ϑL,v/3(z) = λϑA2,e/3(3
k−1z)m/2 for some

λ ∈ R∗.
We recall the inversion formula for ϑL,v/3(z) ([3, Prop 3.1]):

ϑL,v/3(−
1

z
) =

(√
z

i

)m
1√

det(L)

∑
x∈L′

e2πi(x,v/3)eπiz(x,x).

Taking account of the inversion formula (4) for ϑA2,e we obtain:

1√
det(L)

∑
x∈L′

e2πi(x,v/3)eπi(x,x)z =
λ

3m/2(k−1/2)

(
1− 3m

2
eπi 2

3k z + . . .

)
from which we obtain

(10)
∑

x∈(L′) 2
3k

e2πi(x,v/3) = −3m

2
.
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Let S := (L′) 2

3k
. Similar arguments as in the case of level 2 show that

|(v, x)| ≤ 3. We set for i = 0, 1, 2,

Si := {x ∈ S | (x, v) = i mod 3}.

If x ∈ S0, −x ∈ S0 and the pair (x,−x) contributes to (10) by 2; if x ∈ S1,
−x ∈ S2 and the pair (x,−x) contributes to (10) by −1 (and similarly if
x ∈ S2).

Similar arguments as in the case of level 2 show that the set R := 3k/2S
satisfy (r, r′) = 0,±1,±2 for all r, r′ ∈ R and hence is a root system. Defin-
ing R0, R1, R2 in an obvious way, we let s be the maximal integer such that
a chain As

2 is contained in R1 ∪ R2 (here A2 denotes the root system, not
the root lattice). The contribution of this As

2 in (10) equals −3s. Our goal
is to prove that s = m/2.

Let x ∈ R1 ∪R2, x /∈ As
2. There are two possibilities:

(1) x is orthogonal to all the elements of As
2

(2) There exists one component A2 and one root r in this component
such that (x, r) = −1.

If several elements x are in case 1., they can only be pairwise orthogonal
otherwise s would not be maximal. So this leads to a root system of type
As

2 ⊥ At
1 and 2s + t ≤ m. The contribution in (10) is −3s − t. Since

−3s− t = (−2s− t)− s ≥ −m−m/2, it can reach −3m/2 only if s = m/2
and t = 0.

Now let us consider the case 2. The component A2 together with x gen-
erate a root lattice of dimension 3 which can only be isometric to A3, and
hence contains 12 roots. We need to discuss how many of these roots be-
long to R0 and how many to R1 ∪ R2. It is easy to exhaust all possibil-
ities since these roots are linear combinations of a given basis (r1, r2) of
the component A2 and of x, with (x, r1) = −1 and (x, r2) = 0. We have
(v, x), (v, r1), (w, r2) ∈ [1,−1, 2,−2] and they uniquely determine the other
values (v, r) when r is one of these 12 roots. We find by the computation
of all possibilities, and after having eliminated irrelevant possibilities (e.g.
|(v, r)| > 3 for some r), that the contribution of these 12 roots is either −3
or 0. The conclusion is that there is no hope that such a root x can make
the value of the summation decrease. In order to have (10), we must have
s = m/2.

The end of the argument is essentially the same: we have found a sub-

lattice of L′ isometric to
(

1√
3k−1

A′
2

)m/2

, which proves that up to isometry

L ⊂
(√

3k−1A2

)m/2
. Let M := 1√

3k−1
L. The lattice M is a sublattice of
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A
m/2
2 hence is even. Moreover, (3A′

2)
m/2 ⊂ M ⊂ (A2)

m/2 which means that
M arises from a ternary code.

When k = 0, we want L = 1√
3
LC to be unimodular, which is equivalent

to C = C⊥. When k > 0, L has level 3k if and only if M = LC has level 3,
which is equivalent to C⊥ ⊂ C.

References

[1] A. Andrianov: Quadratic forms and Hecke operators. Grundlehren der Mathematis-
chen Wissenschaften, 286. Berlin etc.: Springer-Verlag. XII,(1987).

[2] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups, Grundl. d. math.
Wiss. no. 290, Springer, New York Berlin Heidelberg, 1988.

[3] W. Ebeling, Lattices and Codes, Vieweg, Braunschweig, 1994.
[4] N. Elkies, A characterization of the Zn lattice, Math. Res. Lett. 2, No.3, 321-326

(1995).
[5] N. Elkies, Lattices and codes with long shadows, Math. Res. Lett. 2, No.5, 643-651

(1995)
[6] E. Freitag, Singular modular forms and theta relations, Lecture Notes in Mathemat-

ics. 1487. Berlin etc., Springer-Verlag. vi, 172 p. (1991).
[7] J. Igusa, Theta functions, Grundlehren der Mathematischen Wissenschaften, 194.

Berlin etc., Springer-Verlag. XII, (1972).
[8] O. Imamoglu, W. Kohnen, Representations of integers as sums of an even number

of squares, to appear in Math. Ann.
[9] W. Kohnen, R. Salvati Manni, On the Theta Series Attached to D+

m–Lattices, to
appear in Int. Journal of Number Theory.

[10] T. Miyake, Modular Forms, Springer-Verlag (1989).
[11] J.-P. Serre, A course in arithmetic (English), Graduate Texts in Mathematics. 7.

New York-Heidelberg-Berlin, Springer-Verlag. VIII, (1973).

Christine Bachoc, Laboratoire A2X, Université Bordeaux I, 351, cours
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