Calcolo Differenziale – Prima prova in itinere 12/11/2013
COGNOME: NOME:
Nei primi 3 esercizi mettete solo una croce su vero $[V]$ o falso $[F]$, nel caso vogliate cambiare la risposta utilizzate $[v]$ o $[f]$. In questo tipo di esercizi le risposte errate verranno penalizzate. Nelle domande aperte l'esercizio va svolto in modo completo, in particolare indicate nello svolgimento la parte di teoria che utilizzate.
Esercizio n. 1 – Sia $f(x) = \cos(x) - x$ i) f è invertibile nell'intervallo $[0, \pi]$ $\boxed{\mathbf{V}}$ $\boxed{\mathbf{F}}$ $\boxed{\mathbf{v}}$ $\boxed{\mathbf{f}}$ ii) l'equazione $f(x) = 0$ ha soluzione nell'intervallo $[0, \pi]$ $\boxed{\mathbf{V}}$ $\boxed{\mathbf{F}}$ $\boxed{\mathbf{v}}$ $\boxed{\mathbf{f}}$ iii) L'insieme $f(\mathbb{R})$ è limitato $\boxed{\mathbf{V}}$ $\boxed{\mathbf{F}}$ $\boxed{\mathbf{v}}$ $\boxed{\mathbf{f}}$
Esercizio n. 2 – Considerare la funzione f definita definita su \mathbb{R} da $f(x) = x[x]$. i) la funzione f è crescente sull'intervallo $[0, +\infty)$ V F v f ii) la funzione f è continua sull'intervallo $[0, +\infty)$ V F v f iii) la funzione f è dispari V F v f
Esercizio n. 3 – Sia f una funzione periodica di periodo 1 definita su \mathbb{R} . i) la funzione $ f $ è anch'essa periodica di periodo 1 $\boxed{\mathrm{V}}$ $\boxed{\mathrm{F}}$ $\boxed{\mathrm{v}}$ $\boxed{\mathrm{f}}$ Siano f e g due funzioni definite su \mathbb{R} .
ii) f periodica di periodo 1, g periodica di periodo 2 implica $f + g$ periodica di periodo 1 V F v f
iii) f periodica di periodo 1, g periodica di periodo 1 implica fg periodica di periodo 1 $\boxed{\mathrm{V}}$ $\boxed{\mathrm{F}}$ $\boxed{\mathrm{v}}$ $\boxed{\mathrm{f}}$
Domande aperte
ESERCIZIO 4 Calcolare il seguente limite $\lim_{x \to +\infty} (\sqrt{x^2 - x} - x) \cos \left(\frac{1}{x}\right)$. SVOLGIMENTO
SYCEGUINENTO

1

ESERCIZIO 5 Sia $f(x) = \frac{x^3}{4} + x + \sqrt{x}$. Determinare f([0, 4]). **SVOLGIMENTO**

ESERCIZIO 6 Sia $\alpha \in \mathbb{R}$, sia

$$f(x) = \begin{cases} \frac{\sin(\alpha x)}{x} + 2\alpha & \text{se } x < 0\\ \sqrt{x + \alpha} & \text{se } x \ge 0, \end{cases}$$

- i) Dire per quali valori di α la funzione f è ben definita in $\mathbb{R}.$
- ii) Dire per quali valori di α la funzione f è continua nel punto x=0.

SVOLGIMENTO