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Marcel Berger

Introducing Dynamics in Elementary Geometry: Intro-
duction to some Work of Richard Schwartz

We will consider three elementary geometric constructions. The
first is the barycentric subdivision of a triangle, a tetrahedron,
etc. The second is Pappus theorem, which starting with a pair of
two sets of three points on a line in the plane, yields a third set
of three points on a line. The third is, starting with a convex
polygon (e.g. a pentagon), construct a new one by joining by
lines the vertices from one to the next-next one.

Schwartz is studying what happens when one iterates up to
infinity these constructions. In the case of barycentric subdi-
visons what are the possible shapes so obtained? In Pappus
theorem iteration how do the figures made up by the infinite set
of the so obtained pointed lines in the plane look? For polygons
what are the shapes of the polygons so obtained?

In the first case the answer is known for triangles and for
tetrahedrons, but still open starting dimension four or higher.
For Pappus configuration precise information is obtained by in-
troducing an action of the modular group into the structure. For
polygons, things are known completely for pentagons, partially
for hexagons, and mostly open for polygons with seven or more
vertices. But numerical experiments suggest some conjectures.



Peter J. Cameron

Finite geometry and permutation groups: some polyno-
mial links

A matroid is a combinatorial object which models (among other
things) linear dependence in a vector space, and so can be used
to describe configurations in finite projective spaces. Associ-
ated with any matroid is a 2-variable polynomial, the Tutte
polynomial, which specialises to the weight enumerator of the
corresponding code (for example).

Associated with any permutation group on n points is an
n-variable polynomial, the cycle index, which has many appli-
cations in combinatorial enumeration.

There are several examples where one of these two polyno-
mials is a specialisation of the other. Indeed, it is possible to
define a polynomial which includes both the cycle index and (in
some cases) the Tutte polynomial as specialisations.

In the talk I will cover these matters and speculate on possible
future directions.



John H. Conway
Some Things You Can’t Hear The Shape Of

The problem popularized by Mark Kac’s famous lecture “Can
you hear the shape of a drum?” was finally solved about ten
years ago, buy Gordon, Wolpert and Webb. However, this is
not the end of the problem, just as Kac’s question wasn’t the
beginning. On the way to being solved, the problem led to
several related notions of “isospectrality”, each of which gives
new problems of its own. I shall discuss these problems and
their solutions, when known, for open and closed manifolds, lat-
tices, codes, and groups. One most interesting particular result
is the recent theorem of Juan-Pablo Rossetti that there is a
unique non-trivial pair of isospectral “platycosms” (closed flat
3-manifolds). So I shall also discuss the 10 types of platycosm
and their geometry.



Phillip Griffiths
Algebraic Cycles and Singularities of Normal Functions

(Report on joint work with Mark Green)

Given a smooth projective variety X of dimension 2n, an ample
line bundle L — X and a primitive Hodge class v € Hg(X )prim;
assuming the Hodge conjecture in lower dimensions we will give
explicitly the equations of the locus

s € H°(X, L*): there exists an
S(v,k) = ¢ algebraic cycle Z in X, with
(v,12]) # 0

where £ >> 0 and X, = {s = 0}. By an inductive argument,
the Hodge conjecture is equivalent to the statement

S(6,k)#¢ for k>>0

asserting in effect that an explicit set of polynomial equations
has non-trivial solutions. The definition of S(0, k) is very ge-
ometric; showing that it is non-empty seems to require subtle
arithmetic considerations.



Mikhael Gromov

Geometry of infinite Cartesian powers and related spaces

Many geometric invariants/theorems are (at least conjecturally)
well behaved under taking finite Cartesian products. This sug-
gests going to infinite products and passing to the infinite di-
mensional counterparts of such invariants/theorems. We indi-
cate in our talk a few instances where such approach leads to a
meaningful conclusion.



J.W.P. Hirschfeld

The number of points on a curve, and applications

Curves defined over a finite field have various applications, such
as

(a) the construction of good error-correcting codes,
(b) the correspondence with arcs in a finite Desarguesian plane,

(¢) the Main Conjecture for maximum-distance-separable (MDS)
codes.

Bounds for the number of points of such a curve imply results
in these cases.

For plane curves, there is a variety of bounds that can be con-
sidered, such as the Hasse-Weil bound (1934/1948), the Stohr—
Voloch bound (1986), as well as bounds that depend on the plane
embedding. Curves that achieve these bounds can sometimes be
characterized.

Segre applied bounds for the number of points on a curve to
obtain bounds on the sizes of complete arcs. He also considered
plane Fermat curves that achieve the Hasse-Weil bound.

Various of these results and their applications are surveyed.



Dieter Jungnickel

Some geometric aspects of abelian groups

Consider a finite projective plane admitting a large abelian col-
lineation group. It is well-known that this situation may be stud-
ied by algebraic means (via a representation by suitable types of
difference sets), namely using group rings and algebraic number
theory and leading to rather strong non-existence results. What
is less well-known is the fact that the abelian group (and some-
times its group ring) can also be used in a much more geometric
way, which will be the topic of this lecture. In one direction,
abelian collineation groups may be applied for the construction
of interesting geometric objects such as unitals, arcs and (hyper-
Jovals, (Baer) subplanes and projective triangles. On the other
hand, this approach makes it sometimes possible to provide sim-
ple geometric proofs for non-trivial structural restrictions on the
given collineation group, avoiding algebraic machinery.



Gabor Korchmaros
Segre-type theorems in finite geometry

(Research supported by the Italian Ministry MURST, Strutture
geometriche, combinatoria e loro applicazioni.)

The concept of an oval in finite geometry arises from two combi-
natorial properties of a closed convex curve {2 in the real planes;
namely

(1) no three points in 2 are collinear;

(2) there is exactly one line at every point P € ) that meets
Q only in P.

In a finite projective plane 7, a k-arc is a set €2 of k points that
has property (1). An oval is a k-arc which also has property
(2). If © has order n, then every oval consists of n + 1 points.
An example of an oval is the irreducible conic in PG(2,q), the
projective plane coordinatised by the Galois field GF'(q) of order
q.

Segre’s famous theorem states that every oval in PG(2,q),
with ¢ odd, is an irreducible conic. Segre noted that his theorem
does not hold true in PG(2,q) when ¢ is even and ¢ > 8. The
classification project of ovals in PG(2,q) with ¢ even is still in
progress.

Segre published his theorem in 1954. Ever since, many results
have been found concerning ovals and their generalisations in
Galois geometry, that is, in higher-dimensional projective spaces
over a Galois field.

In a joint paper with the author, Segre gave a purely combi-
natorial characterisation of external lines to an irreducible conic
Cin PG(2,q). If every chord and tangent of an irreducible conic
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meets a set £ in exactly one point, then £ consists of all points
of an external line to the conic.

In the abstract of the paper, the following remark is made:
“While the result admits no analogue in the real field, a number
of similar properties can be established or investigated in any
Galois geometry.” In this spirit, combinatorial characterisations
of geometric objects related to ovals are Segre-type theorems.

The proof of the above, and some other Segre-type theorems
dating back to the late seventies and early eighties, uses the
powerful idea in Segre’s original proof to connect combinatorics
to number theory via finite geometry.

Ideas depending on lacunary polynomials, originally devel-
oped to investigate blocking sets, produced several, interesting
Segre-type theorems in the nineties.

A different approach to Segre-type theorems is based on a
surprising result on algebraic curves in positive characteristic:
the linear system of algebraic curves of minimum degree, which
is ¢ — 1, passing through every internal point of an irreducible
conic in PG(2,q), ¢ odd, has dimension ¢ — 1. So, such points
impose independent conditions on the algebraic curves of degree
q — 1 which pass through them. This result, together with the
classification of all subgroups of PGL(2, q), is the main ingredi-
ent in the current investigation of a new generation of Segre-type
theorems. A prototype is the following result.

Theorem 1 Let C be an irreducible conic in PG(2,q), q odd.
Let B be a point set in PG(2,q) which meets every external
line to C. Then |B| > q — 1 with equality occurring for ¢ = 3
and ¢ > 9 in the linear case only, that is, when B consists of
all points of a chord r of C minus the two common points of r
and C. For g = 5,7 there exists just one more example, up to
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projectivities.

Ovals are known to exist in almost all known finite projec-
tive planes. They have been found by various different methods
depending on polarities, collineations, quasifield properties, ad
hoc constructions as well as on extensive computer search. As a
part of a classification project of ovals in finite projective planes,
collineation groups have been intensively studied. In this con-
text, the following result plays an important role.

Theorem 2 Let G be a simple group acting on a projective

plane of odd order as a collineation group preserving an oval.
Then G = PSL(2,q) with ¢ > 5 odd.
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Yuri I. Manin

Manifolds with multiplication in tangent bundle

The talk will be a review of the theory of manifolds endowed
with associative and commutative multiplication in the tan-
gent bundle, which satisfies a certain integrability condition:
F-manifolds introduced by Hertling and Manin. A somewhat
stronger structure of Frobenius manifolds axiomatized and stud-
ied by B. Dubrovin play a central role in the theory of quantum
cohomology and Mirror Symmetry. I will discuss relationships
with motives, tensor categories, and theory of unfolding singu-
larities.
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Edoardo Sernesi

Segre’s works on curves and their moduli

I will overview the contributions of B. Segre about the geometry
of algebraic curves and their moduli from the perspective of
today’s algebraic geometry.
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Nicholas Shepherd-Barron

Cubic surfaces and rationality

This talk describes two examples of the intervention of cubic
surfaces in questions of number theory and algebraic geometry
since Segre’s time.
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Joseph A. Thas

Finite Geometries: Classical Problems and Recent De-
velopments

In recent years there has been an increasing interest in finite
projective spaces, and important applications to practical topics
such as coding theory, cryptography and design of experiments
have made the field even more attractive. Pioneering work has
been done by B. Segre and each of the four topics of my talk is
related to his work. It is my intention to speak about two classi-
cal problems and two recent developments. First I will mention
a purely combinatorial characterization of Hermitian curves in
PG(2,4%); here, from the beginning, the considered point set
is contained in PG(2,¢?). It is a characterzation in the spirit
of Segre’s famous characterization of conics in PG(2, ¢), ¢ odd.
A second approach is where the object is described as an inci-
dence structure satisfying certain properties; here the geometry
is not a priori embedded in a projective space. This will be il-
lustrated by a characterization of the classical inverse plane in
the odd case. A recent beautiful result in Galois geometry is
the discovery of an infinite class of hemisystems of the Hermi-
tian variety in PG(3, ¢?), leading to new interesting classes of
incidence structures, graphs and codes; before this result, just
one example for GF(9), due to Segre, was known. An exemplary
example of research combining combinatorics, incidence geome-
try, Galois geometry and group theory is the determination of
embeddings of generalized polygons in finite projective spaces.
As an illustration we will speak about the embeddings of the
flag geometry of a projective plane and about the embedding of
the generalized quadrangle of order (4,2), that is, the Hermitian
variety H(3,4), in PG(3,K) with K any field.
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Gudlaugur Thorbergsson

Transformation groups and submanifold geometry

Beniamino Segre classified in 1938 isoparametric hypersurfaces
in Euclidean spaces. As a consequence of his classification it
turns out that these hypersurfaces are precisely the homoge-
neous ones (or pieces of such). In the last 20 years the theory
of isoparametric hypersurfaces has been generalized in various
directions. First one studied isoparametric submanifolds in Eu-
clidean spaces with arbitrary codimension. Then more general
ambient spaces were also considered. The theory is by now well
developed in symmetric spaces and one has started to generalize
it to general Riemannian manifolds. Transformation groups, or
more precisely polar actions (isometric actions admitting canon-
ical forms), have always played a central role, since the models
for all of the generalizations are principal orbits of such actions.
There is a recurrent question that brings us back to Segre’s
paper: When are the generalized isoparametric submanifolds
homogeneous?
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Giuseppe Tomassini

Extension problems in complex geometry

One of the recurring problems in Complex Analysis is the one of
extending “analytic objects”. The Hartogs theorem (holomor-
phic functions “fill compact holes” in C", n > 2) is the prototype
of all extension theorems. In this talk we will treat two aspects
of the problem, namely the extension of analytic subsets and
the extension by Levi-flat hypersurfaces (i.e. foliated by com-
plex hypersurfaces).

The theme on the extension analytic subsets is very classi-
cal and a vast literature is available. We will sketch some new
results on the extension of an analytic subset given on the com-
plement of a not necessarely compact subset of a complex space.

The interest for Levi-flat hypersurfaces is reletively recent
and is related to the construction of global hulls of holomor-
phy. In ‘83, using Bishop’s method of the “analytic discs”, Bed-
ford and Gaveau proved the following fundamental result: let
M be a generic graph of a smooth function g on the sphere
S? € C x R; assume that M is embedded in the boundary of
a strictly pseudoconvex domain in C?; then M is extendable by
a Levi-flat graph M. The analytic counterpart of this result is
the existence of solutions to the Dirichlet problem for a quasi-
linear second order degenerate elliptic equation (the so called
Levi equation). The Bedford-Gaveau theorem has been mean-
while generalized to generic smooth spheres embedded in the
boundary of a strictly pseudoconvex domain in C2.

Concerning the extension by Levi-flat hypersurfaces, we will
discuss some new results for C? and C3. Precisely, we will state
a theorem on Levi-flat extension from a part of the boundary in
C?. This can be seen as the first step for a general theory of the
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“domains of existence” for Levi-flat hypersurfaces.
The situation in C? is quite different. Generically a 4-manifold

M is not even locally extendable by a Levi-flat hypersurface M.
We first find local necessary conditions for the extension and
then, under suitable hypothesis, using a Harvey-Lawson Theo-
rem with €' parameters, we prove the existence of a “Levi-flat”

chain M such that dM = M.
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Joseph Zaks

Geometric graphs and the Beckman-Quarles Theorem

A graph G is called geometric if, for some d and r, its vertex set
is of the form F where F is a subfield of the reals R, and zy
is an edge if, and only if, ||z — y|| = r. In this case we denote G
by F(d,r).

The Beckman-Quarles Theorem states that every unit-distance
preserving mapping f : E¢ — E?is an isometry, provided d > 2.

One may try to extend this theorem by treating other fields,
like the field of the rationals Q, or treat mappings of F¢ to
F? which preserve other distances. A major open problem asks
for the analogue for mappings f : E" — E™, m > n; there is
an example of a unit-distance preserving mapping of E? to E°
which is not an isometry.

One can easily show that if the graph F'(d, r) is not connected,
then there exist mappings f : F¢ — F? which preserve the
distance r yet f is not an isometry.

M. Perles raised the following question: Suppose a graph G
is given, by means of its vertices and edges, and it is also given
that G is of the form F'(d, r); can the Euclidean distance ||z —y||
be found, in terms of some multiple of r? Is it true for F' = Q,
or for F' =R in case ||z — y|| is an algebraic number?
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