Generalized Contact Structures

Y. S. Poon, UC Riverside

June 17, 2009

Kähler and Sasakian Geometry in Rome

in collaboration with Aissa Wade
Table of Contents

1. Lie bialgebroids and Deformations
2. Generalized complex structures in even dimensions
3. Issue and motivation
4. Generalized almost contact structures
5. Integrability, or the lack of it
6. Generalized contact vs complex structures in odd-dimension
7. Examples
8. Other/Further developments
The bundle $TM \oplus T^*M \to M$

- A symmetric bilinear form $\langle X + \alpha, Y + \beta \rangle = \frac{1}{2}(\alpha(Y) + \beta(X))$.
- Courant bracket

$$\llbracket X + \alpha, Y + \beta \rrbracket = [X, Y] + \mathcal{L}_{X}\beta - \mathcal{L}_{Y}\alpha - \frac{1}{2}d(\iota_{X}\beta - \iota_{Y}\alpha).$$

Remarks:

- $\langle -, - \rangle$ is non-degenerate.
- TM and T^*M are maximally isotropic. $\langle X, Y \rangle = 0$, $\langle \alpha, \beta \rangle = 0$ for all X, Y, α, β.
- Courant bracket does not satisfy Jacobi identity.

Lemma

If V is a subbundle of $(TM \oplus T^*M)_\mathbb{C}$ such that its space of sections is closed: $\llbracket v_0, v_1 \rrbracket \in C^\infty(M, V)$, and if V is isotropic: $\langle v_0, v_1 \rangle = 0$, for any sections v_0 and v_1 of V, with $\rho : V \hookrightarrow (TM \oplus T^*M)_\mathbb{C} \to TM_\mathbb{C}$, then the triple $(V, \llbracket -, - \rrbracket_V, \rho)$ is a Lie algebroid.
Lie bialgebroids, Liu-Weinstein-Xu (90’s)

Definition

L and K form a Lie bialgebroid pair in $TM \oplus T^*M$ if

- L and K are maximally isotropic with respect to $\langle -, - \rangle$,
- $L \oplus K = TM \oplus T^*M$;
- (space of sections of) L and K are closed under $[[-, -]]$.
- When $d_K [[\ell_1, \ell_2]] = [[d_K \ell_1, \ell_2]] + [[\ell_1, d_K \ell_2]]$, where

 $$(d_K \ell)(k_1, k_2) := 2 \left(\rho(k_1) \langle \ell, k_2 \rangle - \rho(k_2) \langle \ell, k_1 \rangle - \langle \ell, [[k_1, k_2]] \rangle \right).$$

Treat L as K^{\ast}, $d_K : \wedge^m L \rightarrow \wedge^{m+1} L$.

Y. S. Poon, UC Riverside

Generalized Contact Structures
Suppose that \((L, K)\) is a Lie bialgebroid. \(L \oplus K = (TM \oplus T^*M)_\mathbb{C}\).

Let \(\Gamma \in \mathcal{C}^\infty(M, \wedge^2 L) \subset \mathcal{C}^\infty(M, \text{Hom}(L^*, L)) = \mathcal{C}^\infty(M, \text{Hom}(K, L))\).

Let \(K_\Gamma\) be the graph of \(K\) with respect to \(\Gamma\):

\[
K_\Gamma = \{k + \Gamma(k) : k \in \mathcal{C}^\infty(M, K)\}.
\]

\(L \oplus K_\Gamma \cong L \oplus K \cong L \oplus L^*\). \(K_\Gamma \subset L \oplus K\).

Theorem (LWX)

\((L, K_\Gamma)\) is a Lie bialgebroid pair if and only if \(d_{K_\Gamma} + \frac{1}{2} [\Gamma, \Gamma] = 0\).

\([-, -]\) on \(\wedge^\bullet L\), \(d_K\) is C-E differential of \([-, -]\) on \(\wedge^\bullet K\).
A generalized almost complex structure on an even-dimensional manifold M is a bundle automorphism $\mathcal{J} : TM \oplus T^*M \to TM \oplus T^*M$ such that $\mathcal{J}^2 = -\mathrm{I}$ and $\mathcal{J}^* + \mathcal{J} = 0$.

$\mathcal{J} = \begin{pmatrix} \varphi & \pi \\ \theta & -\varphi^* \end{pmatrix}$,

φ a $(1,1)$-tensor, π a bivector field, θ a 2-form.

$$(TM \oplus T^*M)_\mathbb{C} = L \oplus \overline{L} = +i \text{ eigenspace} \oplus -i \text{ eigenspace}$$

Equivalent definition: choice of maximally isotropic subspace L in $(TM \oplus T^*M)_\mathbb{C}$ as $(+i)$ eigenspace. The dual space L^* as $(-i)$ eigenbundle.
Integrability

Definition

\(\mathcal{J} \) is integrable if \(C^\infty(M, L) \) and/or \(C^\infty(M, \bar{L}) \) are closed with respect to \([\cdot, \cdot] \).

When \((M, \mathcal{J}) \) is a generalized complex structure,\n
\[
L \oplus \bar{L} = (TM \oplus T^*M)_\mathbb{C}, \quad \bar{L} \cong L^*.
\]

In particular, the pair \((L, \bar{L}) \) forms a Lie bialgebroid.
Examples

(1) When \(J : TM \rightarrow TM \) is a (classical) complex structure. On \(TM \oplus T^*M \), define

\[
\mathcal{J} = \begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix},
\]

\(L = T^{1,0} \oplus T^{*(0,1)} \).

(2) \(\theta \) is a symplectic form. \(\pi \) Poisson (bi)vector field. Define

\[
\mathcal{J} = \begin{pmatrix} 0 & \pi \\ \theta & 0 \end{pmatrix}.
\]

\(L = \text{Span}\{X - i_\iota_X \theta : X \in C^\infty(M, TM)\} \).

Integrability of \(L \) and \(\overline{L} \) is equivalent to \(d\theta = 0 \).
1. Given \((M, \mathcal{J})\) a classical complex structure.
2. Treat it as generalized complex structure.
3. Construct the Lie bialgebroid: \(L \oplus \overline{L}\).
4. Given \(\Gamma_1\) in \(H^2(M, \mathcal{O}) \oplus H^1(M, T^{1,0}) \oplus H^0(M, \wedge^2 T^{(1,0)})\), find \(\Gamma \in C^\infty\left(M, \wedge^2 (T^*^{(0,1)} \oplus T^{(1,0)})\right)\) such that

\[
\Gamma_1 \equiv_1 \Gamma, \quad \overline{\partial}\Gamma + \frac{1}{2} \llbracket \Gamma, \Gamma \rrbracket = 0.
\]
5. Use LWX-theory for \(\Gamma\) to get \(\overline{L}_\Gamma\).
6. Use LWX-theory for \(\overline{\Gamma}\) to get \(L_{\overline{\Gamma}}\).
7. \((L_{\overline{\Gamma}}, \overline{L}_\Gamma)\) is a new generalized complex structure.
8. Sometimes, the deformed object could be a symplectic structure.
Issue and motivation

Theorem (Moser, 65)

Symplectic structures on compact manifolds are rigid.

Gautieri 04, Poon 06 (Kodaira-Thurston surfaces)

Theorem (Gray, 59)

Contact structures on compact manifolds are rigid.

Problem

Is it possible to enlarge the category of geometry so that contact structures could be deformation in a non-trivial and controlled manner?

Remarks:

- Similarity
- Difference
- Classical structures: Jacobi, Dirac, conformal Dirac, Lichnerowicz.
Definition (After Vaisman 07)

A generalized almost contact structure is a collection of tensors:
\(\mathcal{J} = (\xi, \eta, \pi, \theta, \varphi) \), \(\xi + \eta \in C^\infty(M, TM \oplus T^*M) \)

\[
\Phi = \begin{pmatrix} \varphi & \pi \\ \theta & -\varphi^* \end{pmatrix} : TM \oplus T^*M \to TM \oplus T^*M
\]

such that \(\Phi + \Phi^* = 0, \ \eta(\xi) = 1, \ \Phi(\xi) = 0, \ \Phi(\eta) = 0, \ \Phi \circ \Phi = -\mathbb{I} + \xi \circ \eta. \)

where \((\xi \circ \eta)(X + \alpha) := \eta(X)\xi + \alpha(\xi)\eta. \)

\(\Phi_{\ker} : \ker \eta \oplus \ker \xi \to \ker \eta \oplus \ker \xi, \ \Phi_{\ker} \circ \Phi_{\ker} = -\mathbb{I}. \)

Remark: Focus on tensorial objects only. No equivalence. Formal.
Subbundles

\[\Phi^2_{\ker} = -\mathbb{I}. \]

\[E^{1,0} = \{ e - i\Phi(e) : e \in C^\infty(M, \ker \eta \oplus \ker \xi) \} \]

\[L := L_\xi \oplus E^{1,0}, \quad \overline{L} = L_\xi \oplus E^{0,1}, \quad L^* = L_\eta \oplus E^{0,1}, \quad \overline{L}^* = L_\eta \oplus E^{1,0}. \]

\[L \oplus L^* = (TM \oplus T^*M)_\mathbb{C}, \quad \overline{L} \oplus \overline{L}^* = (TM \oplus T^*M)_\mathbb{C}. \]

Fact: \(E^{1,0}, E^{0,1}, L, \overline{L}, L^*, \overline{L}^* \) are isotropic.

But \(\overline{L} \neq L^* \) !!
Integrability, or the lack of it

Definition
Given a $\mathcal{J} = (\xi, \eta, \pi, \theta, \varphi)$-structure, if $C^\infty(M, L)$ is Courant-closed, (but $C^\infty(M, L^*)$ is not necessarily closed,) then \mathcal{J} is a generalized contact structure.

Remember: $\overline{L} \neq L^*$!!!

Definition
Given a $\mathcal{J} = (\xi, \eta, \pi, \theta, \varphi)$-structure, if both $C^\infty(M, L)$ and $C^\infty(M, L^*)$ are Courant-closed, then \mathcal{J} is a generalized “complex” structure. (Even though $\dim M = 2n + 1$.)

Key: (Not) Lie bialgebroid.

Avoiding terminology: ”generalized normal contact structures”.
Problem

Assume $C^\infty(M, L)$ is closed, determine whether or when $C^\infty(M, L^*)$ is also closed.

LWX’s obstruction for formation of Lie bialgebroids: For any three sections v_0, v_1, v_2 of $L^* = L_\eta \oplus E^{0,1}$,

$$Nij(v_0, v_1, v_2) = \frac{1}{3}(\langle[[v_0, v_1]], v_2\rangle + \langle[[v_1, v_2]], v_0\rangle + \langle[[v_2, v_0]], v_1\rangle).$$

$Nij \in C^\infty(M, \wedge^3 L), L = L_\xi \oplus E^{1,0}, \wedge^3 L = \wedge^3 E^{1,0} \oplus L_\xi \otimes \wedge^2 E^{1,0}$.

Proposition

Given $\mathcal{J} = (\xi, \eta, \pi, \theta, \varphi)$ and $C^\infty(M, L)$ closed. Then L^* is closed if and only if $\xi \wedge (\rho^* d\eta)^{2,0} = 0$, where $\rho : E^{1,0} \rightarrow TM_C$.
Odd dimensional analogue of symplectic structures

Definition (Libermann, 1958)
An almost cosymplectic structure on M^{2n+1} is a reduction from $GL(2n+1, \mathbb{R})$ to $Sp(n, \mathbb{R})$. That is the choice of a 1-form η and a 2-form θ such that $\eta \wedge \theta^n \neq 0$ everywhere.

Definition
(η, θ) is a cosymplectic structure if $d\eta = 0$ and $d\theta = 0$.

Definition
η is a contact 1-form on M^{2n+1} if $\eta \wedge (d\eta)^n \neq 0$ everywhere.

A contact 1-form determines an almost cosymplectic structure $(\eta, d\eta)$, but it is NEVER a cosymplectic structure without qualification.
As generalized almost contact structures

- Almost cosymplectic \((\eta, \theta)\): (1-form, 2-form). \(\eta \wedge \theta^n \neq 0\) everywhere. Define \(\flat : TM \to T^*M\) by

\[
\flat(X) = \iota_X \theta - \eta(X)\eta,
\]

then \(\pi(\alpha, \beta) := \theta(\flat^{-1}(\alpha), \flat^{-1}(\beta))\).

\(\flat\) is an isomorphism. There exists a unique \(\xi\) such that \(\eta(\xi) = 1\) and \(\iota_\xi \theta = 0\). Choose \(\varphi = 0\).

\[
\Phi = \begin{pmatrix} 0 & \pi \\ \theta & 0 \end{pmatrix}.
\]

- If \(\eta\) is a contact 1-form, choose \(\theta = d\eta\). Then follow the above construction.
Definition (Sasaki (60))

A (ξ, η, φ)-structure on M^{2n+1} consists of φ a (1,1)-tensor, a vector field ξ and a 1-form η such that $\varphi^2 = -I + \eta \otimes \xi$, and $\eta(\xi) = 1$.

Definition

A (ξ, η, φ)-structure on M is “normal” if and only if a naturally defined almost complex structure on $M \times \mathbb{R}^+$ is integrable. Equivalently, $\mathcal{L}_\xi \varphi = 0$, $\mathcal{L}_\xi \eta = 0$, and $\mathcal{N}_\varphi = -\xi \otimes d\eta$, where $\mathcal{N}_\varphi(X, Y) := [\varphi X, \varphi Y] + \varphi^2[X, Y] - \varphi([\varphi X, Y] + [X, \varphi Y])$.

A contact 1-form η does not determine a (ξ, η, φ)-structure until a “compatible” metric is chosen. φ is metric dependence. Too many choices. $\mathcal{J} = (\xi, \eta, \varphi, \pi = 0, \theta = 0)$.

Odd dimensional analogue of complex structures
Theorem (Examples of generalized contact structures)

\(C^\infty(M, L) \) is closed for

- Cosymplectic \((\eta, \theta)\). i.e. \(d\eta = 0 \) and \(d\theta = 0 \).
- Contact 1-form \(\eta \). i.e. \(\theta = d\eta \neq 0 \).
- Normal \((\xi, \eta, \varphi)\)-structures. i.e. \(\mathcal{N}_\varphi = -\xi \otimes d\eta \).

Proof: DBH.

Theorem (Examples of generalized complex structures)

Both \(C^\infty(M, L) \) and \(C^\infty(M, L^*) \) are closed for

- Cosymplectic \((\eta, \theta)\). \((G\text{-structure})\)
- Normal \((\xi, \eta, \varphi)\)-structure. \((\text{Sasaki Cone})\)

Proof: For the latter, check the "type" of \(d\eta \).
Focus on contact 1-form η

Local picture: (x_j, y_j, z) on \mathbb{R}^{2n+1}.

$$\eta = dz - \sum_j y_j \, dx_j. \quad \xi = \frac{\partial}{\partial z}, \quad \theta = d\eta = \sum_j dx_j \wedge dy_j.$$

$$X_j := \frac{\partial}{\partial x_j} + y_j \frac{\partial}{\partial y_j}, \quad Y_j = \frac{\partial}{\partial y_j}, \quad \pi = \sum_j X_j \wedge Y_j.$$

The obstruction $(\rho^* d\eta)^{2,0}$ is equal to

$$\frac{1}{4} \sum_j (dx_j - iY_j) \wedge (dy_j + iX_j).$$

$$(\rho^* d\eta)^{2,0} + (\rho^* d\eta)^{0,2} = \frac{1}{4} (d\eta - \pi).$$

Proposition

The obstruction for L^* being closed is not equal to zero anywhere when \mathcal{J} is due to a contact 1-form.
For generalized complex structures (on odd-dimensional manifolds), use LWX’s Lie bialgebroid theory.
Deformation of classical cosymplectic structures away from classical objects e.g. H_3 Heisenberg group or cocompact quotient. Co-symplectic structure.
For generalized contact (not complex)?
Deformation theory due to Lie bialgebroid structure fails.
Alternative:

Proposition

Let M be the principal $\text{SO}(2)$-bundle over N with connection η and curvature $d\eta = p^*\omega$. Then the family J_t of generalized complex structures on N is lifted to a family \mathcal{J}_t of generalized contact structures on M.

Proof. A Boothby+Wang type theorem. In their 1958 paper: "On contact manifolds". (A backbone)
On N the Kodaira surface, there exists

- a complex structure $J = J_0$,
- a symplectic form $\omega = J_1$, with ω being type $(2,0)+(0,2)$ w.r.t. J.
- a family of generalized complex structures J_t containing J_0 and J_1.

Use Boothby-Wang construction.

Get a family of generalized contact structures \mathcal{J}_t. \mathcal{J}_1 is contact. \mathcal{J}_t are non-classical objects for $t \neq 1$.

Remark: No more ”Gray’s Theorem“ :-)

Remark: No deformation theory :-(
Further development

Contact 1-form and Reeb field: \(\iota_\xi \eta = 0. \) \(\mathcal{L}_\xi \eta = 0. \)

Theorem

\[\mathcal{J} = (\xi, \eta, \pi, \theta, \varphi) \] a generalized contact structure (not necessarily \(\text{cx} \)), with \(\mathcal{L}_\xi \eta = 0 \), then

- \(\mathcal{L}_\xi \mathcal{J} = 0; \) and
- the pair \(E^{1,0} \) and \(E^{0,1} \) forms a transversal Lie bialgebroid over \((M, \xi) \).

Reversing Boothby-Wang construction.
Cohomology theory.
Deformation.
Equivalence.
Another story.

Conclusion: contact vs symplectic.
Non-integrability vs integrability. Difference vs similarity.