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Stochastic orders: what are they?

Assume you have two random variables X and Y describing, e.g., two
amounts of money you can get through two different financial
investments.

Assume you have to choose among X and Y .

FIRST CASE

X =

{
1 with probability 1/2
2 with probability 1/2

→ E [X ] = 1.5

Y =

{
2 with probability 1/2
3 with probability 1/2

→ E [Y ] = 2.5

Here Y is better than X .
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Stochastic orders: what are they?

SECOND CASE

X =

{
1 with probability 1/2
2 with probability 1/2

→ E [X ] = 1.5

Y =

{
0 with probability 1/2
3 with probability 1/2

→ E [Y ] = 1.5

Here X is better than Y (but nor for everybody, and not always).

THIRD CASE

X = 1 with probability 1 → E [X ] = 1

Y =

{
0 with probability 1/2
3 with probability 1/2

→ E [Y ] = 1.5

Here we can not immediately assert which one is the best choice.
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Stochastic orders: what are they?

Thus, we have to introduce new criteria to choose among different
alternatives, taking into account our needs. → Stochastic orders

In fact, a long list of different stochastic orders have been defined, and
applied, in a variety of fields (economics and finance, engineering,
medicine, etc.)

They are based on comparisons between:

• The location, or magnitude, of the random variables to be compared
(mainly considered in reliability and survival analysis)

Ex: X is better than Y if P[X > t] ≥ P[Y > t] for all t ∈ R (usual
stochastic order)
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Stochastic orders: what are they?

• The expectations E [u(X )] and E [u(Y )] of functions of the involved
variables (mainly considered in risk theory)

Ex: X is better than Y if E [u(X )] ≥ E [u(Y )] for every increasing and
concave utility function u (increasing concave order)

• Their variability

Ex: X is more dispersed than Y if X = φ(Y ) for some dispersive
function φ, i.e., such that φ(x2)− x2 ≥ φ(x1)− x1 whenever x1 ≤ x2
(dispersive order).

• Moreover, stochastic orders have been defined in order to provide

comparisons in multivariate contexts;

comparisons of stochastic processes.
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Stochastic comparisons of stochastic processes
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Itô processes. Stochastic Process. Appl. 45 (1993), no. 1, 1–11.

• B.B. and Marco Scarsini. Positive dependence orderings and
stopping times. Ann. Inst. Statist. Math. 46 (1994), no. 2, 333–342.



Multivariate stochastic models
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Lifetimes and stochastic orders

Let X and Y represent the lifetimes of two items, or individuals.

Recall: X is said to be smaller in the usual stochastic order than Y if and
only if P[X > t] ≤ P[Y > t] for all t ∈ R+, or, equivalently, if and only
if E [φ(X )] ≤ E [φ(Y )] for every increasing function φ.

Apart the usual stochastic order, other comparisons are commonly
considered in survival analysis. In particular, different orders have been
defined and studied to compare residual lifetimes, i.e., to compare the
variables [X − t|X > t] and [Y − t|Y > t], for t ∈ R+.

Among them, the hazard rate order, the mean residual life order, the
likelihood ratio order, etc.

By means of these orders, it is possible to provide a list of alternative
characterizations of aging, i.e., of the effect of the age in the residual
lifetime of the items.

Ex: X has Increasing Hazard Rate (IHR) if
[X − t1|X > t1] ≥st [X − t2|X > t2] for all 0 ≤ t1 ≤ t2, i.e., if the
residual lifetime of X stochastically decreases with the age.
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Contributions by Bruno (and Fabio)

Analysis of lifetimes models and aging in multivariate contexts;

Criteria for the stochastic comparison of residual lifetimes based on
survivals at different ages.

Thanks to their studies, now we have

A clear understanding of the effects of mutual dependence
between items on their aging

A clear understanding of the relationships between univariate
aging, multivariate aging and dependence
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Contributions by Bruno (and Fabio)

Ex: As a natural extension of the concept of univariate IHR aging to the
bivariate case, one can consider the following:

• The random vector (X ,Y ) satisfies the Bivariate Increasing Hazard
Rate (BIHR) property if, and only if, for all 0 ≤ t1 ≤ t2,

[(X−t1,Y−t1)|{X > t1,Y > t1}] ≥st [(X−t2,Y−t2)|{X > t2,Y > t2}].

• In a similar way, by reversing the inequality, one can define the
corresponding negative aging property Bivariate Decreasing Hazard Rate
(BDHR).

• Let us say now that the lifetimes X and Y have positive dependence if
large (respectively, small) values of X tend to go together (in some
stochastic sense) with large (respectively, small) values of Y . Similarly
define the negative dependence: if large (respectively, small) values of X
tend to go together (in some stochastic sense) with small (respectively,
large) values of Y . [Formal definitions can be given by means of the
copula of the vector (X ,Y ).]
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Contributions by Bruno (and Fabio)

Bruno and Fabio formalized the following relationships (and similar ones).

positive dependence + univariate negative aging
⇓

multivariate negative aging;

positive dependence + multivariate positive aging
⇓

univariate positive aging;

multivariate positive aging + univariate negative aging
⇓

negative dependence;

etc..
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Also, they shown, through counterexamples, but also clearly explaining
why, we have

multivariate positive aging + univariate positive aging
6⇓

positive dependence
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Recently....

Even if based on stochastic orders, Bruno and Fabio concentrated
their studies on applications of comparisons in multivariate aging
and survival models, without realizing the effects of their results in
other fields. Like, for example, their possible applications in the
analysis of the properties of Joint Stochastic Orders.

Defined and studied for the first time by Shantikumar and Yao
(1991), Bivariate characterization of some stochastic order relations.
Adv. in Appl. Prob., 23, 642–659, the joint stochastic orders have
been introduced in order to compare, marginally, univariate lifetimes,
but taking into account their possible mutual dependence.
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Recently....

Ex: Consider a pair (X ,Y ) of non-independent lifetimes. It is possible to
compare the corresponding residual lifetimes considering the inequalities
[X − t|X > t] ≤st [Y − t|Y > t] for all t ∈ R+ (hazard rate order, ≤hr ).
This is a comparison based on the marginal distributions of X and Y .

Otherwise, it is possible to compare their residual lifetimes taking into
account survivals of both, i.e., consider the following inequalities:

[X − t|{X > t,Y > t}] ≤st [Y − t|{X > t,Y > t}] for all t ∈ R+.

This is a joint stochastic order based on the joint distribution of (X ,Y )
(joint weak hazard rate order, ≤hr :wj).

It can be shown that the stochastic orders above are not equivalent, i.e.,

X ≤hr Y 6⇔ X ≤wj :hr Y .

Actually, the equivalence holds if, and only if, X and Y are independent.
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Recently....

Because of its properties, the joint weak hazard rate order has interesting
applications is different fields, like in reliability (optimal allocation of
components), in actuarial sciences, in portfolio theory or in medicine
(crossover clinical trials).

Ex: Let (X ,Y ) be such that X ≤hr :wj Y . It can be shown that in this
case

E [g(X ,Y )] ≥ E [g(Y ,X )]

for all function g : R2 → R such that

∆g(x , y) = g(x , y)− g(y , x)

is supermodular in the set U = {(x , y) ∈ R2, x ≥ y}.
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Recently....

Consider now a pair (X ,Y ) of non-independent financial returns, and
consider the two portfolios

Z1 = αY + (1− α)X and Z2 = (1− α)Y + αX , α ∈ [0, 1].

Because of the previous property, for α ≥ 1/2 one has

X ≤hr :wj Y =⇒ E [u(Z1)] ≥ E [u(Z2)]

for every logarithmic utility function u (like, e.g., u(t) = ln(1 + t)).

[The proof easily follows letting g(x , y) = u(αy + (1− α)x).]

Another interesting property of the joint weak hazard rate order is that it
is closed with respect to mixtures (while the standard hazard rate order is
not)
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Recently....

Studying the properties of this particular order, we verified that a
relationship between the joint weak hazard rate order and the standard
hazard rate order can be stated by making use of a notion defined and
analyzed by Bruno and Fabio in their works.

Definition

A bivariate copula C : [0, 1]2 −→ [0, 1] is called supermigrative
(submigrative) if it is symmetric, i.e. C (u, v) = C (v , u) for every
(u, v) ∈ [0, 1]2, and it satisfies

C (u, γv) ≥ (≤) C (γu, v)

for all u ≤ v and γ ∈ (0, 1).



Recently....

Studying the properties of this particular order, we verified that a
relationship between the joint weak hazard rate order and the standard
hazard rate order can be stated by making use of a notion defined and
analyzed by Bruno and Fabio in their works.

Definition

A bivariate copula C : [0, 1]2 −→ [0, 1] is called supermigrative
(submigrative) if it is symmetric, i.e. C (u, v) = C (v , u) for every
(u, v) ∈ [0, 1]2, and it satisfies

C (u, γv) ≥ (≤) C (γu, v)

for all u ≤ v and γ ∈ (0, 1).



Recently....

As shown by Bruno and Fabio, examples of copulas satisfying the
supermigrative property are the Archimedean ones having log-convex
inverse generators. Thus, e.g., the Gumbel-Hougaard copula, and the
Frank and Clayton copulas with positive value of the parameter θ. The
Farlie-Gumbel-Morgenstern copula, with posite value of the parameter,
satisfies this property as well.



Recently....

It can be shown that the following holds.

Theorem

Let the survival copula C (X ,Y ) of (X ,Y ) be supermigrative. Then

X ≤hr Y =⇒ X ≤hr :wj Y . Viceversa, if the survival copula C (X ,Y ) of
(X ,Y ) is submigrative, then X ≤hr :wj Y =⇒ X ≤hr Y .
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A final remark

Results similar to the previous one can be proved also for the other
well-know joint orders.

Definition

Let D be the set of functions D = {g | g : R2 → R}. We denote:

Ghr = {g ∈ D | g(x , y)− g(y , x) is non-decreasing in x ∀y ≤ x};
Glr = {g ∈ D | g(x , y) ≥ g(y , x) for all y ≤ x}.

Definition

Given two random variables X and Y as above, X is said to be greater
than Y

in the joint hazard rate order (denoted X ≥hr :j Y ) if
E [g(X ,Y )] ≥ E [g(Y ,X )] for all g ∈ Ghr ;
in the joint likelihood ratio order (denoted X ≥lr :j Y ) if
E [g(X ,Y )] ≥ E [g(Y ,X )] for all g ∈ Glr .
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A final remark

Recall the definition of standard joint likelihood ratio:

X ≥lr Y ⇐⇒ [X − t| t ≤ X ≤ t + s] ≥st [Y − t| t ≤ Y ≤ t + s]

for all t ∈ R, s ∈ R+.

Theorem

Let (X ,Y ) be a random vector with an absolutely continuous survival

copula Ĉ(X ,Y ). Assume that

Ĉ(X ,Y ) is exchangeable (symmetric);

The density ĉ(X ,Y )(u, v) is non-increasing in u and non-decreasing in
v for all u ≥ v.

Then X ≥lr [≥hr ] Y implies X ≥lr :j [≥hr :j ] Y .
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A final remark

The second assumption appearing in this statement has an immediate
interpretation: it essentially means that for every point (u, v) below the
diagonal and for any point (û, v̂) contained in the closed triangle with
vertices (u, v), (u, u) and (v , v) it holds ĉ(X ,Y )(û, v̂) ≥ ĉ(X ,Y )(u, v) (and
similarly for points above the diagonal).



A final remark

Roughly speaking, it is satisfied by copulas having probability mass
mainly concentrated around the diagonal, thus describing positive
dependence, as the copulas having density uniformly distributed on
regions like the ones shown in the following figure.

Such an assumption can be further weakened in order to let the relation
X ≥lr Y ⇒ X ≥lr :j Y be satisfied also for survival copulas having a
singularity on the diagonal v = u, like Cuadras-Augé copulas or Frechét
copulas.

A larger class of copulas satisfying this property has been defined and
studied in Durante (2006), A new class of symmetric bivariate copulas, J
of Nonparametrical Statistics, 18, 499–510.
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