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In this talk:

1. On some models in Bruno’s work.

2. Let’s think together about a model I was asked about last

week. I think Bruno might have liked the story.

3. Some comments related to my recent interest in model

selection in Statistics.



Bruno was mostly an Applied Probabilist. His range of application

was very wide: Stochastic Control Theory, Mathematical Finance,

Game Theory, Reliability Theory, Dependence and Stochastic

Orderings, Statistics, and more.

Applied probability most often starts with a model.

What is a model?

Go to Google ...
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Oxford Online Dictionary: “A model is a simplified description,

especially a mathematical one, of a system or process, to

assist calculations and predictions"
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Oxford Online Dictionary: “A model is a simplified description,

especially a mathematical one, of a system or process, to

assist calculations and predictions"

G. Box : “all models are wrong, but some are useful "

Stanford Encyclopedia of Philosophy: “A ‘good’ scientific

theory, Popper thus argued, has a higher level of verisimilitude

[verosimiglianza, likelihood] than its rivals"



SOME EXAMPLES. Bassan and Scarsini 1998
Once upon a time there was a village of shepherds who

pastured their flocks. One day the grazing grounds become

parched, and the chief of the village decides that all the

shepherds should move to a different area. The chief and the

shepherds know that wolves dwell in all but one of the paths ...

The chief faces two contrasting tendencies as she releases

more information [about where the wolves might be, with some

uncertainty or probability]: the more each shepherd is informed,

the more likely he is to make the good decision, and this is

socially desirable; on the other hand, the more the shepherds

know, the less likely they are to diversify their behavior. This, in

view of the requirement that at least one shepherd survive,

could be socially detrimental.



The model that we study in this paper involves a central

planner, who can release information to agents whose behavior

affects the social welfare of a community. Each of the agents

has a utility function ...
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has a utility function ...

2. The model
Consider a measurable space (Ω,F ) endowed with a filtration

{Ft | t ∈ T ⊂ N}. Let P(Ω,F ) be the set of σ-additive

probability measures on (Ω,F )... At time t each agent adopts

the decision that maximizes his own expected utility...



Bassan, Bruno and Natoli, Giuseppina 2004
We present here a toy model for pricing options in terms of

game-theoretic concepts, without resorting explicitly to

no-arbitrage or hedging. In particular, Aumann’s Theorem

about the impossibility of ’agreeing to disagree’ is invoked. In

our simple setup, there are only one investor and one financial

intermediary, the bank, who are considering the trade of a

share of a stock and of one option issued on it. We consider

here perpetual American options...

In finance, a perpetual American option is a contract which gives the buyer

the right, but not the obligation, to buy at any future time an underlying asset

or instrument at a specified strike price.



Bassan, Rinott, Vardi
A simple problem in an unfinished paper with Yehuda Vardi and

me: let Xi denote random service times of customers who

arrive one after the other from a queue to a server. We assume

that they are independent, from a common distribution.
 

                                                            

    --- |----------  X1  ---------- | -- X2 --| -----------  X3------------| ---- X4 ----| ----- 

                                                           

                                                            |-----  Z  ------|  ---  Y --- | 

-------|---------------------------|----------|---------------t------------ |--------------|---------------> 

We observe the situation at a random time t. Let Z denote

service time until t and Y the remaining service time, so

Z + Y = X . Yehuda looked at many independent such systems

(servers), and noticed on some data, that the Y ’s tend to be

larger than the X ’s. If a person before you in a queue is already

being served for a long time, he is likely to take much time to finish.
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Let’s think of a model (Avrahami and Kareev)

Suppose that in town there exist k restaurants. You have tried them

all, and the probability of choosing this or that restaurant for your next

dinner is a function (which?) of your (recent) past experience. For

simplicity assume two kinds of restaurants, bad (0) and good (1). You

may come out of a bad restaurant with a good impression with some

(small) probability, and vice versa.

Does more choice lead to better dining? for example, if there are two

bad and two good restaurants in town, are you going to eat better

than in the case of one bad and one good restaurants?

We need to construct a ’consistent’ decision function for varying k’s.
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Suggestion 1. k = 2: suppose, for example that the true state of
affairs is (0,1), that is, one bad one good, and we use only most
recent experience. If it is (0,0) or (1,1) choose at random, if (0,1), say,
choose the second with probability p = 0.95, say, so the probability
ratio is 19 to 1.
For k = 4 : keep the ratio, so for example if the current experience is
(0,0,1,1) choose either the 3rd or the 4th restaurant with probability
19/(19+19+1+1). Good model? How is it affected by more choice?
If the true and current state is (0,0,...,0,1) then instead of choosing
the one good restaurant, you will go with high probability to one of the
bad ones.

Suggestion 2. Choose good with probability 0.95 and then at
random among the good ones, and bad with probability 0.05, and
then at random.

Once ’such’ a model is chosen, it is a finite Markov chain, and one
can compute a stationary distribution, etc.
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Exersice: suppose your satisfaction value from each restaurant

is a continuous random variable (say Uniform(0,1), but it does

not matter). You always go to the restaurant that was best the

last time you visited it, and replace its last value by the current

one. How does this process behave in time?

1. What is the distribution of the smallest, second smallest, etc.

value? Partial Answer: they are all decreasing to zero, except

for the largest. In other words, the worst restaurant - as you

value them- is getting worse, and so is the second, and so on

up to the k − 1st.

2. Suppose you look at your last value from a particular

restaurant. Is it decreasing?



Statistics - choosing a model for given data:

Data Y (n) = (Y1, . . . ,Yn) ∼ g(y (n)), g is the true generating

model. We assume it is unknown, and in general g will not be in

our list of candidate models.

We have a list of candidate models {fα(y (n)|θ)}, where θ ∈ Θα

with finite dimension dα, α ∈ A, a finite list of models.

Goal: to choose from our list the “best" model for the data.

Y (n) could be n independent observations, or some n values

from some stochastic process, or some other joint distribution.
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Examples of models:

• Yi = rα(x i ; θ) + εi , with εi ∼ N(0, σ2), and the regression

function rα(x i ; θ) can be a polynomial of degree α with a vector

of coefficients θ, or α could indicate a subset of the covariates.

Everything we do for iid Yi ’s will apply if (Yi ,X i) are iid.

• Y (n) = (Y1, . . . ,Yn) is a realization of a k -step Markov

chain, such as some autoregressive process.



Example (Seneta 2004) Pt price of asset

Pt = P0ect+θTt +σW (Tt )

where Tt ≥ 0 increasing process, independent of the BM W (t).
Therefore

Yt = log Pt − log Pt−1 = c + θ(Tt −Tt−1) +σ(W (Tt )−W (Tt−1)).

• Tt = t ⇒ Geometric BM.
• Tt has independent (or iid) increments ⇒ Yt are
independent (or iid).
• Tt − Tt−1 ∼ Exp(η) or Gamma(α, β) or ...

Which model “fits" the data?
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More examples

Y = (Y1, . . . ,Ym) ∼ Multinomialm(n,p), where p = p(θ).

Hardy-Weinberg: m = 3, p1 = θ2,p2 = 2θ(1− θ),p3 = (1− θ)2,

so p ∈ one-dimensional curve in the 3-simplex

{(p1,p2,p3) ≥ 0 : p1 + p2 + p3}.

Y (n) = (Y1, . . . ,Yn) a sample (iid) from Exp(θ) or Γ(α, θ), or a

mixture
∑

i wiΓ(αi , θi) or ...
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Data: 11 data points (Red). Black line : linear regression,
Blue : 3rd degree poly, Green : 5th degree



Regression: well known model selection methods
Forward/backward selection, Mallows Cp, AIC, BIC, Lasso.

Penalty based methods , regularization

min
β
{‖y (n) − x (n)β‖2},
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‖|β ‖| =
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∑

j β
2
j Ridge regession∑

j |βj | Lasso least absolute shrinkage and selection operator

#non-zeroβ′j s AIC, BIC
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What do we mean by: Which model “fits" the data?

Regression : Suppose we fit a model through Least Squares:

(LS) minθ
∑

i(yi − rα(x i ; θ))2,

where rα(x i ; θ) is a polynomial of degree dα, say.

Assuming normality the minimizer of (LS) θ̂α ∈ Θα is the
Maximum Likelihood Estimator, and (LS) becomes∑

i log fα(yi |xi , θ̂α),
and the best fit of the data is obtained by

(LK ) maxα
∑

i log fα(yi |xi , θ̂α).



If we now choose α to minimize
∑

i(yi − rα(x i ; θ̂α))2 then
clearly the “largest" model will always be chosen. It will provide
the best fit for the given data. But it will overfit the data.
A criterion for the predictive value of the model: Suppose
that a hypothetical new sample of y∗i ’s ∼ g arising from the
same xi were available. We would like to choose the model
attaining

(∗) min
α

∑
i

(y∗i − rα(x i ; θ̂α))2.

Assuming normality a model that minimizes (∗) over α
maximizes the log-likelihood of the hypothetical data, and the
criterion becomes

(∗∗) max
α

∑
i

log fα(y∗i |xi , θ̂α).
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In order to find the maximizer in

(∗∗) max
α

∑
i

log fα(y∗i |xi , θ̂α)

we need to estimate
∑

i log fα(y∗i |xi , θ̂α). But y∗i ’s are not

available. set θ̂ = θ̂α.

Specializing on the iid case write
∑

i

log fα(y∗i |θ̂)

Yi and Y ∗i ∼ g, and therefore ⇑

it is tempting to estimate the above expression by
1
n

∑
i

log fα(yi |θ̂)

This will clearly be an over-estimate.
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1
n

∑
i

log fα(y∗i |θ̂) is a random variable. So we want to estimate

its expectation under the true (unknown) model Y ∗i ∼g, and in

the iid case we have

Ey∗ log fα(y∗i |θ̂) =

∫
log fα(y∗|θ̂)g(y∗)dy∗.

Maximizing the latter over α is ‘equivalent’ to minimizing the

Kullback-Leibler divergence

D(g(y∗) || fα(y∗i |θ̂)) =

∫
g(y∗) log

g(y∗)

fα(y∗i |θ̂)
dy∗
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Following various asymptotic expansions and “approximations",

the AIC (Akaike 1974) estimates (♣) by

AICα =
1
n

n∑
i=1

log fα(yi |θ̂)− dα/n,

where dα is the dimension of the parameter space of the αth

model.



A Bayesian approach

Schwarz BIC (1978): Y = Y1, . . . ,Yn sample (iid) from some

fk (y |θ), θ ∈ Θk . Model k is true with prior probability wk .

Prior: θ ∼
∑

k wkµk , where µk are prior measures on Θk ,∑
k wk = 1.

P(k |Y) = posterior probability of k .
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where dk is the dimension of the parameter space of the k th

model Θk , and Rn is a bounded r.v., Dn does not depend on k .
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Proof:

DnP(k |Y ) =

∫
Θk

e
∑n

j=1 log f (Yj | k ,θ)wk µk (θ)dθ

=

∫
Θk

en
∑n

j=1 log f (Yj | k ,θ)/nwkµk (θ)dθ

≈ e
∑n

j=1 log f (Yj | k ,θ̂)wkµk (θ̂)(2π)dk/2|Σk |−1/2n−dk/2.

≈ uses Laplace approximation method (saddle point),

where Σk = −[ ∂2

∂θi∂θj
n−1∑n

j=1 log f (Yj | k , θ̂)].



Comments: BIC makes sense when we assume that the true

model is in the list of candidate models, and has a positive prior

probability.

Is this ever a realistic assumption? Are there “true models"? is

it an oxymoron?
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The bias correction dα was an approximation. Define

K = E
{

[
∂

∂θi
f (Yi ; θ0)

∂

∂θj
f (Yi ; θ0)]/f 2(Yi ; θ0)

}
, (1)

where Yi ∼ g, and f = fα, and θ0 = arg minθ D(g||f (·|θ)).

J = −E
{

[
∂2

∂θi∂θj
log f (Yk ; θ0)]

}
= −E

{
[
∂2

∂θi∂θj
f (Yk ; θ0)]/f (Yk ; θ0)

}
+ K , (2)

⇑

which is obtained by straightforward differentiation under the
expectation sign. When g(y) = f (y ; θ0), the first term on the
right-hand side of (2) vanishes, and we obtain the well known
Fisher information identity J = K . This is the case in standard
MLE theory.



K and J are dα × dα matrices.

The bias correction is Trace(J−1K ), which becomes
Trace(Idα) = dα in the case K = J described above.

It is not easy to estimate Trace(J−1K ), and dα is proposed as
an approximation, which is good for models that are close to
the true one, and exact for a model that contains the true one.

How do these K and J arise?
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We compute a Taylor expansion around the MLE θ̂, with the

first derivative vanishing at the MLE, and obtain

1
n

n∑
k=1

log f (Yk ; θ̂)− 1
n

n∑
k=1

log f (Yk ; θ0)

≈ −1
2

(θ0 − θ̂)T [
1
n

n∑
k=1

∂2

∂θi∂θk
log f (Yk ; θ̂)](θ0 − θ̂)...



My plan (with David Azriel): given a data set of a large size N,

of a certain type, assume that different researchers (will) have

different data sets of different (smaller than N) sizes of this

type. The model they should use depends on the size of their

sample which they use to estimate the parameters for their own

case. On the basis of the large data set, we want to determine

the model to be used by a researcher with data of size n, that

is, determine α = α(n), where as before, α is the index of

models, and to quantify the value of the chosen model.

Motivation: experimental game theory (economics).
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