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OUTLINE "
!

•  Introduction to decision making in 
stochastic environments 

•  Dynamic teams, games, role of 
information, asymmetry 

•  Some caveats and counter-examples on 
existence and characterization of sols 

•  Existence and characterization of team-
optimal policies under asymmetry 

•  Existence and characterization of Nash 
equilibrium policies under asymmetry 

•  Conclusions 
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General Framework!
INGREDIENTS 
 
•  Uncertainty (uncertain environment)  
•  Decision makers (DMs) (players, agents) 
•  Perceptions of DMs  on uncertainty  
•  Objective(s)  
•  Description of interactions (underlying 

network)  
•  Common information / Private information 
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General Framework!
•  Uncertainty (uncertain environment); decision makers (DMs) 

(players, agents); perceptions of DMs  on uncertainty; 
objective(s); description of interactions (underlying 
network); common information 

•  DMs pick policies (decision laws, strategies) leading to 
actions that evolve over time 

•  Policies are constructed based on information received 
(active as well as passive) and guided by individual utility or 
cost functions over the DM horizon 

–  Single DM => stochastic control 
–  Single objective => stochastic teams  
–  Otherwise ZS or NZS games, with NE 
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Coupling of Information and 
Actions "
!

•  Is the quality of active and relevant 
information received by a player 
affected by actions of other players ? 

–  If no => underlying game (team) is 
generally “simple” 

–  If yes => it is generally “difficult” 
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A stochastic decision problem is  
one with asymmetric information, 
if different decision units (players, 
agents, decision makers) acting at the  
same time instant do not have access 
to the same information (of relevance). 

Asymmetric Information 

Nov 11, 2014  ITN-SADCO!

A stochastic decision problem is  
one with non-classical information, 
if a decision unit, B, that “follows”  
another one, A, does not have all the 
information acquired and used by A. 

Non-classical Information 
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yA 

  B!   C!

yB yC 

Qi(x, uA, uB, uC) 
   i = A, B, C 
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Questions / Challenges 

•  Existence of team-optimal (T-O) solutions 
•  Existence of Nash equilibrium (NE)  
    policies (in dynamic stochastic games) 
•  Characterization of T-O solutions 
•  Characterization of NE policies 
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Questions / Challenges 

•  Existence of team-optimal (T-O) solutions 
•  Existence of Nash equilibrium (NE)  
    policies (in dynamic stochastic games) 
•  Characterization of T-O solutions 
•  Characterization of NE policies 
•  Challenges 
•  Possibility of non-existence with asymmetry 
•  Triple role  (caution, probing, signaling) 
•  Signaling (deception/threat) through action 
•  Tension between signaling and optimization 

NEXT: An example exhibiting the subtleties, 
such as the significance of failure of 
continuity of information content of  
channels in the limit of a sequence of  
discretized problems 
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SCP with non-classical 
information (limited memory) 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

x,  w ~ independent random variables 
 u0, u1  are real valued actions 
J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ] 
 
J* = min min J(γ0 , γ1)  

A! B!
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Non-classical SCP (2-pt pmf’s) 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

x ~ ± 1 with equal prob; likewise w 
 
J(γ0 , γ1) = E [k (u0 - x)2 + (u0 - u1)2 
                            | γ0 , γ1 ],  k > 0 
J* = inf inf J(γ0 , γ1)  

A! B!
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Infimizing policies 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

J* = inf inf J(γ0 , γ1) = 0 – lowest possible 
Consider the policies: 
γ0(x) =  x + ε sgn(x) 
γ1(y) =   1+ε,  if y=2+ε  or ε 
        = -1-ε,  if y=-2-ε or –ε 
! J = k ε2   " 0 as ε -> 0 
 

A! B!
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Infimizing policies 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

J* = inf inf J(γ0 , γ1) = 0 – lowest possible 
Consider the policies: 
γ0(x) =  x + ε sgn(x) 
γ1(y) =   1+ε,  if y=2+ε  or ε 
        = -1-ε,  if y=-2-ε or –ε 
! J = k ε2   " 0 as ε -> 0 
 

A! B!

But, as ε -> 0, limiting policies do not lead 
to J = 0 ! 
Loss of crucial information in the limit !!
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Same SCP but with Gaussian RVs 
(Witsenhausen, 1968) 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

x ~ N(0, σx
2)            w ~ N(0, σw

2)  
 
QW(x, u0, u1) =  k (u0 - x)2 + (u0 - u1)2 

optimal team solution exists, 
but its structure is not known 
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Same SCP but with Gaussian RVs 
(Witsenhausen, 1968) 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

QW(x, u0, u1) =  k (u0 - x)2 + (u0 - u1)2 

optimal team solution exists, 
but its structure is not known 
affine policies are not optimal 

Note that if u0 = γ0(x), best γ1 is  
      u1 = γ1(y) = E[γ0(x) | y] 
Hence optimization is with respect to 
the probability distribution of u0 
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Same SCP but with Gaussian RVs 
(Witsenhausen, 1968) 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

QW(x, u0, u1) =  k (u0 - x)2 + (u0 - u1)2 

optimal team solution exists, 
but its structure is not known 
affine policies are not optimal 

Original existence proof given by  
Witsenhausen involved calculus of  
variations type arguments, and does not 
extend to more general scenarios.  
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A class of non-linear policies 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

QW(x, u0, u1) =  k (u0 - x)2 + (u0 - u1)2 
A policy pair that beats the best linear one:  
u0 = γ0(x) = ε sgn (x) + λ x 
u1 = γ1(y) = E[ε sgn (x) + λ x | y] 
   optimize wrt  ε and λ   
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A class of non-linear policies 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

QW(x, u0, u1) =  k (u0 - x)2 + (u0 - u1)2 
A more general one with improved perf:  
u0 = γ0(x) = ε Quant (x) + λ x 
u1 = γ1(y) = E[ε Quant (x) + λ x | y] 
    optimize wrt ε and λ for different   
     Quant(ization) schemes (Bansal, TB ‘87)   !
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A class of non-linear policies 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

QW(x, u0, u1) =  k (u0 - x)2 + (u0 - u1)2 
u0 = γ0(x) = ε Quant (x) + λ x 
u1 = γ1(y) = E[ε Quant (x) + λ x | y] 
Best perf under linear could be arbitrarily 
bad against best performance under Quant 
=> supk,σ  [Qw

linear* / QW
Quant*]  = ∞    (Mitter, Sahai ‘99) ! Nov 11, 2014  ITN-SADCO!

BUT 
Is the solution to Wits (68) 

piecewise affine ? 
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NO 
 

It is strictly increasing with  
a real analytic left inverse 

 
                                 (Wu, Verdú – CDC’11)  
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NO 
It is strictly increasing with  
a real analytic left inverse 

 
                                 (Wu, Verdú  CDC’11 )  

Uses optimal transport theory: 
Given prob measures P and Q, and cost function 
 c: R2" R, find inf over all joint distributions 
of X and Y, with marginals P and Q, of 
                       E[c(X,Y)] 
                                                      (Monge-Kantorovich) 
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Alternative existence proof 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

QW(x, u0, u1) =  k (u0 - x)2 + (u0 - u1)2 

optimal team solution exists, 
but its structure is not known 
affine policies are not optimal 

E[c(x,u0)]= E[QW] = k W2(P,Q)2 + mmse(Q)  
where P and Q are PDF’s of x and u0, and 
W2 is the quadratic Wasserstein distance 
between P and Q.  
For any P, ∃ minimizing Q, with “smooth” γ0 .! Nov 11, 2014  ITN-SADCO!

Earlier general set-up with a 
different Q 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

x ~ N(0, σx
2)            w ~ N(0, σw

2) !
 u0, u1  are real valued actions 
J(γ0 , γ1) = E [ Q(x, u0, u1) | γ0 , γ1 ] 
 
Q(x, u0, u1) =  k (u0)2 + (u1 - x)2!

A! B!
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Gaussian Test Channel 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

Q(x, u0, u1) =  k (u0)2 + (u1 - x)2!

optimal control law (encoder/decoder)!
exists, and is linear!
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Generalized Gaussian Test Channel 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

Q(x, u0, u1) =  k (u0)2 + (u1 - x)2 + b0 u0 x!

optimal control law (encoder/decoder)!
exists, and is linear!
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Generalized Gaussian Test Channel "
(Proof of existence) 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

Q(x, u0, u1) =  k (u0)2 + (u1 - x)2 + b0 u0 x!
E[Q]=F(γ0, γ1) ≥ k α + β + infγ b0 E[ γ0(x)x]!
                        ≥ k α + β - sgn(b0) σx√ α!
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Generalized Gaussian Test Channel "
(Proof of existence-2)!

  ! γ0! γ1!+!
w!

y!u0! u1!x!

Q(x, u0, u1) =  k (u0)2 + (u1 - x)2 + b0 u0 x!
E[Q]=F(γ0, γ1) ≥ k α + β + infγ b0 E[ γ0(x)x]!
                        ≥ k α + β - sgn(b0) σx√ α!

DPT:          I(X;Y) ≥ I(X;U1)!
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Generalized Gaussian Test Channel "
(Proof of existence-3)!

  ! γ0! γ1!+!
w!

y!u0! u1!x!

Q(x, u0, u1) =  k (u0)2 + (u1 - x)2 + b0 u0 x!
E[Q]=F(γ0, γ1) ≥ k α + β + infγ b0 E[ γ0(x)x]!
                        ≥ k α + β - sgn(b0) σx√ α!

(1/2)log (1+(α/ σw
2)) ≥ I(X;Y) ≥ I(X;U1) ≥ (1/2)log (σx

2/ β) !
          C(α)                                               R(β)!
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Generalized Gaussian Test Channel "
(Proof of existence-4)!

  ! γ0! γ1!+!
w!

y!u0! u1!x!

Q(x, u0, u1) =  k (u0)2 + (u1 - x)2 + b0 u0 x!
E[Q]=F(γ0, γ1) ≥ k α + β + infγ b0 E[ γ0(x)x]!
                        ≥ k α + β - sgn(b0) σx√ α!

(1/2)log (1+(α/ σw
2)) ≥ I(X;Y) ≥ I(X;U1) ≥ (1/2)log (σx

2/ β) !
==>          β ≥ σw

2 σx
2 / (σw

2 + α)!
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Generalized Gaussian Test Channel "
(Proof of existence-5)!

  ! γ0! γ1!+!
w!

y!u0! u1!x!

Q(x, u0, u1) =  k (u0)2 + (u1 - x)2 + b0 u0 x!
E[Q]=F(γ0, γ1) ≥ k α + β + infγ b0 E[ γ0(x)x]!
                        ≥ k α + β - sgn(b0) σx √ α!

==>          β ≥ σw
2 σx

2 / (σw
2 + α)!

Inequality is tight with γ0 (x) = -sgn(b0)(√ α / σx) x !
Nov 11, 2014  ITN-SADCO!

Generalized Gaussian Test Channel "
(Proof of existence-6)!

  ! γ0! γ1!+!
w!

y!u0! u1!x!

Q(x, u0, u1) =  k (u0)2 + (u1 - x)2 + b0 u0 x!
E[Q]=F(γ0, γ1) ≥ k α + β - |b0| σx√ α!
                        ≥ k α + σw

2 σx
2 / (σw

2 + α) - |b0| σx√ α!

 Obtain the α that minimizes the bound --> α*!
Then,   γ0

*
 (x) = -sgn(b0)(√ α* / σx) x, γ1

*(y) = E[x|y]!
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Generalized Gaussian Test Channel 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

Q(x, u0, u1) =  k (u0)2 + (u1 - x)2 + b0 u0 x!
!

 One of the few instances when static/causal !
 coding (and linear in this case) leads to  
attainment of equality in  C(α) ≥ R(β)!
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Relay Channels 
Multiple Serial Decision Units 

  ! γ0! γm!+!

w0!

ym!u0!
um!x + v!

x ~ N(0, σx
2),   wi ~ N(0, σw

2),  v ~ N(0, σv
2)   

!
J(γ0 , γ[1,m]) = E [ Q(x, u0, u[1,m]) | γ0 , γ[1,m]] 
 
Q(x, u0, u[1,m]) = (um – x)2 + Σi=1m (ui-1)2 
 
!

+!

wm-1!

γi!….! ….!
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Multiple Serial Decision Units 

  ! γ0! γm!+!

w0!

ym!u0!
um!x + v!

x ~ N(0, σx
2),   wi ~ N(0, σw

2),  v ~ N(0, σv
2)   

!
J(γ0 , γ[1,m]) = E [ Q(x, u0, u[1,m]) | γ0 , γ[1,m]] 
!
! For m > 1, affine laws no longer optimal   
 for this extended GTC model  

+!

wm-1!

γi!….! ….!

Does a general unifying 
existence proof exist? 

One that would apply to  
•  Witsenhausen counter-example  
•  Gaussian test channel 
•  their multi-dimensional versions  
•  relay channels  
•  stochastic control problems with no memory 

or limited memory  
•  LQG teams with asymmetric information  
•  etc  Nov 11, 2014  ITN-SADCO!

Answer is YES 
(Gupta, Yüksel, TB -- CDC’14) 

Assumptions on the dynamic M-agent T 
stage stochastic team problem: 
•  Sequential decision problem: Agent i 

observes and recalls at time t, y(i,t), 
and constructs u(i,t)= γ(i,t)(y(i,t)) 

•  Inf J(γ) is finite (e.g. use zero control) 
•  Witsenhausen’s static reduction holds 
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Answer is YES 
(Gupta, Yüksel, TB -- CDC’14) 

Assumptions on the dynamic M-agent T 
stage stochastic team problem: 
•  Sequential decision problem: Agent i 

observes and recalls at time t, y(i,t),, 
and constructs u(i,t)= γ(i,t)(y(i,t)) 

•  Inf J(γ) is finite (e.g. use zero control) 
•  Witsenhausen’s static reduction holds 
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Static reduction: 
•  Convert M-agent team to MT-agent one 
    where each agent acts only once  
•  Measure and cost transformation that 
    turns the dynamic problem into static 
    one, with independent measurements 
    (measurements now enter into cost) 
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Static Reduction for the C-example 

  ! γ0! γ1!+!
w!

y!u0! u1!x!

x ~ N(0, σx
2)            w ~ N(0, σw

2)  
QW(x, u0, u1) =  k (u0 - x)2 + (u0 - u1)2 

    ∫ P(dx)P(dy) QW(x, u0, u1)  
             # exp (u0 (2y - u0)/2) 
x ~ N(0, σx

2)       y ~ N(0, 1)  
           independent Nov 11, 2014  ITN-SADCO!

Challenges in the Proof 

•  Extracting a convergent subsequence of 
the infimizing sequence 

•  Showing lower semi-continuity of J 
•  Making sure that informational 

constraints are preserved in the limit 
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Approach to Overcome 
Challenges in the Proof 

•  With static reduction, redefine optimization 
over randomized strategies 

•  Because of independence of measurements 
information constraints are preserved 

•  Identify a compact set that contains the 
optimal solution (Markov’s inequality) 

•  Use Blackwell’s irrelevant information 
theorem to go to deterministic policies 

•  Invoke equivalence of reduced static and 
dynamic teams 
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Assumptions & Approach 
Apply to Various Settings 

•  Multi-dimensional Witsenhausen C-E 
•  Multi-dimensional Gaussian Test Channel 
•  Relay channel and multi-dimensional version 
•  LQG with static output feedback (solution is 

generally nonlinear) 
•  Countable/quantized observation spaces in 

static teams with observation sharing IS 
(uses a lifting technique) 
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Details in: A. Gupta, S. Yüksel & TB, 
“Existence of optimal strategies in a  
class of dynamic stochastic teams,” 
CDC 2014 
 
Also: Gupta, Yüksel, Langbort & TB (ACC’14)          
 
And: Gupta, Yüksel, TB & Langbort, 
On the existence of optimal policies in a 
class of sequential dynamic teams,” 2014 ( arxiv) 
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Comprehensive coverage of analysis, 
optimization and performance of 
stochastic networked systems in 
             
Stochastic Networked Control Systems: 
Stabilization and Optimization under Information  
Constraints   -- Yüksel & TB 
Birkhäuser, 2013 
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Stochastic Dynamic Games 
with Asymmetric Information 

 
“Lifting” to a symmetric game 

utilizing the common information 
of the players 

Formulation 

•  Game G1: n player game with state & 
measurement for Pi: 

   xi
t+1 = fi

t(xi
t, xt, ui

t, wi
t) 

   yi
t = hi

t(xi
t, xt, vi

t),   i = 1, … , n 
•  Some sharing of past measurements and 

control actions by the players " I(i,t) 
•  Player i’s policy at time t: g(i,t): I(i,t) -> U(i,t) 
•  Ji(g1, ..., gn) = E[∑[1, T] ci(xi

t, xt, ut)|g] 
•  Interested in Nash equilibrium g* 

Nov 11, 2014  ITN-SADCO!
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Transformation to a game with 
symmetric information (say, n=2) 

•  Decompose into common and private 
information:  Ct = I(1,t) � I(2,t) , P(i,t) = I(i,t) \ Ct 

•  Replace Pi with FPi who has access to Ct, and 

    selects Γi
t: P(i,t) -> Ui according to φi

t  

       (his strategy):   Γi
t = φi

t(Ct) 
•  Then, control action is: ui

t = Γi
t(P(i,t)) 

•  Cost: Li(φ1, ..., φn) = E[∑[1, T] ci(xi
t, xt, ut)|φ] 

    ! Game G2 

 

Models with Asymmetric Information 
(with A. Nayyar, 2012) 

•  Game G1: Local state process (xi) for 
Pi & global state process (z): 

   zt+1 = f0
t(zt, ut, w0

t) 
   xi

t+1 = fi
t(zt, ut, wi

t) 
•  ui

t = μi
t(xi

[1,t], z[1,t], u[1,t-1]) 
•  Ji(μ1, ..., μn) = E[∑[1, T] ci(xi

t, zt, ut)|μ] 
•  Interested in Nash equilibrium μ* 
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Theorem: Let g be a NE for G1. Define 
   φi

t(Ct) = gi
t( #, Ct)  

Then, φ is a NE for G2. Conversely, if φ is  
a NE for G2,  g as above is a NE for G1. 
 

Game G2: Replace Pi with FPi who has   
access to Ct, and selects Γi

t: P(i,t) -> Ui  
according to φi

t  (his strategy):   Γi
t = φi

t(Ct) 
Then, control action is: ui

t = Γi
t(P(i,t)) 

Cost: Li(φ1, ..., φn) = E[∑[1, T] ci(xi
t, xt, ut)|φ] 

 

What does this lead to 
(conceptually) 

•  Since G2 is a symmetric full information game, its 
NE can be obtained by backward induction 
(strongly-time consistent, sub-game perfect, etc), 
albeit with optimization on a function space {Γi

t} 
  ! Markov perfect equilibrium (MPE) – generally one          
       of many other NE which however are not STC 
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What does this lead to 
(conceptually) 

•  Since G2 is a symmetric full information game, its 
NE can be obtained by backward induction 
(strongly-time consistent, sub-game perfect, etc), 
albeit with optimization on a function space {Γi

t} 
! Markov perfect equilibrium (MPE) – generally one          
       of many other NE which are not STC 
•  For ZS version, non-uniqueness is not an issue 
•  NEED some conditions for this to go through 
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Assumptions / Approach   

•  Common information Ct does not contract 
•  Common information based common belief is 

independent of the policies of the players 
•  ----------------------------------------------- 
•  Introduced common information based game 

(G2) on lifted strategy spaces  
•  MPE of G2 is CIMPE for G1 
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Assumptions / Approach / Result   
•  Common information Ct does not contract 
•  Common information based common belief is 

independent of the policies of the players 
•  ----------------------------------------------- 
•  Introduced common information based game 

(G2) on lifted strategy spaces as before 
•  MPE of G2 is CIMPE for G1 
! For LQG, CIMPE is unique & CIMPE  
    strategies are affine; computation involves  
    solving linear eqs 
 

What does this lead to 
•  Since G3 is a symmetric full information game, its 

NE can be obtained by backward induction 
(strongly-time consistent, sub-game perfect, etc), 
albeit with optimization on a function space {Γi

t} 
•  For ZS version, (z[t-1, t], ut-1) can be replaced with 

z[t-1, t], with the caveats identified earlier 
•  Extends to teams against teams in ZS context 
•  Generalization to noisy channels (next) 
•  Other contexts where a SDG with asymmetric 

information can be transformed to one with 
symmetric information (through “lifting”) 
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Recap   
•  We now have a general theory of existence of 

team-optimal solutions in stochastic dynamic 
teams with asymmetric and non-classical IS  

•  Caveats in computations based on 
discretization/quantization 

•  Lifting of SGs with asymmetric information 
to ones with symmetric information at the 
expense of increase in complexity 

•  Common information based MPE offers 
computational advantages 
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