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An Optimal Control Problem with
Constant Time-Delay & Free End-Time


Minimize g(T , x(T ))

over pairs (T , x(.)) satisfying

ẋ(t) ∈ F (t, x(t), x(t −∆)), t ∈ [0,T ]

x(s) = x0(s), s ∈ [−∆, 0]

F(0,x(0),x(−  ))∆

Here ∆ > 0 is a fix constant and T > 0 is a choice variable!

F (.) is a given set-valued map. We could adopt the standard
identification

F (t, x , y) = {f (t, x , y , u) : u ∈ U} .
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Quick Overview on Classical Techniques
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Free End-Time (Time Transformation)

Consider a classical delay-free problem
Min g(T , x(T )) :
ẋ(t) ∈ F (t, x(t)), a.e.
x(0) = x0

Free time −→ Fixed time
x(t) −→ y(s),

Apply the time transformation

t = sT


Min g(t(1), y(1)) :
ẏ(s) ∈ T · F (t(s), y(s)), s ∈ [0, 1]
x(0) = x0

Where
y(s) := x(sT )
T is a new “control”
t(s) is a new state

Standard Optimal Control Problem!
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Reduction for Time-Delay Systems
Consider the following problem

Min g(T , x(T )) :
ẋ(t) ∈ F (t, x(t), x(t −∆)), a.e.
x(0) = x0

Apply the time transformation

t = sT

Now, how do we rewrite the delay bit?

x(t −∆) = x(sT −∆) = x(T (s − T−1∆)) = y(s − T−1∆)

The new delay depend on the control parameter T !

I C. Liu, R. Loxton, K.L. Teo, A computational method for
solving time-delay optimal control problems with free terminal
time , 2014
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Reduction to a Delay-Free case
If the final time T > 0 is fixed, then

(PT )


Min g(T , x(T )) :
ẋ(t) ∈ F (t, x(t), x(t −∆),
x(0) = x0

⇒

t ∈ [0,∆] → F (t, x(t), x0(t −∆)) → x1(.)
t ∈ [∆, 2∆] → F (t, x(t), x1(t −∆)) → x2(.) . . .
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Some References

Techniques not based on a time transformation:

I J. Warga, Controllability, extremality, and abnormality in
nonsmooth optimal control, 1983

I G. L. Kharatishvili and T. A. Tadumadze, Formulas for
variations of solutions to a differential equation with retarded
arguments and a discontinuous initial condition, 2005

I A. Boccia, P. Falugi, H. Maurer, R.B. Vinter, Free time
optimal control problems with time delays, 2014

Numerical Approach to deal with parameter dependent time-delay

I C. Liu, R. Loxton, K.L. Teo, A computational method for
solving time-delay optimal control problems with free terminal
time , 2014
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Can we neglect delays?
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Metal Cutting

Figure: From Wikipedia

I Gabor Stepan, Modelling nonlinear regenerative effects in
metal cutting
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Chemical Engineering Transportation Delay

I Göllmann, Kern, Maurer, Optimal control problems with
delays in state and control variables subject to mixed
controlstate constraints
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Necessay conditions for
Min g(T , x(T )) :
ẋ(t) = f (t, x(t), x(t −∆), u(t)), a.e.
u(t) ∈ U
x(s) = x0(s), s ∈ [−∆, 0]

We used techniques developed in

I F. H. Clarke and R. B. Vinter, Optimal multiprocesses,
1989
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Delayed Maximum Principle
min{g(T , x(T )) : ẋ(t) = f (t, x(t), x(t − h), u(t)), . . . }

Let (x̄(.), ū(.)) be a minimizer. When we freeze

T = T̄

a standard delayed maximum principle for fixed end-time must be
satisfied. Then there exists p(.) ∈ AC ([0, 1];Rn)

I Adjoint Equation: for a.e. t ∈ [0, T̄ ]

−ṗ(t) = p(t) · ∇x f (t, x̄(t), x̄(t − h), ū(t)) +

p(t + h) · ∇y f (t + h, x̄(t + h), x̄(t), ū(t + h)) · χ[0,1−h](t)

(costate satisfies delay equation in reverse time)

I Transversality Condition: −p(T̄ ) = ∇xg(T̄ , x̄(T̄ )).

I Weierstrass Condition: for a.e. t ∈ [0, T̄ ]

p(t)·f (t, x̄(t), x̄(t−h), ū(t)) = max
u∈U
{p(t)·f (t, x̄(t), x̄(t−h), u)}.
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Transversality Condition

We need to derive an extra condition to take account of the extra
degree of freedom. Defining

H(t, x , y , p) := max
u∈U
{p · f (t, x , y , u)}

We can prove the following

∇Tg(T̄ , x̄(T̄ )) = H(T̄ , x̄(T̄ ), ū(T̄ ), p(T̄ ))

IDEA:

g(T̄ , x̄(T̄ )) ≤ g(T̄ − ε, x̄(T̄ − ε))

= g(T̄ , x̄(T̄ ))− ε∇Tg(T̄ , x̄(T̄ ))−
∫ T̄
T̄−ε∇xg(T̄ , x̄(T̄ )) · ẋ(t) dt

⇒ ∇Tg(T̄ , x̄(T̄ )) ≤ 1
ε

∫ T̄
T̄−ε p(T̄ ) · ẋ(t) dt
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Sensitivity Analysis
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Sensitivity Information

Fix the end-time T . How does the minimum cost change with T?

(PT )


Minimize g(T , x(T )) s.t.
dx(t)/dt = f (t, x(t), x(t − h), u(t)) a.e.
u(t) ∈ U
x(t) = x0(t), t ∈ [−h, 0]
x(T ) ∈ C .

Define V (.) : R→ R

V (T ) := min{PT} .
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Sensitivity Information (cont.)

Notice that, if (x̄(.), ū(.)) solves (PT̄ ) then

g(T̄ , x̄(T̄ )) = V (T̄ )
g(T , x(T )) ≥ V (T )

for any (x(.), u(.)) on [0,T ]. Hence (T̄ , x̄(.), ū(.)) solves
Minimize g(T , x(T ))− V (T ) s.t.
dx(t)/dt = f (t, x(t), x(t − h), u(t)) a.e.
u(t) ∈ U
x(t) = x0(t), t ∈ [−h, 0]
x(T ) ∈ C .

PMP gives

∇TV (T̄ ) = ∇Tg(T̄ , x̄(T̄ ))−H(T̄ , x̄(T̄ ), ū(T̄ ), p(T̄ ))
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Computational Aspects

Consider the fixed time problem

(PT )


Minimize g(T , x(T )) s.t.
dx(t)/dt = f (t, x(t), x(t − h), u(t)) a.e.
u(t) ∈ U
x(t) = x0(t), t ∈ [−h, 0]
x(T ) ∈ C .

Solution Technique

I Apply Guinn transformation to eliminate delay

I Reduce to NLP by time discretization

I Solve and generate costate trajectory p(.), using IPOPT, or
other optimization software.
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Computational Aspects (cont.)
Solution of free-time problems is based on

I For fixed Ti , we can compute solution (xi (.), ui (.)) to PTi
and

costate pi (.) and also

I Formulae of sensitivity to change of end-time:

dV

dT
(Ti ) = ∇Tg(Ti , xi (Ti ))−H(Ti , xi (Ti ), ui (Ti ), pi (Ti ))

T T

V

T T
ii+1Ti+1

i
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Example: Optimal fishing



Minimize

∫ T

0
e−βt(CEx(t)−1u(t)3 − pu(t)) dt + 0.1T 2

over T > 0, x(.) and u(.) satisfying

ẋ(t) = ax(t)

(
1− x(t − h)

b

)
− u(t)

x(t) = 2, t ∈ [−h, 0]
u(t) ≥ 0, t ∈ [0,T ] .

x(t): biomass of population.
u(t): harvesting effort.
CE = 0.2 (harvesting cost) , a = 3 and b = 5 (growth rates),
β = 0.05 (discount rate) and p = 2 (market price), h = 0.5.
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Figure: End-time value function and performance of algorithm based on
sensitivity formulae, for various starting times: T0 = 0.5(◦),T0 = 3.5(♦).
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Figure: Optimal input (left) and respective fluctuation of the fish
population (right)
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Summing up

I We developed an analysis to address Delayed & Free
End-Time Optimal Control Problems

I We derived numerical schemes (better convergence)

Future work

I State constraints

I Time dependent delays

I Input delays . . .
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Grazie...

Andrea Boccia (aboccia@mit.edu)
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