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Introduction
Setting

Let (Ω,F, {Ft}t≥0,P) be a filtered probability space. Consider the
following controlled SDE in Rd :{

dX (s) = b(s,X (s), u(s))ds + σ(s,X (s), u(s))dBs s ∈ [t,T ]
X (t) = x

(1)
where, for a given compact set U:

u ∈ U := {Progr. meas. processes with values in U}

 ∃ X (·) := X u
t,x(·): unique strong solution of (1) associated to

the control u. (under usual regularity assumptions on b,σ).
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Introduction
State-constrained OCPs

Let ψ : Rd → R (terminal cost) and ` : [0,T ]× Rd × U → R
(running cost).
Let K ⊆ Rd be a non empty and closed set.

STATE-CONSTRAINED OCP:

υ(t, x) = inf
u∈U

{
E
[
ψ(X u

t,x(T )) +

∫ T

t

`(s,X u
t,x(s), u(s))ds

]
:

such that X u
t,x(s) ∈ K,∀s ∈ [t,T ] a.s.

}
Example: No control, ` ≡ 0, problem is:

υ(t, x) = E
[
ψ(Xt,x(T ))

]
on processes s.t. Xt,x(·) ⊂ K.
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Introduction
State-constrained OCPs

• Find an HJB (PDE) characterization of the value function
• Avoid if possible controllability or feasability conditions
• Framework that enables further numerical approximation
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Introduction
Example of State-constrained OCPs

aircraft landing problem with wind disturbances

energy consumption/demand problem with limited resource

super replication problems in finance

... any stochastic problem with state constraints
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Introduction
Methodology (NO STATE CONSTRAINTS)

1 Find an PDE for the value function v

2 Look for an optimal trajectory X (.) in the DPP.

• Ex: NO STATE CONSTRAINTS, DETERMINISTIC CASE:

υ(t, x) = inf
u∈U

ψ(X u
t,x(T ))

Then the DPP reads, for 0 < h ≤ T − t,

υ(t, x) = inf
u∈U

υ(t + h,X u
t,x(t + h))

and the HJB equation (PDE) is

−υt + max
u∈U

(−b(t, x , u) · ∇υ) = 0 (2)
υ(T , x) = ψ(x). (3)
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Introduction
Methodology

• Ex: NO STATE CONSTRAINTS, STOCHASTIC CASE:

υ(t, x) = inf
u∈U

E
[
ψ(X u

t,x(T ))
]

Then the DPP reads

υ(t, x) = inf
u∈U

E
[
υ(t + h,X u

t,x(t + h))
]

and the HJB equation (PDE) is

−υt + max
u∈U

(
− b(t, x , u) · ∇υ − 1

2
Tr(σσTD2υ)

)
= 0 (4)

υ(T , x) = ψ(x). (5)
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Introduction
Related approaches

Characterisation of viability kernels:
Aubin- Da Prato (90,98), ...
Buckdahn, Peng, Quincampoix, Rainer (98)
Quincampoix-Rainer (05)

Stochastic target problems
Soner-Touzi (00), (02), (09)
Bouchard-Elie-Imbert (10)

⇒ may need compatibility conditions like

∀x , ∀p 6= 0, ∃a ∈ U, 〈σ(x , a), p〉 = 0

invertibility condition on the matrix σ

or other feasibility conditions ...
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Outline of the talk

1 Deterministic case
Step 1: link with reachability problem
Step 2: level set approach

2 Stochastic case
Step 1: reachability problem using unbounded controls
Step 2: level set approach
Step 3: HJB equation and uniqueness result
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Deterministic case

Let us consider the following dynamics{
Ẋ (s) = b(s,X (s), u(s)), s ∈ [t,T ]
X (t) = x

(6)

where

u ∈ U :=
{

u : [0,T ]→ U, measurable function
}
.

The STATE-CONSTRAINED OCP is:

υ(t, x) = inf
u∈U

{
ψ(X u

t,x(T )) +

∫ T

t
`(s,X u

t,x(s), u(s))ds :

X u
t,x(s) ∈ K, ∀s ∈ [t,T ]

}
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Deterministic case

Assumptions:

(D1) U ⊆ Rm is a compact set;

(D2) b : [0,T ]× Rd × U → Rd continuous function, Lipschitz
continuous w.r.t. x (unif. in t and u)

 X u
t,x(·) unique solution of (6).

(D3) ` : [0,T ]× Rd × U → R, ψ : Rd → R continuous functions,
Lipschitz continuous w.r.t. x unif. in t and u.

(D4) ∀(t, x) ∈ [0,T ]× Rd , (b, `)(t, x ,U) is convex (or weaker
assumption for existence of a minima)
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Deterministic case
Step 1: link with reachability problem

Let us introduce

Zu
t,x ,z(θ) := z −

∫ θ

t
`(s,X u

t,x(s), u(s))ds.

Then,

υ(t, x)− z = inf
u∈U

{
ψ(X u

t,x(T )) +

∫ T

t

`(·)− z , X u(·) ⊂ K
}

= inf
u∈U

{
ψ(X u

t,x(T ))− Z u
t,x,z(T ), X u(·) ⊂ K

}
So v(t, x) ≤ z ⇔ (x , z) ∈ Rψ,Kt , where

Rψ,Kt :=

{
(x , z) ∈ Rd+1 : ∃u ∈ U such that

(X u
t,x(T ),Z u

t,x,z(T )) ∈ epi(ψ)1 and X u
t,x(·) ⊂ K

}
.

”state-constrained backward reachable set”
1epi(ψ) := {(x , z) ∈ Rd+1 : ψ(x) ≤ z}
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Deterministic case
Step 1: link with reachability problem

By using (D4) and compactness of the set of trajectories, one has

υ(t, x) = inf

{
z ∈ R : (x , z) ∈ Rψ,Kt

}
. (7)
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Deterministic case
Step 2: level set approach

In order to characterize Rψ,Kt the level set approach will be applied.

Idea of the level set approach

Step 1. Interpret the set Rψ,Kt as the level set (negative region) of
a continuous function.
Step 2. HJB approach

Main advantages:

Take into account state constraints without any further
assumption;

Availability of many numerical methods for solving PDEs.
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Deterministic case
Step 2: level set approach

Let us introduce LEVEL SET FUNCTIONS g
ψ

: Rd+1 → R and

gK : Rd → R, Lipschitz continuous, such that:

g
ψ

(x , z) ≤ 0 ⇔ (x , z) ∈ epi(ψ),

gK(x) ≤ 0 ⇔ x ∈ K.

Theorem (TWO AUXILIARY UNCONSTRAINED OCPs)

OCP1: w1(t, x , z) := inf
u∈U

g
ψ

(X u
t,x(T ),Z u

t,x,z(T ))︸ ︷︷ ︸
≡ψ(X u

t,x (T ))−Z u
t,x,z (T )

∨
max

s∈(t,T )
gK(X u

t,x(s))︸ ︷︷ ︸
≡dS (X u

t,x (s),K)

OCP2: w2(t, x , z) := inf
u∈U

g
ψ

(X u
t,x(T ),Z u

t,x,z(T ))︸ ︷︷ ︸
≡max(ψ(X u

t,x (T )−Z u
t,x,z (T ),0)

+

∫ T

t

gK(X u
t,x(s))︸ ︷︷ ︸

≡d(X u
t,x (s),K)

ds

Then w1(t, x , z) ≤ 0 ⇔ w2(t, x , z) = 0⇔ (x , z) ∈ Rψ,Kt .

Remarks - Reachability with state constraints: B. - Forcadel - Zidani (10’)
- OCP1 approach : Altarovici-B.-Zidani (ESAIM-COCV ’13)

- OCP1 and OCP2 are numericaly compared in B.-Cheng-Shu (’13)
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Deterministic case
Step 2: level set approach

Proposition

Let assumptions (D1)-(D4) be satisfied and k = 1 or k = 2. Then
(i)

Rψ,Kt =

{
(x , z) ∈ Rd+1 : wk(t, x , z) ≤ 0

}
(ii) w1 (resp w2) is the unique continuous viscosity solution of the following
HJB equation: min

(
− wt + sup

a∈U

(
− b(t, x , a)Dxw + `(t, x , a)∂zw

)
, w − gK(x)

)
= 0

w(T , x , z) = gψ (x , z) Rd+1

resp.:{
−∂tw + sup

a∈U

(
− b(t, x , a)Dxw + `(t, x , a)∂zw − gK(x)

)
= 0 [0,T )× Rd+1

w(T , x , z) = gψ (x , z) Rd+1
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Deterministic case
Step 2: level set approach

Comparison of OCP1 and OCP2 (B.-Cheng-Shu ’13)

• Obstacle: υ(t, x) := min
u∈U

dS
C (X u

0,x(t))
∨

max
s∈[0,t]

dS
K(Xα

0,x(s))

min

(
υt + max (0, 2π(−x2, x1) · ∇υ) , υ − dS

K(x)

)
= 0

υ(0, x) = dS
C (x)

• Penalization : υ(t, x) := min
u∈U

dC(X u
0,x(t)) +

∫ t

0
dK(X u

0,x(s))ds

υt + max
α

(0, 2π(−x2, x1) · ∇υ)− dK(x) = 0

υ(0, x) = dC(x)

Rem 1: OCP1 (sup. costs) have already been considered by Barron-Ishii
(’89), . . .

Rem 2: OCP2 is also introduced in Kurzanski-Varaiya (’06) for

reachability problems
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OCP1/obstacle (up) vs OCP2/penalization (down)
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 Exact
 Obstacle

Figure: DG scheme of B.-Cheng-Shu 2011, plots at time t = 0.75, with Q2

elements and 80× 80 mesh cells.
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Deterministic case
Step 2: level set approach

The approach OCP1 is very efficient and is currently applied to
various problem of average dimension (4-6):
- UAV
- space launching problem
- vehicle collision avoidance

REFS:

Crück-Désilles-Zidani (Collision analysis for a UAV) AIAA
Guidance, Nav. and Cont. conf. 2012

B.-Bourgeois-Désilles-Zidani, Preprint (CNES climbing
problem)

Xausa-Baier-B.-Gerdts, SIAM Conference CT13, Preprint 2014
(Applications of Reachable Sets to Driver Assistance Systems)
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Stochastic case

1 Deterministic case
Step 1: link with reachability problem
Step 2: level set approach

2 Stochastic case
Step 1: reachability problem using unbounded controls
Step 2: level set approach
Step 3: HJB equation and uniqueness result
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Stochastic case

Let (Ω,F, {Ft}t≥0,P) be a filtered probability space. Consider the
following controlled SDE in Rd :{

dX (s) = b(s,X (s), u(s))ds + σ(s,X (s), u(s))dBs s ∈ [t,T ]
X (t) = x

(8)
where

u ∈ U := {Progr. meas. processes with values in U}.

The STATE-CONSTRAINED OCP is:

υ(t, x) = inf
u∈U

{
E
[
ψ(X u

t,x(T )) +

∫ T

t
`(s,X u

t,x(s), u(s))ds

]
:

X u
t,x(·) ⊂ K a.s.

}
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Stochastic case

Assumptions:

(S1) u(·) ∈ U a.s., with U ⊆ Rm compact set;

(S2) b, σ : [0,T ]× Rd × U → Rd ,Rd×p are continuous functions,
Lipschitz continuous w.r.t. x (unif. in t and u).

 X u
t,x(·) unique strong solution of (8).

(S3) ψ : Rd → R, ` : [0,T ]× Rd × U → R continuous functions,
Lipschitz continuous w.r.t. x (unif. in t and u).

(S4) ψ and ` are bounded from below.
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Stochastic case
Step 1: reachability problem using unbounded controls

Link between the OCP and a reachability problem :

υ(t, x) = inf

{
z :

∃u, E
[
ψ(X u

t,x(T )) +

∫ T

t

`(s,X u
t,x(s), u(s))ds

]
≤ z

and X u
t,x(s) ∈ K,∀s ∈ [t,T ] a.s.

}
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Stochastic case
Step 1: reachability problem using unbounded controls

How to link this problem with a reachability one?
Of course,

z ≥ E
[
ψ(X u

t,x(T ))

]
DO NOT IMPLY z ≥ ψ(X u

t,x(T )) a.s.

Thanks to Ito’s representation theorem this is OK up to a
martingale: ∃α ∈ A := L2

F (Rp-valued prog. meas. process):

ψ(X u
t,x(T )) = E

[
ψ(X u

t,x(T ))] +

∫ T

t
αs · dBs , a.s.

A first equivalence

So z ≥ E
[
ψ(X u

t,x(T ))

]
⇐⇒ ∃α ∈ A, z ≥ ψ(X u

t,x(T ))−
∫ T

t

αs · dBs , a.s.

Olivier Bokanowski HJB approach for sto. OCPs with st. constraints 25/39



Stochastic case
Step 1: reachability problem using unbounded controls

How to link this problem with a reachability one?
Of course,

z ≥ E
[
ψ(X u

t,x(T ))

]
DO NOT IMPLY z ≥ ψ(X u

t,x(T )) a.s.

Thanks to Ito’s representation theorem this is OK up to a
martingale: ∃α ∈ A := L2

F (Rp-valued prog. meas. process):

ψ(X u
t,x(T )) = E

[
ψ(X u

t,x(T ))] +

∫ T

t
αs · dBs , a.s.

A first equivalence

So z ≥ E
[
ψ(X u

t,x(T ))

]
⇐⇒ ∃α ∈ A, z ≥ ψ(X u

t,x(T ))−
∫ T

t

αs · dBs , a.s.

Olivier Bokanowski HJB approach for sto. OCPs with st. constraints 25/39



Stochastic case
Step 1: reachability problem using unbounded controls

How to link this problem with a reachability one?
Of course,

z ≥ E
[
ψ(X u

t,x(T ))

]
DO NOT IMPLY z ≥ ψ(X u

t,x(T )) a.s.

Thanks to Ito’s representation theorem this is OK up to a
martingale: ∃α ∈ A := L2

F (Rp-valued prog. meas. process):

ψ(X u
t,x(T )) = E

[
ψ(X u

t,x(T ))] +

∫ T

t
αs · dBs , a.s.

A first equivalence

So z ≥ E
[
ψ(X u

t,x(T ))

]
⇐⇒ ∃α ∈ A, z ≥ ψ(X u

t,x(T ))−
∫ T

t

αs · dBs , a.s.

Olivier Bokanowski HJB approach for sto. OCPs with st. constraints 25/39



Stochastic case
Step 1: reachability problem using unbounded controls

Let

Zu,α
t,x ,z(·) := z −

∫ ·
t
`(s,X u

t,x(s), u(s))ds +

∫ ·
t
αs · dBs . (9)

In particular,

z ≥ E
[
ψ(X u

t,x(T )) +

∫ T

t
`(s,X u

t,x(s), u(s))ds

]
⇐⇒ ∃α ∈ A, Zα,u

t,x ,z(T ) ≥ ψ(X u
t,x(T )) a.s.
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Stochastic case
Step 1: reachability problem using unbounded controls

⇒ We consider the following stochastic state-constrained
backward reachable set

Rψ,Kt :=

{
(x , z) ∈ Rd+1 : ∃(u, α) ∈ U ×A such that

(X u
t,x(T ),Z u,α

t,x,z(T )) ∈ epi(ψ) and X u
t,x(s) ∈ K,∀s ∈ [t,T ] a.s.

}
.

Then

υ(t, x) = inf

{
z ∈ R : (x , z) ∈ Rψ,Kt

}
.
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Stochastic case
Step 2: level set approach

Let us use again the level set approach. We use the OCP2
approach, with non-negative level set functions.

Let

g
ψ

(x , z) := max(ψ(x)− z , 0) and gK(x) := d(x ,K).

In particular:

g
ψ
, gK ≥ 0 and g

ψ
(x , z) = 0⇔ (x , z) ∈ epi(ψ), gK(x) = 0⇔ x ∈ K.

AUXILIARY UNCONSTRAINED OCP:

w(t, x , z) = inf
(u,α)∈U×A

E
[

g
ψ

(X u
t,x(T ),Z u,α

t,x,z(T ))︸ ︷︷ ︸
≡max(ψ(X u

t,x (T ))−Z u,α
t,x,z (T ), 0)

+

∫ T

t

gK(X u
t,x(s))︸ ︷︷ ︸

≡dK(X u
t,x (s))

ds

]
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Stochastic case
Step 2: level set approach

Proposition

Assume (S1)-(S3) and (I ): the infimum in w is reached.
Then

Rψ,Kt =
{

(x , z) ∈ Rd+1 : w(t, x , z) = 0
}

Application:

υ(t, x) = inf

{
z ∈ R : w(t, x , z) = 0

}
.

• (I ) can be realized under some convexity assumption on
(b, `, σσT ). It is also the case when b, σ depends linearly upon x
and u, for K convex set (⇒ dK convex) and Ψ, ` convex in (x , u).
• But αs is unbounded ...
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Some References (unbounded controls)

Lasry - Lions (Cras ’00) : ”A new class of sing. sto. cont. pbs.”
(b(x , u) = b1(x) + b2(x)u).

Pham (Prob. Surveys ’05) : HJB equation for unbounded controls

Brüder (Preprint HAL ’05) : comparison principle for a
super-replication problem in Finance

B. - Brüder-Maroso-Zidani (SINUM ’09) : convergence of SL
scheme for a super-replication problem

Debrabant-Jakobsen (Math. Comp. ’13) : high order SL schemes
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Stochastic case
Step 3: HJB equation and uniqueness result

Recall that (
dXs

dZs

)
=

(
b(Xs)

−`(Xs , us)

)
+

(
σ
α

)
dWs

and

w(t, x , z) = inf
(u,α)∈U×A

E
[

max(ψ(X u
t,x(T ))− Z u,α

t,x,z(T ), 0) +

∫ T

t

dK(X u
t,x(s))

]
The HJB equation associated to the AUXILIARY OCP would be,
in the case p = d = 1:

sup
u∈U
α∈R

{
− ∂tw +−b∂xw + `∂zw − 1

2
σ2∂xxw − ασ∂xzw − 1

2
α2∂zzw − gK

}
︸ ︷︷ ︸

=:H(t,(x,z),wt ,Dw ,D2w)

= 0

⇒ Because of unbounded controls, H can be unbounded !
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Notice that

sup
α∈R

(
A− 2Bα + Cα2

)
= 0 ⇔ A ≤ 0, AC ≤ B2

Better is

sup
α∈R

A− 2Bα + Cα2 = 0

⇔ sup
α0,α1∈R2, α0 6=0

A− 2B
α1

α0
+ C (

α1

α0
)2 = 0

⇔ sup
α0,α1∈R2

Aα2
0 − 2Bα0α1 + Cα2

1 = 0

⇔ sup
(α0,α1)∈S1

(
α0

α1

)T (
A −B
−B C

)(
α0

α1

)
= 0

⇔ Λ+

(
A −B
−B C

)
= 0

Olivier Bokanowski HJB approach for sto. OCPs with st. constraints 32/39



Notice that

sup
α∈R

(
A− 2Bα + Cα2

)
= 0 ⇔ A ≤ 0, AC ≤ B2

Better is

sup
α∈R

A− 2Bα + Cα2 = 0

⇔ sup
α0,α1∈R2, α0 6=0

A− 2B
α1

α0
+ C (

α1

α0
)2 = 0

⇔ sup
α0,α1∈R2

Aα2
0 − 2Bα0α1 + Cα2

1 = 0

⇔ sup
(α0,α1)∈S1

(
α0

α1

)T (
A −B
−B C

)(
α0

α1

)
= 0

⇔ Λ+

(
A −B
−B C

)
= 0

Olivier Bokanowski HJB approach for sto. OCPs with st. constraints 32/39



In the same way, if B = (B1, . . . ,Bp)T ∈ Rp:

sup
α∈Rp

A− 2〈B, α〉+ C‖α‖2 = 0

⇔ Λ+


A −B1 . . . −Bp

−B1 C 0
...

. . .
...

−Bp 0 . . . C

 = 0
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Stochastic case
Dealing with unbounded controls

Let us define the matrix of R(p+1)×(p+1):

Lu(t, (x , z),Dw ,D2w) :=


A −B1 . . . −Bp

−B1 C 0
...

. . .
...

−Bp 0 . . . C


where

A

2
:= −∂tw − b · Dxw + ` ∂zw − 1

2
Tr(σσTD2

x w)− gK .

B := σTDx∂zw = (B1, . . . ,Bp)T , and C := −∂zzw

By elementary calculus (for regular ϕ):

H(t, (x , z),wt ,Dϕ,D
2ϕ) = 0

⇔ sup
u∈U

Λ+

(
Lu(t, (x , z),Dϕ,D2ϕ)

)
= 0.
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Stochastic case
Step 3: HJB equation and uniqueness result

Theorem

Let assumptions (S1)-(S3) be satisfied. Then w is a viscosity
solution of the following generalized HJB equation sup

u∈U
Λ+

(
Lu(t, (x , z),Dw ,D2w)

)
= 0, t < T , (x , z) ∈ R2

w(T , x , z) = gψ (x , z) R2

in the class of continuous function with linear growth at infinity
(|w(t, x , z)| ≤ C(1 + |x |+ |z |))

Uniqueness ? With z ∈ R, difficulties to get uniqueness ...
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Stochastic case
Step 3: HJB equation and uniqueness result

Boundary conditions for z ≤ 0:
To simplify, we can assume, instead of (S4) :

(S4)∗ ψ ≥ 0 and ` ≥ 0.

Let w0 be the value of the following unconstrained problem:

w0(t, x) := inf
u∈U

E
[
ψ(X u

t,x(T )) +

∫ T

t

`(s,X u
t,x(s), u(s))ds +

∫ T

t

gK(X u
t,x(s)ds)

]
.

Proposition (A Dirichlet boundary condition, under (S4∗))

For any z ≤ 0, w(t, x , z) ≡ w0(t, x)− z.

Proof: For any z ∈ R,

w(t, x , z)

≥ inf
(u,α)∈U×A

E
[
ψ(X u

t,x(T ))− z +

∫ T

t

`(·)ds −
∫ T

t

αsdBs︸ ︷︷ ︸
E(.)≡0

+

∫ T

t

gK(X u
t,x(s))ds

]

≥ w0(t, x)− z
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Stochastic case
Step 3: HJB equation and uniqueness result

Proof (continued): On the other hand, for z ≤ 0, choosing the
particular control αs :≡ 0:

w(t, x , z)

≤ inf
u∈U

E
[

max(ψ(X u
t,x(T ))− z +

∫ T

t
`(·)ds︸ ︷︷ ︸

≥0

, 0) +

∫ T

t
gK(.)ds

]

≤ w0(t, x)− z
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Stochastic case
Step 3: HJB equation and uniqueness result

Theorem (Comparison principle, Dirichlet case
(B.-Picarelli-Zidani))

Assume (S1)− (S4∗). A weak comparison principle holds for
(lower USC/ upper LSC) solutions of

sup
u∈U

Λ+

(
Lu(t, (x , z),Dw ,D2w)

)
= 0, t < T , x ∈ Rd , z ≥ 0,

w(T , x , z) = g
ψ

(x , z) ≡ max(ψ(x)− z , 0), x ∈ Rd , z ≥ 0,

w(t, x , 0) = w0(t, x), t < T , x ∈ Rd

w linearly bounded in x (|w | ≤ C (1 + |x |))

Idea of Proof: Starts with a rescaling of the eigenvalue HJ
equation, in order to construct a strict subsolution (Bruder). Then,
new estimates to deal with Rp-valued α controls instead of
R-valued controls combined with the Ishii Lemma.
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Conclusion and further work

Conclusion:

state-constrained OCP can be recasted into a
state-constrained reachability problem, adding
- a state variable
- an Rp-valued unbounded control

the state-constrained reachability problem can be modelized
by a level set approach and an auxiliary unconstrained OCP

The valule of this OCP is characterized as the unique solution
of an HJB equation.

Further work:

Numerical schemes

Applications

Thanks for your attention!!
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