From discrete microscopic models to macroscopic models and applications to traffic flow.

Nicolas Forcadel

Laboratoire de Mathématique of INSA de Rouen

Joint work with W. Salazar

Workshop "New Perspectives in Optimal Control and Games"

10-12 November 2014, Roma

2 Homogenization result

2 Homogenization result

3 Idea of the proof

N. Forcadel Homogenization for traffic flow models

Microscopic traffic flow model

• Discrete model of traffic :

$$\dot{U}_{j}(t) = V\left(U_{j+1}(t) - U_{j}(t) - \frac{l_{j+1} + l_{j}}{2}\right).$$
(1)

- U_j : position of the vehicle j.
- V: Optimal velocity function (OVF) of the driver.

Microscopic traffic flow model

• Discrete model of traffic :

$$\dot{U}_j(t) = V \bigg(U_{j+1}(t) - U_j(t) \bigg).$$
 (1)

- U_j : position of the vehicle j.
- V: Optimal velocity function (OVF) of the driver.

Optimal velocity function

Passing from micro to macro

- Goal : Describe the traffic in term of density of vehicles, i.e. passing from the microscopic model to a macroscopic one.
- LWR macroscopic model:

$$\rho_t + (\rho v(\rho))_x = 0$$

where v is the average speed of vehicles.

Some existing results

- 1 single road, first order model: [NF, Imbert, Monneau]
- 1 single road, second order model, different type of drivers: [NF, Salazar]
- Perturbation at macroscopic level: [Galise, Imbert, Monneau]

A model with a perturbation

$$\dot{U}_{j}(t) = V \left(U_{j+1}(t) - U_{j}(t) \right) \phi(U_{j}(t)).$$
(2)

with

$$\phi(x) = \begin{cases} 1 & \text{if } x \in \mathbb{R} \backslash B(0, r) \\ \mu(x) & \text{if } x \in B(0, r), \end{cases}$$

and $\phi(x) \ge 0$.

A model with a perturbation

Rescalling

Passing to the limit : a model with junction

Some references: [Achou, Camilli, Cutri, Tchou], [Imbert, Monneau, Zidani], [Imbert, Monneau],....

Problem of junction : [Imbert, Monneau]

Given $H : \mathbb{R} \to \mathbb{R}$ decreasing on $] - \infty, p_0]$ and increasing on $[p_0, +\infty[$, $A \in \mathbb{R}$ and $F_A : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, we consider the problem

$$\begin{cases} u_t + H(u_x) = 0 & \text{on } (0, +\infty) \times \mathbb{R} \setminus \{0\} \\ u_t + F_A(u_x(t, 0^-), u_x(t, 0^+)) = 0 & \text{on } (0, +\infty) \times \{0\} \end{cases}$$
(3)

with

$$F_A(p^-, p^+) = \max(A, H^+(p^-), H^-(p^+)).$$

Problem of junction : [Imbert, Monneau]

Definition (Definition of the solution on the junction)

We denote $J:=(0,+\infty)\times\mathbb{R},$ $J^+:=(0,+\infty)\times(0,+\infty)$ and $J^-:=(0,+\infty)\times(-\infty,0)$ and

 $\mathcal{C}^2(J) = \left\{ \varphi \in C(J), \text{ the restriction of } \varphi \text{ to } J^+ \text{ and to } J^- \text{ are } C^2 \right\}.$

An usc (resp. lsc) function $u: [0, +\infty) \times \mathbb{R} \to \mathbb{R}$ is a viscosity sub-solution (resp. super-solution) of (3) if for all $(t, x) \in J$ and for all $\varphi \in C^2(J)$ such that $u - \varphi$ reaches a local maximum (resp. minimum) at (t, x), we have

$$\begin{aligned} \varphi_t(t,x) + H(\varphi_x(t,x)) &\leq 0 \quad (\text{resp.} \geq 0) & \text{if } x \neq 0, \\ \varphi_t(t,x) + F_A(\varphi_x(t,0^-),\varphi_x(t,0^+)) &\leq 0 \quad (\text{resp.} \geq 0) & \text{if } x = 0. \end{aligned}$$
(4)

Another definition at the junction

Problem of junction : [Imbert, Monneau]

Proposition (Equivalent definition of the solution at the junction)

In the previous definition, if x = 0, we get an equivalent definition with test functions φ satisfying

$$\varphi(t,x) = \psi(t) + p^{-}x1_{\{x \le 0\}} + p^{+}x1_{\{x \ge 0\}},$$

with $\psi \in C^1(0, +\infty)$.

2 Homogenization result

3 Idea of the proof

N. Forcadel Homogenization for traffic flow models

Injecting the system of ODE in a PDE

Rescalling

Passing to the limit

Convergence result

Theorem (NF, Salazar)

Assume that

$$U_i(0) + h_0 \le U_{i+1}(0).$$

Then, there exists \overline{A} and \overline{H} such that $\rho^{\varepsilon} \to u^0$ with u^0 solution of

$$\begin{cases} u_t^0 + \overline{H}(u_x^0) = 0 & \text{for } (t, x) \in (0, +\infty) \times \mathbb{R} \setminus \{0\} \\ u_t^0 + F_{\overline{A}} \left(u_x^0(t, 0^-), u_x^0(t, 0^+) \right) = 0 & \text{for } (t, x) \in (0, +\infty) \times \{0\} \\ u^0(0, x) = u_0(x) & \text{for } x \in \mathbb{R}, \end{cases}$$

Moreover $-1/h_0 =: -k_0 \le u_x^0 \le 0$ and for $p \in [-k_0, 0]$, we have

$$\overline{H}(p) = -V\left(\frac{-1}{p}\right)|p|.$$

Effective hamiltonian

Extended effectif hamiltonian

Motivations

2 Homogenization result

Injection of the system of ODE in a PDE

The function ρ^{ε} satisfies

$$\begin{cases} u_t^{\varepsilon} + M^{\varepsilon} \left[\frac{u^{\varepsilon}(t, .)}{\varepsilon} \right](x) . \phi\left(\frac{x}{\varepsilon} \right) . |u_x^{\varepsilon}| = 0 \\ u^{\varepsilon}(0, x) = u_0(x). \end{cases}$$

where M^{ε} is a non-local operator defined by

$$M^{\varepsilon}[U](x) = \int_{-\infty}^{+\infty} J(z) E\left(U(x+\varepsilon z) - U(x)\right) dz - \frac{3}{2} V_{max},$$

and with

$$E(z) = \left\{ \begin{array}{ll} 0 & \text{if } z > 0 \\ \frac{1}{2} & \text{if } -1 < z \leq 0 \\ \frac{3}{2} & \text{if } z \leq -1, \end{array} \right. \quad \text{and} \quad J = V' \text{on } \mathbb{R}.$$

Proof of convergence

We want to show that $\overline{\rho} = \limsup^* \rho^{\varepsilon}$ is a sub solution of the limit problem. Let φ such that $\overline{\rho} - \varphi$ reaches a maximum at $(\overline{t}, \overline{x})$

- If $\bar{x} \neq 0$ the proof is rather classical (see [NF, Imbert, Monneau])
- If $\bar{x}=0,$ then $\varphi(t,x)=\psi(t)+p^-x1_{\{x\leq 0\}}+p^+x1_{\{x\geq 0\}}.$ We set

$$\varphi^{\varepsilon} = \psi(t) + w^{\varepsilon}(x)$$

with $w^{\varepsilon}(x) = \varepsilon w\left(\frac{x}{\varepsilon}\right)$ and w solution of

$$M[w](x).\phi(x).|w_x| = \lambda \quad \text{for } x \in \mathbb{R}$$

such that $w^{\varepsilon} \to p^{-}x1_{\{x \le 0\}} + p^{+}x1_{\{x \ge 0\}}$. Classically, φ^{ε} is a super-solution of the same problem as ρ^{ε} and we get the result using the comparison principle.

How to construct \boldsymbol{w} solution of

$$M[w](x).\phi(x).|w_x| = \lambda \quad \text{for } x \in \mathbb{R}$$

such that

$$w^{\varepsilon} \to p^{-}x1_{\{x \le 0\}} + p^{+}x1_{\{x \ge 0\}}$$

Truncated cell problem

• Idea of [Achdou, Tchou] and [Galise, Imbert, Monneau]: construct a corrector on a bounded domain with appropriate boundary condition and pass to the limit.

Truncated cell problem

- Idea of [Achdou, Tchou] and [Galise, Imbert, Monneau]: construct a corrector on a bounded domain with appropriate boundary condition and pass to the limit.
- $\bullet~{\rm For}~r\leq R<< l,$ we consider the truncated cell problem

$$\begin{cases} G_R\left(x, [w^{l,R}], w^{l,R}_x\right) = \lambda_{l,R} & \text{if } x \in (-l,l) \\ \overline{H}^-(w^{l,R}_x) = \lambda_{l,R} & \text{if } x \in \{-l\} \\ \overline{H}^+(w^{l,R}_x) = \lambda_{l,R} & \text{if } \in \{l\}, \end{cases}$$

with

$$G_R(x, U, q) = \psi_R(x) \cdot \phi(x) \cdot M[U](x) \cdot |q| + (1 - \psi_R(x)) \cdot \overline{H}(q),$$

and
$$\psi_R \in C^{\infty}(\mathbb{R}, [0, 1])$$
, such that
 $\psi_R \equiv \begin{cases} 1 & \text{on } [-R, R] \\ 0 & \text{outside } [-R - 1, R + 1], \end{cases}$

Approximated truncated cell problem

• For $\delta > 0$, we consider

$$\begin{cases} \delta v^{\delta} + G_R\left(x, [w^{l,R}], w_x^{l,R}\right) = 0 & \text{for } x \in (-l,l) \\ \delta v^{\delta} + \overline{H}^-(v_x^{\delta}) = 0 & \text{for } x \in \{-l\} \\ \delta v^{\delta} + \overline{H}^+(v_x^{\delta}) = 0 & \text{for } x \in \{l\} \end{cases}$$

Approximated truncated cell problem

• For $\delta > 0$, we consider

$$\begin{cases} \delta v^{\delta} + G_R\left(x, [w^{l,R}], w_x^{l,R}\right) = 0 & \text{for } x \in (-l,l) \\ \delta v^{\delta} + \overline{H}^-(v_x^{\delta}) = 0 & \text{for } x \in \{-l\} \\ \delta v^{\delta} + \overline{H}^+(v_x^{\delta}) = 0 & \text{for } x \in \{l\} \end{cases}$$

• v^{δ} is not Lipschitz continuous BUT

$$-k_0(x-y) - 1 \le v^{\delta}(x) - v^{\delta}(y) \le 0 \quad \text{for } x \ge y.$$

Approximated truncated cell problem

• For $\delta > 0$, we consider

$$\begin{cases} \delta v^{\delta} + G_R\left(x, [w^{l,R}], w_x^{l,R}\right) = 0 & \text{for } x \in (-l,l) \\ \delta v^{\delta} + \overline{H}^-(v_x^{\delta}) = 0 & \text{for } x \in \{-l\} \\ \delta v^{\delta} + \overline{H}^+(v_x^{\delta}) = 0 & \text{for } x \in \{l\} \end{cases}$$

• v^{δ} is not Lipschitz continuous BUT

$$-k_0(x-y) - 1 \le v^{\delta}(x) - v^{\delta}(y) \le 0 \quad \text{for } x \ge y.$$

 $\bullet\,$ This implies that there exists m^{δ} uniformly Lipschitz continuous such that

$$|v^{\delta}(x) - m^{\delta}(x)| \leq C$$
 for all $x \in [-l, l]$.

Approximated truncated cell problem

• For $\delta > 0$, we consider

$$\begin{cases} \delta v^{\delta} + G_R\left(x, [w^{l,R}], w_x^{l,R}\right) = 0 & \text{for } x \in (-l,l) \\ \delta v^{\delta} + \overline{H}^-(v_x^{\delta}) = 0 & \text{for } x \in \{-l\} \\ \delta v^{\delta} + \overline{H}^+(v_x^{\delta}) = 0 & \text{for } x \in \{l\} \end{cases}$$

• v^{δ} is not Lipschitz continuous BUT

$$-k_0(x-y) - 1 \le v^{\delta}(x) - v^{\delta}(y) \le 0 \quad \text{for } x \ge y.$$

 $\bullet\,$ This implies that there exists m^{δ} uniformly Lipschitz continuous such that

$$|v^{\delta}(x)-m^{\delta}(x)|\leq C \quad \text{for all } x\in [-l,l].$$

• This allows us to pass to the limit as $\delta \to 0$ (the limit $l \to +\infty$ and $R \to +\infty$ are easier).

Characterization of the effective flux limiter

Theorem

We denote by S the set of functions w such that there exists a Lipschitz continuous function such that $|w - m| \le C$. Then

 $\overline{A} = \inf\{\lambda, \text{ there exists a corrector } w \in \mathcal{S}\}.$

Moreover

$$0 \ge \bar{A} \ge \min_{p \in \mathbb{R}} \overline{H}(p).$$

Conclusions and Perspectives

- Conclusions :
 - Homogenization results for discrete traffic flow models
 - This allows to model microscopic phenomena.
- Perspectives :
 - Homogenization for second order models
 - Microscopic perturbation depending on time (red light for example)
 - Homogenization on networks
 - Numerical computation of \overline{A}
 - Homogenization in random media