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Microscopic traffic flow model

Discrete model of traffic :

U̇j(t) = V

(
Uj+1(t)− Uj(t)−

lj+1 + lj
2

)
. (1)

Uj : position of the vehicle j.

V : Optimal velocity function (OVF) of the driver.
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Optimal velocity function

0 h0 hmax h

Vmax

V
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Passing from micro to macro

Goal : Describe the traffic in term of density of vehicles, i.e. passing
from the microscopic model to a macroscopic one.

LWR macroscopic model:

ρt + (ρv(ρ))x = 0

where v is the average speed of vehicles.
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Some existing results

1 single road, first order model: [NF, Imbert, Monneau]

1 single road, second order model, different type of drivers: [NF,
Salazar]

Perturbation at macroscopic level: [Galise, Imbert, Monneau]
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A model with a perturbation

U̇j(t) = V

(
Uj+1(t)− Uj(t)

)
φ(Uj(t)). (2)

with

φ(x) =

{
1 if x ∈ R\B(0, r)
µ(x) if x ∈ B(0, r),

and φ(x) ≥ 0.
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A model with a perturbation

perturbation: radius = r
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Rescalling

perturbation: radius= εr
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Passing to the limit : a model with junction

perturbation: radius= εr

Some references: [Achou, Camilli, Cutri, Tchou], [Imbert, Monneau, Zidani],
[Imbert, Monneau],....
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Problem of junction : [Imbert, Monneau]

Given H : R→ R decreasing on ]−∞, p0] and increasing on [p0,+∞[,
A ∈ R and FA : R× R→ R, we consider the problem{

ut +H(ux) = 0 on (0,+∞)× R\{0}
ut + FA(ux(t, 0−), ux(t, 0+)) = 0 on (0,+∞)× {0} (3)

with
FA(p−, p+) = max(A,H+(p−), H−(p+)).
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Problem of junction : [Imbert, Monneau]

Definition (Definition of the solution on the junction)

We denote J := (0,+∞)× R, J+ := (0,+∞)× (0,+∞) and
J− := (0,+∞)× (−∞, 0) and

C2(J) =
{
ϕ ∈ C(J), the restriction of ϕ to J+ and to J− are C2

}
.

An usc (resp. lsc) function u : [0,+∞)× R→ R is a viscosity sub-solution
(resp. super-solution) of (3) if for all (t, x) ∈ J and for all ϕ ∈ C2(J) such
that u− ϕ reaches a local maximum (resp. minimum) at (t, x), we have

ϕt(t, x) +H(ϕx(t, x)) ≤ 0 (resp. ≥ 0) if x 6= 0,
ϕt(t, x) + FA(ϕx(t, 0−), ϕx(t, 0+)) ≤ 0 (resp. ≥ 0) if x = 0.

(4)
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Another definition at the junction

A

p

H(p)

p− p+
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Problem of junction : [Imbert, Monneau]

Proposition (Equivalent definition of the solution at the junction)

In the previous definition, if x = 0, we get an equivalent definition with test
functions ϕ satisfying

ϕ(t, x) = ψ(t) + p−x1{x≤0} + p+x1{x≥0},

with ψ ∈ C1(0,+∞).
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Injecting the system of ODE in a PDE

ρ(t, y) = −

∑
i≥0

H (y − Ui(t)) +
∑
i<0

(−1 +H (y − Ui(t)))



U−3

ρ(x)

1

2

0 x

−1

−2

U1U0

U−1U−2
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Rescalling

ρε(t, y) = ερ (t/ε, x/ε)

ρε(x)

x0

ε
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Passing to the limit

ρε → ρ0

x0

ρ0(x)
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Convergence result

Theorem (NF, Salazar)

Assume that
Ui(0) + h0 ≤ Ui+1(0).

Then, there exists A and H such that ρε → u0 with u0 solution of
u0t +H(u0x) = 0 for (t, x) ∈ (0,+∞)× R\{0}
u0t + FA

(
u0x(t, 0−), u0x(t, 0+)

)
= 0 for (t, x) ∈ (0,+∞)× {0}

u0(0, x) = u0(x) for x ∈ R,

Moreover −1/h0 =: −k0 ≤ u0x ≤ 0 and for p ∈ [−k0, 0], we have

H(p) = −V
(−1

p

)
|p|.
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Effective hamiltonian

p0

H0

p0−k0

H
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Extended effectif hamiltonian

p0

H0

p0−k0

H
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Injection of the system of ODE in a PDE

The function ρε satisfies
uεt +M ε

[
uε(t, .)

ε

]
(x).φ

(x
ε

)
.|uεx| = 0

uε(0, x) = u0(x).

where M ε is a non-local operator defined by

M ε[U ](x) =

∫ +∞

−∞
J(z)E (U(x+ εz)− U(x)) dz − 3

2
Vmax,

and with

E(z) =


0 if z > 0
1

2
if − 1 < z ≤ 0

3

2
if z ≤ −1,

and J = V ′on R.
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Proof of convergence

We want to show that ρ = lim sup∗ ρε is a sub solution of the limit problem.
Let ϕ such that ρ− ϕ reaches a maximum at (t̄, x̄)

If x̄ 6= 0 the proof is rather classical (see [NF, Imbert, Monneau])

If x̄ = 0, then ϕ(t, x) = ψ(t) + p−x1{x≤0} + p+x1{x≥0}.
We set

ϕε = ψ(t) + wε(x)

with wε(x) = εw
(
x
ε

)
and w solution of

M [w](x).φ(x).|wx| = λ for x ∈ R

such that wε → p−x1{x≤0} + p+x1{x≥0}.
Classically, ϕε is a super-solution of the same problem as ρε and we get
the result using the comparison principle.
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Difficulty

How to construct w solution of

M [w](x).φ(x).|wx| = λ for x ∈ R

such that
wε → p−x1{x≤0} + p+x1{x≥0}.
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Truncated cell problem

Idea of [Achdou, Tchou] and [Galise, Imbert, Monneau]: construct a
corrector on a bounded domain with appropriate boundary condition
and pass to the limit.

For r ≤ R << l, we consider the truncated cell problem
GR

(
x, [wl,R], wl,Rx

)
= λl,R if x ∈ (−l, l)

H
−

(wl,Rx ) = λl,R if x ∈ {−l}
H

+
(wl,Rx ) = λl,R if ∈ {l},

with

GR(x, U, q) = ψR(x).φ(x).M [U ](x).|q|+ (1− ψR(x)).H(q),

and ψR ∈ C∞(R, [0, 1]), such that

ψR ≡
{

1 on [−R,R]
0 outside [−R− 1, R+ 1],
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Approximated truncated cell problem

For δ > 0, we consider
δvδ +GR

(
x, [wl,R], wl,Rx

)
= 0 for x ∈ (−l, l)

δvδ +H
−

(vδx) = 0 for x ∈ {−l}
δvδ +H

+
(vδx) = 0 for x ∈ {l}

vδ is not Lipschitz continuous BUT

−k0(x− y)− 1 ≤ vδ(x)− vδ(y) ≤ 0 for x ≥ y.

This implies that there exists mδ uniformly Lipschitz continuous such
that

|vδ(x)−mδ(x)| ≤ C for all x ∈ [−l, l].
This allows us to pass to the limit as δ → 0 (the limit l→ +∞ and
R→ +∞ are easier).
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Characterization of the effective flux limiter

Theorem

We denote by S the set of functions w such that there exists a Lipschitz
continuous function such that |w −m| ≤ C. Then

A = inf{λ, there exists a corrector w ∈ S}.

Moreover
0 ≥ Ā ≥ min

p∈R
H(p).
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Conclusions and Perspectives

Conclusions :

Homogenization results for discrete traffic flow models

This allows to model microscopic phenomena.

Perspectives :

Homogenization for second order models

Microscopic perturbation depending on time (red light for example)

Homogenization on networks

Numerical computation of A

Homogenization in random media
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