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1 Stochastic volatility models

2 Large deviations by viscosity methods

3 As applications, asymptotic estimates for European out-of-the-money
option prices near maturity and asymptotic formula for implied volatility.

4 Extension to the non-compact case (i.e. when the coe�cients of the
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Stochastic system with fast oscillating

random parameter

We consider a stochastic system in Rn with random coe�cients, in particular
with coe�cients dependent on random parameter Yt.

dXt = φ(Xt, Yt)dt+
√
2σ(Xt, Yt)dWt, X0 = x0 ∈ Rn.

Assumption: we model this new parameter as a markov process evolving on a
faster time scale τ = t

δ :

dYt =
1

δ
b(Yt)dt+

√
2

δ
τ(Yt)dWt, Y0 = y0 ∈ Rm.

Notation: Xt are the slow components of the system, and Yt are the fast
components.
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Assumptions

Tyical Assumptions: The fast variable are constrained in a compact set, say:
the coe�cients of the processes are Zm-periodic with respect to the variable y.

More generally: Yt is a recurrent process.
In particular we can generalize the results presented under the hypothesis that
Yt is ergodic, this means that Y forgets the initial condition for large time (i.e.
as δ → 0) and its distribution becomes stationary.

For technical simplicity from now on we assume the condition of

periodicity on the coe�cients.

This condition can be relaxed to ergodicity and will be treated in an article in
preparation.

Further assumption: the di�usion matrix τ is non-degenerate.

Large deviations for stochastic volatility models



Motivation:: analysis of financial models with

stochastic volatility

Black-Scholes model: the evolution of the price of a stock S is described by

dlogSt = γdt+ σdWt, t=time,Wt = Wiener proc.,

and the classical Black-Scholes formula for option pricing is derived assuming
parameters are constants.
In reality the parameters of such models are not constants. In particular, the
volatility σ, a measure for variation of price over time, is not constant but
exhibits random behaviour.
Therefore it has been modeled as a positive function σ = σ(Yt) of a stochastic
process Yt with

1 negative correlation (prices go up when volatility goes down)

2 mean reversion (the time it takes for agents to adjust their thresholds to
current market conditions)

Refs.: Hull-White 87, Heston 93, Fouque-Papanicolaou-Sircar 2000,...
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Multiscale stochastic volatility



Fast stochastic volatility

It is argued in the book
Fouque, Papanicolaou, Sircar: Derivatives in �nancial markets with
stochastic volatility, 2000,
that Yt also evolves on a faster time scale than the stock prices, modelling
better the typical bursty behavior of volatility, see previous picture.

For this reason we put ourselves into the framework of multiple time scale
systems and sigular perturbation and we model Yt with the fast stochastic
process for δ > 0

dYt =
1

δ
b(Yt)dt+

√
2

δ
τ(Yt)dWt Y0 = y0 ∈ Rm.

Passing to the limit as δ → 0 is a classical singular perturbation problem, its
solution leads to the elimination of the state variable Yt and to the de�nition
of an averaged system de�ned in Rn only. There is a large literature on the
subject (Bensoussan, Kushner, Hasminskii, Pardoux, Borkar,

Galtsgory, Alvarex, Bardi...)
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Small time asymptotics for the system

We study the small time behaviour of the system, so we rescale time as

t→ εt.

We study the asymptotics when both parameters go to 0 and we expect
di�erent limit behaviors depending on the rate ε/δ. Therefore we put

δ = εα, with α > 1.

We consider the limit of the system for ε→ 0{
dXε

t = εφ(Xε
t , Y

ε
t )dt+

√
2εσ(Xε

t , Y
ε
t )dWt, Xε

0 = x0 ∈ Rn

dY εt = 1
εα−1 b(Y

ε
t )dt+

√
2

εα−1 τ(Y εt )dWt, Y ε0 = y0 ∈ Rm.
(1)
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Motivation: asymptotic estimates for
volatility of option prices near maturity

Avellaneda and collaborators (2002, 2003) used the theory of large
deviations to give asymptotic estimates for the Black-Scholes implied volatility
of option prices near maturity (small time) in models with constant (local)
volatility.

We carry on the same type of analysis in models with stochastic volatility. In
this case �nding explicit estimates happens to be more di�cult and we need to
assume condition of periodicity/ergodicity on the fast process.

Remark

In this model:

ε : short maturity of the option

δ = εα : rate of mean reversion of the volatility.
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Further references

1 J. Feng, J.-P. Fouque, R. Kumar (2012) studied large deviations for
systems of the form that we de�ned for α = 2, 4 in the one-dimensional
case n = m = 1, assuming that Yt is an Ornstein-Uhlenbeck process and
the coe�cients in the equation for Xt do not depend on Xt. The methods
are based on the monograph by Feng and Kurtz,
Large deviations for stochastic processes 2006.

2 Related works by P. Dupuis, K. Spiliopoulos, K. Spiliopoulos (2012,
2013) deal with di�erent scaling and use di�erent methods based on weak
convergence
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Large Deviation Principle

Let {µε} be a family of probability measures. A large deviation principle
(LDP) characterizes the limiting behavior, as ε→ 0, of {µε} in terms of a rate
function through asymptotic upper and lower exponential bounds on the
values that µε assigns to measurable subsets of Rn.

Roughly speaking, large deviation theory concerns itself with the exponential
decline of the probability measures of certain kinds of extreme or tail events.

In the context of �nancial mathematics, large deviations theory arises in the
computations of small maturity out-of-the-money option prices.
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Main results-Large Deviation principle

We prove a Large Deviation Principle (LDP) for the process Xε
t (i.e. for

probability measures generated by the laws of Xε
t ).

In other words we prove that then for every t > 0 and for any open set B ⊆ Rn

P (Xε
t ∈ B) = e− infx∈B

I(x;x0,t)
ε +o( 1

ε ), as ε→ 0.

for some (good) rate function I, non-negative and continuous, which we will
de�ne in the next slides.
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The Large Deviation Principle

Bryc's inverse Varadhan lemma

Assume that for all t > 0

1 Xε
t is exponentially tight.

2 for every h bounded and continuous the limit

lim
ε→0

ε logE
[
eε
−1h(Xεt ) |X0 = x0, Y0 = y0

]
:= Lh(x0, t)

exists �nite.

Then Xε
t satis�es a large deviation principle with good rate function

I(x, x0, t) = sup
h∈BC(Rn)

{h(x)− Lh(x0, t)}.
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PDE viscosity methods

We de�ne the following logarithmic payo�

vε(t, x0, y0) := ε logE
[
eε
−1h(Xεt ) |X0 = x0, Y0 = y0

]
, x0 ∈ Rn, y0 ∈ Rm, t ≥ 0,

where h is a bounded continuous function de�ned on Rn.

Then, to obtain the LDP we have:

1 prove that vε converges to some function v(t, x) and characterize v;

2 compute the rate function I in term of the limit of vε.
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Convergence by viscosity methods

The associated HJB equation to vε is the following parabolic pde with
quadratic nonlinearity in the gradient (b, τ computed in y, φ, σ in (x, y)).

vεt = |σTDxv
ε|2 + ε

(
tr(σσTD2

xxv
ε) + φ ·Dxv

ε
)

+ 2ε−
α
2 (τσTDxv

ε) ·Dyv
ε+

+ 2ε1−α2 tr(στTD2
xyv

ε) + ε1−α(b ·Dyv
ε + tr(ττTD2

yyv
ε)
)

+ ε−α|τTDyv
ε|2.

Remark

This problem falls in the class of averaging/homogenization problems for
nonlinear HJB type equations where the fast variable lives in a compact space
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Theorem-Convergence by viscosity methods

Let h be continuous and bounded.
Then

vε(x, y, t) = ε logEe
h(Xεt )

ε → v(x, t)

locally uniformly in y where v is the unique viscosity solution to the e�ective
equation {

vt − H̄(x,Dv) = 0 in ]0, T [×Rn,
v(0, x) = h(x) in Rn.

where H̄ is the limit or e�ective Hamiltonian.

Remark

vε is uniformly bounded in ε.

To prove the convergence we use relaxed semilimits Barles-Parthame
procedure and the techniques stem form Evans' perturbed test function
method for homogenization and its extension to singular perturbations
Alvarez, Bardi (2003) and regular perturbations of singular perturbation
Alvarez, Bardi, Marchi (2007).
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The effective Hamiltonian

We identify the limit or e�ective Hamiltonian, by solving three di�erent cell
problems depending on α. We point out three regimes depending on how fast
the volatility oscillates relative to the horizon length: α > 2 supercritical case,

α = 2 critical case,
α < 2 subcritical case.

1 In all the cases the limit Hamiltonian H̄ is continuous on Rn × Rn and
convex in the second variable.

2 In all the cases we provide some representation formulas for the limit
Hamiltonian H̄.

More interesting case: α = 2.
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The effective Hamiltonian, α = 2

H̄ is continuous, convex,

inf
y
|σT (x̄, y)p̄|2 ≤ H̄(x̄, p̄) ≤ sup

y
|σT (x̄, y)p̄|2.

More precisely

H̄(x̄, p̄) = lim
t→∞

1

t
logE

[
e
∫ t
0
|σT (x̄,Ys)p̄|2 ds |Y0 = y

]
,

where Yt is the stochastic process de�ned by

dYt =
(
b(Yt) + 2τ(Yt)σ

T (x̄, Yt)p̄
)
dt+

√
2τ(Yt)dWt.
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The rate function

Throughout the section we suppose that σ is uniformly non degenerate, that
is, for some ν > 0 and for all x, p ∈ Rn

|σT (x, y)p|2 > ν|p|2. (2)

Note that under the previous assumption, the e�ective Hamiltonian is coercive.
Let L̄ be the e�ective Lagrangian associated to the e�ective Hamiltonian H̄
via convex duality, i.e. for x ∈ Rn

L̄(x, q) = max
p∈Rn
{p · q − H̄(x, p)}.

Note that L̄(x, ·) is a convex nonnegative function such that L̄(x, 0) = 0 for all
x ∈ Rn, since H̄(x, ·) is convex nonnegative and H̄(x, 0) = 0 for all x ∈ R.
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The rate function

Then the rate function is de�ned as follows

I(x;x0, t) := inf

[∫ t

0

L̄(ξ(s), ξ̇(s)) ds
∣∣ξ ∈ AC(0, t), ξ(0) = x0, ξ(t) = x

]
.

I depends only on the volatility σ and on the fast process Y εt ;

I does not depend on the drift φ of the log-price Xε
t and on the initial

value y0 of the process Yt.

I satis�es the following growth condition for some ν, C > 0 and all
x, x0 ∈ Rn

1

4C

|x− x0|2

t
≤ I(x;x0, t) ≤

1

4ν

|x− x0|2

t
;

if σ does not depend on x, i.e. H̄ = H̄(p), the rate function is

I(x;x0, t) = tL̄

(
x− x0

t

)
.
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The rate function

If α > 2 and n = 1 and H̄ = H̄(p), then

I(x;x0, t) =
|x− x0|2

4σ̄2t
(3)

where

σ̄ =

√∫
Tm

σ(y)2dµ(y)

and µ is the invariant measure of the process Yt de�ned in the previous
slides, i.e.

dYt = b(Yt)dt+
√

2τ(Yt)dWt,

Remark

We observe that the rate function de�ned in (3) is the same as the rate
function for the Black-Scholes model with constant volatility σ̄. In other
words, in the ultra fast regime, to the leading order, it is the same as averaging
�rst and then taking the short maturity limit.
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Applications-Out-of-the-money option pricing

Let Sεt be the asset price, evolving according to the following stochastic
di�erential system

{
dSεt = εξ(Sεt , Y

ε
t )Sεt dt+

√
2εζ(Sεt , Y

ε
t )Sεt dWt Sε0 = S0 ∈ R+

dY εt = ε1−αb(Y εt )dt+
√

2ε1−ατ(Y εt )dWt Y ε0 = y0 ∈ Rm,
(4)

where α > 1, τ, b are Zm-periodic in y with τ non-degenerate and
ξ : R+ × Rm → R, ζ : R+ × Rm →M1,r are Lipschitz continuous bounded
functions, periodic in y.
Observe that Sεt > 0 almost surely if S0 > 0.
We consider out-of-the-money call option with strike price K and short
maturity time T = εt, by taking

S0 < K or x0 < logK.

Similarly, by considering out-of-the-money put options, one can obtain the
same for S0 > K.
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Out-of-the-money option pricing

As an application of the Large Deviation Principle, we prove

Corollary

For �xed t > 0

lim
ε→0+

ε logE
[
(Sεt −K)

+
]

= − inf
y>logK

I (y;x0, t) .

When ζ(s, y) = ζ(y), the option price estimate reads

lim
ε→0+

ε logE
[
(Sεt −K)

+
]

= −I (logK;x0, t)
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Implied volatility

We recall that given an observed European call option price for a contract
with strike price K and expiration date T , the implied volatility σ is de�ned
to be the value of the volatility parameter that must go into the Black-Scholes
formula to match the observed price.

We consider out-of-the-money European call option, with strike price K, and
we denote by σε(t, logK,x0) the implied volatility.
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Applications-An asymptotic formula for
implied volatility

As a further application, we prove

Corollary

lim
ε→0+

σ2
ε(t, logK,x0) =

(logK − x0)2

2 infy>logK I(y;x0, t)t
.

Note that the in�mum in the right-hand side, is always positive by the
assumption on S0 and by the growth of the rate function.

Remark

When α > 2, the implied volatility is σ̄ that is

σ̄ =

√∫
Tm

σ2(y)dµ(y).
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Thank you for the attention!
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The cell problem and the effective
Hamiltonian, α = 2

Pluggin in the equation the formal asymptotic expansion

vε(t, x, y) = v0(t, x) + εw(t, x, y).

we obtain

v0
t −|σTDxv

0|2−2(τσTDxv
0)·Dyw−b·Dyw−|τTDyw|2−tr(ττTD2

yyw) = O(ε).

Proposition

For any �xed (x̄, p̄), there exists a unique H̄(x̄, p̄) for which the uniformly
elliptic equation with quadratic nonlinearity in the gradient

H̄(x̄, p̄)− |σT p̄|2−
(
2τσT p̄+ b

)
·Dyw(y)− |τTDyw(y)|2− tr(ττTD2

yyw(y)) = 0,

has a periodic viscosity solution w.
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H̄: First Representation formula

H̄ can be represented through stochastic control as

H̄(x̄, p̄) = lim
δ→0

sup
β(·)

δE

[∫ ∞
0

(
|σ(x̄, Zt)

T p̄|2 − |β(t)|2
)
e−δtdt |Z0 = z

]
and

H̄(x̄, p̄) = lim
t→∞

sup
β(·)

1

t
E

[∫ t

0

(|σT (x̄, Zs)p̄|2 − |β(s)|2)ds |Z0 = z

]
,

where β(·) is an admissible control process taking values in Rr for the
stochastic control system

dZt =
(
b(Zt) + 2τ(Zt)σ

T (x̄, Zt)p̄− 2τ(Zt)β(t)
)
dt+

√
2τ(Zt)dWt; (5)

Large deviations for stochastic volatility models



H̄: Second representation formula

Moreover

H̄ =

∫
Tm

(
|σ(x̄, z)T p̄|2 − |τ(z)TDw(z)|2

)
dµ(z),

where w = w(·; x̄, p̄) is the smooth solution to

H̄(x̄, p̄)− tr(ττTD2
yyw)− |τTDyw|2+

− (2τσT p̄+ b) ·Dyw − |σT p̄|2 = 0 in Rm

and µ = µ(·; x̄, p̄) invariant probability measure on the torus Tm of the
process (5) with the feedback β(z) = −τT (z)Dw(z), i.e.

dZt =
(
b(Zt) + 2τ(Zt)σ

T (x̄, Zt)p̄+ 2τ(Zt)τ
T (Zt)Dw(Zt)

)
dt+
√

2τ(Zt)dWt.
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H̄: Third representation formula

Moreover

H̄(x̄, p̄) = lim
t→∞

1

t
logE

[
e
∫ t
0
|σT (x̄,Ys)p̄|2 ds |Y0 = y

]
,

where Yt is the stochastic process de�ned by

dYt =
(
b(Yt) + 2τ(Yt)σ

T (x̄, Yt)p̄
)
dt+

√
2τ(Yt)dWt.

Sketch of the proof:

Take v = v(t, x; x̄, p̄) a periodic solution of the t-cell problem and de�ne
the function f(t, y) = ev(t,y). Then f solves the following equation{

∂f
∂t − f |σ

T p̄|2 − (2τσT p̄+ b) ·Df − tr(ττTD2f) = 0 in (0,∞)× Rm
f(0, z) = 1 in Rm.

and we conclude using the Feynam-Kac formula.
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The cell problem and the effective
Hamiltonian, α > 2

Plugging the formal asymptotic expansion

vε(t, x, y) = v0(t, x) + εα−1w(t, x, y)

in the equation we get

v0
t = |σTDxv

0|2 + b ·Dyw + tr(ττTD2
yyw) +O(ε).

Proposition

For each (x̄, p̄) �xed, there exists a unique constant H̄(x̄, p̄) such that the
linear second order uniformly elliptic equation

H̄(x̄, p̄) − tr(ττ(y)TD2
yywδ(y)) − b(y) · Dywδ(y) − |σ(x̄, y)T p̄|2 = 0 in Rm,

has a periodic smooth solution.
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H̄: Representation formula

H̄ can be represented as

H̄ =

∫
Tm
|σ(x̄, y)T p̄|2 dµ(y),

where µ is the invariant probability measure on the torus Tm of the stochastic
process

dYt = b(Yt)dt+
√

2τ(Yt)dWt,

that is, the periodic solution of

−
∑
i,j

∂2

∂yi∂yj
((ττT )ij(y))µ+

∑
i

∂

∂yi
(bi(y))µ = 0 in Rm,

with
∫
Tnµ(y) dy = 1.
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H̄: Representation formula

When n = 1,
H̄(x̄, p̄) = (σ̄p̄)2

where

σ̄(x̄) =

√∫
Tm

σ2(x̄, y)dµ(y)

and µ is the invariant measure of the following process Yt

dYt = b(Yt)dt+
√

2τ(Yt)dWt,
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The cell problem and the effective
Hamiltonian, α < 2

We plug in the equation the formal asympthotic expansion

vε(t, x, y) = v0(t, x) + ε
α
2 w(t, x, y).

and we obtain

v0
t = |σTDxv

0|2 + 2(τσTDxv
0) ·Dyw + |τTDyw|2 +O(ε).

Proposition

For any �xed (x̄, p̄), there exists a unique constant H̄(x̄, p̄) such that the �rst
order coercive equation

H̄(x̄, p̄)− |τT (y)Dyw(y) + σT (x̄, y)p̄|2 = 0 in Rm

admits a (Lipschitz continuous) periodic viscosity solution w.
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H̄: Representation formulas

H̄ satis�es

H̄(x̄, p̄) = lim
δ→0

sup
β(·)

δ

∫ +∞

0

(
|σ(x̄, y(t))T p̄|2 − |β(t)|2

)
e−δt dt,

where β(·) varies over measurable functions taking values in Rr, y(·) is
the trajectory of the control system{

ẏ(t) = 2τ(y(t))σT (x̄, y(t))p̄− 2τ(y(t))β, t > 0,
y(0) = y

and the limit is uniform with respect to the initial position y of the
system;

Moreover under the condition τσT = 0 of non-correlations among the
components of the white noise acting on the slow and the fast variables in
the system, we have

H̄(x, p) = max
y∈Rm

|σT (x, y)p|2.
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and the limit is uniform with respect to the initial position y of the
system;

Moreover under the condition τσT = 0 of non-correlations among the
components of the white noise acting on the slow and the fast variables in
the system, we have

H̄(x, p) = max
y∈Rm

|σT (x, y)p|2.
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Remarks on the comparison principle for H̄

α = 2: we relate the regularity in x of H̄ with that of the pseudo-coercive
Hamiltonian |σT (x, y)p|2, i.e. we prove for 0 < µ < 1

µH̄(x,
p

µ
)− H̄(z, q) ≥ 1

µ− 1
sup
y∈Rm

|σT (x, y)p− σT (z, y)q|2.

Then, we follow the same argument for pseudo-coercive Hamiltonian as in
Barles-Perthame (1990) for the stationary case and M.Kobylanski for the
evolutionary case (PhD thesis).

α > 2: as for the critical case (easier thanks to the explicit formula or H).

α < 2: let H0 =
√
H̄. Then

H0(x, λp) = |λ|H0(x, p) ∀λ ∈ R

and there exists C > 0 such that |H0(x, p)| ≤ C|p| and

|H0(x, p)−H0(z, p)| ≤ C(1 + |p|)|x− z| ∀x, z ∈ Rn, p ∈ Rn.

Then we can use the comparison result for evolutive non-coercive
�rst-order HJ equations by Cutri, Da Lio (2007).
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Without periodicity assumption (work in
progress)

Main assumptions: ergodicity of the fast variables

∃C > 0 ad a compact set K s.t.

b(y) · y + 2tr(ττT (y)) < −C|y|2 ∀y /∈ K.

Main example: Ornstein-Uhlenbeck process

dYt = (m− Yt)dt+ τdWt.

τ is non degenerate and σ(x, ·) is bounded ∀x.
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α = 2,sketch of the proof

Recall that vε solves

vεt = |σTDxv
ε|2 + ε

(
tr(σσTD2

xxv
ε) + φ ·Dxv

ε
)

+ 2tr(στTD2
xyv

ε)+

+
1

ε

(
(b+ 2(τσTDxv

ε)) ·Dyv
ε + tr(ττTD2

yyV
ε)
)

+
1

ε2
|τTDyv

ε|2.

and vε is uniformly bounded in ε. We will use relaxed semilimits
(Barles-Perthame procedure).
We want to prove that vε converges locally uniformly to the unique solution to

vt − H̄(x,Dv) = 0.
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α = 2, The ergodic problem

For every x, p �xed, �nd the unique constant H̄(x, p) such that there is a
solution w to{

−(b+ 2τσT p) ·Dw − tr(ττTD2w) + |τTDw|2 + |σtp|2 = −H̄
∃C > 0 s.t. w(y) ≤ C(1 + |y|2)

(6)

The main assumption on b, τ implies that K(1 + |y|2) is a superslolution
to the previous problem outside a compact set.

Without growth assumptions, no uniquenes of H̄ (Ichiara 2011,
Khaise-Sheu 2006).

We look at the ergodic approximation

δvδ − (b+ 2τσtp) ·Dvδ − tr(ττTD2vδ)− |τTDvδ|2 − |σtp|2 = 0,

and prove that δvδ → H̄, vδ − vδ(0)→ w.
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α = 2, the ergodic problem 2

We consider approximate ergodic problems in balls with singular boudary
conditions:
for every R >> 1, for every x, p �xed, �nd the unique constant H̄R(x, p) such
that there is a solution wR to{
−(b+ 2τσT p) ·DwR − tr(ττTD2wR) + |τTDwR|2 + |σtp|2 = −H̄R |y| < R

wR → −∞ |y| → R.

(7)
(Barles, Porretta, Tchamba, 2010).

Then H̄R is increasing to H̄ as R→ +∞.
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α = 2, Supersolution

De�ne

v(t, x, y) = inf(lim inf
ε→0

vε(xε, yε, tε) |xε → x, yε → y, tε → t).

for all t, x �xed, v(t, x, ·) is a (bdd) supersolution to

−|τTDyv|2 ≥ 0.

So, it does not depend on y (Liouville type theorem).

If v(t, x)− f(t, x) has a strict minimum at a point (t̄, x̄), then
vε(t, x, y)− f(t, x)− εwR(y) has minima, for ε small,
xε → x̄, tε → t̄, yε ∈ B(0, R).

By the de�nition of viscosity solutions and the construction of wR, we get
that

vt − H̄R(x,Dv) ≥ 0,

for every R >> 1.
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α = 2, Subsolution

De�ne

v̄(t, x) = sup(lim sup
ε→0

vε(xε, yε, tε) |xε → x, tε → t, (yε)ε is bounded).

Note that

v̄(t, x) ≥ sup(lim sup
ε→0

vε(xε, yε, tε) |xε → x, yε → y, tε → t).

We construct a supersolution w̃ to the ergodic problem such that

w̃ → +∞ as |y| → +∞
−(b+ 2τσT p) ·Dw̃ − tr(ττTD2w̃)− |τTDw̃|2 → +∞ as |y| → +∞.

If v̄(t, x)− f(t, x) has a strict maximum at a point (t̄, x̄), then
vε(t, x, y)− f(t, x)− εw̃(y) has maxima, for ε small, xε → x̄, tε → t̄ and yε
that is for all ε in a compact set independent of ε.
Then, using the de�nition of viscosity solution,

v̄t − H̄(x,Dv̄) ≤ 0.
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Conclusion

By construction
v̄(t, x) ≥ v(x, t).

We conclude using the comparison principle for the e�ective equation

vt + H̄(x,Dv) = 0

that

v(x, t) = sup(lim sup
ε→0

vε(xε, yε, tε) |xε → x, tε → t, yε bounded)

= inf(lim inf
ε→0

vε(xε, yε, tε) |xε → x, tε → t, yε bounded). (8)
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A related homogenization result

Let ε > 0 and consider uε solution to{
uεt − b

(
x
ε

)
Duε − εtr(ττT

(
x
ε

)
− |τ

(
x
ε

)
D2uε|2 − l

(
x, xε

)
= 0

uε(x, 0) = h(x).

If the main assumptions hold for b, τ (the underlying process to the fast
variables is ergodic), then uε converges locally uniformly, as ε→ 0, to the
solution u of

ut − H̄(x,Du) = 0.
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