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1.1 Mean curvature flow 
1. Introduction 

Let Γ𝑡 𝑡≥0 be an evolving hypersurface 
in 𝐑𝑛. The mean curvature flow equation is 
an equation for  Γ𝑡   of the form 

𝑉 = 𝐻  on  Γ𝑡. 

Here 𝑉 is the normal velocity and 𝐻 is (𝑛 − 1 
times) mean curvature. 

Source: Materials Science [W. W. Mullins, 1957] 
(motion of grain boundaries in annealing metals) 
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Formation of singularities 

Γ0 
dumbbell with 

thin neck 

initial data 

Γ𝑡 
[M. Grayson ’89] 

pinching 



• Variational approach: K. Brakke ’72 
T. Ilmanen ’93, … Y. Tonegawa and et al ’14. 

• A level set method: Y.-G. Chen – Y. G. – S. Goto ’91 
L. C. Evans – J. Spruck ’91 

[ Book: Y. G., Surface evolution equations, 
Birkhäuser ’06 ] 
(encounter with the theory of viscosity 
solution, A deterministic game interpretation, 
R. V. Kohn – S. Serfaty ’06 …) 
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Weak solutions including singularity 
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Extension to anisotropic flow 

Is it possible to extend a level set approach 
to anisotropic curvature flow? 

Yes, Y.-G. Chen – Y. G. – S. Goto ’91 
provided that the interfacial energy density is 
convex and smooth. 

What happens the interface energy density 
is not  𝐶1 (strong anisotropy)? 
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1.2 Crystalline mean curvature flow 

A crystalline mean curvature flow is a 
typical example of anisotropic mean curvature 
flow, which for example describes motion of 
antiphase grain boundaries.  

Anisotropic mean curvature is a change 
ratio of an interfacial energy with respect to 
variation of volume enclosed by a hypersurface 
Γ  in  𝐑𝑛. 
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Interfacial energy 
Let 𝛾0  be a nonnegative continuous 

function defined on a unit sphere 𝑆𝑛−1 , 
which is called an interfacial energy density. 
For a given hypersurface  Γ  we set  

𝐼 Γ = � 𝛾0(𝑛)
Γ

𝑑ℋ𝑛−1 

which is called an interfacial energy. Here 𝑛 
denotes the unit exterior normal of Γ and 
𝑑ℋ𝑛−1 is the surface element. 
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Anisotropic mean curvature 
The anisotropic mean curvature 𝐻𝛾  is 

defined by 
𝐻𝛾 = −

𝛿
𝛿Γ
𝐼 Γ . 

It is explicitly written as  

𝐻𝛾 = −divΓ ξ (𝑛)   on   Γ, 

where ξ 𝑝 = 𝛻𝑝𝛾(𝑝) and 𝛾 is the homoge-
nization of 𝛾0 i.e., 𝛾 𝑝 = 𝛾0(𝑝/ 𝑝 ) 𝑝 .  Here 
divΓ denotes the surface divergence. The 
vector field ξ(𝑛)  is often called the Cahn–
Hoffman vector field. 



10 

Wulff shape 
― a substitute for the sphere 

𝑊𝛾 = �  𝑥 ∈ 𝐑𝑛  𝑥 ⋅ 𝑚 ≤ 𝛾(𝑚)
𝑚 =1

 

⇒  𝐻𝛾 = − 𝑛 − 1     on    Γ = 𝜕𝑊𝛾 

for smooth 𝛾. [ The converse is true provided 
that  Γ  is compact and embedded and that  𝛾0  
is smooth and “strictly convex”. Anisotropic 
version of Alexandrov’s theorem. (Y. He – H. Li 
– H. Ma – J. Ge ’09) ] 
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Crystalline mean curvature 
If 𝛾0 ≡ 1, then 𝐼(Γ) is nothing but the 

area of Γ and 𝐻𝛾 is (𝑛 − 1 times) the mean 
curvature. In this case 𝛾 𝑝 = 𝑝 . In general, 
𝛾 may not be convex nor smooth.  

We say that 𝛾0 (or 𝛾) is crystalline if 𝛾 is 
convex and piecewise linear. An anisotropic 
mean curvature 𝐻𝛾  is a crystalline mean 
curvature if 𝛾 is crystalline. 



12 

Wulff shape for a crystalline energy 
𝐹𝛾 =  𝑝 ∈ 𝐑𝑛  𝛾 𝑝 ≤ 1   Frank diagram 

( 𝑊𝛾 = polar of  𝐹𝛾 ) 

𝐹𝛾 𝑊𝛾 

regular polyhedron its dual 



Let 𝑉 denote the normal velocity of an 
evolving (hyper)surface Γ𝑡. A general form of 
anisotropic mean curvature flow equation is  

𝑉 = 𝑓 𝑛,𝐻𝛾    on   Γ𝑡  , (ACF) 

where 𝑓 is a given function. Example includes 

(i)  𝑉 = 𝐻𝛾  

(ii)  𝑉 = 𝑀 𝑛 𝐻𝛾 + 𝐶 , 𝐶 ∈ 𝐑 , 

where   𝑀 𝑛 > 0  is a given function. 
13 

Anisotropic mean curvature flow 

Γ𝑡 

𝑛 
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Crystalline mean curvature flow 

We say that (ACF) is a crystalline mean 
curvature flow equation if 𝑓 is continuous and 
non-decreasing in 𝐻𝛾 and 𝐻𝛾 is a crystalline 
mean curvature. It is formally a degenerate 
parabolic equation of the second order. 
However, as we see later it is a very singular 
equation. 
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1.3 Problems 
Problem 1 (Existence and Uniqueness). 
Consider the crystalline mean curvature 
flow equation, for example, 
 (i)              𝑉 = 𝐻𝛾   on   Γ𝑡. 
Does the initial value problem admit a 
unique solution in  𝐑3? 
[ For a given closed surface Γ0 ⊂ 𝐑3 are 
there a unique family  Γ𝑡 𝑡≥0 solving (i)? ] 
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Problem 2 (Stability). Is this solution (if 
exists) approximable by smoothed 
anisotropic mean curvature flow? 

[ If interfacial energy  𝛾  is approximable 
by 𝛾𝜀, does the corresponding solution 
Γ𝑡𝜀 𝑡≥0  approximate  Γ𝑡? ] 
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2.1 Known results 

2. Unique existence of  
a level-set flow and its stability 

• Well-studied for planar motion 
S. B. Angenent – M. Gurtin ’89, J. Taylor ’91 
Level set method: M.-H. Giga – Y. G. ’01 ARMA 

• Higher dimension 
Even local existence was not known unless initial 
data is convex. 
A unique existence of a global flow provided that 
initial data is convex. 
G. Bellettini – V. Caselles – A. Chambolle – M. Novaga 
’06 ARMA 
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2.2 Level set flow 
This is a generalized solution of curvature 

flow equations which allows topological change 
of the flow Γ𝑡. We consider a level-set equation 
of (ACF). A level-set of the solution is regarded 
as a level-set flow.  
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For the mean curvature flow equation, its level-set 
equation is of the form 

𝑣𝑡 − 𝛻𝑣  div 𝛻𝑣
𝛻𝑣

= 0. 

We consider this equation in 𝐑𝑛 × (0,∞) not only on Γ𝑡. 
• Unique solvability for the initial value problem in the 

sense of viscosity solutions with uniformly continuous 
initial data. 

• Γ𝑡 = 𝑥 𝑣 𝑥, 𝑡 = 0  is uniquely determined by Γ0. 
• 𝐷𝑡 = 𝑥 𝑣 𝑥, 𝑡 > 0  is uniquely determined by 𝐷0. 
cf. S. Osher – J. Sethian ’89 (numerics), Y. G. Chen – Y. G. – S. Goto ’91, 
L. C. Evans – J. Spruck ’91, … Y. G. Surface Evolution Equations ’06  

Example 
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2.3 Main Results 

Theorem 2.1 (Existence and Uniqueness).   
For a given initial data (a bounded open set) 
𝐷0 ⊂ 𝐑3 with its boundary Γ0 there exists a 
global level-set flow 𝐷 for crystalline mean 
curvature flow equation (ACF) (provided that 
𝑓 is at most linear growth in 𝐻𝛾). 

Level set equation for 𝑉 = 𝑓 𝑛,𝐻𝛾  on Γ𝑡: 

    𝑣𝑡 − 𝛻𝑣   𝑓 − 𝛻𝑣
𝛻𝑣

,−div 𝛻𝛾 −𝛻𝑣 = 0. 
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Theorem 2.2 (Stability).  Assume the same 
hypotheses of Theorem 2.1. Let 𝛾𝜀  be a 
smooth convex interfacial energy density 
approximate 𝛾 uniformly. Then the level-set 
flow 𝐷𝜀 converges to 𝐷 in the Hausdorff 
distance sense in space-time provided that 
no fattening occurs.  
 

(Underlying structure: comparison principle) 
(work in progress, M.-H. Giga – Y. G. – N. Pozar) 
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If the space dimension equals two so that the 
evolving hypersurface Γ𝑡  is a curve, then the 
corresponding results are known [M.-H. Giga – Y. G. 
’01].  The problem is nonlocal. Even curve evolution 
is nontrivial. 

Consider 𝑉 = 𝐻𝛾 on Γ𝑡 = (𝑥,𝑦)  𝑦 = 𝑢(𝑥, 𝑡)  
and 𝛾 𝑝 = 𝑝1 + 𝑝2 . Then one gets a total 
variation flow 

𝑢𝑡 = sgn 𝑢𝑥 𝑥 . 

3.1 Evolution of curves 

3. Nonlocal mean curvature 
like quantity 



Consider simplest eq 
𝑢𝑡 = sgn 𝑢𝑥 𝑥. 

a b x

Speed is nonlocal even for curve evolution 

Consistent with subdifferential formulation 
T. Fukui – Y. G. ’96 

What is the speed of the facet (flat part)? 
Assume “facet stays as facet” 

� 𝑢𝑡 = sgn −𝛿 −
𝑏+𝛿

𝑎−𝛿
 sgn +𝛿  

⇔ 𝑢𝑡 =
−2
𝑏 − 𝑎

(𝛿 ↓ 0) 

𝛿 = 𝑢𝑥 𝑎 − 𝛿 ,−𝛿 = 𝑢𝑥 𝑏 + 𝛿  

23 
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Crystalline flow for an admissible polygon 

In the curve evolution the assumption “facet 
stays as facet” is compatible with comparison 
principle. (This does not apply for higher 
dimension.) 

If one restricts the evolution on “admissible” 
polygons, then the evolution (ACF) is reduced to 
a system of ODEs. 

S. B. Angenent – M. Gurtin ’89, J. Taylor ’91. 



A. Anisotropic curvature flow is approxi-
mated by crystalline algorithm. 
P. M. Girão – R. V. Kohn ’94 (heat equation) 
(convergence rate),  
P. M. Girão ’95 (curve shortening equation) 
(convergence rate),  
T. Fukui – Y. G. ’96 (graph, divergence type) (no rate) 

B. Crystalline algorithm is approximated by 
a smoother problem. 
T. Fukui – Y. G. ’96 / M.-H. Giga – Y. G. ’00  
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Crystalline algorithm (curve case) 



Strategy and difficulty 
• We need establish a notion of viscosity solutions 

since the equation is of non-divergence type, 
degenerate and very singular. The theory of 
maximal monotone operators does not apply 
directly.  

• Nevertheless, the theory of maximal monotone 
operators is useful to identify nonlocal 
curvature like quantity . 

• We use this quantity to define nonlocal mean 
curvature for test functions. 

26 



3.2 Theory of maximal monotone 
operators 

This approach applies to a gradient flow  
𝑢𝑡 ∈ −𝜕𝜕 𝑢  . 

Example 1. Total variation flow 
    𝐻: = 𝐿2 𝐓𝑛  and 𝜕 𝑢 := total variation energy 
Example 2. Its fourth order version  
    𝐻: = �̇�−1 𝐓𝑛  and 𝜕 𝑢 := total variation energy 
       (Y. G. – R. V. Kohn ’12, Finite time extinction) 
       (M.-H. Giga – Y. G. ’10, Instant loss of continuity) 

27 



Speed of Evolution 
 

Theorem 3.1 (Y. Kōmura ’67, H. Brezis – A. Pazy ’70). 
𝐻: Hilbert space, 𝜕: convex, lower semicontinuous, 𝑢0 ∈ 𝐷(𝜕) 
⇒ There exists a unique solution 𝑢 ∈ C 0,∞ ,𝐻 ∩ 𝐴C 𝛿,𝑇 ,𝐻   
     solving  

∈ −𝜕𝜕 𝑢    a.e.   𝑡 > 0, 𝑢 0 = 𝑢0. 

Moreover,  𝑢  is right differentiable for all  𝑡 > 0  and 

= −𝜕0𝜕 𝑢 . 
 

 

canonical restriction / minimal section: 
𝜕0𝜕 𝑢 = arg min 𝑓 𝐻 ;  𝑓 ∈ 𝜕𝜕 𝑢  

Solution knows how to evolve! 

𝑑𝑢
𝑑𝑡

 

𝑑+𝑢
𝑑𝑡
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Subdifferentials 
𝜕𝜕(𝑓) =  𝑤 ∈ 𝐻|𝜕 𝑓 + ℎ − 𝜕(𝑓) ≥ ℎ,𝑤    

   for all  ℎ ∈ 𝐻  
This is not a singleton in general. It is a closed 
convex set in 𝐻. It can be empty. 
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Canonical restriction 
(minimal section) 

𝜕0𝜕(𝑓) = arg min 𝑤 𝐻 𝑤 ∈ 𝜕𝜕(𝑓)  
Uniquely determined. 



𝐻 = 𝐿2 𝐓𝑛 ,  𝑓,𝑔 = � 𝑓𝑔𝑑𝑥,
𝐓𝑛

 

              𝜕 𝑓 = �∫𝐓𝑛 𝛻𝑓 ,     𝑓 ∈ 𝐵𝑉 ∩ 𝐻,
∞,                otherwise

 

Equation: 𝑢𝑡 ∈ −𝜕𝐿2𝜕 𝑢  (formally, 𝑢𝑡 = div 𝛻𝛻
𝛻𝛻

 )  

The total variation is defined as 

 ∫ 𝛻𝑓𝐓𝑛 ≔ sup ∫ 𝑓 div𝜑𝐓𝑛 𝜑 ∞ ≤ 1,𝜑 ∈ C0
1(𝐓𝑛) . 

𝐵𝑉 𝐓𝑛 ≔ 𝑓 ∈ 𝐿1(𝐓𝑛) ∫ 𝛻𝑓𝐓𝑛 < ∞ .  
30 

A rigorous interpretation of gradient flow  
3.3 Characterization of subdifferential 

In the case of total variation flow 



Characterization of subdifferential 
in 𝑳𝟐 

𝑤 ∈ 𝜕𝜕 𝑓  
⇔ 𝑧∃ ∈ 𝐿∞ 𝐓𝑛 , 𝑧 𝑥 ∈ 𝜕𝑀 𝛻𝑓   a.e.  in 𝐓𝑛, 

             𝑤 = −div 𝑧  in 𝐓𝑛, where 𝑀(𝑝) = 𝑝 .    
[F. Andreu-Vaillo – V. Caselles – J. M. Mazon ’04] 

In the place  𝛻𝑓 ≠ 0, 𝑤  formally equals  

𝑤 = − div 𝛻𝛻
𝛻𝛻

 

since 𝜕𝑀 𝑝 = 𝑝
𝑝

  for  𝑝 ≠ 0. 
31 
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Obstacle problem and 
nonlocal curvature 

We are interested in calculating the minimal 
section of subdifferentials for the second order 
problem. We consider periodic setting. 

We consider a pair (𝐴−,𝐴+)  of disjoint 
open sets in 𝐓𝑛. We say that 𝜓 ∈ Lip(𝐓𝑛) is a 
support function of a pair if  

𝑥 ∈ 𝐴± ⟺ 𝜓 𝑥 > 0 < 0 . 



[ 𝐴−,𝐴+ can be empty ] 

[dist 𝑥,𝑦 ≔ inf  �̅� − 𝑦� �̅� ∈ 𝑥 + 𝐙𝑛,𝑦� ∈ 𝑦 + 𝐙𝑛  ] 
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Definition 3.2.    We say that a pair (𝐴−,𝐴+) 
is smooth if 
(i) dist 𝐴−,𝐴+ > 0, 
(ii) 𝜕𝐴−,𝜕𝐴+ is smooth. 

Definition 3.3.    A pair is admissible if there 
exists its support function  𝜓  in  𝐷(𝜕𝜕). 



Obstacle problem 
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Lemma 3.4.    A smooth pair is admissible.  

Lemma 3.5.    Let 𝜓 ∈ 𝐷(𝜕𝜕) be a support 
function of a smooth pair (𝐴−,𝐴+). Then 
− 𝜕0𝜕(𝜓) on a facet 

𝐷 = 𝐴+𝑐 ∩ 𝐴−𝑐  
is independent of the choice of 𝜓. 

We denote −𝜕0𝜕(𝜓) on 𝐷 by Λ 𝐴−,𝐴+  
and call  Λ  a nonlocal mean curvature. 



35 

Lemma 3.6 (Obstacle problem).     

Λ 𝐴−,𝐴+ = arg min ∫ 𝑤 2
𝐷 𝑑𝑥       

        𝑤 = −div 𝑧,   𝑧 ∞ ≤ 1 (constraint), 

        𝑧 ⋅ 𝜈𝜕𝐴± = 1∓   on 𝜕𝐴± (B.C.) } 
if (𝐴−,𝐴+) is a smooth pair. 
 
M.-H. Giga – Y. G. – N. Pozar ’12, ’13 

Nonlocal mean curvature 



Whether or not  𝒘 = 𝐜𝐜𝐜𝐜𝐜 ? 
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Proposition 3.7.    If the minimizer 𝑤0 is 
constant  in  𝐷,  then 
 𝑤0 = ℋ𝑛−1 𝜕𝐴+ −ℋ𝑛−1 𝜕𝐴− /ℒ𝑛(𝐷). 
 

This is trivial since 

� 𝑤0
𝐷

= −� div 𝑧
𝐷

= −� 𝑧 ⋅ 𝜈𝜕𝐴±
𝜕𝐴±

 

= ℋ𝑛−1 𝜕𝐴+ −ℋ𝑛−1 𝜕𝐴− . 
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Proposition 3.8.   The minimizer 𝑤0 is constant if 
and only if there is a vector field 𝑧 (div 𝑧 ∈ 𝐿2(𝐷)) 
such that 

−div 𝑧 = 𝜆 = const    in   𝐷 
satisfying the constraint and B.C. 
 

If such 𝑧 exists, 𝐷 (or (𝐴−,𝐴+)) is called calibrable 
(or a Cheeger set). 

Proof.    Note that 
ℒ𝑛(𝐷)𝜆 = ∫ 𝑤𝐷 ≤ 𝑤  ℒ𝑛 𝐷 1/2 (Schwarz). 

If 𝑤0 is constant, the min value of 𝑤  is attained. 



Examples (𝐓𝑛 = 𝐑 𝐙⁄ 𝑛) 

(1) 𝐴−,𝐴+ = 𝐵𝑅(0) 𝑐 ,∅  0 < 𝑅 < 1/2 so 
that facet is a ball 

 𝑧 = −𝑥 𝑅⁄   fulfills  𝐵𝐶  and the constraint. 
 Thus  𝑤0 = − 𝑛 𝑅⁄ . 
(2) (annulus) 𝐴−,𝐴+ = 𝐵𝑅− 0 𝑐 , int𝐵𝑅+ 0  
 0 < 𝑅+ < 𝑅− < 1 2⁄ . 

Take  𝑧  of the form  𝑧 = 𝛻𝜑  and solve 

�
−Δ𝜑 = 𝜆                                 

     
𝜕𝜑
𝜕𝜈

= ±1    on   𝑥 = 𝑅± .
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• In general, a facet may not be calibrable. 
What is known in general is that  
Λ ∈ 𝐿∞ ∩ 𝐵𝑉. 

 [G. Bellettini – M. Novaga – M. Paolini, ARMA01] 
 It can be discontinuous. 

• There are several criteria so that the set 
is calibrable. 

 [G. Bellettini et al, IFB, ’01] 
 [B. Kawohl – T. Lachand-Robert ’06] 

39 



Monotonicity of 𝚲 
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Theorem 3.9.    Let 𝐴−𝑖 ,𝐴+𝑖  be a smooth pair 
with 𝑖 = 1, 2. Assume that 𝐴−2 ⊂ 𝐴−1 , 𝐴+1 ⊂ 𝐴+2 . 
Then 

Λ 𝐴−1 ,𝐴+1 ≤ Λ 𝐴−2 ,𝐴+2    a.e. 

on   𝐷1 ∩ 𝐷2  where  𝐷𝑖 = 𝐴−𝑖
𝑐 ∩ 𝐴+𝑖

𝑐
. 

Although it is difficult to calculate Λ in 
general, we have monotonicity with respect 
to a domain. 



Idea of proof 
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    We use the resolvent approximation  
𝑓𝑎𝑖 = 𝐼 + 𝑎𝜕𝜕 −1𝑓𝑖 

𝛻𝑎𝑖−𝛻𝑖

𝑎
→ −𝜕0𝜕 𝑓𝑖     in   𝐿2 

• We construct a support function having an 
order 𝑓1 ≤ 𝑓2 with 𝑓𝑖 ∈ 𝐷(𝜕𝜕)  for  𝑖 = 1, 2. 

• Since the problem is 2nd order we have order 
preserving property 𝑓𝑎1 ≤ 𝑓𝑎2. 

 (cf. Y. G. – M. Gurtin – J. Matthias ’98 using semigroup. 
It also constructs a crystalline algorithm, which may 
not satisfy comparison principle)  

 



Order preserving property for 
resolvent problem 

42 

Lemma 3.10.    If 𝑓1 ≤ 𝑓2  a.e. and 
𝑓𝑖 ∈ 𝐿2(𝐓𝑛) 

𝑓𝑎1 ≤ 𝑓𝑎2  a.e.  
 

V. Caselles – A. Chambolle ’06 

A simple idea is that we approximate 𝜕 by 
smooth energy so that the resolvent problem 
is a uniformly elliptic problem which preserves 
ordering. 
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Corollary 3.11.    If 𝑓 is Lipschitz, then 𝑓𝑎 is 
Lipschitz. Moreover, 

𝛻𝑓𝑎 ∞ ≤ 𝛻𝑓 ∞. 
 

This is a simple application of Lemma 3.10 
by taking 

𝑓1 = 𝑓, 𝑓2 𝑥 = 𝑓 𝑥 + ℎ + 𝐿ℎ. 
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We should discuss for total variation flow 
for non-divergence type. Typically 

𝑢𝑡 = 1 + 𝛻𝑢 2 div
𝛻𝑢
𝛻𝑢

 

which is the graph representation of 

𝑉 = 𝐻𝛾  on   Γ𝑡 ⊂ 𝐑𝑛+1 

with  𝛾 𝑝, 𝑝𝑛+1 = 𝑝 + 𝑝𝑛+1 . 

(*) 

4. Viscosity approach in the case of 
total variation flow 



Main unique existence result 
(M.-H. Giga, Y. Giga, N. Pozar ’13) 

We impose a periodic boundary condition: 
𝐓𝑛 = ∏ 𝐑 ∕ 𝜔𝑖𝐙 ,𝜔𝑖 > 0𝑛

𝑖=1  periodic cell. 

Theorem 4.1 [GGPo13, JMPA].    For 𝑢0 ∈
C(𝐓𝑛)  there is a unique viscosity solution 
𝑢 ∈ C 𝐓𝑛 × 0,∞  (defined later) for (*) with 
initial data  𝑢0 . 
If 𝑢0 ∈ Lip(𝐓𝑛), then 

𝛻𝑢 ∞(𝑡) ≤ 𝛻𝑢0 ∞. 
45 



Remark. (i) More general equation 

𝑢𝑡 + 𝐹 𝛻𝑢, div
𝛻𝑢
𝛻𝑢

= 0 

can be handled provided that it is 
degenerate parabolic. 

(ii) div 𝛻𝛻
𝛻𝛻

= −𝛿𝐸
𝛿𝛻

 can be generalized by 
𝜕 𝑢 = ∫ 𝑒(𝛻𝑢) with 𝜕𝑒 0 = 𝑝 ≤ 1 . 

e.g.  𝑒 𝑝 = 𝑝 + 𝑝 𝑞 , 𝑞 > 1. 
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(E) 



Assumptions on 𝑭 
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(F1) 𝐹:𝐑𝑛 × 𝐑 → 𝐑  is continuous 
(F2) 𝑋 ⟼ 𝐹(𝑝,𝑋) is nonincreasing 

(⇒ the equation is at least degenerate 
parabolic.) 

Example 
𝑢𝑡 − 1 + 𝛻𝑢 2 div 𝛻𝛻

𝛻𝛻
+ 𝜎 = 0  

𝜎: a given constant 
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Remark.    div 𝛻𝛻
𝛻𝛻

 can be generalized to 

div𝛻𝑝𝑊(𝛻𝑢)  where 𝑊 ∈ C2(𝐑𝑛 ∖ 0 )  is 
convex and 1-homogeneous [GGPo13, AMSA]. 

Theorem 4.2 [GGPo13, JMPA].    Assume (F1), 
(F2). Then their exists a unique global-in-time 
continuous viscosity solutions of (E) for any 
initial data 𝑢0 ∈ C(𝐓𝑛). If 𝑢0 ∈ Lip(𝐓𝑛) then 

𝛻𝑢 ∞(𝑡) ≤ 𝛻𝑢0 ∞ 

Unique Solvability 



Support function 
    Let (𝐴−,𝐴+) be an (open) pair in 𝐓𝑛.    
A Lipschitz function 𝑓  is said to be a 
support function of (𝐴−,𝐴+) if  

𝐴− = 𝑥 𝑓 𝑥 < 0 ,𝐴+ = 𝑥 𝑓 𝑥 > 0  . 

We also write Pair 𝑓 = (𝐴−,𝐴+).  

49 

4.1 Definition of viscosity solutions 
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𝑓 < 0 

𝐴+ 

𝐴+ 𝐴+ 

𝑓 = 0 
𝑓 > 0 

𝐴− 



Admissible and smooth pair 
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A pair is said to be admissible if there is a 
support function 𝑓 belonging to the domain of 
𝜕𝜕, i.e. 𝑓 ∈ 𝐷(𝜕𝜕) where 𝜕 is the total variation 
energy. A pair (𝐴−,𝐴+) is said to be smooth if 
dist 𝐴−,𝐴+ > 0  and  𝜕𝐴−,𝜕𝐴+  are smooth.  
 

Lemma 4.3.    A smooth pair is admissible. 
 

Idea of proof.    Take 𝑓 as a signed distance 
function of “facet” 𝐴−𝑐 ∩ 𝐴+𝑐  near the boundary 
of the facet. 
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    For a given (admissible) pair (𝐴−,𝐴+)  a 
function 𝜑 𝑥, 𝑡 = 𝑓 𝑥 + 𝑔 𝑡 , 𝑓 ∈ Lip 𝐓𝑛 , 
𝑔 ∈ C1(𝐑) is called an admissible faceted 
test function at 𝑥0 ∈ int (𝐴−𝑐 ∩ 𝐴+𝑐 ) with a 
pair (𝐴−,𝐴+)  if 𝑓 ∈ 𝐷(𝜕𝜕)  is a support 
function of (𝐴−,𝐴+). 

Admissible faceted test function 
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Definition 4.4.    We say that 𝑢 ∈
𝑈𝑆𝐶(𝐓𝑛 × (0,𝑇)) is a subsolution of 

(E) 𝑢𝑡 + 𝐹 𝛻𝑢, div 𝛻𝑢 ∕ 𝛻𝑢 = 0 

in    𝐓𝑛 × 0,𝑇  

(𝐹: R𝑛 × 𝐑 → 𝐑  is assumed to be continuous 
and nonincreasing in the second variable.) 

Definition of a subsolution 



       if max
𝐓𝑛×(0, 𝑇)

𝑢 − 𝜑 = 𝑢 − 𝜑 𝑥0, 𝑡0  with an 

admissible faceted test function 𝜑 = 𝑓 + 𝑔  at  
𝑥0, 𝑡0  with a smooth pair (𝐴−,𝐴+) always implies 

(a) 𝑔′ 𝑡0 + 𝐹 0, ess.inf 𝑩𝜼 𝟐⁄ (𝒙𝟎) 𝚲 𝑨−,𝑨+ ≤ 0 
when 𝑢,𝜑  is in general position at 𝑥0, 𝑡0  
with  𝜂 > 0  or 

(b)  
when  𝑓 ∈ C2 near 𝑥 and 𝛻𝑓 𝑥0 ≠ 0.  

[ Notion  of  general  position  is  convenient  to  prove 
“stability” and no severe restriction for “comparison”. ] 
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𝑔′ 𝑡0 + 𝐹 𝛻𝑓(𝑥0), div 𝛻𝑓(𝑥0) ∕ 𝛻𝑓(𝑥0) ≤ 0 



General position 
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We say that 𝑢,𝜑  is in general position at 
𝑥0, 𝑡0  with  𝜂 > 0  if 

max 𝑢ℎ − 𝜑 = 𝑢 − 𝜑 𝑥0, 𝑡0  
for all ℎ ≤ 𝜂, where 𝑢ℎ 𝑥, 𝑡 = 𝑢(𝑥 − ℎ, 𝑡) 
and max is taken over T𝑛 × [𝑡0 − 𝜂, 𝑡0 + 𝜂]. 

𝑥0 

𝒖 

not in general position 
with respect to 𝜂 

𝜼 

𝒇 

𝒖𝒉 



Remark.    (i) Definition for a supersolution 
is symmetric. Replace max by min and ≤ 
by  ≥ 0. If 𝑢 is both sub- and supersolution, 
we say that 𝑢 is a viscosity solution. 
(ii) We say that 𝑢 ∈ C(T𝑛 × 0,𝑇 ) is a 
solution of (E) if 𝑢 is both a sub- and 
supersolution. 
(iii) Definition (b) is standard. 
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at  𝑡 = 𝑡0  
( general position 

with small  𝜼 ) 
𝑥0 

𝑢 
𝒇 

𝜼 



4.2 Comparison principle 
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Only periodic case is proved. 

Theorem 4.5.    Let  𝐹 ∈ C(𝐑𝑛 × 𝐑)  be non 
increasing in the second variable (so that (E) is 
degenerate parabolic). Let 𝑢 ∈ 𝑈𝑆𝐶 𝑄� ,  𝑄 =
𝐓𝑛 × (0,𝑇)  and  𝑣 ∈ 𝐿𝑆𝐶(𝑄�) be a sub- and 
super-solution of (E). If 𝑢 ≤ 𝑣 at 𝑡 = 0, then  
𝑢 ≤ 𝑣   in  𝑄.  

The proof is far from trivial. 
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A flavor of the proof 
 The proof is very involved.  
Argument by contradiction 
1. Doubling variable procedure (standard) 
2. Flattening procedure 

Exclude the situation which easily yields a contradiction 
by a classical method to prove the standard comparison 
principle for a second order problem. 

Y. G. Chen – Y. G. – S. Goto ’91, S. Goto ’94,  
M.-H. Giga – Y. G. ’98. 

3. Construction of facets in between 
Flattening procedure leaves a space to construct a facet 
between those of 𝑢 and 𝑣. Monotonicity of nonlocal 
curvature yields a contradiction.   
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A few words for the existence 
1. Approximation by a smoother problem 
2. Stability 

“Let 𝑢𝑚  be a subsolution of the approximate 
problem (associate with energy 𝜕𝑚). Then the limit 
as 𝑚 → ∞ is subsolution of the original problem.” 

 We approximate a test function 𝜑 𝑥, 𝑡 =
𝑓 𝑥 + 𝑔(𝑡) by 𝜑𝑎,𝑚 = 𝑓𝑎,𝑚 + 𝑔, where 

𝑓𝑎 = 𝐼 + 𝑎 𝜕𝜕 −1𝑓, 
𝑓𝑎,𝑚 = 𝐼 + 𝑎 𝜕𝜕𝑚 −1𝑓. 

We first send 𝑚 → ∞ and then send 𝑎 → 0. (We 
need to replace 𝑓 by 𝜀𝑓 to make the slope small as 
we like near a facet.)  



𝜕 𝑓 ≔ �� 𝑊(𝛻𝑓)
Ω

     𝑓 ∈ 𝐵𝑉 ∩ 𝐿2 Ω

∞                     otherwise
 

We have to consider anisotropic total variation. 
Here 𝑊  is convex and 1-homogeneous, 
piecewise linear. 
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4.3  Further difficulty for  
        crystalline flow 



Instead of considering smooth pair, we have to 
consider admissible pair. 
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Definition 3.12.    Let Ω be a bounded domain 
in 𝐑𝑛. We say that 𝐴−,𝐴+  is admissible if 

(i) dist 𝐴−,𝐴+ > 0 
(ii) There is 𝜓 ∈ 𝐷(𝜕𝜕) which is Lipschitz and 

a support function of 𝐴−,𝐴+ . 
(iii) Moreover, 𝜕𝐴−,𝜕𝐴+ in 𝐑𝑛does not touch 

𝜕Ω.  
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• One has to approximate a general pair by 
admissible pair. This is so far only successful in 
the case when the pair is in 𝐑2. 

• We have to stratify the definition. 
• Construction is by approximation by smoothing 

W. Perron’s method does not work. 

Further difficulty for crystalline flow 

 



5. Other approaches 

So far we have explained two notions of solutions 
- viscosity solution 
- gradient flow based by the theory of monotone 

operators 

There are a few other notions of solutions where 
comparison principle has been proved 
- crystalline flow for curves 
- a solution based on distance functions 

(explained below) 
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5.1 Other notions of solutions 



𝝓-regular flow 
(G. Bellettini – M. Novaga ’00, MMMA) 
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Equation 𝑉 = 𝛾𝐻𝛾 , 𝐻𝛾 = −div𝛻𝑝𝛾 𝑛  
(anisotropic curvature flow in 𝐑𝑛) 

𝜙 = 𝛾0: support function of 𝑝 𝛾 𝑝 ≤ 1  
(Frank diagram) 

𝛾0 𝑥 = sup 𝑥,𝑝 𝛾 𝑝 ≤ 1  
Here 𝛾: convex, 1-homogeneous function 
(given interfacial energy density) 
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Definition 5.1.    Let 𝑇 > 0 . We say the 
mapping 𝑡(∈ 0,𝑇 ) → 𝜕 𝑡 ⊂ 𝐑𝑛 is 𝜙-regular 
flow if (i), (ii) hold. 

(i) There exists an open set 𝐴 ⊂ 𝐑𝑛 × [0,∞) 
such that ⋃ (𝜕𝜕 𝑡 × {𝑡})𝑡∈ 0,𝑇 ⊂ 𝐴  and 
𝑑𝜙 𝑧, 𝑡 = dist𝜙 𝑧,𝜕 𝑡 − dist𝜙 𝑧,𝜕 𝑡 𝑐  
is Lipschitz in 𝐴 (space-time). 

𝝓-regular flow (continued) 
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(ii) There exists a bounded vector field 
𝑚:𝐴 → 𝐑𝑛 such that 𝑚 ∈ 𝜕𝛾(𝛻𝑑𝜙) a.e. 
in 𝐴  and there exists  𝜆 > 0  such that 
𝜕𝑑𝜙
𝜕𝑡

(𝑧, 𝑡) − div 𝑚(𝑧, 𝑡) ≤ 𝜆 𝑑𝜙(𝑧, 𝑡)  

for a.e. 𝑧, 𝑡 ∈ 𝐴. 

𝝓-regular flow (continued) 

Remark. Comparison principle has been 
established by a reaction diffusion approximation. 
However, there is no general existence result for 
𝑛 ≥ 3 except convex initial data. 



5.2 Related topics 

    Even one dimensional problem is quite involved. 
Consider 
𝑢𝑡 + 𝐹 𝑢𝑥, 𝑊′ 𝑢𝑥 𝑥 + 𝜎 = 0  in  𝐓 × 0,∞  

where 𝜎 is Lipschitz in 𝑥 and uniformly in time. Here 
𝑊 is convex and 𝑊′ has a discrete set 𝑃 of jumps 
(sup
𝐾∖𝑃

𝑊′′ is bounded for every compact set 𝐾). 

M.-H. Giga – Y. G. – P. Rybka ’11    comparison and example 
M.-H. Giga – Y. G. – A. Nakayasu ’13  
 existence by Perron – Ishii’s method 
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5.2.1 Graph case 
Spatially inhomogeneous problem 



This is so far not well studied because 
of difficulty. Comparison principle for a 
domain to total variation flow of non-
divergence type is not known. 

 
Deterministic game approximation for 

crystalline curve evolution. 
(R. V. Kohn – S. Serfaty ’06 ) 
(M.-H. Giga – Y. G. work in progress) 
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Boundary value problem 

Approximation 



(1) Allen – Cahn type approximation 

𝑢𝑡 − Δ𝑢 +
𝜑′ 𝑢
𝜀2

= 0 
𝜑: double well potential 

𝜑 𝑢 =
1
4

1 − 𝑢2 2 

“Anisotropic version converges to anisotropic 
men curvature flow”, The convergence is uniform 
with respect to 𝛾 provided 𝜆 𝑝 ≤ 𝛾 𝑝 ≤ Λ 𝑝  
 Y. G. – T. Ohtsuka – R. Schätzle ’06. 
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5.2.2 Approximation of solution 



(2) Almgren – Taylor – Wang approach and 
Chambolle scheme 

• F. Almgren – J. Taylor – L. Wang ’93 
𝐾 ⊂ 𝐑2  bounded measurable set 

𝐹ℎ 𝐾 ≔ arg min Per 𝜕𝐿 +
1
ℎ
� dist 𝑥, 𝜕𝐾 𝑑𝑥
𝐿Δ𝐾

 

𝐿 is of finite perimeter, bounded and measurable  

“𝐾𝑡 = 𝐹ℎ
𝑡 ℎ⁄ (𝐾0) approximates the solution of the 

mean curvature flow equation starting from 𝐾0” as 
ℎ → 0. 
𝐹ℎ 𝐾   may not be unique!  
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• Chambolle’s scheme ’04 
𝜕0 ⊂ 𝐑𝑛  compact. 𝜕0 ⊂ Ω 

𝐽ℎ 𝑣 = � 𝛻𝑣 +
1
2ℎ

𝑣 − 𝑑𝐸0 𝐿2
2

Ω
 

𝑑𝐸0 𝑥 = dist 𝑥,𝜕0 − dist 𝑥,𝐑𝑛 ∖ 𝜕0 . 
𝑇ℎ 𝜕0 ≔ 𝑤𝐸0

ℎ ≤ 0  

when 𝑤𝐸0
ℎ = arg min 𝐽ℎ (This minimizer is unique). 

This is one selection of 𝐹ℎ(𝜕0); moreover, 𝑇ℎ(𝜕0) 
is uniquely determined. (Convex minimization) 

“𝜕𝑡 = 𝑇ℎ
𝑡 ℎ⁄ (𝜕0) approximate the solution” 
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Theorem 5.2 (T. Eto – Y. G. – K. Ishii).    𝑢ℎ → 𝑢  locally 
uniformly in  𝐑𝑛 × [0,∞)  as  ℎ → 0   and  𝑢  solves 

𝑢𝑡 − 𝛻𝑢 = div
𝛻𝑢
𝛻𝑢

𝛻𝑢  

(Anisotropic extension is possible but singular case is not well 
understand except curve case (K. Ishii ’13, NoDEA) or convex 
case (V. Caselles – A. Chambolle ’06).) 

    Consider the resolvent equation 

𝑤 − ℎ div
𝛻𝑣
𝛻𝑣

∋ 𝑑𝐸            𝐑𝑛. 

Let 𝑢ℎ 𝑥, 𝑡 = sup  𝜇 ∈ 𝐑  𝑥 ∈ 𝑇ℎ
𝑡 ℎ⁄  ( 𝑢0 ≥ 𝜇 )  for 

a given uniformly continuous  𝑢0. 

Extension to unbounded set 

in 



5.3 Summary 
• We show the well-posedness of the initial value 

problem for a level-set crystalline flow equation in 
𝐑3 by extending the theory of viscosity solution. 

• The difficulty stems from the fact that the speed is 
nonlocal and not constant on a “facet”. 

• This difficulty has already arisen for total variation 
flow of divergence type. To handle crystalline flow a 
further difficulty for approximation arises. 

• The existence is also nontrivial because the Perron 
method does not work. 
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Main Results (work in progress, GGPo) 

Theorem 2.1 (Existence and Uniqueness).   For 
a given initial data (a bounded open set) 
𝐷0 ⊂ 𝐑3 with its boundary Γ0 there exists a 
global level-set flow 𝐷 for crystalline mean 
curvature flow equation (ACF) (provided that 𝑓 
is at most linear growth in 𝐻𝛾). 
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Theorem 2.2 (Stability).  Assume the same 
hypotheses of Theorem 2.1. Let 𝛾𝜀  be a 
smooth convex interfacial energy density 
approximate 𝛾 uniformly. Then the level-set 
flow 𝐷𝜀 converges to 𝐷 in the Hausdorff 
distance sense in space-time provided that 
no fattening occurs.  
 

(Underlying structure: comparison principle) 
(work in progress, M.-H. Giga – Y. G. – N. Pozar) 
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