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Motivation

• Measures appear as multipliers in Necessary Conditions for
State Constrained Problems

• We would like to avoid it (such multipliers are hard to treat)

• Is there a class of problems where such measures are
absolutely continuous w.r.t. Lebesgue measure?

• Can we use Exact Penalization to

a) Identify an appropriate class of problems?

b) Obtain the NC for it?
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State Constrained Control Problem

(P)



Minimize l(x(a), x(b))
subject to

ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [a, b]

h(x(t)) ≤ 0 for all t ∈ [a, b]

u(t) ∈ U a.e. t ∈ [a, b]

(x(a), x(b)) ∈ E ,

where

l : Rn × Rn → R,
f : [a,b]× Rn × Rk → Rn,
h : Rn → R, (for simplicity, independent of t)
U ⊂ Rk ,
E ⊂ Rn × Rn.

subject to a standard set of assumptions
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Necessary Conditions of Optimality

Let (x∗, u∗) be an optimal solution. Then

• (p, µ, λ0) 6= (0, 0, 0)

• −ṗ(t) = f Tx (t, x∗(t), u∗(t))q(t) a.e.,

BV function q(t) =

 p(t) +
∫

[a,t)∇h(s, x∗(s))µ(ds), t ∈ [a, b)

p(t) +
∫

[a,b]∇h(s, x∗(s))µ(ds), t = b

• ∀ u ∈ U,

〈q(t), f (t, x∗(t), u)〉 ≤ 〈q(t), f (t, x∗(t), u∗(t))〉 a.e.

• (p(a),−q(b)) = λ0∇l(x∗(a), x∗(b)) + NL
E (x∗(a), x∗(b)),

• supp{µ} ⊂ {t : h(x∗(t)) = 0}
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Well-Behaved Measures

If there exists an integrable function ξ such that

q(t) = p(t)+

∫
[a,t)
∇h(x∗(s))µ(ds) = p(t)+

∫
[a,t)
∇h(x∗(s))ξ(s) ds

Then measure µ is AC w.r.t. Lebesgue measure,
and

q̇(t) = ṗ(t) + ξ(t)∇h(x∗(t)).

The adjoint equation

−ṗ(t) = f Tx (t, x∗(t), u∗(t))q(t)

becomes

−q̇(t) = f Tx (t, x∗(t), u∗(t))q(t)− ξ(t)∇h(x∗(t))
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Well-Behaved Measures (2)

Question: Identify a class of problems with measures∫
[a,t)
∇h(x∗(s))µ(ds) =

∫
[a,t)
∇h(x∗(s))ξ(s) ds

A first guess: If h(x∗(t)) < 0 for all t ∈ [a, b], then

µ ≡ 0, q = p

Is there a larger class of problems?

One idea is to identify such class by Exact Penalization
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Distance Function

Define

Φ := {y ∈ R : y ≤ 0} , S := {x ∈ Rn : h(x) ∈ Φ} .

Observe
h(x) ≤ 0 ⇐⇒ x ∈ S

Definition of the distance function

dS(x) := inf
{∣∣x − x ′

∣∣ : x ′ ∈ S
}
.

Then

dS(x∗(t)) = 0 ⇐⇒ h(x∗(t)) ≤ 0.
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Question
When is (x∗, u∗) a strong minimum of (P), also a strong minimum
of an exact penalization problem (Q)?

Exact Penalization Problem

(Q)



Minimize l(x(a), x(b)) + K

∫ b

a
dS(x(t)) dt

subject to

ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [a, b],

u(t) ∈ U a.e. t ∈ [a, b],

(x(a), x(b)) ∈ E .

State constraint h(x(t)) ≤ 0 in (P) is substituted by
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From a minimizer of (P) to a minimizer of (Q)

• We know (x∗, u∗) is admissible for (Q).

• Suppose (x∗, u∗) is not a solution to (Q).

• Let (x ′, u′) be an admissible process for (Q) such that

l(x ′(a), x ′(b)) + K

∫ b

a
dS(x ′(t))dt < l(x∗(a), x∗(b)).

• Set ρ = l(x∗(a), x∗(b))− l(x ′(a), x ′(b))− K
∫ b
a dS(x ′(t))dt.

• Choose δ ∈ (0, ρ
2K ).

• We obtain

l(x ′(a), x ′(b)) + K

∫ b

a
dS(x ′(t))dt < l(x∗(a), x∗(b))− Kδ.
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From a minimizer of (P) to a minimizer of (Q) (2)
Suppose that there exists an admissible process (z , v) for (P) s.t.

(H∗) max
t∈[a,b]

{|z(t)− x ′(t)|} ≤ K

2

∫ b

a
dS(x ′(t)) dt

• Supposing that l is Lipschitz:

l(z(a), z(b))−l(x ′(a), x ′(b)) ≤ Kl

∣∣∣(z(a), z(b))−(x ′(a), x ′(b))
∣∣∣.

• Assuming K > Kl :

l(z(a), z(b))− l(x ′(a), x ′(b)) ≤ K
∣∣∣(z(a), z(b))− (x ′(a), x ′(b))

∣∣∣
≤ K

∫ b

a

dS(x ′(t))dt < K

∫ b

a

dS(x ′(t))dt + Kδ < K

∫ b

a

dS(x ′(t))dt + ρ

= K
b

∫
a
dS(x ′(t))dt + l(x∗(a), x∗(b))− l(x ′(a), x ′(b))− K

b

∫
a
dS(x ′(t))dt

= l(x∗(a), x∗(b))− l(x ′(a), x ′(b))
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From a minimizer of (P) to a minimizer of (Q) (3)

This gives us:
l(z(a), z(b)) ≤ l(x∗(a), x∗(b))

a contradiction to (x∗, u∗) being the optimal solution to (P)!
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From a minimizer of (P) to a minimizer of (Q) (4)

Conclusion
If

• (H*) holds, i.e. max
t∈[a,b]

{|z(t)− x ′(t)|} ≤ K

2

∫ b

a
dS(x ′(t)) dt

• Cost l is Lipschitz continuous with Kl ,

• K > Kl ,

Then:

A strong loc. minimum of (P) is also a strong loc. minimum of (Q).
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NC for Penalized Problem

Exact Penalization Problem in Mayer Form:

(QM)



Minimize l(x(a), x(b)) + y(b)
subject to
ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [a, b],

ẏ(t) = K

∫ t

a
dS(x(s)) ds a.e. t ∈ [a, b],

u(t) ∈ U a.e. t ∈ [a, b],

(x(a), x(b), y(a), y(b)) ∈ E × {0} × R.

Idea:

• Obtain Necessary Conditions for (Q) via (QM).

• Apply them obtain a set of candidates for (P).
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NC for Penalized Problem (2)

A useful result:
Suppose that h ∈ C 1 and ∇h(x) 6= 0 for x ∈ Rn such that
h(x) = 0. As defined earlier, Φ = {y ∈ R : y ≤ 0} and
S = {x ∈ Rn : h(x) ∈ Φ}. Then,

∀ ζ ∈ ∂CdS(x) ∃α ∈ NC
Φ (h(x)) : ζ = α∇h(x∗(t)).

Idea of a proof:

• NL
Φ(y) = NC

Φ (y) since Φ is convex.

• If h(x) = 0, then α ∈ NC
Φ (h(x)) =⇒ α ≥ 0

• If ζ ∈ ∂CdS(x) =⇒ ζ ∈ NC
S (x).
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NC for Penalized Problem (3)

Assumptions (reminder):
• l and (x , u)→ f (t, x , u) are

Kl -, Kf -Lipschitz continuous

• h ∈ C 1 and ∇h(x) 6= 0 ∀ x ∈ Rn with h(x) = 0;

• U compact,
E closed;

• (H*) holds

Apply MP to (QM) to obtain NC for (P):

∃ p ∈W 1,1, a meas. function ξ and a scalar λ ≥ 0:

(i) ||p||∞ + λ > 0,

(ii) −ṗ(t) ∈ ∂Cx 〈p(t), f (t, x∗(t), u∗(t))〉 − λξ(t)∇h(x∗(t)) a.e.,

(iii)
u ∈ U =⇒ 〈p(t), f (t, x∗(t), u)〉 ≤ 〈p(t), f (t, x∗(t), u∗(t))〉 a.e.,

(iv) (p(a),−p(b)) ∈ NL
E (x∗(a), x∗(b)) + λ∂Ll(x∗(a), x∗(b)),

(v) ξ(t) ≥ 0 and ξ(t)h(x∗(t)) = 0 a.e.

“Measure-free” Necessary Conditions for (P)! 16 / 28
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The Remaining Question

• When does (H*) hold? – No answer (Hypothesis is hard to
verify)

• Take a simple state constrained problem, test if the NC hold!

A simple problem with a first-order state constraint

(FO)



Minimize

∫ b

a
〈c , x(t)〉+ u2(t) dt

subject to

ẋ(t) = f (x(t)) + g(x(t))u(t) a.e. t ∈ [a, b],

h(x(t)) ≤ 0 for all t ∈ [a, b],

u(t) ∈ U(t) a.e. t ∈ [a, b],

(x(a), x(b)) ∈ E .
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SEIR Compartmental Model

SEIR Model
The total population N is divided into four compartments:

• S susceptible,

• E exposed (not yet infectious),

• I infectious,

• R recovered;

follows a system of ODEs.
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SEIR Control Problem

Minimize

∫ T

0

(
AI (t) + u2(t)

)
dt

subject to

Ṡ = bN(t)− dS(t)− cS(t)I (t)− u(t)S(t),
Ė (t) = cS(t)I (t)− (e + d)E (t),
İ (t) = eE (t)− (g + a + d)I (t),
Ṅ(t) = (b − d)N(t)− aI (t),



ẋ = f (x) + g(x)u

where

g(x) = (S , 0, 0, 0)T

S(t)− 1100 ≤ 0 for all t ∈ [0,T ],

u(t) ∈ [0, 1] a.e. t ∈ [0,T ],

(x(a), x(b)) ∈ E .

h(x(t)) = 〈(1, 0, 0, 0), (S ,E , I ,N)〉
dh

dt
= ∇h(x)ẋ = Ṡ = bN − dS − cSI − uS

The state constraint is of order 1!
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= ∇h(x)ẋ = Ṡ = bN − dS − cSI − uS

The state constraint is of order 1!

19 / 28



Necessary Conditions and Measures Exact Penalization A SEIR Problem Study Conclusion

SEIR Control Problem

Minimize

∫ T

0

(
AI (t) + u2(t)

)
dt

subject to
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Necessary Conditions SEIR

Inward Pointing Condition [Rampazzo & Vinter ’99]
verified =⇒ λ = 1 (Normality)

(i) (p, λ, µ) 6= (0, 0, 0) ;

(ii) −ṗ(t) = f Tx (x∗(t))q(t) + u∗(t)gT
x (x∗(t))q(t)− λc ;

(iii) ∀ u ∈ U,
〈g(x∗(t))u∗(t), q(t)〉 − λ(u∗)2(t) ≥ 〈g(x∗(t))u, q(t)〉 − λu2;

(iv) −q(b) = 0;

(v) supp{µ} ⊂ {t : h(x∗(t)) = 0}.

where
q(t) = p(t) +

∫
[a,t)

∇h(x∗(s))µ(ds),

q(b) = p(b) +

∫
[a,b]

∇h(x∗(s))µ(ds).
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Necessary Conditions SEIR (2)

(i) (p, λ, µ) 6= (0, 0, 0);

(ii) −ṗ(t) = f Tx (x∗(t))q(t) + u∗(t)gT
x (x∗(t))q(t)− λc ;

(iii) ∀ u ∈ U,

〈g(x∗(t))u∗(t), q(t)〉 − λ(u∗)2(t) ≥ 〈g(x∗(t))u, q(t)〉 − λu2,

(iv) −q(b) = 0;

(v) supp{µ} ⊂ {t : h(x∗(t)) = 0}.

where
q(t) = p(t) +

∫
[a,t)

∇h(x∗(s))µ(ds),

q(b) = p(b) +

∫
[a,b]

∇h(x∗(s))µ(ds).

Closed form of the optimal control

u∗(t) = max
{

0,min
{

1,− qs (t)S∗(t)
2

}}
.
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State constraint characterization w.r.t x∗

• A boundary interval if ∃[tb0 , t
b
1 ] : h(t, x∗(t)) = 0 ∀t ∈ [tb0 , t

b
1 ].

Boundary interval in the SEIR case
We show:

S∗(t) = Smax

=⇒ Ṡ∗(t) = bN∗(t)− dS∗(t)− cS∗(t)I ∗(t)− u∗(t)S∗(t) = 0

=⇒ u∗(t) = bN∗(t)
S∗(t) − d − cI ∗(t).

• u∗ is an AC function on all (tb0 , t
b
1 ) (when t1

b < T )

• u∗ is continuous in tb0 and tb1 .

• Conclusion: Measure µ has no atoms on interior intervals
including the contact points.
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Earlier results: [Shvartsman & Vinter ’06], [Frankowska ’06]

We already know that the measure

ν(t) =

∫
[0,t)

µ(ds)

is absolutely continuous for all t ∈ [0, t] ⊂ [0,T ]. Thus the
multiplier

qS(t) = pS(t) + ν(t)

is absolutely continuous.

But the measure may have an atom in the end point T

This is exactly the case with SEIR problem.
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Numerical Solution
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Numerical Multipliers

NOTE:
The multiplier pS is not 0 at the end;
Measure µ has an atom at T = 20.
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Conclusion

Min. of (Q)
Min. of (P)

Candidates from NC for (Q)

(H*)

• NC for state constrained
problems are “easy to handle” if
the measure is AC w.r.t
Lebesgue measure.

• Idea of an Exact Penalization to
ensure such NC.

• Introduced a hypothesis (H*) to guarantee Exact Penalization
of (P) via (Q).

• SEIR problem as a counterexample that Exact Penalization
does not work (if it did, the measure would be AC in the
entire interval [0,T ])
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His name is SADKO (too)
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