A SEIR Problem Study

Conclusion

Exact Penalization Applied To First Order State Constrained Problems

Igor Kornienko Universidade do Porto

joint work with M. R. de Pinho

New Perspectives in Optimal Control and Games November 10-13, 2014, Rome

1/28

A SEIR Problem Study

Conclusion

Motivation

- Measures appear as multipliers in Necessary Conditions for State Constrained Problems
- We would like to avoid it (such multipliers are hard to treat)
- Is there a class of problems where such measures are absolutely continuous w.r.t. Lebesgue measure?
- Can we use Exact Penalization to
 - a) Identify an appropriate class of problems?
 - b) Obtain the NC for it?

A SEIR Problem Study

Conclusion

Table of contents

Necessary Conditions and Measures for/ in a Standard State-Constrained Problem

Exact Penalization Problem

Existence of Minimizers under Hypothesis (H*) Necessary Conditions for Penalized Problem

A SEIR with index one state constraint

Necessary Conditions do not hold, Hypothesis (H*) not satisfied Numerical Solution

Conclusion

A SEIR Problem Study

Conclusion

State Constrained Control Problem

$$(P) \begin{cases} \text{Minimize } l(x(a), x(b)) \\ \text{subject to} \\ \dot{x}(t) = f(t, x(t), u(t)) & \text{a.e. } t \in [a, b] \\ h(x(t)) \leq 0 & \text{for all } t \in [a, b] \\ u(t) \in U & \text{a.e. } t \in [a, b] \\ (x(a), x(b)) \in E, \end{cases}$$

where

$$\begin{array}{ll} l: \ \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}, \\ f: \ [\mathbf{a}, \mathbf{b}] \times \mathbf{R}^n \times \mathbf{R}^k \to \mathbf{R}^n, \\ h: \ \mathbf{R}^n \to \mathbf{R}, \\ U \subset \mathbf{R}^k, \\ E \subset \mathbf{R}^n \times \mathbf{R}^n. \end{array}$$
 (for simplicity, independent of *t*)

subject to a standard set of assumptions

A SEIR Problem Study

Conclusion

Necessary Conditions of Optimality

Let (x^*, u^*) be an optimal solution. Then

•
$$(p, \mu, \lambda_0) \neq (0, 0, 0)$$

•
$$-\dot{p}(t) = f_x^T(t, x^*(t), u^*(t))q(t)$$
 a.e.,

$$\mathsf{BV} \text{ function } q(t) = \begin{cases} p(t) + \int_{[a,t)} \nabla h(s,x^*(s)) \, \mu(ds), & t \in [a,b) \\ p(t) + \int_{[a,b]} \nabla h(s,x^*(s)) \, \mu(ds), & t = b \end{cases}$$

•
$$\forall u \in U$$
,
 $\langle q(t), f(t, x^*(t), u) \rangle \leq \langle q(t), f(t, x^*(t), u^*(t)) \rangle$ a.e.

•
$$(p(a), -q(b)) = \lambda_0 \nabla I(x^*(a), x^*(b)) + N_E^L(x^*(a), x^*(b)),$$

•
$$\sup\{\mu\} \subset \{t : h(x^*(t)) = 0\}$$

A SEIR Problem Study

Conclusion

Well-Behaved Measures

If there exists an integrable function ξ such that

$$q(t) = p(t) + \int_{[a,t)} \nabla h(x^*(s)) \, \mu(ds) = p(t) + \int_{[a,t)} \nabla h(x^*(s)) \xi(s) \, ds$$

Then measure μ is AC w.r.t. Lebesgue measure, and

$$\dot{q}(t) = \dot{p}(t) + \xi(t) \nabla h(x^*(t)).$$

The adjoint equation

$$-\dot{p}(t) = f_x^T(t, x^*(t), u^*(t))q(t)$$

becomes

$$-\dot{q}(t) = f_{x}^{T}(t, x^{*}(t), u^{*}(t))q(t) - \xi(t)\nabla h(x^{*}(t))$$

A SEIR Problem Study

Conclusion

Well-Behaved Measures (2)

Question: Identify a class of problems with measures

$$\int_{[a,t)} \nabla h(x^*(s)) \, \mu(ds) = \int_{[a,t)} \nabla h(x^*(s)) \xi(s) \, ds$$

A first guess: If $h(x^*(t)) < 0$ for all $t \in [a, b]$, then

$$\mu \equiv 0, \qquad q = p$$

Is there a larger class of problems?

One idea is to identify such class by Exact Penalization

A SEIR Problem Study

Conclusion

Distance Function

Define

$$\Phi := \{ y \in \mathbf{R} : y \le 0 \}, \qquad S := \{ x \in \mathbf{R}^n : h(x) \in \Phi \}.$$

Observe

$$h(x) \leq 0 \quad \Longleftrightarrow \quad x \in S$$

Definition of the distance function

$$d_{S}(x) := \inf \{ |x - x'| : x' \in S \}.$$

Then

$$d_{\mathcal{S}}(x^*(t))=0 \quad \Longleftrightarrow \quad h(x^*(t))\leq 0.$$

A SEIR Problem Study

Conclusion

Question

When is (x^*, u^*) a strong minimum of (P), also a strong minimum of an exact penalization problem (Q)?

Exact Penalization Problem

$$(Q) \begin{cases} \text{Minimize } l(x(a), x(b)) + K \int_{a}^{b} d_{S}(x(t)) dt \\ \text{subject to} \\ \dot{x}(t) = f(t, x(t), u(t)) \quad \text{a.e. } t \in [a, b], \\ u(t) \in U \quad \text{a.e. } t \in [a, b], \\ (x(a), x(b)) \in E. \end{cases} \end{cases}$$

State constraint $h(x(t)) \leq 0$ in (P) is substituted by /

A SEIR Problem Study

Conclusion

From a minimizer of (P) to a minimizer of (Q)

- We know (x^*, u^*) is admissible for (Q).
- Suppose (x^*, u^*) is not a solution to (Q).
- Let (x', u') be an admissible process for (Q) such that

$$l(x'(a), x'(b)) + K \int_a^b d_S(x'(t)) dt < l(x^*(a), x^*(b)).$$

- Set $\rho = l(x^*(a), x^*(b)) l(x'(a), x'(b)) K \int_a^b d_S(x'(t)) dt$.
- Choose $\delta \in (0, \frac{\rho}{2K})$.
- We obtain

$$l(x'(a),x'(b))+\kappa\int_a^b d_{\mathcal{S}}(x'(t))dt < l(x^*(a),x^*(b))-\kappa\delta.$$

A SEIR Problem Study

From a minimizer of (P) to a minimizer of (Q) (2) Suppose that there exists an admissible process (z, v) for (P) s.t.

(H*)
$$\max_{t \in [a,b]} \{ |z(t) - x'(t)| \} \le \frac{K}{2} \int_a^b d_S(x'(t)) dt$$

• Supposing that *I* is Lipschitz:

$$l(z(a), z(b)) - l(x'(a), x'(b)) \le \kappa_l |(z(a), z(b)) - (x'(a), x'(b))|.$$

• Assuming $K > K_I$:

$$\begin{aligned} &|(z(a), z(b)) - l(x'(a), x'(b)) \le K \left| (z(a), z(b)) - (x'(a), x'(b)) \right| \\ &\le K \int_{a}^{b} d_{S}(x'(t)) dt < K \int_{a}^{b} d_{S}(x'(t)) dt + K\delta < K \int_{a}^{b} d_{S}(x'(t)) dt + \rho \\ &= K \int_{a}^{b} d_{S}(x'(t)) dt + l(x^{*}(a), x^{*}(b)) - l(x'(a), x'(b)) - K \int_{a}^{b} d_{S}(x'(t)) dt \\ &= l(x^{*}(a), x^{*}(b)) - l(x'(a), x'(b)) \end{aligned}$$

A SEIR Problem Study

Conclusion

```
From a minimizer of (P) to a minimizer of (Q) (3)
```

This gives us:

 $l(z(a), z(b)) \leq l(x^*(a), x^*(b))$

a contradiction to (x^*, u^*) being the optimal solution to (P)!

A SEIR Problem Study

From a minimizer of (P) to a minimizer of (Q) (4)

Conclusion If

- (H*) holds, i.e. $\max_{t \in [a,b]} \{ |z(t) x'(t)| \} \le \frac{K}{2} \int_a^b d_S(x'(t)) dt$
- Cost I is Lipschitz continuous with K_I,
- $K > K_I$,

Then:

A strong loc. minimum of (P) is also a strong loc. minimum of (Q).

A SEIR Problem Study

Conclusion

NC for Penalized Problem

Exact Penalization Problem in Mayer Form:

$$(Q_{M}) \begin{cases} \text{Minimize } l(x(a), x(b)) + y(b) \\ \text{subject to} \\ \dot{x}(t) = f(t, x(t), u(t)) \quad \text{a.e. } t \in [a, b], \\ \dot{y}(t) = K \int_{a}^{t} d_{5}(x(s)) \, ds \quad \text{a.e. } t \in [a, b], \\ u(t) \in U \quad \text{a.e. } t \in [a, b], \\ (x(a), x(b), y(a), y(b)) \in E \times \{0\} \times \mathbb{R}. \end{cases}$$

Idea:

- Obtain Necessary Conditions for (Q) via (Q_M) .
- Apply them obtain a set of candidates for (P).

A SEIR Problem Study

Conclusion

NC for Penalized Problem (2)

A useful result:

Suppose that $h \in C^1$ and $\nabla h(x) \neq 0$ for $x \in \mathbf{R}^n$ such that h(x) = 0. As defined earlier, $\Phi = \{y \in \mathbf{R} : y \leq 0\}$ and $S = \{x \in \mathbf{R}^n : h(x) \in \Phi\}$. Then,

$$\forall \zeta \in \partial^{\mathsf{C}} d_{\mathsf{S}}(x) \quad \exists \alpha \in \mathsf{N}_{\Phi}^{\mathsf{C}}(h(x)): \quad \zeta = \alpha \nabla h(x^*(t)).$$

Idea of a proof:

- $N_{\Phi}^{L}(y) = N_{\Phi}^{C}(y)$ since Φ is convex.
- If h(x) = 0, then $\alpha \in N_{\Phi}^{C}(h(x)) \implies \alpha \ge 0$
- If $\zeta \in \partial^C d_S(x) \implies \zeta \in N_S^C(x).$

A SEIR Problem Study

Conclusion

NC for Penalized Problem (3)

Assumptions (reminder):

• I and $(x, u) \rightarrow f(t, x, u)$ are K_{I^-}, K_{f} -Lipschitz continuous

- U compact, E closed;
- $h \in C^1$ and $\nabla h(x) \neq 0 \quad \forall x \in \mathbf{R}^n$ with h(x) = 0; (H*) holds

Apply MP to (Q_M) to obtain NC for (P): $\exists p \in W^{1,1}$, a meas. function ξ and a scalar $\lambda \ge 0$:

(i)
$$||p||_{\infty} + \lambda > 0,$$

(ii) $-\dot{p}(t) \in \partial_x^C \langle p(t), f(t, x^*(t), u^*(t)) \rangle - \lambda \xi(t) \nabla h(x^*(t))$ a.e.,

(iii)

$$u \in U \implies \langle p(t), f(t, x^*(t), u)
angle \leq \langle p(t), f(t, x^*(t), u^*(t))
angle$$
 a.e.,

(iv)
$$(p(a), -p(b)) \in N_E^L(x^*(a), x^*(b)) + \lambda \partial^L I(x^*(a), x^*(b)),$$

(v) $\xi(t) \ge 0 \text{ and } \xi(t)h(x^*(t)) = 0 \text{ a.e.}$

"Measure-free" Necessary Conditions for (P)!

A SEIR Problem Study •000000 00

The Remaining Question

- When does (H*) hold? No answer (Hypothesis is hard to verify)
- Take a simple state constrained problem, test if the NC hold!

A simple problem with a first-order state constraint

$$(FO) \begin{cases} \text{Minimize } \int_{a}^{b} \langle c, x(t) \rangle + u^{2}(t) \, dt \\ \text{subject to} \\ \dot{x}(t) = f(x(t)) + g(x(t))u(t) \quad \text{a.e. } t \in [a, b], \\ h(x(t)) \leq 0 \quad \text{for all } t \in [a, b], \\ u(t) \in U(t) \quad \text{a.e. } t \in [a, b], \\ (x(a), x(b)) \in E. \end{cases}$$

A SEIR Problem Study

SEIR Compartmental Model

SEIR Model

The total population N is divided into four compartments:

- S susceptible,
- E exposed (not yet infectious),
- 1 infectious,
- R recovered;

follows a system of ODEs.

A SEIR Problem Study

Conclusion

SEIR Control Problem

$$\begin{array}{l} \text{Minimize } & \int_{0}^{T} \left(AI(t) + u^{2}(t) \right) \, dt \\ \text{subject to} \\ & \dot{S} = bN(t) - dS(t) - cS(t)I(t) - u(t)S(t), \\ & \dot{E}(t) = cS(t)I(t) - (e+d)E(t), \\ & \dot{I}(t) = eE(t) - (g+a+d)I(t), \\ & \dot{I}(t) = (b-d)N(t) - aI(t), \\ & \dot{N}(t) = (b-d)N(t) - aI(t), \\ & \dot{S}(t) - 1100 \leq 0 \quad \text{for all } t \in [0, T], \\ & u(t) \in [0, 1] \quad \text{a.e. } t \in [0, T], \\ & (x(a), x(b)) \in E. \end{array} \right\}$$

A SEIR Problem Study

Conclusion

SEIR Control Problem

$$\begin{array}{l} \text{Minimize } \int_{0}^{T} \left(AI(t) + u^{2}(t) \right) \, dt \\ \text{subject to} \\ \dot{S} = bN(t) - dS(t) - cS(t)I(t) - u(t)S(t), \\ \dot{E}(t) = cS(t)I(t) - (e+d)E(t), \\ \dot{I}(t) = eE(t) - (g+a+d)I(t), \\ \dot{N}(t) = (b-d)N(t) - aI(t), \\ \dot{S}(t) - 1100 \leq 0 \\ u(t) \in [0, 1] \quad \text{a.e. } t \in [0, T], \\ u(t) \in [0, 1] \quad \text{a.e. } t \in [0, T], \\ (x(a), x(b)) \in E. \end{array} \right\} \quad \begin{array}{l} \dot{x} = f(x) + g(x)u \\ \text{where} \\ g(x) = (f(x) - g(x)u \\ \text{where$$

A SEIR Problem Study

Conclusion

SEIR Control Problem

$$\begin{array}{l} \text{Minimize } \int_{0}^{T} \left(AI(t) + u^{2}(t) \right) \, dt \\ \text{subject to} \\ \dot{S} = bN(t) - dS(t) - cS(t)I(t) - u(t)S(t), \\ \dot{E}(t) = cS(t)I(t) - (e + d)E(t), \\ \dot{I}(t) = eE(t) - (g + a + d)I(t), \\ \dot{N}(t) = (b - d)N(t) - aI(t), \\ S(t) - 1100 \leq 0 \quad \text{for all } t \in [0, T], \\ u(t) \in [0, 1] \quad \text{a.e. } t \in [0, T], \\ u(t) \in [0, 1] \quad \text{a.e. } t \in [0, T], \\ (x(a), x(b)) \in E. \end{array}$$

19/28

A SEIR Problem Study

Conclusion

Necessary Conditions SEIR

Inward Pointing Condition [Rampazzo & Vinter '99] verified $\implies \lambda = 1$ (Normality)

(i)
$$(p,\lambda,\mu)
eq (0,0,0)$$
 ;

(ii)
$$-\dot{p}(t) = f_x^T(x^*(t))q(t) + u^*(t)g_x^T(x^*(t))q(t) - \lambda c;$$

 $\begin{array}{ll} \text{(iii)} & \forall \, u \in U, \\ & \langle g(x^*(t))u^*(t), q(t) \rangle - \lambda(u^*)^2(t) \geq \langle g(x^*(t))u, q(t) \rangle - \lambda u^2; \\ \text{(iv)} & -q(b) = 0; \\ \text{(v)} & supp\{\mu\} \subset \{t: \ h(x^*(t)) = 0\}. \end{array}$

where

$$egin{aligned} q(t) &= p(t) + \int_{[a,t)}
abla h(x^*(s)) \, \mu(ds), \ q(b) &= p(b) + \int_{[a,b]}
abla h(x^*(s)) \, \mu(ds). \end{aligned}$$

A SEIR Problem Study 0000000

Conclusion

Necessary Conditions SEIR (2)

(i)
$$(p, \lambda, \mu) \neq (0, 0, 0);$$

(ii) $-\dot{p}(t) = f_x^T(x^*(t))q(t) + u^*(t)g_x^T(x^*(t))q(t) - \lambda c;$
(iii) $\forall u \in U,$
 $\langle g(x^*(t))u^*(t), q(t) \rangle - \lambda(u^*)^2(t) \ge \langle g(x^*(t))u, q(t) \rangle - \lambda u^2,$
(iv) $-q(b) = 0;$
(v) $supp\{\mu\} \subset \{t : h(x^*(t)) = 0\}.$
where
 $q(t) = p(t) + \int_{[a,t]} \nabla h(x^*(s)) \mu(ds),$
 $q(b) = p(b) + \int_{[a,b]} \nabla h(x^*(s)) \mu(ds).$
Closed form of the optimal control
 $u^*(t) = \max\left\{0, \min\left\{1, -\frac{q_s(t)S^*(t)}{2}\right\}\right\}.$

A SEIR Problem Study

State constraint characterization w.r.t x^*

• A boundary interval if $\exists [t_0^b, t_1^b]$: $h(t, x^*(t)) = 0 \quad \forall t \in [t_0^b, t_1^b]$.

Boundary interval in the SEIR case We show:

$$S^{*}(t) = S_{max}$$

$$\implies \dot{S}^{*}(t) = bN^{*}(t) - dS^{*}(t) - cS^{*}(t)I^{*}(t) - u^{*}(t)S^{*}(t) = 0$$

$$\implies u^{*}(t) = b\frac{N^{*}(t)}{S^{*}(t)} - d - cI^{*}(t).$$

- u^* is an AC function on all (t_0^b, t_1^b) (when $t_b^1 < T$)
- u^* is continuous in t_0^b and t_1^b .
- Conclusion: Measure μ has no atoms on interior intervals including the contact points.

A SEIR Problem Study

Conclusion

Earlier results: [Shvartsman & Vinter '06], [Frankowska '06] We already know that the measure

$$u(t)=\int_{[0,t)}\,\mu(ds)$$

is absolutely continuous for all $t \in [0, t] \subset [0, T]$. Thus the multiplier

$$q_S(t) = p_S(t) + \nu(t)$$

is absolutely continuous.

But the measure may have an atom in the end point T

This is exactly the case with SEIR problem.

A SEIR Problem Study

Conclusion

Numerical Solution

A SEIR Problem Study

Conclusion

Numerical Multinliers

NOTE:

The multiplier p_S is not 0 at the end; Measure μ has an atom at T = 20. Necessary Conditions and Measures

Exact Penalization 000000 000 A SEIR Problem Study

Conclusion

Conclusion

- NC for state constrained problems are "easy to handle" if the measure is AC w.r.t Lebesgue measure.
- Idea of an Exact Penalization to ensure such NC.
- Introduced a hypothesis (H*) to guarantee Exact Penalization of (P) via (Q).
- SEIR problem as a counterexample that Exact Penalization does not work (if it did, the measure would be AC in the entire interval [0, *T*])

Thank You For Your Attention

His name is SADKO (too)