
Speeding up Model Predictive Control via
Al’brekht’s Method and its Extensions

Arthur J. Krener

ajkrener@ucdavis.edu

Research supported by AFOSR and NSF

Al’ brekht’s Method
Here is the key to speeding up Model Predictive Control

E. G. Al’brekht, On the Optimal Stabilization of Nonlinear
Systems, J. Appl. Math. Mech., v. 25, pp. 1254-1266, 1961.

This paper is Albrekht’s first publication.

He was first a student and then later a close asssociate of N. N.
Krasovski’s so I assume that Krasovski had something to do
with it.

Альбрехт Э.Г. Об оптимальной стабилизации нелинейных систем.
ПММ, т. 25, вып. 5, 1961, с. 836 - 844.

Al’ brekht’s Method
Here is the key to speeding up Model Predictive Control

E. G. Al’brekht, On the Optimal Stabilization of Nonlinear
Systems, J. Appl. Math. Mech., v. 25, pp. 1254-1266, 1961.

This paper is Albrekht’s first publication.

He was first a student and then later a close asssociate of N. N.
Krasovski’s so I assume that Krasovski had something to do
with it.

Альбрехт Э.Г. Об оптимальной стабилизации нелинейных систем.
ПММ, т. 25, вып. 5, 1961, с. 836 - 844.

Al’ brekht’s Method
Here is the key to speeding up Model Predictive Control

E. G. Al’brekht, On the Optimal Stabilization of Nonlinear
Systems, J. Appl. Math. Mech., v. 25, pp. 1254-1266, 1961.

This paper is Albrekht’s first publication.

He was first a student and then later a close asssociate of N. N.
Krasovski’s so I assume that Krasovski had something to do
with it.

Альбрехт Э.Г. Об оптимальной стабилизации нелинейных систем.
ПММ, т. 25, вып. 5, 1961, с. 836 - 844.

E. G. Al’brekht and N. N. Krasovski

Optimal Stabilization

Notice that Al’brekht’s goal is Stabilization.

Optimization is a means to this goal.

This shows that Al’brekht was working in the long tradition of
studying stability and stabilizability following A. M. Lyapunov,
N. G. Chetayev and N. N. Krasovski.

He was also influenced by the optimization techniques of
L. S. Pontryagin and R. E. Bellman.

Optimal Stabilization

Notice that Al’brekht’s goal is Stabilization.

Optimization is a means to this goal.

This shows that Al’brekht was working in the long tradition of
studying stability and stabilizability following A. M. Lyapunov,
N. G. Chetayev and N. N. Krasovski.

He was also influenced by the optimization techniques of
L. S. Pontryagin and R. E. Bellman.

Optimal Stabilization

Notice that Al’brekht’s goal is Stabilization.

Optimization is a means to this goal.

This shows that Al’brekht was working in the long tradition of
studying stability and stabilizability following A. M. Lyapunov,
N. G. Chetayev and N. N. Krasovski.

He was also influenced by the optimization techniques of
L. S. Pontryagin and R. E. Bellman.

Optimal Stabilization

Notice that Al’brekht’s goal is Stabilization.

Optimization is a means to this goal.

This shows that Al’brekht was working in the long tradition of
studying stability and stabilizability following A. M. Lyapunov,
N. G. Chetayev and N. N. Krasovski.

He was also influenced by the optimization techniques of
L. S. Pontryagin and R. E. Bellman.

Stabilization Problem
Given a nonlinear system

ẋ = f(x, u)

and an equilbrium point

0 = f(xe, ue)

find a feedback

u = κ(x)

so that the closed loop system

ẋ = f(x, κ(x))

is (at least locally) asymptotically stable around xe.

WLOG xe = 0, ue = 0 .

Stabilization Problem
Given a nonlinear system

ẋ = f(x, u)

and an equilbrium point

0 = f(xe, ue)

find a feedback

u = κ(x)

so that the closed loop system

ẋ = f(x, κ(x))

is (at least locally) asymptotically stable around xe.

WLOG xe = 0, ue = 0 .

Stabilization Problem
Given a nonlinear system

ẋ = f(x, u)

and an equilbrium point

0 = f(xe, ue)

find a feedback

u = κ(x)

so that the closed loop system

ẋ = f(x, κ(x))

is (at least locally) asymptotically stable around xe.

WLOG xe = 0, ue = 0 .

Stabilization Problem
Given a nonlinear system

ẋ = f(x, u)

and an equilbrium point

0 = f(xe, ue)

find a feedback

u = κ(x)

so that the closed loop system

ẋ = f(x, κ(x))

is (at least locally) asymptotically stable around xe.

WLOG xe = 0, ue = 0 .

Stabilization Problem
Given a nonlinear system

ẋ = f(x, u)

and an equilbrium point

0 = f(xe, ue)

find a feedback

u = κ(x)

so that the closed loop system

ẋ = f(x, κ(x))

is (at least locally) asymptotically stable around xe.

WLOG xe = 0, ue = 0 .

Stabilization Problem
Given a nonlinear system

ẋ = f(x, u)

and an equilbrium point

0 = f(xe, ue)

find a feedback

u = κ(x)

so that the closed loop system

ẋ = f(x, κ(x))

is (at least locally) asymptotically stable around xe.

WLOG xe = 0, ue = 0 .

Infinite Horizon Optimal Control Problem

minu(0:∞)

∫ ∞
0

l(x, u) dt

ẋ = f(x, u), x(0) = x0

x ∈ IRn×1, u ∈ IRm×1

Optimal Cost π(x) and Optimal Feedback u = κ(x)

π(x0) = minu(0:∞)

∫ ∞
0

l(x, u) dt, u∗(0) = κ(x0)

Hamiltonian, a function of x, u and a new variable p ∈ IR1×n

H(p, x, u) = pf(x, u) + l(x, u)

Hamilton Jacobi Bellman Equations

0 = H
(
∂π

∂x
(x), x, κ(x)

)
κ(x) = argminuH

(
∂π

∂x
(x), x, u

)

Infinite Horizon Optimal Control Problem

minu(0:∞)

∫ ∞
0

l(x, u) dt

ẋ = f(x, u), x(0) = x0

x ∈ IRn×1, u ∈ IRm×1

Optimal Cost π(x) and Optimal Feedback u = κ(x)

π(x0) = minu(0:∞)

∫ ∞
0

l(x, u) dt, u∗(0) = κ(x0)

Hamiltonian, a function of x, u and a new variable p ∈ IR1×n

H(p, x, u) = pf(x, u) + l(x, u)

Hamilton Jacobi Bellman Equations

0 = H
(
∂π

∂x
(x), x, κ(x)

)
κ(x) = argminuH

(
∂π

∂x
(x), x, u

)

Infinite Horizon Optimal Control Problem

minu(0:∞)

∫ ∞
0

l(x, u) dt

ẋ = f(x, u), x(0) = x0

x ∈ IRn×1, u ∈ IRm×1

Optimal Cost π(x) and Optimal Feedback u = κ(x)

π(x0) = minu(0:∞)

∫ ∞
0

l(x, u) dt, u∗(0) = κ(x0)

Hamiltonian, a function of x, u and a new variable p ∈ IR1×n

H(p, x, u) = pf(x, u) + l(x, u)

Hamilton Jacobi Bellman Equations

0 = H
(
∂π

∂x
(x), x, κ(x)

)
κ(x) = argminuH

(
∂π

∂x
(x), x, u

)

Infinite Horizon Optimal Control Problem

minu(0:∞)

∫ ∞
0

l(x, u) dt

ẋ = f(x, u), x(0) = x0

x ∈ IRn×1, u ∈ IRm×1

Optimal Cost π(x) and Optimal Feedback u = κ(x)

π(x0) = minu(0:∞)

∫ ∞
0

l(x, u) dt, u∗(0) = κ(x0)

Hamiltonian, a function of x, u and a new variable p ∈ IR1×n

H(p, x, u) = pf(x, u) + l(x, u)

Hamilton Jacobi Bellman Equations

0 = H
(
∂π

∂x
(x), x, κ(x)

)
κ(x) = argminuH

(
∂π

∂x
(x), x, u

)

Lyapunov Argument

If the optimal cost π(x) and optimal feedback κ(x) can be
found then a basin of attraction can be verified by a Lyapunov
argument.

d

dt
π(x(t)) =

∂π

∂x
(x(t))f(x(t), κ(x(t))) = −l(x(t), κ(x(t))) < 0

If

d

dt
π(x(t)) =

∂π

∂x
(x(t))f(x(t), κ(x(t))) = −l(x(t), κ(x(t))) ≤ 0

then stability can be verified by a Krasovski-Barbashin argument.

So optimal control can be used for finding and verifying
stabilizing feedbacks.

If the optimal cost π(x) and optimal feedback κ(x) can be
found....

Lyapunov Argument

If the optimal cost π(x) and optimal feedback κ(x) can be
found then a basin of attraction can be verified by a Lyapunov
argument.

d

dt
π(x(t)) =

∂π

∂x
(x(t))f(x(t), κ(x(t))) = −l(x(t), κ(x(t))) < 0

If

d

dt
π(x(t)) =

∂π

∂x
(x(t))f(x(t), κ(x(t))) = −l(x(t), κ(x(t))) ≤ 0

then stability can be verified by a Krasovski-Barbashin argument.

So optimal control can be used for finding and verifying
stabilizing feedbacks.

If the optimal cost π(x) and optimal feedback κ(x) can be
found....

Lyapunov Argument

If the optimal cost π(x) and optimal feedback κ(x) can be
found then a basin of attraction can be verified by a Lyapunov
argument.

d

dt
π(x(t)) =

∂π

∂x
(x(t))f(x(t), κ(x(t))) = −l(x(t), κ(x(t))) < 0

If

d

dt
π(x(t)) =

∂π

∂x
(x(t))f(x(t), κ(x(t))) = −l(x(t), κ(x(t))) ≤ 0

then stability can be verified by a Krasovski-Barbashin argument.

So optimal control can be used for finding and verifying
stabilizing feedbacks.

If the optimal cost π(x) and optimal feedback κ(x) can be
found....

Lyapunov Argument

If the optimal cost π(x) and optimal feedback κ(x) can be
found then a basin of attraction can be verified by a Lyapunov
argument.

d

dt
π(x(t)) =

∂π

∂x
(x(t))f(x(t), κ(x(t))) = −l(x(t), κ(x(t))) < 0

If

d

dt
π(x(t)) =

∂π

∂x
(x(t))f(x(t), κ(x(t))) = −l(x(t), κ(x(t))) ≤ 0

then stability can be verified by a Krasovski-Barbashin argument.

So optimal control can be used for finding and verifying
stabilizing feedbacks.

If the optimal cost π(x) and optimal feedback κ(x) can be
found....

All methods for solving HJB equations suffer from the

Curse of Dimensionality

Practical optimal control problems usually have state dimension
larger than 2 or 3. For example, the attitude control problem for
a spacecraft has state dimension n = 6 and control dimension
at least m = 3. The position and attitude control problem for
an airplane has state dimension n = 12 and control dimension
at least m = 4.

Consider trying to apply a grid based method. For the solution
to be reasonably accurate we would need a substantial number
of grid points in each coordinate direction, e.g., 102. Then the
total number of nodes is 1012 for attitude control and 1024 for
position and attitude control. If we can process 100 nodes a
second that works out to about 300 years for attitude control
and 3 · 1014 years for position and attitude control.

All methods for solving HJB equations suffer from the

Curse of Dimensionality
Practical optimal control problems usually have state dimension
larger than 2 or 3. For example, the attitude control problem for
a spacecraft has state dimension n = 6 and control dimension
at least m = 3. The position and attitude control problem for
an airplane has state dimension n = 12 and control dimension
at least m = 4.

Consider trying to apply a grid based method. For the solution
to be reasonably accurate we would need a substantial number
of grid points in each coordinate direction, e.g., 102. Then the
total number of nodes is 1012 for attitude control and 1024 for
position and attitude control. If we can process 100 nodes a
second that works out to about 300 years for attitude control
and 3 · 1014 years for position and attitude control.

All methods for solving HJB equations suffer from the

Curse of Dimensionality
Practical optimal control problems usually have state dimension
larger than 2 or 3. For example, the attitude control problem for
a spacecraft has state dimension n = 6 and control dimension
at least m = 3. The position and attitude control problem for
an airplane has state dimension n = 12 and control dimension
at least m = 4.

Consider trying to apply a grid based method. For the solution
to be reasonably accurate we would need a substantial number
of grid points in each coordinate direction, e.g., 102. Then the
total number of nodes is 1012 for attitude control and 1024 for
position and attitude control. If we can process 100 nodes a
second that works out to about 300 years for attitude control
and 3 · 1014 years for position and attitude control.

Exception: Linear Quadratic Regulator
If the dynamics is linear and the Lagrangian quadratic

f(x, u) = Fx+Gu, l(x, u) =
1

2

(
x′Qx+ u′Ru

)
then the optimal cost is quadratic and optimal feedback is linear

π(x) =
1

2
x′Px, κ(x) = Kx

The HJB equations reduce to a quadratic (algebraic Riccati)
equation and a linear equation

0 = F ′P + PF +Q− PGR−1G′P, K = −R−1G′P

Theorem: If Q ≥ 0, R > 0, (F,G) stabilizable and (Q1/2, F)
detectable then there exist a unique nonnegative definite
solution P to the Riccati equation and the feedback u = Kx is
asymptotically stabilizing, i.e., all the poles of F +GK are in
the open left half plane.

Exception: Linear Quadratic Regulator
If the dynamics is linear and the Lagrangian quadratic

f(x, u) = Fx+Gu, l(x, u) =
1

2

(
x′Qx+ u′Ru

)
then the optimal cost is quadratic and optimal feedback is linear

π(x) =
1

2
x′Px, κ(x) = Kx

The HJB equations reduce to a quadratic (algebraic Riccati)
equation and a linear equation

0 = F ′P + PF +Q− PGR−1G′P, K = −R−1G′P

Theorem: If Q ≥ 0, R > 0, (F,G) stabilizable and (Q1/2, F)
detectable then there exist a unique nonnegative definite
solution P to the Riccati equation and the feedback u = Kx is
asymptotically stabilizing, i.e., all the poles of F +GK are in
the open left half plane.

Al’brekht’s Method
Al’brecht developed the power series method for solving the
HJB equations for smooth systems that have Taylor series
expansions.

f(x, u) = Fx+Gu+ f [2](x, u) + f [3](x, u) + . . .

l(x, u) =
1

2

(
x′QX + u′Ru

)
+ l[3](x, u) + l[4](x, u) + . . .

He assumed that the optimal cost and optimal feedback had
similar expansions

π(x) =
1

2
x′Px+ π[3](x) + π[4](x) + . . .

κ(x) = Kx+ κ[2](x) + κ[3](x) + . . .

He plugged these expansions into HJB. At the lowest degrees he
got the familiar LQR equations

0 = F ′P + PF +Q− PGR−1G′P

K = −R−1G′P

Al’brekht’s Method
Al’brecht developed the power series method for solving the
HJB equations for smooth systems that have Taylor series
expansions.

f(x, u) = Fx+Gu+ f [2](x, u) + f [3](x, u) + . . .

l(x, u) =
1

2

(
x′QX + u′Ru

)
+ l[3](x, u) + l[4](x, u) + . . .

He assumed that the optimal cost and optimal feedback had
similar expansions

π(x) =
1

2
x′Px+ π[3](x) + π[4](x) + . . .

κ(x) = Kx+ κ[2](x) + κ[3](x) + . . .

He plugged these expansions into HJB. At the lowest degrees he
got the familiar LQR equations

0 = F ′P + PF +Q− PGR−1G′P

K = −R−1G′P

Al’brekht’s Method
Al’brecht developed the power series method for solving the
HJB equations for smooth systems that have Taylor series
expansions.

f(x, u) = Fx+Gu+ f [2](x, u) + f [3](x, u) + . . .

l(x, u) =
1

2

(
x′QX + u′Ru

)
+ l[3](x, u) + l[4](x, u) + . . .

He assumed that the optimal cost and optimal feedback had
similar expansions

π(x) =
1

2
x′Px+ π[3](x) + π[4](x) + . . .

κ(x) = Kx+ κ[2](x) + κ[3](x) + . . .

He plugged these expansions into HJB. At the lowest degrees he
got the familiar LQR equations

0 = F ′P + PF +Q− PGR−1G′P

K = −R−1G′P

Al’brekht’s Method
Next the unknown degree three terms π[3](x) of the cost and
the unknown degree two terms κ[2](x) of the feedback satisfy

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′Pf [2](x,Kx) + l[3](x,Kx)

0 =
∂π[3]

∂x
(x)G+ x′P

∂f [2]

∂u
(x,Kx) +

∂[3]

∂u
(x,Kx) + (κ[2](x)′R

Notice the linear triangular structure. Under the standard LQR
assumptions the first linear equation is always solvable for
π[3](x) because the eigenvalues of the map

π[3](x) 7→
∂π[3]

∂x
(x)(F +GK)x

are sums of three eigenvalues of F +GK , σ(F +GK) < 0 .

Then the second linear equation is always solvable for κ[2](x)
because R is assumed to be invertible.

Al’brekht’s Method
Next the unknown degree three terms π[3](x) of the cost and
the unknown degree two terms κ[2](x) of the feedback satisfy

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′Pf [2](x,Kx) + l[3](x,Kx)

0 =
∂π[3]

∂x
(x)G+ x′P

∂f [2]

∂u
(x,Kx) +

∂[3]

∂u
(x,Kx) + (κ[2](x)′R

Notice the linear triangular structure. Under the standard LQR
assumptions the first linear equation is always solvable for
π[3](x) because the eigenvalues of the map

π[3](x) 7→
∂π[3]

∂x
(x)(F +GK)x

are sums of three eigenvalues of F +GK , σ(F +GK) < 0 .

Then the second linear equation is always solvable for κ[2](x)
because R is assumed to be invertible.

Al’brekht’s Method
Next the unknown degree three terms π[3](x) of the cost and
the unknown degree two terms κ[2](x) of the feedback satisfy

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′Pf [2](x,Kx) + l[3](x,Kx)

0 =
∂π[3]

∂x
(x)G+ x′P

∂f [2]

∂u
(x,Kx) +

∂[3]

∂u
(x,Kx) + (κ[2](x)′R

Notice the linear triangular structure. Under the standard LQR
assumptions the first linear equation is always solvable for
π[3](x) because the eigenvalues of the map

π[3](x) 7→
∂π[3]

∂x
(x)(F +GK)x

are sums of three eigenvalues of F +GK , σ(F +GK) < 0 .

Then the second linear equation is always solvable for κ[2](x)
because R is assumed to be invertible.

Al’brekht’s Method

The higher degree terms are found in a similar fashion.

This method has been implemented in the MATLAB based
Nonlinear Systems Toolbox to arbitrary degree and dimensions.

Al’brekht’s method works in reasonable dimensions. For
example, the HJB equations can be solved to degree 4 in π(x)
and degree 3 in κ(x) for systems with state dimension n = 25
and control dimension m = 8 on this four year old laptop.

Al’brekht’s method is fast. This laptop took 0.082334 seconds
to solve the HJB equations for the satellite attitude problem,
(n = 6, m = 3), to degree 4 in π(x) and degree 3 in κ(x).

Al’brekht’s Method

The higher degree terms are found in a similar fashion.

This method has been implemented in the MATLAB based
Nonlinear Systems Toolbox to arbitrary degree and dimensions.

Al’brekht’s method works in reasonable dimensions. For
example, the HJB equations can be solved to degree 4 in π(x)
and degree 3 in κ(x) for systems with state dimension n = 25
and control dimension m = 8 on this four year old laptop.

Al’brekht’s method is fast. This laptop took 0.082334 seconds
to solve the HJB equations for the satellite attitude problem,
(n = 6, m = 3), to degree 4 in π(x) and degree 3 in κ(x).

Al’brekht’s Method

The higher degree terms are found in a similar fashion.

This method has been implemented in the MATLAB based
Nonlinear Systems Toolbox to arbitrary degree and dimensions.

Al’brekht’s method works in reasonable dimensions. For
example, the HJB equations can be solved to degree 4 in π(x)
and degree 3 in κ(x) for systems with state dimension n = 25
and control dimension m = 8 on this four year old laptop.

Al’brekht’s method is fast. This laptop took 0.082334 seconds
to solve the HJB equations for the satellite attitude problem,
(n = 6, m = 3), to degree 4 in π(x) and degree 3 in κ(x).

Al’brekht’s Method

The higher degree terms are found in a similar fashion.

This method has been implemented in the MATLAB based
Nonlinear Systems Toolbox to arbitrary degree and dimensions.

Al’brekht’s method works in reasonable dimensions. For
example, the HJB equations can be solved to degree 4 in π(x)
and degree 3 in κ(x) for systems with state dimension n = 25
and control dimension m = 8 on this four year old laptop.

Al’brekht’s method is fast. This laptop took 0.082334 seconds
to solve the HJB equations for the satellite attitude problem,
(n = 6, m = 3), to degree 4 in π(x) and degree 3 in κ(x).

Pros and Cons of Al’brekht’s Method
• Al’brekht’s Method can be extended to discrete time and

time varing problems.

• Except for the Riccati equation it only involves solving linear
equations and Matlab software is available.

• Al’brekht’s Method is restricted to smooth systems with no
state or control constraints.

• The LQR part must yield a Hurwitz F +GK.
• The software is fast and it can used for systems of

moderately large state dimension, e.g., n = 25 , m = 8.
• Going to higher degree approximations to π(x) and κ(x)

increases their accuracy near x = 0.
• Going to higher degree approximations can enlarge the

basin of stability of the closed loop system but it is not
guaranteed to do so. It can also decrease it.

• Going to higher degree approximations requires more
memory. There are n+ d− 1 choose d monomials of
degree d in n variables, approximately nd/d! .

Pros and Cons of Al’brekht’s Method
• Al’brekht’s Method can be extended to discrete time and

time varing problems.
• Except for the Riccati equation it only involves solving linear

equations and Matlab software is available.

• Al’brekht’s Method is restricted to smooth systems with no
state or control constraints.

• The LQR part must yield a Hurwitz F +GK.
• The software is fast and it can used for systems of

moderately large state dimension, e.g., n = 25 , m = 8.
• Going to higher degree approximations to π(x) and κ(x)

increases their accuracy near x = 0.
• Going to higher degree approximations can enlarge the

basin of stability of the closed loop system but it is not
guaranteed to do so. It can also decrease it.

• Going to higher degree approximations requires more
memory. There are n+ d− 1 choose d monomials of
degree d in n variables, approximately nd/d! .

Pros and Cons of Al’brekht’s Method
• Al’brekht’s Method can be extended to discrete time and

time varing problems.
• Except for the Riccati equation it only involves solving linear

equations and Matlab software is available.
• Al’brekht’s Method is restricted to smooth systems with no

state or control constraints.

• The LQR part must yield a Hurwitz F +GK.
• The software is fast and it can used for systems of

moderately large state dimension, e.g., n = 25 , m = 8.
• Going to higher degree approximations to π(x) and κ(x)

increases their accuracy near x = 0.
• Going to higher degree approximations can enlarge the

basin of stability of the closed loop system but it is not
guaranteed to do so. It can also decrease it.

• Going to higher degree approximations requires more
memory. There are n+ d− 1 choose d monomials of
degree d in n variables, approximately nd/d! .

Pros and Cons of Al’brekht’s Method
• Al’brekht’s Method can be extended to discrete time and

time varing problems.
• Except for the Riccati equation it only involves solving linear

equations and Matlab software is available.
• Al’brekht’s Method is restricted to smooth systems with no

state or control constraints.
• The LQR part must yield a Hurwitz F +GK.

• The software is fast and it can used for systems of
moderately large state dimension, e.g., n = 25 , m = 8.

• Going to higher degree approximations to π(x) and κ(x)
increases their accuracy near x = 0.

• Going to higher degree approximations can enlarge the
basin of stability of the closed loop system but it is not
guaranteed to do so. It can also decrease it.

• Going to higher degree approximations requires more
memory. There are n+ d− 1 choose d monomials of
degree d in n variables, approximately nd/d! .

Pros and Cons of Al’brekht’s Method
• Al’brekht’s Method can be extended to discrete time and

time varing problems.
• Except for the Riccati equation it only involves solving linear

equations and Matlab software is available.
• Al’brekht’s Method is restricted to smooth systems with no

state or control constraints.
• The LQR part must yield a Hurwitz F +GK.
• The software is fast and it can used for systems of

moderately large state dimension, e.g., n = 25 , m = 8.

• Going to higher degree approximations to π(x) and κ(x)
increases their accuracy near x = 0.

• Going to higher degree approximations can enlarge the
basin of stability of the closed loop system but it is not
guaranteed to do so. It can also decrease it.

• Going to higher degree approximations requires more
memory. There are n+ d− 1 choose d monomials of
degree d in n variables, approximately nd/d! .

Pros and Cons of Al’brekht’s Method
• Al’brekht’s Method can be extended to discrete time and

time varing problems.
• Except for the Riccati equation it only involves solving linear

equations and Matlab software is available.
• Al’brekht’s Method is restricted to smooth systems with no

state or control constraints.
• The LQR part must yield a Hurwitz F +GK.
• The software is fast and it can used for systems of

moderately large state dimension, e.g., n = 25 , m = 8.
• Going to higher degree approximations to π(x) and κ(x)

increases their accuracy near x = 0.

• Going to higher degree approximations can enlarge the
basin of stability of the closed loop system but it is not
guaranteed to do so. It can also decrease it.

• Going to higher degree approximations requires more
memory. There are n+ d− 1 choose d monomials of
degree d in n variables, approximately nd/d! .

Pros and Cons of Al’brekht’s Method
• Al’brekht’s Method can be extended to discrete time and

time varing problems.
• Except for the Riccati equation it only involves solving linear

equations and Matlab software is available.
• Al’brekht’s Method is restricted to smooth systems with no

state or control constraints.
• The LQR part must yield a Hurwitz F +GK.
• The software is fast and it can used for systems of

moderately large state dimension, e.g., n = 25 , m = 8.
• Going to higher degree approximations to π(x) and κ(x)

increases their accuracy near x = 0.
• Going to higher degree approximations can enlarge the

basin of stability of the closed loop system but it is not
guaranteed to do so. It can also decrease it.

• Going to higher degree approximations requires more
memory. There are n+ d− 1 choose d monomials of
degree d in n variables, approximately nd/d! .

Pros and Cons of Al’brekht’s Method
• Al’brekht’s Method can be extended to discrete time and

time varing problems.
• Except for the Riccati equation it only involves solving linear

equations and Matlab software is available.
• Al’brekht’s Method is restricted to smooth systems with no

state or control constraints.
• The LQR part must yield a Hurwitz F +GK.
• The software is fast and it can used for systems of

moderately large state dimension, e.g., n = 25 , m = 8.
• Going to higher degree approximations to π(x) and κ(x)

increases their accuracy near x = 0.
• Going to higher degree approximations can enlarge the

basin of stability of the closed loop system but it is not
guaranteed to do so. It can also decrease it.

• Going to higher degree approximations requires more
memory. There are n+ d− 1 choose d monomials of
degree d in n variables, approximately nd/d! .

Pros and Cons of Al’brekht’s Method

• Besides supplying a stabilizing feedback, Al’brekht’s Method
supplies a candidate Lyapunov function so the basin of
attraction can be estimated. (This can take much longer
than Al’brekht’s method itself.)

• Because the feedback is a higher degree polynomial it can
easily lead to finite escape time in the model and
catastrophe in the actual plant.

• Because the feedback is a higher degree polynomial it can
easily violate state and/or control constraints.

• On the other hand higher degree penalty terms can be
added to the Lagrangian to enforce such constraints.

• Even though it is higher degree, Al’brekht’s Method is a
local method but patchy extensions are possible.

• Al’brekht’s Method can be used to speed up Model
Predictive Control (MPC)!

Pros and Cons of Al’brekht’s Method

• Besides supplying a stabilizing feedback, Al’brekht’s Method
supplies a candidate Lyapunov function so the basin of
attraction can be estimated. (This can take much longer
than Al’brekht’s method itself.)

• Because the feedback is a higher degree polynomial it can
easily lead to finite escape time in the model and
catastrophe in the actual plant.

• Because the feedback is a higher degree polynomial it can
easily violate state and/or control constraints.

• On the other hand higher degree penalty terms can be
added to the Lagrangian to enforce such constraints.

• Even though it is higher degree, Al’brekht’s Method is a
local method but patchy extensions are possible.

• Al’brekht’s Method can be used to speed up Model
Predictive Control (MPC)!

Pros and Cons of Al’brekht’s Method

• Besides supplying a stabilizing feedback, Al’brekht’s Method
supplies a candidate Lyapunov function so the basin of
attraction can be estimated. (This can take much longer
than Al’brekht’s method itself.)

• Because the feedback is a higher degree polynomial it can
easily lead to finite escape time in the model and
catastrophe in the actual plant.

• Because the feedback is a higher degree polynomial it can
easily violate state and/or control constraints.

• On the other hand higher degree penalty terms can be
added to the Lagrangian to enforce such constraints.

• Even though it is higher degree, Al’brekht’s Method is a
local method but patchy extensions are possible.

• Al’brekht’s Method can be used to speed up Model
Predictive Control (MPC)!

Pros and Cons of Al’brekht’s Method

• Besides supplying a stabilizing feedback, Al’brekht’s Method
supplies a candidate Lyapunov function so the basin of
attraction can be estimated. (This can take much longer
than Al’brekht’s method itself.)

• Because the feedback is a higher degree polynomial it can
easily lead to finite escape time in the model and
catastrophe in the actual plant.

• Because the feedback is a higher degree polynomial it can
easily violate state and/or control constraints.

• On the other hand higher degree penalty terms can be
added to the Lagrangian to enforce such constraints.

• Even though it is higher degree, Al’brekht’s Method is a
local method but patchy extensions are possible.

• Al’brekht’s Method can be used to speed up Model
Predictive Control (MPC)!

Pros and Cons of Al’brekht’s Method

• Besides supplying a stabilizing feedback, Al’brekht’s Method
supplies a candidate Lyapunov function so the basin of
attraction can be estimated. (This can take much longer
than Al’brekht’s method itself.)

• Because the feedback is a higher degree polynomial it can
easily lead to finite escape time in the model and
catastrophe in the actual plant.

• Because the feedback is a higher degree polynomial it can
easily violate state and/or control constraints.

• On the other hand higher degree penalty terms can be
added to the Lagrangian to enforce such constraints.

• Even though it is higher degree, Al’brekht’s Method is a
local method but patchy extensions are possible.

• Al’brekht’s Method can be used to speed up Model
Predictive Control (MPC)!

Pros and Cons of Al’brekht’s Method

• Besides supplying a stabilizing feedback, Al’brekht’s Method
supplies a candidate Lyapunov function so the basin of
attraction can be estimated. (This can take much longer
than Al’brekht’s method itself.)

• Because the feedback is a higher degree polynomial it can
easily lead to finite escape time in the model and
catastrophe in the actual plant.

• Because the feedback is a higher degree polynomial it can
easily violate state and/or control constraints.

• On the other hand higher degree penalty terms can be
added to the Lagrangian to enforce such constraints.

• Even though it is higher degree, Al’brekht’s Method is a
local method but patchy extensions are possible.

• Al’brekht’s Method can be used to speed up Model
Predictive Control (MPC)!

Discrete Time Infinite Horizon Optimal Control

Minimize

∞∑
t=0

l(x(t), u(t))

subject to

x+ = f(x, u)

x(0) = x0

where x+(t) = x(t+ 1).

Discrete Time Infinite Horizon Optimal Control

Minimize

∞∑
t=0

l(x(t), u(t))

subject to

x+ = f(x, u)

x(0) = x0

where x+(t) = x(t+ 1).

Dynamic Programming Equations

Optimal Cost π(x), Optimal Feedback u = κ(x).

Bellman’s Dynamic Programming Equations

π(x) = π(f(x, κ(x)) + l(x, κ(x))

κ(x) = argminu {π(f(x, u)) + l(x, u)}

Dynamic Programming Equations

Optimal Cost π(x), Optimal Feedback u = κ(x).

Bellman’s Dynamic Programming Equations

π(x) = π(f(x, κ(x)) + l(x, κ(x))

κ(x) = argminu {π(f(x, u)) + l(x, u)}

Al’brekht’s Method in Discrete Time
Expand everything in power series and collect terms of lowest
degree. This yields the familiar discrete time LQR equations,

P = F ′PF +Q− F ′PG
(
R+G′PG

)−1
G′PF

K = −
(
R+G′PG

)−1
G′PF

At the next degrees we get

0 = π[3]((F +GK)x)− π[3](x)

+l[3](x,Kx) + (f [2](x,Kx))′P (F +GK)x

0 =
∂π[3]

∂x
((F +GK)x)G+

∂l[3]

∂u
(x,Kx)

+(f [2](x,Kx)′PG+ ((F +GK)x)′P
∂f [2]

∂u
(x,Kx)

+(κ[2](x))′(R+G′PG)

Al’brekht’s Method in Discrete Time
Expand everything in power series and collect terms of lowest
degree. This yields the familiar discrete time LQR equations,

P = F ′PF +Q− F ′PG
(
R+G′PG

)−1
G′PF

K = −
(
R+G′PG

)−1
G′PF

At the next degrees we get

0 = π[3]((F +GK)x)− π[3](x)

+l[3](x,Kx) + (f [2](x,Kx))′P (F +GK)x

0 =
∂π[3]

∂x
((F +GK)x)G+

∂l[3]

∂u
(x,Kx)

+(f [2](x,Kx)′PG+ ((F +GK)x)′P
∂f [2]

∂u
(x,Kx)

+(κ[2](x))′(R+G′PG)

Al’brekht’s Method in Discrete Time

Again these equations are linear and triangular as only the
unknown π[3] appears in the first one.

This linear equation is always solvable because the eigenvalues
of the map

π[3](x) 7→ π[3](x)− π[3]((F +GK)x)

are 1 minus the product of three eigenvalues of F +GK.

Under the standard discrete LQR assumptions all the
eigenvalues of F +GK are strictly inside the unit disk so their
triple products are also strictly inside the unit disk.

Then the second linear equation is always solvable for the other
unknown κ[2] because R is assumed to be invertible.

The higher degree terms are found in a similar fashion.

Al’brekht’s Method in Discrete Time

Again these equations are linear and triangular as only the
unknown π[3] appears in the first one.

This linear equation is always solvable because the eigenvalues
of the map

π[3](x) 7→ π[3](x)− π[3]((F +GK)x)

are 1 minus the product of three eigenvalues of F +GK.

Under the standard discrete LQR assumptions all the
eigenvalues of F +GK are strictly inside the unit disk so their
triple products are also strictly inside the unit disk.

Then the second linear equation is always solvable for the other
unknown κ[2] because R is assumed to be invertible.

The higher degree terms are found in a similar fashion.

Al’brekht’s Method in Discrete Time

Again these equations are linear and triangular as only the
unknown π[3] appears in the first one.

This linear equation is always solvable because the eigenvalues
of the map

π[3](x) 7→ π[3](x)− π[3]((F +GK)x)

are 1 minus the product of three eigenvalues of F +GK.

Under the standard discrete LQR assumptions all the
eigenvalues of F +GK are strictly inside the unit disk so their
triple products are also strictly inside the unit disk.

Then the second linear equation is always solvable for the other
unknown κ[2] because R is assumed to be invertible.

The higher degree terms are found in a similar fashion.

Al’brekht with Equality Constraints
We now show how Al’brekht’s method can be extended to
handle an equality constraint of the form

0 = α(x, u)

We assume that this k dimensional constraint is satisfied at
x(0), u(0) then for it to continue to be satisfied the differential
constraint must hold,

0 = a(x, u) = Lf(x,u)α(x, u) =
∂α

∂x
(x, u)f(x, u)

Because the constraint must hold at x = 0, u = 0

a(x, u) = Ax+Bu+ a[2](x, u) + a[3](x, u) + . . .

We assume that ∂α
∂u

(x, u) is of full row rank. If this does not
hold then at least one of the constraints can be expressed in
terms of x alone. Then we just reduce the state dimension.

Al’brekht with Equality Constraints
We now show how Al’brekht’s method can be extended to
handle an equality constraint of the form

0 = α(x, u)

We assume that this k dimensional constraint is satisfied at
x(0), u(0) then for it to continue to be satisfied the differential
constraint must hold,

0 = a(x, u) = Lf(x,u)α(x, u) =
∂α

∂x
(x, u)f(x, u)

Because the constraint must hold at x = 0, u = 0

a(x, u) = Ax+Bu+ a[2](x, u) + a[3](x, u) + . . .

We assume that ∂α
∂u

(x, u) is of full row rank. If this does not
hold then at least one of the constraints can be expressed in
terms of x alone. Then we just reduce the state dimension.

Al’brekht with Equality Constraints
We now show how Al’brekht’s method can be extended to
handle an equality constraint of the form

0 = α(x, u)

We assume that this k dimensional constraint is satisfied at
x(0), u(0) then for it to continue to be satisfied the differential
constraint must hold,

0 = a(x, u) = Lf(x,u)α(x, u) =
∂α

∂x
(x, u)f(x, u)

Because the constraint must hold at x = 0, u = 0

a(x, u) = Ax+Bu+ a[2](x, u) + a[3](x, u) + . . .

We assume that ∂α
∂u

(x, u) is of full row rank. If this does not
hold then at least one of the constraints can be expressed in
terms of x alone. Then we just reduce the state dimension.

Al’brekht with Equality Constraints
We now show how Al’brekht’s method can be extended to
handle an equality constraint of the form

0 = α(x, u)

We assume that this k dimensional constraint is satisfied at
x(0), u(0) then for it to continue to be satisfied the differential
constraint must hold,

0 = a(x, u) = Lf(x,u)α(x, u) =
∂α

∂x
(x, u)f(x, u)

Because the constraint must hold at x = 0, u = 0

a(x, u) = Ax+Bu+ a[2](x, u) + a[3](x, u) + . . .

We assume that ∂α
∂u

(x, u) is of full row rank. If this does not
hold then at least one of the constraints can be expressed in
terms of x alone. Then we just reduce the state dimension.

Al’brekht with Equality Constraints

We attach this constraint to the second HJB equation with a
state dependent Lagrange multiplier λ(x) ∈ IRk×1

κ(x) = argminu,λ

{
∂π

∂x
(x)(f(x) + g(x)u) + l(x, u) + λ′(x)a(x, u)

}

Because this is strictly convex in u and linear in λ it reduces to

0 =
∂π

∂x
(x)g(x) +

∂l

∂u
(x, κ(x)) + λ′(x)

∂a

∂u
(x, κ(x))

0 = a(x, κ(x))

Assume

λ(x) = Lx+ λ[2](x) + λ[3](x) + . . .

Plug this and the other expansions into the HJB equations and
collect terms of lowest degree.

Al’brekht with Equality Constraints

We attach this constraint to the second HJB equation with a
state dependent Lagrange multiplier λ(x) ∈ IRk×1

κ(x) = argminu,λ

{
∂π

∂x
(x)(f(x) + g(x)u) + l(x, u) + λ′(x)a(x, u)

}
Because this is strictly convex in u and linear in λ it reduces to

0 =
∂π

∂x
(x)g(x) +

∂l

∂u
(x, κ(x)) + λ′(x)

∂a

∂u
(x, κ(x))

0 = a(x, κ(x))

Assume

λ(x) = Lx+ λ[2](x) + λ[3](x) + . . .

Plug this and the other expansions into the HJB equations and
collect terms of lowest degree.

Al’brekht with Equality Constraints

We attach this constraint to the second HJB equation with a
state dependent Lagrange multiplier λ(x) ∈ IRk×1

κ(x) = argminu,λ

{
∂π

∂x
(x)(f(x) + g(x)u) + l(x, u) + λ′(x)a(x, u)

}
Because this is strictly convex in u and linear in λ it reduces to

0 =
∂π

∂x
(x)g(x) +

∂l

∂u
(x, κ(x)) + λ′(x)

∂a

∂u
(x, κ(x))

0 = a(x, κ(x))

Assume

λ(x) = Lx+ λ[2](x) + λ[3](x) + . . .

Plug this and the other expansions into the HJB equations and
collect terms of lowest degree.

Al’brekht with Equality Constraints

We attach this constraint to the second HJB equation with a
state dependent Lagrange multiplier λ(x) ∈ IRk×1

κ(x) = argminu,λ

{
∂π

∂x
(x)(f(x) + g(x)u) + l(x, u) + λ′(x)a(x, u)

}
Because this is strictly convex in u and linear in λ it reduces to

0 =
∂π

∂x
(x)g(x) +

∂l

∂u
(x, κ(x)) + λ′(x)

∂a

∂u
(x, κ(x))

0 = a(x, κ(x))

Assume

λ(x) = Lx+ λ[2](x) + λ[3](x) + . . .

Plug this and the other expansions into the HJB equations and
collect terms of lowest degree.

Al’brekht with Equality Constraints
This leads to an unusual Riccati equation for P and L

0 = PF + F ′P +Q− (PG+ S)R−1(G′P + S′) + L′BR−1B′L

The optimal feedback linear gain is

K = −R−1
(
G′P + S′ +B′L

)

Since B has full row rank we can reorder the controls so that
the last k columns of B form an invertible k × k matrix B2.
Partition accordingly

u =

[
u1

u2

]
B =

[
B1 B2

]
G =

[
G1 G2

]
S =

[
S1 S2

]
R =

[
R11 R12

R21 R22

]

Al’brekht with Equality Constraints
This leads to an unusual Riccati equation for P and L

0 = PF + F ′P +Q− (PG+ S)R−1(G′P + S′) + L′BR−1B′L

The optimal feedback linear gain is

K = −R−1
(
G′P + S′ +B′L

)
Since B has full row rank we can reorder the controls so that
the last k columns of B form an invertible k × k matrix B2.
Partition accordingly

u =

[
u1

u2

]
B =

[
B1 B2

]
G =

[
G1 G2

]
S =

[
S1 S2

]
R =

[
R11 R12

R21 R22

]

Al’brekht with Equality Constraints

The linear part of the constraint forces the partial feedback

u2 = −(B2)−1
(
Ax+B1u1

)
This leads to an unconstrained LQR problem in the free control
u1 which is of dimension m− k . We solve this problem for
P, K1 and compute L from the linear part of the second HJB
equation.

The quadratic part of the cost and the linear part of the
feedback are

π[2](x) =
1

2
x′Px

κ[1](x) =

[
K1

K2

]
x =

[
K1

−(B2)−1
(
A+B1K1

)
x

]

Al’brekht with Equality Constraints

The linear part of the constraint forces the partial feedback

u2 = −(B2)−1
(
Ax+B1u1

)
This leads to an unconstrained LQR problem in the free control
u1 which is of dimension m− k . We solve this problem for
P, K1 and compute L from the linear part of the second HJB
equation.

The quadratic part of the cost and the linear part of the
feedback are

π[2](x) =
1

2
x′Px

κ[1](x) =

[
K1

K2

]
x =

[
K1

−(B2)−1
(
A+B1K1

)
x

]

Al’brekht with Equality Constraints

The cubic part of the first HJB equation is

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′P

(
f [2](x,Kx) +Gκ[2](x)

)
+l[3](x,Kx) + x′K′R κ[2](x)

with the unknowns in red.

This reduces to an equation for π[3](x) alone,

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′Pf [2](x,Kx)

+l[3](x,Kx) + x′La[2](x,Kx)

If F +GK is Hurwitz then this equation is uniquely solvable for
π[3](x).

Al’brekht with Equality Constraints

The cubic part of the first HJB equation is

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′P

(
f [2](x,Kx) +Gκ[2](x)

)
+l[3](x,Kx) + x′K′R κ[2](x)

with the unknowns in red.

This reduces to an equation for π[3](x) alone,

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′Pf [2](x,Kx)

+l[3](x,Kx) + x′La[2](x,Kx)

If F +GK is Hurwitz then this equation is uniquely solvable for
π[3](x).

Al’brekht with Equality Constraints

The cubic part of the first HJB equation is

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′P

(
f [2](x,Kx) +Gκ[2](x)

)
+l[3](x,Kx) + x′K′R κ[2](x)

with the unknowns in red.

This reduces to an equation for π[3](x) alone,

0 =
∂π[3]

∂x
(x)(F +GK)x+ x′Pf [2](x,Kx)

+l[3](x,Kx) + x′La[2](x,Kx)

If F +GK is Hurwitz then this equation is uniquely solvable for
π[3](x).

Al’brekht with Equality Constraints
The quadratic part of the second HJB equation is

0 =
∂π[3]

∂x
(x)G+ x′P

∂f [2]

∂u
(x,Kx) +

∂l[3]

∂u
(x,Kx)

+x′L′
∂a[2]

∂u
(x,Kx) + (κ[2](x))′R+ (λ[2](x))′B

The quadratic part of the constraint is

0 = Bκ[2](x) + a[2](x,Kx)

[
R B′

B 0

] [
κ[2](x)

λ[2](x)

]
= Known Terms

Because B is assumed to be of full row rank this linear equation
is uniquely solvable.

The higher degree terms are found in a similar way.

Al’brekht with Equality Constraints
The quadratic part of the second HJB equation is

0 =
∂π[3]

∂x
(x)G+ x′P

∂f [2]

∂u
(x,Kx) +

∂l[3]

∂u
(x,Kx)

+x′L′
∂a[2]

∂u
(x,Kx) + (κ[2](x))′R+ (λ[2](x))′B

The quadratic part of the constraint is

0 = Bκ[2](x) + a[2](x,Kx)

[
R B′

B 0

] [
κ[2](x)

λ[2](x)

]
= Known Terms

Because B is assumed to be of full row rank this linear equation
is uniquely solvable.

The higher degree terms are found in a similar way.

Al’brekht with Equality Constraints
The quadratic part of the second HJB equation is

0 =
∂π[3]

∂x
(x)G+ x′P

∂f [2]

∂u
(x,Kx) +

∂l[3]

∂u
(x,Kx)

+x′L′
∂a[2]

∂u
(x,Kx) + (κ[2](x))′R+ (λ[2](x))′B

The quadratic part of the constraint is

0 = Bκ[2](x) + a[2](x,Kx)

[
R B′

B 0

] [
κ[2](x)

λ[2](x)

]
= Known Terms

Because B is assumed to be of full row rank this linear equation
is uniquely solvable.

The higher degree terms are found in a similar way.

Al’brekht with Equality Constraints
The quadratic part of the second HJB equation is

0 =
∂π[3]

∂x
(x)G+ x′P

∂f [2]

∂u
(x,Kx) +

∂l[3]

∂u
(x,Kx)

+x′L′
∂a[2]

∂u
(x,Kx) + (κ[2](x))′R+ (λ[2](x))′B

The quadratic part of the constraint is

0 = Bκ[2](x) + a[2](x,Kx)

[
R B′

B 0

] [
κ[2](x)

λ[2](x)

]
= Known Terms

Because B is assumed to be of full row rank this linear equation
is uniquely solvable.

The higher degree terms are found in a similar way.

Al’brekht with Inequality Constraints

Suppose we have the constraint

0 ≥ β(x, u)

which we assume is not active at the origin β(0, 0) < 0.

Frequently such constraints can be handle by adding penalty
terms to the Lagrangian l(x, u).

Here are two simple examples.

Al’brekht with Inequality Constraints

Suppose we have the constraint

0 ≥ β(x, u)

which we assume is not active at the origin β(0, 0) < 0.

Frequently such constraints can be handle by adding penalty
terms to the Lagrangian l(x, u).

Here are two simple examples.

Al’brekht with Inequality Constraints

Suppose we have the constraint

0 ≥ β(x, u)

which we assume is not active at the origin β(0, 0) < 0.

Frequently such constraints can be handle by adding penalty
terms to the Lagrangian l(x, u).

Here are two simple examples.

Al’brekht with an Inequality State Constraint
Unstable linear system[

ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
0
1

]
u

Lagrangian

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)

State Constraint

x1 ≤ 0.5

Initial Condition [
x1(0)
x2(0)

]
=

[
0.4
0.7

]

Al’brekht with an Inequality State Constraint
Unstable linear system[

ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
0
1

]
u

Lagrangian

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)

State Constraint

x1 ≤ 0.5

Initial Condition [
x1(0)
x2(0)

]
=

[
0.4
0.7

]

Al’brekht with an Inequality State Constraint
Unstable linear system[

ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
0
1

]
u

Lagrangian

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)

State Constraint

x1 ≤ 0.5

Initial Condition [
x1(0)
x2(0)

]
=

[
0.4
0.7

]

Al’brekht with an Inequality State Constraint
Unstable linear system[

ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
0
1

]
u

Lagrangian

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)

State Constraint

x1 ≤ 0.5

Initial Condition [
x1(0)
x2(0)

]
=

[
0.4
0.7

]

Al’brekht with a State Inequality Constraint
Linear Feedback

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)

u = −2.4142x1 − 2.4142x2

Al’brekht with a State Inequality Constraint
Linear Feedback

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)

u = −2.4142x1 − 2.4142x2

Al’brekht with a State Inequality Constraint
Quintic Feedback

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)
+ 32x5

1 + 64x6
1

u = −2.41x1 − 2.41x2

−22.62x4
1 − 28.49x3

1x2 − 15.36x2
1x

2
2 − 4.00x1x

3
2 − 0.41x4

2

−45.25x5
1 − 67.01x4

1x2 − 45.60x3
1x

2
2 − 16.93x2

1x
3
2 − 3.34x1x

4
2 − 0.27x5

2

Al’brekht with a State Inequality Constraint
Quintic Feedback

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)
+ 32x5

1 + 64x6
1

u = −2.41x1 − 2.41x2

−22.62x4
1 − 28.49x3

1x2 − 15.36x2
1x

2
2 − 4.00x1x

3
2 − 0.41x4

2

−45.25x5
1 − 67.01x4

1x2 − 45.60x3
1x

2
2 − 16.93x2

1x
3
2 − 3.34x1x

4
2 − 0.27x5

2

Al’brekht with a Control Inequality Constraint

[
ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
0
1

]
u

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)

Control Constraint

|u| ≤ 1

Linear Feedback

u = −2.4142(x1 + x2)

Al’brekht with a Control Inequality Constraint

[
ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
0
1

]
u

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)

Control Constraint

|u| ≤ 1

Linear Feedback

u = −2.4142(x1 + x2)

Al’brekht with a Control Inequality Constraint

[
ẋ1

ẋ2

]
=

[
0 1
1 0

] [
x1

x2

]
+

[
0
1

]
u

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)

Control Constraint

|u| ≤ 1

Linear Feedback

u = −2.4142(x1 + x2)

Feasible Region of Linear Feedback

u = −2.4142(x1 + x2)

Feasible Region of Cubic Feedback

l(x, u) =
1

2

(
x2
1 + x2

2 + u2
)
+

1

10
u4

u = −2.4142(x1 + x2)− 3.2263(x1 + x2)
3

Finite Horizon Optimal Control Problem

Minimize

tf−1∑
t=t0

l(t, x(t), u(t)) + πf(x(tf))

subject to

x+ = f(t, x, u)

x(t0) = x0

The terminal cost is πf(x(tf)).

The optimal cost is π(t0, x0).

The optimal feedback is u(t0) = κ(t0, x
0).

Finite Horizon Optimal Control Problem

Minimize

tf−1∑
t=t0

l(t, x(t), u(t)) + πf(x(tf))

subject to

x+ = f(t, x, u)

x(t0) = x0

The terminal cost is πf(x(tf)).

The optimal cost is π(t0, x0).

The optimal feedback is u(t0) = κ(t0, x
0).

Finite Horizon Optimal Control Problem

Minimize

tf−1∑
t=t0

l(t, x(t), u(t)) + πf(x(tf))

subject to

x+ = f(t, x, u)

x(t0) = x0

The terminal cost is πf(x(tf)).

The optimal cost is π(t0, x0).

The optimal feedback is u(t0) = κ(t0, x
0).

Finite Horizon Optimal Control Problem

Minimize

tf−1∑
t=t0

l(t, x(t), u(t)) + πf(x(tf))

subject to

x+ = f(t, x, u)

x(t0) = x0

The terminal cost is πf(x(tf)).

The optimal cost is π(t0, x0).

The optimal feedback is u(t0) = κ(t0, x
0).

Finite Horizon Optimal Control Problem
The Dynamic Promming Equations for this problem are

π(t, x) = π(t+ 1, f(t, x, κ(t, x))) + l(t, x, κ(t, x))

κ(t, x) = argminu {π(t+ 1, f(t, x, u)) + l(t, x, u)}
π(tf , x) = πf(x)

Assuming the Hamiltonian is strictly convex in u then κ(t, x) is
the solution of

0 =
∂π

∂x
(t+ 1, f(t, x, κ(t, x)))

∂f

∂u
(t, x, κ(t, x)) +

∂l

∂u
(t, x, κ(t, x))

Henceforth we shall assume that f is linear in u and l is
quadratic in u which ensures strict convexity,

f(t, x, u) = f(t, x) + g(t, x)u

l(t, x, u) =
1

2

(
x′Q(t, x)x+ 2x′S(t, x)u+ u′R(t, x)u

)
where R(t, x) > 0,

[
Q(t, x) S(t, x)
S′(t, x) R(t, x)

]
≥ 0.

Finite Horizon Optimal Control Problem
The Dynamic Promming Equations for this problem are

π(t, x) = π(t+ 1, f(t, x, κ(t, x))) + l(t, x, κ(t, x))

κ(t, x) = argminu {π(t+ 1, f(t, x, u)) + l(t, x, u)}
π(tf , x) = πf(x)

Assuming the Hamiltonian is strictly convex in u then κ(t, x) is
the solution of

0 =
∂π

∂x
(t+ 1, f(t, x, κ(t, x)))

∂f

∂u
(t, x, κ(t, x)) +

∂l

∂u
(t, x, κ(t, x))

Henceforth we shall assume that f is linear in u and l is
quadratic in u which ensures strict convexity,

f(t, x, u) = f(t, x) + g(t, x)u

l(t, x, u) =
1

2

(
x′Q(t, x)x+ 2x′S(t, x)u+ u′R(t, x)u

)
where R(t, x) > 0,

[
Q(t, x) S(t, x)
S′(t, x) R(t, x)

]
≥ 0.

Finite Horizon Optimal Control Problem
The Dynamic Promming Equations for this problem are

π(t, x) = π(t+ 1, f(t, x, κ(t, x))) + l(t, x, κ(t, x))

κ(t, x) = argminu {π(t+ 1, f(t, x, u)) + l(t, x, u)}
π(tf , x) = πf(x)

Assuming the Hamiltonian is strictly convex in u then κ(t, x) is
the solution of

0 =
∂π

∂x
(t+ 1, f(t, x, κ(t, x)))

∂f

∂u
(t, x, κ(t, x)) +

∂l

∂u
(t, x, κ(t, x))

Henceforth we shall assume that f is linear in u and l is
quadratic in u which ensures strict convexity,

f(t, x, u) = f(t, x) + g(t, x)u

l(t, x, u) =
1

2

(
x′Q(t, x)x+ 2x′S(t, x)u+ u′R(t, x)u

)
where R(t, x) > 0,

[
Q(t, x) S(t, x)
S′(t, x) R(t, x)

]
≥ 0.

Finite Horizon Optimal Control Problem

If this can be solved for κ(t, x) then the result is plugged into
the first DPE. It becomes a difference equation for π(t, x) that
is solved backward in time from the final condition
π(tf , x) = πf(x).

Of course this is easier said than done!

Finite Horizon Optimal Control Problem

If this can be solved for κ(t, x) then the result is plugged into
the first DPE. It becomes a difference equation for π(t, x) that
is solved backward in time from the final condition
π(tf , x) = πf(x).

Of course this is easier said than done!

Al’brekht’s Method around an Optimal Trajectory
Let x∗(t), u∗(t) be an optimal trajectory and define variational
coordinates

z = x− x∗(t)
v = u− u∗(t)

In these coordinates the variational dynamics and the variational
Lagrangian are given by

f̃(t, z, v) = f(t, x∗(t) + z, u∗(t) + v)− f(t, x∗(t), u∗(t))
l̃(t, z, v) = l(t, x∗(t) + z, u∗(t) + v)− l(t, x∗(t), u∗(t))

The optimal variational cost and optimal variational feedback
are given by

π̃(t0, z
0) = π(t, x∗(t) + z)− π(t, x∗(t))

v(t0) = κ̃(t0, z
0) = κ(t0, x

∗(t0) + z0)− u∗(t)

Al’brekht’s Method around an Optimal Trajectory
Let x∗(t), u∗(t) be an optimal trajectory and define variational
coordinates

z = x− x∗(t)
v = u− u∗(t)

In these coordinates the variational dynamics and the variational
Lagrangian are given by

f̃(t, z, v) = f(t, x∗(t) + z, u∗(t) + v)− f(t, x∗(t), u∗(t))
l̃(t, z, v) = l(t, x∗(t) + z, u∗(t) + v)− l(t, x∗(t), u∗(t))

The optimal variational cost and optimal variational feedback
are given by

π̃(t0, z
0) = π(t, x∗(t) + z)− π(t, x∗(t))

v(t0) = κ̃(t0, z
0) = κ(t0, x

∗(t0) + z0)− u∗(t)

Al’brekht’s Method around an Optimal Trajectory
Let x∗(t), u∗(t) be an optimal trajectory and define variational
coordinates

z = x− x∗(t)
v = u− u∗(t)

In these coordinates the variational dynamics and the variational
Lagrangian are given by

f̃(t, z, v) = f(t, x∗(t) + z, u∗(t) + v)− f(t, x∗(t), u∗(t))
l̃(t, z, v) = l(t, x∗(t) + z, u∗(t) + v)− l(t, x∗(t), u∗(t))

The optimal variational cost and optimal variational feedback
are given by

π̃(t0, z
0) = π(t, x∗(t) + z)− π(t, x∗(t))

v(t0) = κ̃(t0, z
0) = κ(t0, x

∗(t0) + z0)− u∗(t)

Al’brekht’s Method around an Optimal Trajectory

Following Al’brekht we expand everthing in power series in z, v

f̃(t, z) = F̃ (t)z + f̃ [2](t, z) + . . .

g̃(t, z)v = G̃(t)v + g̃[1](t, z)v + . . .

l̃(t, z, v) = λ̃(t)z + µ̃(t)v +
1

2

(
z′Q̃(t)z + 2z′S̃(t)v + v′R̃(t)v

)
+l̃[3](t, z, v) + . . .

π̃f(z) = ρ̃fz +
1

2
z′P̃fz + π̃

[3]
f (z) + . . .

π̃(t, z) = ρ̃(t)z +
1

2
z′P̃ (t)z + π̃[3](t, z) + . . .

κ̃(t, z) = K̃(t)z + κ̃[2](t, z) + . . .

What is different is the presence of linear terms in
l̃(t, z, v), π̃f(z), π̃(t, z).

Al’brekht’s Method around an Optimal Trajectory

Following Al’brekht we expand everthing in power series in z, v

f̃(t, z) = F̃ (t)z + f̃ [2](t, z) + . . .

g̃(t, z)v = G̃(t)v + g̃[1](t, z)v + . . .

l̃(t, z, v) = λ̃(t)z + µ̃(t)v +
1

2

(
z′Q̃(t)z + 2z′S̃(t)v + v′R̃(t)v

)
+l̃[3](t, z, v) + . . .

π̃f(z) = ρ̃fz +
1

2
z′P̃fz + π̃

[3]
f (z) + . . .

π̃(t, z) = ρ̃(t)z +
1

2
z′P̃ (t)z + π̃[3](t, z) + . . .

κ̃(t, z) = K̃(t)z + κ̃[2](t, z) + . . .

What is different is the presence of linear terms in
l̃(t, z, v), π̃f(z), π̃(t, z).

Al’brekht’s Method around an Optimal Trajectory

Variational Dynamic Programming Equations (VDPE)

VDPE 1

π̃(t, z) = π̃(t+ 1, f̃(t, z, κ̃(t, z))) + l̃(t, z, κ̃(t, z))

VDPE 2

0 =
∂π̃

∂x
(t+ 1, f(t, x, κ̃(t, x)))

∂f̃

∂v
(t, x, κ̃(t, x)) +

∂l̃

∂v
(t, x, κ̃(t, x))

VDPE 3

π̃(tf , x) = π̃f(x)

We plug the above expansions into these equations and start
collecting terms of lowest degree.

Al’brekht’s Method around an Optimal Trajectory

Variational Dynamic Programming Equations (VDPE)

VDPE 1

π̃(t, z) = π̃(t+ 1, f̃(t, z, κ̃(t, z))) + l̃(t, z, κ̃(t, z))

VDPE 2

0 =
∂π̃

∂x
(t+ 1, f(t, x, κ̃(t, x)))

∂f̃

∂v
(t, x, κ̃(t, x)) +

∂l̃

∂v
(t, x, κ̃(t, x))

VDPE 3

π̃(tf , x) = π̃f(x)

We plug the above expansions into these equations and start
collecting terms of lowest degree.

Al’brekht’s Method around an Optimal Trajectory

Variational Dynamic Programming Equations (VDPE)

VDPE 1

π̃(t, z) = π̃(t+ 1, f̃(t, z, κ̃(t, z))) + l̃(t, z, κ̃(t, z))

VDPE 2

0 =
∂π̃

∂x
(t+ 1, f(t, x, κ̃(t, x)))

∂f̃

∂v
(t, x, κ̃(t, x)) +

∂l̃

∂v
(t, x, κ̃(t, x))

VDPE 3

π̃(tf , x) = π̃f(x)

We plug the above expansions into these equations and start
collecting terms of lowest degree.

Al’brekht’s Method around an Optimal Trajectory

VDPE 1, Degree 0

0 = 0

VDPE 2, Degree 0

0 = µ̃(t) + ρ̃(t+ 1)G(t)

VDPE 1, Degree 1

ρ̃(t) = λ̃(t) + ρ̃(t+ 1)F̃ (t)

VDPE 2, Degree 1

0 = z′S̃(t) + z′P̃ (t+ 1)G̃(t) + ρ̃(t+ 1)g̃[1](t, z) + z′K̃′(t)R̃(t)

Al’brekht’s Method around an Optimal Trajectory
VDPE 1, Degree 2

z′P̃ (t)z = µ̃(t)κ̃[2](t, z) + (κ̃[2](t, z))′µ̃′(t)

+z′Q̃(t)z + z′S̃(t)K̃(t)z + z′K̃′(t)S̃′(t)z

+z′K̃′(t)R̃′(t)K̃(t)z

+z′(F̃ (t) + G̃(t)K̃(t))′P̃ (t+ 1)(F̃ (t) + G̃(t)K̃(t))z

VDPE 2, Degree 2

0 =
∂l̃[3]

∂v
(t, z, K̃(t, z))

+ρ̃(t+ 1))g̃[2](t+ 1, (F̃ (t) + G̃(t)K̃(t))z)

+z′(F̃ (t) + G̃(t)K̃(t))′P̃ (t+ 1)g̃[1](t+ 1, (F̃ (t)

+G̃(t)K̃(t))z) + G̃(t)K̃(t))z) +
∂π̃[3]

∂z
(t+ 1, (F̃ (t) + G̃(t)K̃(t))z)G̃

+(κ̃[2](t, z)))′R̃(t) +
∂π̃[3]

∂z
(t+ 1, (F̃ (t) + G̃(t)K̃(t))z)G̃

+(κ̃[2](t, z)))′R̃(t)

Al’brekht’s Method around an Optimal Trajectory
There are four equations in the four unknowns in
ρ̃(t), P̃ (t), K̃(t), κ̃[2](t, z) at time t .

ρ̃(t) = λ̃(t) + ρ̃(t+ 1)F̃ (t)

0 = z′S̃(t) + z′P̃ (t+ 1)G̃(t) + ρ̃(t+ 1)g̃[1](t, z)

+K̃′(t)R̃(t)

z′P̃ (t)z = µ̃(t)κ̃[2](t, z) + (κ̃[2](t, z))′µ̃′(t)

+z′Q̃(t)z + z′S̃(t)K̃(t)z + z′K̃′(t)S̃′(t)z

+z′K̃′(t)R̃′(t)K̃(t)z

0 =
∂l̃[3]

∂v
(t, z, K̃(t, z))

+ρ̃(t+ 1))g̃[2](t+ 1, (F̃ (t) + G̃(t)K̃(t))z)

+z′(F̃ (t) + G̃(t)K̃(t))′P̃ (t+ 1)g̃[1](t+ 1, (F̃ (t)

+G̃(t)K̃(t))z) +
∂π̃

∂z

[3]

(t+ 1, (F̃ (t) + G̃(t)K̃(t))z)G̃

+(κ̃[2](t, z)))′R̃(t)

Al’brekht’s Method around an Optimal Trajectory

These reduce to a Riccati difference equation for P̃ (t) and three
linear difference equations for ρ̃(t), K̃(t), κ̃[2](t, z)

These equations run backward in time from the terminal
conditions

ρ̃(tf) = ρ̃f

P̃ (tf) = P̃f

K̃(tf) = K̃f

κ̃[2](t, z) = κ̃
[2]
f (z)

Notice that we need the terminal cost κ̃f(z) as well as the
terminal cost π̃f(z).

Al’brekht’s Method around an Optimal Trajectory

These reduce to a Riccati difference equation for P̃ (t) and three
linear difference equations for ρ̃(t), K̃(t), κ̃[2](t, z)

These equations run backward in time from the terminal
conditions

ρ̃(tf) = ρ̃f

P̃ (tf) = P̃f

K̃(tf) = K̃f

κ̃[2](t, z) = κ̃
[2]
f (z)

Notice that we need the terminal cost κ̃f(z) as well as the
terminal cost π̃f(z).

Al’brekht’s Method around an Optimal Trajectory
At the next degree we get more difference equations

π̃[3](t, z) = l̃[3](t, z, K̃(t)) + z′S̃(t)κ̃[2](t, z) + (κ̃[2](t, z))′S̃′(t)z

+π̃[3](t+ 1, z) + z′(F̃ (t) + G̃(t)K̃(t))′P̃ (t+ 1)f̃ [2](t, z)

+g̃[1](t, z)K̃(t)z + G̃(t)κ̃[2](t, z)

+ρ(t+ 1)(f̃ [3](t, z) + g̃[2](t, z)K̃(t)z

+g̃[1](t, z)κ̃[2](t, z) + G̃(t)κ̃[3](t, z)

0 = ∂l[4]

∂v
(t, z, K̃(t)z) +

(
∂l[3]

∂v
(t, z, κ̃[2](t, z)

)[3]
+ρ̃(t+ 1)g̃[3](t, z) + z′(F̃ (t) + G̃(t)K̃(t))′P̃ (t+ 1)g̃[2](t, z)

+∂π̃[3]

∂z
(t+ 1, z)g̃[1](t, z) + ∂π̃[4]

∂z
(t+ 1, z)G̃(t) + (κ̃[3](t, z))′R̃(t)

Notice the linear triangular structure and the presence of
π̃[4](t+ 1, z) in the second equation. If we stop at degree three
then this is set to zero.

The higher degree terms are found in a similar fashion.

Al’brekht’s Method around an Optimal Trajectory
At the next degree we get more difference equations

π̃[3](t, z) = l̃[3](t, z, K̃(t)) + z′S̃(t)κ̃[2](t, z) + (κ̃[2](t, z))′S̃′(t)z

+π̃[3](t+ 1, z) + z′(F̃ (t) + G̃(t)K̃(t))′P̃ (t+ 1)f̃ [2](t, z)

+g̃[1](t, z)K̃(t)z + G̃(t)κ̃[2](t, z)

+ρ(t+ 1)(f̃ [3](t, z) + g̃[2](t, z)K̃(t)z

+g̃[1](t, z)κ̃[2](t, z) + G̃(t)κ̃[3](t, z)

0 = ∂l[4]

∂v
(t, z, K̃(t)z) +

(
∂l[3]

∂v
(t, z, κ̃[2](t, z)

)[3]
+ρ̃(t+ 1)g̃[3](t, z) + z′(F̃ (t) + G̃(t)K̃(t))′P̃ (t+ 1)g̃[2](t, z)

+∂π̃[3]

∂z
(t+ 1, z)g̃[1](t, z) + ∂π̃[4]

∂z
(t+ 1, z)G̃(t) + (κ̃[3](t, z))′R̃(t)

Notice the linear triangular structure and the presence of
π̃[4](t+ 1, z) in the second equation. If we stop at degree three
then this is set to zero.

The higher degree terms are found in a similar fashion.

Al’brekht’s Method around an Optimal Trajectory
At the next degree we get more difference equations

π̃[3](t, z) = l̃[3](t, z, K̃(t)) + z′S̃(t)κ̃[2](t, z) + (κ̃[2](t, z))′S̃′(t)z

+π̃[3](t+ 1, z) + z′(F̃ (t) + G̃(t)K̃(t))′P̃ (t+ 1)f̃ [2](t, z)

+g̃[1](t, z)K̃(t)z + G̃(t)κ̃[2](t, z)

+ρ(t+ 1)(f̃ [3](t, z) + g̃[2](t, z)K̃(t)z

+g̃[1](t, z)κ̃[2](t, z) + G̃(t)κ̃[3](t, z)

0 = ∂l[4]

∂v
(t, z, K̃(t)z) +

(
∂l[3]

∂v
(t, z, κ̃[2](t, z)

)[3]
+ρ̃(t+ 1)g̃[3](t, z) + z′(F̃ (t) + G̃(t)K̃(t))′P̃ (t+ 1)g̃[2](t, z)

+∂π̃[3]

∂z
(t+ 1, z)g̃[1](t, z) + ∂π̃[4]

∂z
(t+ 1, z)G̃(t) + (κ̃[3](t, z))′R̃(t)

Notice the linear triangular structure and the presence of
π̃[4](t+ 1, z) in the second equation. If we stop at degree three
then this is set to zero.

The higher degree terms are found in a similar fashion.

Patchy Method
The domain of stability of a polynomial solution to the HJB
equations is the domain where the polynomial cost is a valid
Lyapunov function for the closed loop dynamics using the
polynomial feedback.

Taking Al’brekht to higher degree makes the computed solution
more accurate but does not necessarily increase the domain of
stability of the solution.

Moreover using high degree stability can lead to instability and
finite escape times.

Therefore Navasca, Hunt, Aguilar and Krener developed the
patchy method.

Compute the Al’brekht solution and accept it on some sublevel
set of the computed optimal cost.

Then go to a point on the boundary of the sublevel set and
recompute the power series. Accept this solution on a patch.

Repeat at other points.

Patchy Method
The domain of stability of a polynomial solution to the HJB
equations is the domain where the polynomial cost is a valid
Lyapunov function for the closed loop dynamics using the
polynomial feedback.

Taking Al’brekht to higher degree makes the computed solution
more accurate but does not necessarily increase the domain of
stability of the solution.

Moreover using high degree stability can lead to instability and
finite escape times.

Therefore Navasca, Hunt, Aguilar and Krener developed the
patchy method.

Compute the Al’brekht solution and accept it on some sublevel
set of the computed optimal cost.

Then go to a point on the boundary of the sublevel set and
recompute the power series. Accept this solution on a patch.

Repeat at other points.

Patchy Method
The domain of stability of a polynomial solution to the HJB
equations is the domain where the polynomial cost is a valid
Lyapunov function for the closed loop dynamics using the
polynomial feedback.

Taking Al’brekht to higher degree makes the computed solution
more accurate but does not necessarily increase the domain of
stability of the solution.

Moreover using high degree stability can lead to instability and
finite escape times.

Therefore Navasca, Hunt, Aguilar and Krener developed the
patchy method.

Compute the Al’brekht solution and accept it on some sublevel
set of the computed optimal cost.

Then go to a point on the boundary of the sublevel set and
recompute the power series. Accept this solution on a patch.

Repeat at other points.

Patchy Method
The domain of stability of a polynomial solution to the HJB
equations is the domain where the polynomial cost is a valid
Lyapunov function for the closed loop dynamics using the
polynomial feedback.

Taking Al’brekht to higher degree makes the computed solution
more accurate but does not necessarily increase the domain of
stability of the solution.

Moreover using high degree stability can lead to instability and
finite escape times.

Therefore Navasca, Hunt, Aguilar and Krener developed the
patchy method.

Compute the Al’brekht solution and accept it on some sublevel
set of the computed optimal cost.

Then go to a point on the boundary of the sublevel set and
recompute the power series. Accept this solution on a patch.

Repeat at other points.

Patchy Method
The domain of stability of a polynomial solution to the HJB
equations is the domain where the polynomial cost is a valid
Lyapunov function for the closed loop dynamics using the
polynomial feedback.

Taking Al’brekht to higher degree makes the computed solution
more accurate but does not necessarily increase the domain of
stability of the solution.

Moreover using high degree stability can lead to instability and
finite escape times.

Therefore Navasca, Hunt, Aguilar and Krener developed the
patchy method.

Compute the Al’brekht solution and accept it on some sublevel
set of the computed optimal cost.

Then go to a point on the boundary of the sublevel set and
recompute the power series. Accept this solution on a patch.

Repeat at other points.

Patchy Method
The domain of stability of a polynomial solution to the HJB
equations is the domain where the polynomial cost is a valid
Lyapunov function for the closed loop dynamics using the
polynomial feedback.

Taking Al’brekht to higher degree makes the computed solution
more accurate but does not necessarily increase the domain of
stability of the solution.

Moreover using high degree stability can lead to instability and
finite escape times.

Therefore Navasca, Hunt, Aguilar and Krener developed the
patchy method.

Compute the Al’brekht solution and accept it on some sublevel
set of the computed optimal cost.

Then go to a point on the boundary of the sublevel set and
recompute the power series. Accept this solution on a patch.

Repeat at other points.

Patchy Method
The domain of stability of a polynomial solution to the HJB
equations is the domain where the polynomial cost is a valid
Lyapunov function for the closed loop dynamics using the
polynomial feedback.

Taking Al’brekht to higher degree makes the computed solution
more accurate but does not necessarily increase the domain of
stability of the solution.

Moreover using high degree stability can lead to instability and
finite escape times.

Therefore Navasca, Hunt, Aguilar and Krener developed the
patchy method.

Compute the Al’brekht solution and accept it on some sublevel
set of the computed optimal cost.

Then go to a point on the boundary of the sublevel set and
recompute the power series. Accept this solution on a patch.

Repeat at other points.

Patchy Methods

�

x0 = 0

A�

�

x1

x2 �

�

�

�

�

�

	

�

�

�

�
�

�

�

�

�

�

�

Figure : Sequence of Patches

Patch Calculation
The HJB equations are not singular away from the origin. The
map

π[d+1](x) 7→
∂π[d+1]

∂x
(x)f(x, u)

takes a polynomial of degree d+ 1 to a polynomial of degree d.

So the map is not square. As a consequence π[d+1](x) is not
completely determined by the HJB equations.

Following Cauchy-Koveleskaya certain partial derivatives of π(x)
are inherited from the partial derivatives of π(x) on the previous
patch.

If we assume that ∂π1

∂x
(x1) = z ∂π

0

∂x
(x1) then at degree one the

HJB equations reduce to a quadratic polynomial in the scalar z.

Under suitable assumptions there is one positive root and one
negative root. We take the positive root.

Patch Calculation
The HJB equations are not singular away from the origin. The
map

π[d+1](x) 7→
∂π[d+1]

∂x
(x)f(x, u)

takes a polynomial of degree d+ 1 to a polynomial of degree d.

So the map is not square. As a consequence π[d+1](x) is not
completely determined by the HJB equations.

Following Cauchy-Koveleskaya certain partial derivatives of π(x)
are inherited from the partial derivatives of π(x) on the previous
patch.

If we assume that ∂π1

∂x
(x1) = z ∂π

0

∂x
(x1) then at degree one the

HJB equations reduce to a quadratic polynomial in the scalar z.

Under suitable assumptions there is one positive root and one
negative root. We take the positive root.

Patch Calculation
The HJB equations are not singular away from the origin. The
map

π[d+1](x) 7→
∂π[d+1]

∂x
(x)f(x, u)

takes a polynomial of degree d+ 1 to a polynomial of degree d.

So the map is not square. As a consequence π[d+1](x) is not
completely determined by the HJB equations.

Following Cauchy-Koveleskaya certain partial derivatives of π(x)
are inherited from the partial derivatives of π(x) on the previous
patch.

If we assume that ∂π1

∂x
(x1) = z ∂π

0

∂x
(x1) then at degree one the

HJB equations reduce to a quadratic polynomial in the scalar z.

Under suitable assumptions there is one positive root and one
negative root. We take the positive root.

Patch Calculation
The HJB equations are not singular away from the origin. The
map

π[d+1](x) 7→
∂π[d+1]

∂x
(x)f(x, u)

takes a polynomial of degree d+ 1 to a polynomial of degree d.

So the map is not square. As a consequence π[d+1](x) is not
completely determined by the HJB equations.

Following Cauchy-Koveleskaya certain partial derivatives of π(x)
are inherited from the partial derivatives of π(x) on the previous
patch.

If we assume that ∂π1

∂x
(x1) = z ∂π

0

∂x
(x1) then at degree one the

HJB equations reduce to a quadratic polynomial in the scalar z.

Under suitable assumptions there is one positive root and one
negative root. We take the positive root.

Patch Calculation
The HJB equations are not singular away from the origin. The
map

π[d+1](x) 7→
∂π[d+1]

∂x
(x)f(x, u)

takes a polynomial of degree d+ 1 to a polynomial of degree d.

So the map is not square. As a consequence π[d+1](x) is not
completely determined by the HJB equations.

Following Cauchy-Koveleskaya certain partial derivatives of π(x)
are inherited from the partial derivatives of π(x) on the previous
patch.

If we assume that ∂π1

∂x
(x1) = z ∂π

0

∂x
(x1) then at degree one the

HJB equations reduce to a quadratic polynomial in the scalar z.

Under suitable assumptions there is one positive root and one
negative root. We take the positive root.

Patchy Methods

Figure : Optimal Cost of Inverting a Pendulum by a Torque at its Axis

Invert a Pendulum

Figure : Periodicity of the Optimal Cost

The left axis is −15 ≤ θ̇ ≤ 15 and the right axis is
−15 ≤ θ ≤ 15. From points on the ridges there are two optimal
trajectories, one going to the left well and the other going to
the right well.

Adaptive Algorithm
The algorithm is adaptive. It splits a patch in two when the
relative residue of the first HJB equation is too high at the
lower corners of a patch. It also lowers the upper level of a ring
of patches if the relative residue is too high on it.

Ring 1 2 3 4

Initial Patch Level 0.64 1.21 1.96 2.89

Final Patch Level 0.36 0.63 1.38 2.23

Initial No. Patches 1 24 26 26

Final No. Patches 1 26 26 28

The initial levels of the optimal cost were set at

(0.8)2 (1.1)2 (1.4)2 . . . (10.7)2

Only the first ten patch levels were adjusted down.

The last ring (34) contains 78 patches.

Adaptive Algorithm
The algorithm is adaptive. It splits a patch in two when the
relative residue of the first HJB equation is too high at the
lower corners of a patch. It also lowers the upper level of a ring
of patches if the relative residue is too high on it.

Ring 1 2 3 4

Initial Patch Level 0.64 1.21 1.96 2.89

Final Patch Level 0.36 0.63 1.38 2.23

Initial No. Patches 1 24 26 26

Final No. Patches 1 26 26 28

The initial levels of the optimal cost were set at

(0.8)2 (1.1)2 (1.4)2 . . . (10.7)2

Only the first ten patch levels were adjusted down.

The last ring (34) contains 78 patches.

Adaptive Algorithm
The algorithm is adaptive. It splits a patch in two when the
relative residue of the first HJB equation is too high at the
lower corners of a patch. It also lowers the upper level of a ring
of patches if the relative residue is too high on it.

Ring 1 2 3 4

Initial Patch Level 0.64 1.21 1.96 2.89

Final Patch Level 0.36 0.63 1.38 2.23

Initial No. Patches 1 24 26 26

Final No. Patches 1 26 26 28

The initial levels of the optimal cost were set at

(0.8)2 (1.1)2 (1.4)2 . . . (10.7)2

Only the first ten patch levels were adjusted down.

The last ring (34) contains 78 patches.

Error Comparison
A nonlinear change of state coordinates on an LQR problem
yields a nonlinear optimal control problem.

The exact solution to the nonlinear problem is given by applying
the nonlinear change of coordinates to the LQR solution.

Here are the errors between the true optimal cost and the
computed optimal cost which is of degree d+ 1.

Max Error Max Rel Error Error Factor
LQR (d = 1) 0.3543 0.8860 54.56

Al’brecht (d = 3) 0.1636 0.4101 25.16

Patchy (d = 3) 0.0065 0.0239 1

This shows that the patchy method can be very accurate and it
is parallelizable.

The patchy method can also be used when there are constraints.
The constraint may be active or inactive on a patch.

Error Comparison
A nonlinear change of state coordinates on an LQR problem
yields a nonlinear optimal control problem.

The exact solution to the nonlinear problem is given by applying
the nonlinear change of coordinates to the LQR solution.

Here are the errors between the true optimal cost and the
computed optimal cost which is of degree d+ 1.

Max Error Max Rel Error Error Factor
LQR (d = 1) 0.3543 0.8860 54.56

Al’brecht (d = 3) 0.1636 0.4101 25.16

Patchy (d = 3) 0.0065 0.0239 1

This shows that the patchy method can be very accurate and it
is parallelizable.

The patchy method can also be used when there are constraints.
The constraint may be active or inactive on a patch.

Error Comparison
A nonlinear change of state coordinates on an LQR problem
yields a nonlinear optimal control problem.

The exact solution to the nonlinear problem is given by applying
the nonlinear change of coordinates to the LQR solution.

Here are the errors between the true optimal cost and the
computed optimal cost which is of degree d+ 1.

Max Error Max Rel Error Error Factor
LQR (d = 1) 0.3543 0.8860 54.56

Al’brecht (d = 3) 0.1636 0.4101 25.16

Patchy (d = 3) 0.0065 0.0239 1

This shows that the patchy method can be very accurate and it
is parallelizable.

The patchy method can also be used when there are constraints.
The constraint may be active or inactive on a patch.

Error Comparison
A nonlinear change of state coordinates on an LQR problem
yields a nonlinear optimal control problem.

The exact solution to the nonlinear problem is given by applying
the nonlinear change of coordinates to the LQR solution.

Here are the errors between the true optimal cost and the
computed optimal cost which is of degree d+ 1.

Max Error Max Rel Error Error Factor
LQR (d = 1) 0.3543 0.8860 54.56

Al’brecht (d = 3) 0.1636 0.4101 25.16

Patchy (d = 3) 0.0065 0.0239 1

This shows that the patchy method can be very accurate and it
is parallelizable.

The patchy method can also be used when there are constraints.
The constraint may be active or inactive on a patch.

Error Comparison
A nonlinear change of state coordinates on an LQR problem
yields a nonlinear optimal control problem.

The exact solution to the nonlinear problem is given by applying
the nonlinear change of coordinates to the LQR solution.

Here are the errors between the true optimal cost and the
computed optimal cost which is of degree d+ 1.

Max Error Max Rel Error Error Factor
LQR (d = 1) 0.3543 0.8860 54.56

Al’brecht (d = 3) 0.1636 0.4101 25.16

Patchy (d = 3) 0.0065 0.0239 1

This shows that the patchy method can be very accurate and it
is parallelizable.

The patchy method can also be used when there are constraints.
The constraint may be active or inactive on a patch.

Three Dimensional Example
Patchy method applied to a three dimensional problem

−2

−1

0

−1.5
−1

−0.5
0

0.5
1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

xy

z

The complexity of keeping track of the patches makes the
patchy method infeasible in higher dimesions.

But adding one or two shells of patches to Al’brekht is feasible
in moderate dimensions. The feedback can be linear on these
shells which reduces the possibility of finite escape by the closed
loop dynamics.

Three Dimensional Example
Patchy method applied to a three dimensional problem

−2

−1

0

−1.5
−1

−0.5
0

0.5
1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

xy

z

The complexity of keeping track of the patches makes the
patchy method infeasible in higher dimesions.

But adding one or two shells of patches to Al’brekht is feasible
in moderate dimensions. The feedback can be linear on these
shells which reduces the possibility of finite escape by the closed
loop dynamics.

Three Dimensional Example
Patchy method applied to a three dimensional problem

−2

−1

0

−1.5
−1

−0.5
0

0.5
1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

xy

z

The complexity of keeping track of the patches makes the
patchy method infeasible in higher dimesions.

But adding one or two shells of patches to Al’brekht is feasible
in moderate dimensions. The feedback can be linear on these
shells which reduces the possibility of finite escape by the closed
loop dynamics.

Conclusions

There are feasible methods for solving HJB or DP equations in
dimensions n = 2 or n = 3.

Except for Al’brekht it is questionable whether any of these
methods are feasible when n = 4 or n = 5.

Except for Al’brekht it is unlikely that any of these methods are
feasible when n ≥ 6.

But Al’brekht only yields a local solution about the origin.

Al’brekht can be enlarged slightly by one or two shells of
patches.

To make the solution global we combine Al’brekht with Model
Predictive Control (MPC).

Conclusions

There are feasible methods for solving HJB or DP equations in
dimensions n = 2 or n = 3.

Except for Al’brekht it is questionable whether any of these
methods are feasible when n = 4 or n = 5.

Except for Al’brekht it is unlikely that any of these methods are
feasible when n ≥ 6.

But Al’brekht only yields a local solution about the origin.

Al’brekht can be enlarged slightly by one or two shells of
patches.

To make the solution global we combine Al’brekht with Model
Predictive Control (MPC).

Conclusions

There are feasible methods for solving HJB or DP equations in
dimensions n = 2 or n = 3.

Except for Al’brekht it is questionable whether any of these
methods are feasible when n = 4 or n = 5.

Except for Al’brekht it is unlikely that any of these methods are
feasible when n ≥ 6.

But Al’brekht only yields a local solution about the origin.

Al’brekht can be enlarged slightly by one or two shells of
patches.

To make the solution global we combine Al’brekht with Model
Predictive Control (MPC).

Conclusions

There are feasible methods for solving HJB or DP equations in
dimensions n = 2 or n = 3.

Except for Al’brekht it is questionable whether any of these
methods are feasible when n = 4 or n = 5.

Except for Al’brekht it is unlikely that any of these methods are
feasible when n ≥ 6.

But Al’brekht only yields a local solution about the origin.

Al’brekht can be enlarged slightly by one or two shells of
patches.

To make the solution global we combine Al’brekht with Model
Predictive Control (MPC).

Conclusions

There are feasible methods for solving HJB or DP equations in
dimensions n = 2 or n = 3.

Except for Al’brekht it is questionable whether any of these
methods are feasible when n = 4 or n = 5.

Except for Al’brekht it is unlikely that any of these methods are
feasible when n ≥ 6.

But Al’brekht only yields a local solution about the origin.

Al’brekht can be enlarged slightly by one or two shells of
patches.

To make the solution global we combine Al’brekht with Model
Predictive Control (MPC).

Conclusions

There are feasible methods for solving HJB or DP equations in
dimensions n = 2 or n = 3.

Except for Al’brekht it is questionable whether any of these
methods are feasible when n = 4 or n = 5.

Except for Al’brekht it is unlikely that any of these methods are
feasible when n ≥ 6.

But Al’brekht only yields a local solution about the origin.

Al’brekht can be enlarged slightly by one or two shells of
patches.

To make the solution global we combine Al’brekht with Model
Predictive Control (MPC).

Model Predictive Control

Consider the infinite horizon problem of minimizing

∞∑
t=0

l(x(t), u(t))

subject to

x+ = f(x, u)

x(0) = x0

0 ≤ g(x, u)

Model Predictive Control
Minimization over the infinite horizon is too difficult so we
choose a time window T and a terminal cost πT (x) defined on a
terminal set XT which is a compact neighborhood of x = 0.

Consider the problem of minimizing

T−1∑
t=0

l(x(t), u(t)) + πT (x(T))

subject to

x+ = f(x, u)

x(0) = x0

0 ≤ g(x, u)

x(T) ∈ XT

The decision variables are u(0), . . . , u(T − 1).

Model Predictive Control
Minimization over the infinite horizon is too difficult so we
choose a time window T and a terminal cost πT (x) defined on a
terminal set XT which is a compact neighborhood of x = 0.

Consider the problem of minimizing

T−1∑
t=0

l(x(t), u(t)) + πT (x(T))

subject to

x+ = f(x, u)

x(0) = x0

0 ≤ g(x, u)

x(T) ∈ XT

The decision variables are u(0), . . . , u(T − 1).

Model Predictive Control
Minimization over the infinite horizon is too difficult so we
choose a time window T and a terminal cost πT (x) defined on a
terminal set XT which is a compact neighborhood of x = 0.

Consider the problem of minimizing

T−1∑
t=0

l(x(t), u(t)) + πT (x(T))

subject to

x+ = f(x, u)

x(0) = x0

0 ≤ g(x, u)

x(T) ∈ XT

The decision variables are u(0), . . . , u(T − 1).

Model Predictive Control
Then pass this nonlinear program to a fast solver to find the
optimal u0(0), . . . , u0(T − 1). This needs to be done in less
than the time step.

Use the control u0(0) to get the state to x1 = x(1).

Then between times 1 and 2 solve the problem of minimizing

T∑
t=1

l(x(t), u(t)) + πT (x(T + 1))

subject to

x+ = f(x, u)

x(h) = x1

0 ≤ g(x, u)

x(T + 1) ∈ XT
to obtain the optimal u1(1), . . . , u1(T).

Use the control u1(1) to get the state to x2 = x(2), etc.

Model Predictive Control
Then pass this nonlinear program to a fast solver to find the
optimal u0(0), . . . , u0(T − 1). This needs to be done in less
than the time step.

Use the control u0(0) to get the state to x1 = x(1).

Then between times 1 and 2 solve the problem of minimizing

T∑
t=1

l(x(t), u(t)) + πT (x(T + 1))

subject to

x+ = f(x, u)

x(h) = x1

0 ≤ g(x, u)

x(T + 1) ∈ XT
to obtain the optimal u1(1), . . . , u1(T).

Use the control u1(1) to get the state to x2 = x(2), etc.

Model Predictive Control
Then pass this nonlinear program to a fast solver to find the
optimal u0(0), . . . , u0(T − 1). This needs to be done in less
than the time step.

Use the control u0(0) to get the state to x1 = x(1).

Then between times 1 and 2 solve the problem of minimizing

T∑
t=1

l(x(t), u(t)) + πT (x(T + 1))

subject to

x+ = f(x, u)

x(h) = x1

0 ≤ g(x, u)

x(T + 1) ∈ XT
to obtain the optimal u1(1), . . . , u1(T).

Use the control u1(1) to get the state to x2 = x(2), etc.

Model Predictive Control
Then pass this nonlinear program to a fast solver to find the
optimal u0(0), . . . , u0(T − 1). This needs to be done in less
than the time step.

Use the control u0(0) to get the state to x1 = x(1).

Then between times 1 and 2 solve the problem of minimizing

T∑
t=1

l(x(t), u(t)) + πT (x(T + 1))

subject to

x+ = f(x, u)

x(h) = x1

0 ≤ g(x, u)

x(T + 1) ∈ XT
to obtain the optimal u1(1), . . . , u1(T).

Use the control u1(1) to get the state to x2 = x(2), etc.

Model Predictive Control

The key issues are the following

• If the discrete time system is a discretization of a
continuous time system then the time step must be short
enough to accurately approximate it.

• The time step should be long enough so that the nonlinear
program can be solved in one time step. Actually it needs
to be solved in a small fraction of a time step so that we
can employ u(t) nearly at time t .

• The horizon T must be short enough so that the nonlinear
program can be solved in a small fraction of a time step.

• The horizon T must be long enough and/or XT large
enough so that x(t+ T) ∈ XT .

• The initial guess of u0(0), . . . , u0(T − 1) that is fed to the
solver must be close to optimal else the solver may fail to
converge to the true solution.

Model Predictive Control

The key issues are the following

• If the discrete time system is a discretization of a
continuous time system then the time step must be short
enough to accurately approximate it.

• The time step should be long enough so that the nonlinear
program can be solved in one time step. Actually it needs
to be solved in a small fraction of a time step so that we
can employ u(t) nearly at time t .

• The horizon T must be short enough so that the nonlinear
program can be solved in a small fraction of a time step.

• The horizon T must be long enough and/or XT large
enough so that x(t+ T) ∈ XT .

• The initial guess of u0(0), . . . , u0(T − 1) that is fed to the
solver must be close to optimal else the solver may fail to
converge to the true solution.

Model Predictive Control

The key issues are the following

• If the discrete time system is a discretization of a
continuous time system then the time step must be short
enough to accurately approximate it.

• The time step should be long enough so that the nonlinear
program can be solved in one time step. Actually it needs
to be solved in a small fraction of a time step so that we
can employ u(t) nearly at time t .

• The horizon T must be short enough so that the nonlinear
program can be solved in a small fraction of a time step.

• The horizon T must be long enough and/or XT large
enough so that x(t+ T) ∈ XT .

• The initial guess of u0(0), . . . , u0(T − 1) that is fed to the
solver must be close to optimal else the solver may fail to
converge to the true solution.

Model Predictive Control

The key issues are the following

• If the discrete time system is a discretization of a
continuous time system then the time step must be short
enough to accurately approximate it.

• The time step should be long enough so that the nonlinear
program can be solved in one time step. Actually it needs
to be solved in a small fraction of a time step so that we
can employ u(t) nearly at time t .

• The horizon T must be short enough so that the nonlinear
program can be solved in a small fraction of a time step.

• The horizon T must be long enough and/or XT large
enough so that x(t+ T) ∈ XT .

• The initial guess of u0(0), . . . , u0(T − 1) that is fed to the
solver must be close to optimal else the solver may fail to
converge to the true solution.

Model Predictive Control

The key issues are the following

• If the discrete time system is a discretization of a
continuous time system then the time step must be short
enough to accurately approximate it.

• The time step should be long enough so that the nonlinear
program can be solved in one time step. Actually it needs
to be solved in a small fraction of a time step so that we
can employ u(t) nearly at time t .

• The horizon T must be short enough so that the nonlinear
program can be solved in a small fraction of a time step.

• The horizon T must be long enough and/or XT large
enough so that x(t+ T) ∈ XT .

• The initial guess of u0(0), . . . , u0(T − 1) that is fed to the
solver must be close to optimal else the solver may fail to
converge to the true solution.

Model Predictive Control

• This is not as much a problem with later initial guesses
because we can take u0(1), . . . , u0(T − 1) as the initial
guess for u1(1), . . . , u1(T − 1).

• The ideal terminal cost πT (x) is the optimal cost of the
infinite horizon optimal control problem provided that it can
be computed on a large enough XT . Then the exact
solutions to the finite horizon and infinite horizon optimal
control problems are identical.

• If the infinite horizon optimal control law κT (x) is known on
the terminal set XT then the initial guess for u1(T) should
be κT (x0(T)) where x̃0(T) is the T th state generated by
the last control sequence. u0(0), . . . , u0(T − 1)

• Al’brekht alone or with a shell or two of patches can furnish
πT (x) and κT (x) on a reasonably large XT !

Model Predictive Control

• This is not as much a problem with later initial guesses
because we can take u0(1), . . . , u0(T − 1) as the initial
guess for u1(1), . . . , u1(T − 1).

• The ideal terminal cost πT (x) is the optimal cost of the
infinite horizon optimal control problem provided that it can
be computed on a large enough XT . Then the exact
solutions to the finite horizon and infinite horizon optimal
control problems are identical.

• If the infinite horizon optimal control law κT (x) is known on
the terminal set XT then the initial guess for u1(T) should
be κT (x0(T)) where x̃0(T) is the T th state generated by
the last control sequence. u0(0), . . . , u0(T − 1)

• Al’brekht alone or with a shell or two of patches can furnish
πT (x) and κT (x) on a reasonably large XT !

Model Predictive Control

• This is not as much a problem with later initial guesses
because we can take u0(1), . . . , u0(T − 1) as the initial
guess for u1(1), . . . , u1(T − 1).

• The ideal terminal cost πT (x) is the optimal cost of the
infinite horizon optimal control problem provided that it can
be computed on a large enough XT . Then the exact
solutions to the finite horizon and infinite horizon optimal
control problems are identical.

• If the infinite horizon optimal control law κT (x) is known on
the terminal set XT then the initial guess for u1(T) should
be κT (x0(T)) where x̃0(T) is the T th state generated by
the last control sequence. u0(0), . . . , u0(T − 1)

• Al’brekht alone or with a shell or two of patches can furnish
πT (x) and κT (x) on a reasonably large XT !

Model Predictive Control

• This is not as much a problem with later initial guesses
because we can take u0(1), . . . , u0(T − 1) as the initial
guess for u1(1), . . . , u1(T − 1).

• The ideal terminal cost πT (x) is the optimal cost of the
infinite horizon optimal control problem provided that it can
be computed on a large enough XT . Then the exact
solutions to the finite horizon and infinite horizon optimal
control problems are identical.

• If the infinite horizon optimal control law κT (x) is known on
the terminal set XT then the initial guess for u1(T) should
be κT (x0(T)) where x̃0(T) is the T th state generated by
the last control sequence. u0(0), . . . , u0(T − 1)

• Al’brekht alone or with a shell or two of patches can furnish
πT (x) and κT (x) on a reasonably large XT !

Speeding Up Model Predictive Control

Currently MPC is only used for relatively slow and reasonably
stable processes such as chemical process control.

There is a need to develop extensions of MPC that can be used
for fast processes such as aircraft.

Using Al’brekht alone or with a shell or two of patches partially
achieves that goal by enlarging the terminal set XT so that the
horizon T can be shortened thereby simplifying the on-line
optimization.

Al’brekht around an optimal trajectory also can be used to
increase the available computational time which we now explain.

Speeding Up Model Predictive Control

Currently MPC is only used for relatively slow and reasonably
stable processes such as chemical process control.

There is a need to develop extensions of MPC that can be used
for fast processes such as aircraft.

Using Al’brekht alone or with a shell or two of patches partially
achieves that goal by enlarging the terminal set XT so that the
horizon T can be shortened thereby simplifying the on-line
optimization.

Al’brekht around an optimal trajectory also can be used to
increase the available computational time which we now explain.

Speeding Up Model Predictive Control

Currently MPC is only used for relatively slow and reasonably
stable processes such as chemical process control.

There is a need to develop extensions of MPC that can be used
for fast processes such as aircraft.

Using Al’brekht alone or with a shell or two of patches partially
achieves that goal by enlarging the terminal set XT so that the
horizon T can be shortened thereby simplifying the on-line
optimization.

Al’brekht around an optimal trajectory also can be used to
increase the available computational time which we now explain.

Speeding Up Model Predictive Control

Currently MPC is only used for relatively slow and reasonably
stable processes such as chemical process control.

There is a need to develop extensions of MPC that can be used
for fast processes such as aircraft.

Using Al’brekht alone or with a shell or two of patches partially
achieves that goal by enlarging the terminal set XT so that the
horizon T can be shortened thereby simplifying the on-line
optimization.

Al’brekht around an optimal trajectory also can be used to
increase the available computational time which we now explain.

Speeding Up Model Predictive Control
Standard MPC waits until x(t) is known to compute
ut(t), . . . , ut(t+ T − 1) .

This needs to be done in a small fraction of a time step so that
the control u(t) = ut(t) can be employed for the rest of the
time step.

Suppose instead we start computing ut(t), . . . , ut(t+ T − 1) at
time t− 1 based on the model predicted value
x̂(t) = f(x(t− 1, u(t− 1)) of x(t).

The actual value of x(t) will probably be different from its
predicted value of x̂(t) but probably not that different.

So we compute the variational π̃(s, z), κ̃(s, z) for
s = t, . . . , t+ T − 1 by Al’brekht around the optimal trajectory
generated by ut(t), . . . , ut(t+ T − 1) and then at time t when
x(t) becomes known we use the control
u(t) = ut(t) + κ̃(t, x(t)− x̂(t)).

Speeding Up Model Predictive Control
Standard MPC waits until x(t) is known to compute
ut(t), . . . , ut(t+ T − 1) .

This needs to be done in a small fraction of a time step so that
the control u(t) = ut(t) can be employed for the rest of the
time step.

Suppose instead we start computing ut(t), . . . , ut(t+ T − 1) at
time t− 1 based on the model predicted value
x̂(t) = f(x(t− 1, u(t− 1)) of x(t).

The actual value of x(t) will probably be different from its
predicted value of x̂(t) but probably not that different.

So we compute the variational π̃(s, z), κ̃(s, z) for
s = t, . . . , t+ T − 1 by Al’brekht around the optimal trajectory
generated by ut(t), . . . , ut(t+ T − 1) and then at time t when
x(t) becomes known we use the control
u(t) = ut(t) + κ̃(t, x(t)− x̂(t)).

Speeding Up Model Predictive Control
Standard MPC waits until x(t) is known to compute
ut(t), . . . , ut(t+ T − 1) .

This needs to be done in a small fraction of a time step so that
the control u(t) = ut(t) can be employed for the rest of the
time step.

Suppose instead we start computing ut(t), . . . , ut(t+ T − 1) at
time t− 1 based on the model predicted value
x̂(t) = f(x(t− 1, u(t− 1)) of x(t).

The actual value of x(t) will probably be different from its
predicted value of x̂(t) but probably not that different.

So we compute the variational π̃(s, z), κ̃(s, z) for
s = t, . . . , t+ T − 1 by Al’brekht around the optimal trajectory
generated by ut(t), . . . , ut(t+ T − 1) and then at time t when
x(t) becomes known we use the control
u(t) = ut(t) + κ̃(t, x(t)− x̂(t)).

Speeding Up Model Predictive Control
Standard MPC waits until x(t) is known to compute
ut(t), . . . , ut(t+ T − 1) .

This needs to be done in a small fraction of a time step so that
the control u(t) = ut(t) can be employed for the rest of the
time step.

Suppose instead we start computing ut(t), . . . , ut(t+ T − 1) at
time t− 1 based on the model predicted value
x̂(t) = f(x(t− 1, u(t− 1)) of x(t).

The actual value of x(t) will probably be different from its
predicted value of x̂(t) but probably not that different.

So we compute the variational π̃(s, z), κ̃(s, z) for
s = t, . . . , t+ T − 1 by Al’brekht around the optimal trajectory
generated by ut(t), . . . , ut(t+ T − 1) and then at time t when
x(t) becomes known we use the control
u(t) = ut(t) + κ̃(t, x(t)− x̂(t)).

Speeding Up Model Predictive Control
Standard MPC waits until x(t) is known to compute
ut(t), . . . , ut(t+ T − 1) .

This needs to be done in a small fraction of a time step so that
the control u(t) = ut(t) can be employed for the rest of the
time step.

Suppose instead we start computing ut(t), . . . , ut(t+ T − 1) at
time t− 1 based on the model predicted value
x̂(t) = f(x(t− 1, u(t− 1)) of x(t).

The actual value of x(t) will probably be different from its
predicted value of x̂(t) but probably not that different.

So we compute the variational π̃(s, z), κ̃(s, z) for
s = t, . . . , t+ T − 1 by Al’brekht around the optimal trajectory
generated by ut(t), . . . , ut(t+ T − 1) and then at time t when
x(t) becomes known we use the control
u(t) = ut(t) + κ̃(t, x(t)− x̂(t)).

Concluding Remarks

• Al’brekht’s method is the only viable way to solve HJB or
DP equations on a reasonably large domain in moderate or
large state dimensions.

• Al’brekht’s method can be extended to handle equality
and/or inequality constraints.

• Patchy extensions can be added to the Al’brekht solution to
enlarge it slightly and mitigate the possibility finite escape
time in the closed loop system.

• Model Predictive Control with an Al’brekht terminal cost
and terminal feedback is a viable approach to solving
optimal control problems in moderate dimensions with
moderately fast dynamics.

• Model Predictive Estimation and Al’brekht?

• Al’brekht and patchy with constraints?

• For a copy of these slides contact ajkrener@ucdavis.edu

Concluding Remarks

• Al’brekht’s method is the only viable way to solve HJB or
DP equations on a reasonably large domain in moderate or
large state dimensions.

• Al’brekht’s method can be extended to handle equality
and/or inequality constraints.

• Patchy extensions can be added to the Al’brekht solution to
enlarge it slightly and mitigate the possibility finite escape
time in the closed loop system.

• Model Predictive Control with an Al’brekht terminal cost
and terminal feedback is a viable approach to solving
optimal control problems in moderate dimensions with
moderately fast dynamics.

• Model Predictive Estimation and Al’brekht?

• Al’brekht and patchy with constraints?

• For a copy of these slides contact ajkrener@ucdavis.edu

Concluding Remarks

• Al’brekht’s method is the only viable way to solve HJB or
DP equations on a reasonably large domain in moderate or
large state dimensions.

• Al’brekht’s method can be extended to handle equality
and/or inequality constraints.

• Patchy extensions can be added to the Al’brekht solution to
enlarge it slightly and mitigate the possibility finite escape
time in the closed loop system.

• Model Predictive Control with an Al’brekht terminal cost
and terminal feedback is a viable approach to solving
optimal control problems in moderate dimensions with
moderately fast dynamics.

• Model Predictive Estimation and Al’brekht?

• Al’brekht and patchy with constraints?

• For a copy of these slides contact ajkrener@ucdavis.edu

Concluding Remarks

• Al’brekht’s method is the only viable way to solve HJB or
DP equations on a reasonably large domain in moderate or
large state dimensions.

• Al’brekht’s method can be extended to handle equality
and/or inequality constraints.

• Patchy extensions can be added to the Al’brekht solution to
enlarge it slightly and mitigate the possibility finite escape
time in the closed loop system.

• Model Predictive Control with an Al’brekht terminal cost
and terminal feedback is a viable approach to solving
optimal control problems in moderate dimensions with
moderately fast dynamics.

• Model Predictive Estimation and Al’brekht?

• Al’brekht and patchy with constraints?

• For a copy of these slides contact ajkrener@ucdavis.edu

Concluding Remarks

• Al’brekht’s method is the only viable way to solve HJB or
DP equations on a reasonably large domain in moderate or
large state dimensions.

• Al’brekht’s method can be extended to handle equality
and/or inequality constraints.

• Patchy extensions can be added to the Al’brekht solution to
enlarge it slightly and mitigate the possibility finite escape
time in the closed loop system.

• Model Predictive Control with an Al’brekht terminal cost
and terminal feedback is a viable approach to solving
optimal control problems in moderate dimensions with
moderately fast dynamics.

• Model Predictive Estimation and Al’brekht?

• Al’brekht and patchy with constraints?

• For a copy of these slides contact ajkrener@ucdavis.edu

Concluding Remarks

• Al’brekht’s method is the only viable way to solve HJB or
DP equations on a reasonably large domain in moderate or
large state dimensions.

• Al’brekht’s method can be extended to handle equality
and/or inequality constraints.

• Patchy extensions can be added to the Al’brekht solution to
enlarge it slightly and mitigate the possibility finite escape
time in the closed loop system.

• Model Predictive Control with an Al’brekht terminal cost
and terminal feedback is a viable approach to solving
optimal control problems in moderate dimensions with
moderately fast dynamics.

• Model Predictive Estimation and Al’brekht?

• Al’brekht and patchy with constraints?

• For a copy of these slides contact ajkrener@ucdavis.edu

Concluding Remarks

• Al’brekht’s method is the only viable way to solve HJB or
DP equations on a reasonably large domain in moderate or
large state dimensions.

• Al’brekht’s method can be extended to handle equality
and/or inequality constraints.

• Patchy extensions can be added to the Al’brekht solution to
enlarge it slightly and mitigate the possibility finite escape
time in the closed loop system.

• Model Predictive Control with an Al’brekht terminal cost
and terminal feedback is a viable approach to solving
optimal control problems in moderate dimensions with
moderately fast dynamics.

• Model Predictive Estimation and Al’brekht?

• Al’brekht and patchy with constraints?

• For a copy of these slides contact ajkrener@ucdavis.edu

