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« New perspectives in control and 
games »:  a claim

• Mean Field Games together with new data 
• will play a key role in the design of new 

socio-economics equilibrium models

• Ex: for activities with regulated pricing 
policy

• This will generate needs : new math 
results and new machine learning 
methods





Insight?

• These works (mixing MFG and new data)
• Might produce some new machine 

learning algorithmic ideas 



agenda

• 0. Mean field games : a fast track overview

• I.  Forward/backward systems  

• II. MFG-d : finite state space 



0.  Mean Field Games :
Fast track overview

•  



Mean Field games
 

•Theory

   stochastic differential games 
   with a continuum of players
•Applications

   a new modelling technology



A huge powerful inheritance

•Game theory : agents, strategies, cross 
expectations, equilibrium, common 
knowledge,..
– Implies: coherence and inheritance with 

concepts, tools,.. of other class of games

•Continuous time and/or state space, use of 
differential and stochastic calculus..
– Implies coherence and inheritance with 

deterministic and stochastic control theory



MFG = stochastic differential games 
with a continuum of players

• « Continuum of players » 
– is the key feature 
–that frame MFG theory

• The mix of 
–continuum of players 
–and continuous time stochastic 

control theory 
– is extremly powerful



Continuum of players
• This means that the community of agents is 

described by its density m on the state space 
of agents

• A tractable approximation of large class of 
differential games with N players, N large

• good news : while not so easy, the limit, i-e: 
MFG, is orders of magnitude more simpler than 
N players games (even with N small)

• Why? : Because agents are « atomized », 
anonymous, hence have no strategic power. 
MFG are halfway between optimisation and 
game theory



Other approach of the same 
concept

• Mean field methodology in physics:
– Replace particles by agents, i-e players, 
–Meaning optimisation and cross expectations 

on other strategies

• Economics with incomplete markets, 
equilibrium under constraints and 
regulations, can often be viewed as MFG



MFG classification based on risk 
structure

• Each agent i faces risk   Z=(Xi,Y)

–  Xi  is the idiosyncratic (individual) risk

–  Y is the systemic risk

–  Xi  , Xj  , Y : are all pairwise independent

  Classification :

• General case : infinite dimension PDE

• No systemic risk Y : forward/backward 
systems

• Finite agents state space : non linear 
hyperbolic PDE systems 



forward/backward systems

• Each agent i faces risk   Z=(Xi,Y) 

• No systemic risk  (no Y)  :

• forward/backward systems
– Forward FP equation of the deterministic dynamic of 

the density m of agents in the state space
– Backward generic agent HJB equation 

• Since seminal papers (2006), most MFG 
papers are about  forward/backward systems



General case : Master Equation 

• Each agent strategy depend on
– x : his current state
–m : the state of the community of agents

• The value function V depends both on the position x of 
the generic agent and on the density m of agents

• Hence the Master equation is a PDE in infinite 
dimension 

• Must be worked out for macro economic theory:
– JML&PLL introduced Master Equation to build 

sound mathematical answers to Robert Lucas 
insights and questions about Krussell Smith model 

• Some positive results, still tough beautiful challenges



MFG-p: Master equation



MFG-d and hyperbolic systems

• Each agent i faces risk   Z=(Xi,Y)

• Finite state space : MFG hyperbolic systems
• Monotone case: positive results on hyperbolic 

systems contrasting with negative results in 
fluid dynamics

• Amazingly large and efficient modelling power
• Yet few papers using monotone systems



MFG on graphs

• Agents state space is a (finite, large) graph

• Specific features linked to large graphs 
case

• Potential applications to the new large sets 
of data (« big data »)



 Family I: 
forward/backward systems



(classic) stochastic control: agent ’s problem
and HJB framework

 

  



MFG agent ’s problem

 

  



MFG agent ’s optimal control

 

  



Density dynamics: the forward FP 
equation



MFG Equilibrium



MFG stationnary Equilibrium 



Eductive dynamics to equilibrium



Entrants, in and out flow of agents



MFG agent ’s problem : congestion

 

  



MFG agent ’s problem : n populations

 

  



N populations MFG equilibrium



Crowd dynamics 



Crowd dynamics

• Is crowd dynamics a game ?
• Is it common knowledge between people 

in the crowd that crowd dynamics is a 
game ?

• Depends on the context
• Also depends on modeling objectives



Crowd dynamics: MFG 
modeling 

• MT Wolfram, A Lachapelle; Y Achdou;..
• Sophisticated forward looking crowd 

behaviours can be easily explained by 
MFG models 

• Including some systemic information 
shocks



A quantum of systemic risk



A quantum of systemic risk: agent’s problem

•  



A quantum of systemic risk: MFG equilibrium



A Lachapelle MT Wolfram
Sophisticated two populations dynamics 



A Lachapelle MT Wolfram
Sophisticated two populations dynamics 



A Lachapelle MT Wolfram
Sophisticated two populations dynamics 



Family II.
Finite state space: 
MFG-d systems 

•  



MFG-d systems
 

•State of the population :  m(t)=(m1(t),…, 
mn(t))

•Where mj(t) is the number of agents in state 
j
•In/out flows of players from state to state, 
and from outside world

•flows depend on the values ui(t,m) and are 
impacted by exogenous shocks
•Agent’s gain per unit of time depends on m
•As the dynamic of m is random, all agents 
face the same « systemic risk » (i-e: 
common risk)   



 
 



Some MFG-d systems are « HJB 
gradients »

•  



«HJB gradients» and cross 
derivatives:

•  



MFG-d/g : the equilibrium framework



MFG-g:  agent’s optimisation problem



The value functions



The population dynamics 
and the equilibium condition



Modelling with MFG-d

• Three examples of models using MFG-d 
framework:
– A. Taxi equilibrium: a stylized mini-model 
– B. Dynamics of industrial capacities in a time 

to build context
– C. Dynamics of order books



A. Taxi equilibrium: a stylized mini-
model  

 



The town-airport stylized equilibrium



The town-airport stylized equilibrium



The town-airport stylized equilibrium



Sample of a random trajectory of m



B.  Dynamics of industrial capacities 
in a time to build context
(from a joint work with

 Pierre Louis Lions and Pierre Noël 
Giraud)

 



• Capacity industries, ex. : power plants
• Time to build (stylized): pay to change the 

amount of existing capacities

• Attention !  we will call xi what 
was called before mi : the number 
of agents in state i.

• Ex.:  Lucas-Prescott model
–Main goal of Lucas-Prescott : link with 

Benevolent planner framework and math tools 
(HJB) 



Model with identical power plants



Stationary equilibrium : value 
function

• Focus on stationary equilibrium

• Value function u(x) = discounted pay 
off per one unit of capacity of 
production

• x is the production capacity  = number 
of production units = size of the 
population

• x was previously named m
• Agents (owners of production units) are 

atomized independent competitors with 
constant discounting rate r.



Flow of entrants : 
the time to build issue

• q* is the flow of entrants = number of new units
• Cost of a new units is exogenous : C(q)
• C is the cost function of the industry which produce new 

power plants
• Competitive equilibrium of entrants :  
• C’(q*)= u(x)     
• Ex:  C(q) = ½ q2 for q>0 , hence q*= u(t,x)  for u>0
• Convexity of the cost function C embodies (in this model) 

the « time to build » issue
• This framework might be compared to Lucas-Prescott 

model where the the costly effort x to improve existing 
production units has comparable effects on the size of 
the productive capital (see last part of this document)



Dynamics of the production 
capacity

• The dynamics of x is 

              dx = (q*- a) dt 

   where q*=max(u,0) is the flow of entrants

   and a is a constant aging rate



Demand and pay off

• The demand is exogenous : y=D(p), where y is the 
production and p the price

• Examples : 
– D(p)= 1/pα  

– D(p) = b-cp    for p < b/c

• Constant cost e per unit of produced energy
• Power plants are identical, demand/offer 

competitive equilibrium :  x = D(p)
• Pay off per one production unit :   D-1(x) - e



Recursive (mfg) equation 

• We look for a stationary equilibrium:
• u(x) = (1-rdt-adt) u(x+dx) + (D-1(x) – e) dt
• dx = (q*-a) dt ,  with  q*= max(u,0)

0  =  –  c u  +   g(u) ux  +   f(x)

 g(u) = max(u,0) – a;    f(x) = D-1(x) – e;    c=r+a

• g and –f  are increasing functions
         



HJB and BP 

• Define G,F and U by :   G’=g,  F’=f , U’=u  
• then U satisfies the HJB equation:

         0  =  –  c U  +  G(U’)  +  F(x)

• Hence U is the Bellman value function of the 
control problem :

  

U(x0) = Max e−ct F(x t ) −G * (zt )( )
0

∞

∫ dt

dx t = ztdt



MFG - BP / Monopolist
 The BP optimization problem is not the Monopolist optimization problem 

Example:
  

  

Monopolist vs Benevolent Planner :

Fmon (x) = x(1− x)

D(p)=1−p D−1(x)=1−p

f (x)=1−x−e=1−x, F(x)=x−x2 2

g(u)=u−a, G(u)=(u−a)2 2, G*(z)=az+z2 2

U(x0 )=Max e−ct xt −xt
2 2−azt −zt

2 2( )
0

∞

∫ dt

dxt =ztdt



Model with 
two types of power plants 

and two markets



oveview (1/3)

• Two types of power plants
– Type 1: expensive to build, produce 

unexpensive energy
– Type 2: unexpensive to build, produce 

expensive energy

• Two markets for energy
– Peak hours: high demand for energy, both 

unexpensive and expensive energy can be 
sold

– Off peak hours: low demand for energy, only 
unexpensive energy can be sold



oveview (2/3)

• Type 2 power plants 
– Receive only earnings from peak hours 

market, 
– but are less expensive to build

• Model will tackle interaction of :
– Time to build with
– Competition of two populations of producers 

on two markets 



oveview (3/3)



Value functions

• State of the world in this model is x=(x1,x2) 
where is xi is the existing number of units of 
type i

• The values functions u1(x1,x2)   and u2(x1,x2)  
are defined as (expected) discounted pay 
off for the owner of one unit of type i

• We look for a stationnary competitive 
equilibrium, i-e: producers are price takers



Two flows of entrants

• For i=1,2,    qi =  flow of entrants of type i = 
number of new units of type i

• Ci(qi) =  cost to build one new unit of type i 

• Convexity of Ci will express the « time to build 
issue » in this model

• Cost to build Ci(q) is assumed to be greater for 
type 1 units :  C1(q) > C2(q)

• Cost to produce one unit of energy ei is 
greater for type 2 units :   e1  <  e2 

• (NB = notations imply a adequate choice of 
units)



Two flows of entrants

• For the sake of analytical simplicity, we assume 
              C(q) = ½ ciq2 for q>0

• C1(q) > C2(q) , hence :     c1   >   c2

• At equilibrium entrants flows satifies 
– Ci’(qi*) = ui (x1,x2)     i=1,2

– ciqi* = ui (x1,x2)     i=1,2



Peak and off-peak demand
• Dj(pj) is the demand function and pj the energy 

price
– Off peak hours j=0
– Peak hours j=1

• Linear case : Dj(p) = aj – bj p ,    for p < aj/bj 

• Example   
–  a0 <<  a1       b0=b1   

– hence off-peak demand D0  lower than peak demand 
D1

• We assume no uncertainity in this model: each 
day is splitted in two part: peak hours and off 
peak hours; the demands are the same 
everyday on each market.



Demand and offer : 
peak hours equilibrium (p0,x1) and 

off-peak hours equilibrium (p0, x1+x2) 



Pay off

• The net pay off for one unit of type 2 is            
       f2(x1,x2)=p1(x1,x2)-e2 as this unit produce 
only for the peak hours market

• The pay off for one unit of type 1 is                  
      f2(x1,x2)=p0(x1,x2)+p1(x1,x2)-e1 as this unit 
produces both for the peak and off-peak 
market

• For the sake of simplicity, we will restrict 
(here) to the case    e1 < p0 < e2 < p1

• Hence p0(x1,x2)=p0(x1) and p1(x1,x2) = p1(x1+x2)

• More specificaly :  p0=a0-x1 and  p1= a1-(x1+x2) 



The stationary equilibrium 
equations

• ui(x1,x2) = (1-rdt-kdt) ui(x1+dx1,x2+dx2) + 
fi(x1,x2)dt

• dxi = gi(x1,x2) dt ,  with

• gi(u1,u2) = qi*-k = ui(x1,x2)/ci –k

   (where k is the rate of aging of all units)

   Hence :

  

0 = r + k( ) u1 + g1 u1,u2( ) ∂1u1 x1,x2( ) + g2 u1,u2( ) ∂ 2u1 x1,x2( ) + f1 x1,x2( )
0 = r + k( ) u2 + g1 u1,u2( ) ∂1u2 x1,x2( ) + g2 u1,u2( ) ∂ 2u2 x1,x2( ) + f2 x1,x2( )



This MFG monotone system  is the 
« gradient » of an HJB equation 

    



Ex. :  Tax impact on equilibrium

   

  

  

Let's add a tax scheme θ = θ 1,θ 2( ) to the previous system :

0 = r + k( ) ui + g1 u1,u2( ) ∂ 1ui x1,x2( ) + g2 u1,u2( ) ∂ 2ui x1,x2( ) + f i x1,x2( ) + θ i x1,x2( )
unless ∂ 2θ 1 x1,x2( ) = ∂ 1θ 2 x1,x2( )
this will not be the gradient of some HJB equation



Remark: analytic solution 
in the linear case

  

  

If all functions gi, f i,θ i in the equations

0 = r + k( ) ui + g1 u1,u2( ) ∂ 1ui x1,x2( ) + g2 u1,u2( ) ∂ 2ui x1,x2( ) + f i x1,x2( ) + θ i x1,x2( )
are linear then so is u

and solving the system means solving a Riccati equation



The Lucas-Prescott model

• One type of firms, and one aggregate risk 

• Two states dynamic, hence : a two 
dimensional model

• But as there are no individual risks there will 
be a competitive equilibrium without 
insurance

• Agents are producers : each agent own a 
production unit



Lucas-Prescott framework

• The inverse demand function is  pt = P(qt, 
ut) where qt is the total production

• ut is a stochastic demand shifter that 
follows a diffusion process 

• dut = μ(ut)dt + σ(ut)dWt 

• Hence, agents (producers) share the 
same collective risk : le level of demand, 
hence the level of prices



Lucas-Prescott framework

• Agents can improve their own production 
unit 

• dkt = h(xt/kt)ktdt 

• where kt is the size of the unit (i-e: capital 
own by the producer)

• and xt is the cost of improvement, and h a 
technical function measuring the impact of 
adjustment (i-e: improvement) costs



Lucas-Prescott framework

• Agents are identical, share the same risk,, 
have same initial conditions,..

• Hence agents behave identically, and qt=xt 
, Kt=kt  where Kt is the total amount of 
productive capital in the economy (= : up 
to suitable choice of units)

• Lucas-Prescott focus on the stationary 
equilibrium



Lucas-Prescott framework

• Each individual firm solves the individual 
optimization problem below, in which prices pt 
are the given « mean field » (i-e: producers 
are atomized price takers) with pt = D(qt, ut) 

 



MFG equilibrium equations 

•In order to write the MFG system of this 
problem, we write the PDEs satisfied by the 
value function of a producer w(k0,u0)=V0 /k0 (i-e, 
the value of one production unit) when the state 
of the economy is (k0,u0). 

•Hence w will satisfies:



MFG equilibrium equations 

• Hence by expansion (Ito’s lemma) the “first” MFG 
equation is

• Where x* is the optimal strategy of all (identical) agents 



MFG equilibrium equations 

•As there are two state variables k and u, the MFG 
monotone system should have a second unknown value 
function v(k,u) satisfying a similar PDE. 
•In this specific case the most straightforward path to this 
second PDE is indirect, as we will see
•Note that the above PDE can be solved independently of 
the “second” MFG equation 



From one MFG equation to the MFG « gradient » 
system…

•  



From one MFG equation to the MFG « gradient » 
system…

•  



…from the MFG « gradient » system to the HJB 
equation of Lucas-Prescott..

• Using the previous relationship one recover the Lucas-
Prescott HJB equation

Where s is the surplus defined by (D=P in Lucas-Prescott 
notations): 



…from the HJB equation 
to the Lucas-Prescott Benevolent Planner

• The solution φ of the HJB equation : 

• Is the Bellman value function of the optimal control 
problem :

•         =

• This optimal control problem is the BP problem 
introduced by Lucas-Prescott

• Actually, Lucas-Prescott did it the reverse way : the 
designed directly the previous BP problem from their 
economics insights, then deduced the HJB equation 
from the BP pb.



To summarize..

• Starting with a framework of competitive 
market model, and writing the MFG 
monotone system (or part of it), we found a 
gradient like system, hence an HJB 
equation. This HJB equation HJB defines 
an optimal control problem which is the 
Benevolent planner problem  

• the competitive equilibrium is identical to 
the solution of this BP problem : agents 
behave as if they were driven by the 
“invisible hand” of a BP



First and second welfare 
theorems

First and second welfare theorems state that: 
•any competitive equilibrium leads to a Pareto 
efficient allocation of resources, 
•such a Pareto allocation solves an 
optimization problem 

•Hence the competitive equilibrium is equal to 
a solution designed by some Benevolent 
Planner



Lucas-Prescott breakthrough

Lucas and Prescott  breakthrough :
•Given that the competitive market equilibrium 
is also the optimal solution defined by some 
Benevolent Planer 
•In order to compute the competitive market 
equilibrium  can proceed in two steps :
– found the right BP, i-e: the right optimization 

problem 
– solve this optimization problem using all classic 

tools of optimal control : namely HJB equation 
when the context is optimal control of stochastic 
diffusion



Mfg vs BP

• While Lucas and Prescott found the right BP 
using there economical insights, MFG 
approach give an analytical process 
requiring no insight:
–Write the mfg system
– Check if equality of cross derivatives ECD1 and 

ECD2 holds
– If yes, compute unknown function F and G 

through integration of the relationships:



Mfg vs BP

• Of course, as soon as there are « non 
market interactions » between agents, the 
equivalence  of equilibrium and BP 
optimization cancels (most of the time, 
unless ECD still holds)

• « non market interactions » might be: 
– tax, 
– frictions, 
– Externalities,
–…



 C. Dynamics of order books
joint work with Aimé Lachapelle, 

Charles Albert Lehalle et Pierre Louis 
Lions

 



• Articles initiaux
– Mean field games, JM Lasry, PL Lions, Japanese Journal of 

Mathematics 2 (1), 229-260
– Jeux à champ moyen. I–Le cas stationnaire, JM Lasry, PL Lions, 

Comptes Rendus Mathématique 343 (9), 619-625
– Jeux à champ moyen. II–Horizon fini et contrôle optimal, JM 

Lasry, PL Lions, Comptes Rendus Mathématique 343 (10), 679-
684

• Et aussi, 
– Mean field games and applications, O Guéant, JM Lasry, PL 

Lions, Paris-Princeton Lectures on Mathematical Finance 2010, 
205-266

– Notes on Mean Field Games, Pierre Cardaliaguet, January 15, 
2012 (et la bibliographiede ce texte)

– PL Lions, cours aux Collège de France 2006-2012, 
http://www.college-de-france.fr/site/en-pierre-louis-lions/course-2011-2012.htm

http://www.college-de-france.fr/site/en-pierre-louis-lions/course-2011-2012.htm
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