Modeling with Mean Field
Games:
MFG and new data

Jean Michel Lasry, november 10th, 2014
New perspectives in control and games
Roma, La Sapienza



« New perspectives in control and
games ». a claim

Mean Field Games together with new data

will play a key role in the design of new
soclo-economics equilibrium models

Ex: for activities with regulated pricing
policy

This will generate needs : new math
results and new machine learning

mathnAdce






Insight?

* These works (mixing MFG and new data)

* Might produce some new machine
learning algorithmic ideas



agenda

* 0. Mean field games : a fast track overview
* |. Forward/backward systems
* Il. MFG-d : finite state space



0. Mean Field Games :
Fast track overview



Mean Field games

*‘Theory
stochastic differential games
with a continuum of players
*Applications
a hew modelling technology



A huge powerful inheritance

*Game theory : agents, strategies, Ccross
expectations, equilibrium, common
knowledge,..

— Implies: coherence and inheritance with
concepts, tools,.. of other class of games

*Continuous time and/or state space, use of
differential and stochastic calculus..

— Implies coherence and inheritance with
deterministic and stochastic control theory



MFG = stochastic differential games
with a continuum of players

* « Continuum of players »
—Is the key feature
—that frame MFG theory

* The mix of
—continuum of players

—and continuous time stochastic
control theory

—Is extremly powerful



Continuum of players

This means that the community of agents Is
described by Iits density m on the state space
of agents

A tractable approximation of large class of
differential games with N players, N large

good news : while not so easy, the limit, I-e:
MFG, Is orders of magnitude more simpler than
N players games (even with N small)

Why? . Because agents are « atomized »,
anonymous, hence have no strategic power.
MFG are halfway between optimisation and
agame theorv



Other approach of the same

concept

* Mean field methodology In physics:
— Replace particles by agents, I-e players,

— Meaning optimisation and cross expectations
on other strategies

* Economics with incomplete markets,
equilibrium under constraints and
regulations, can often be viewed as MFG



MFG classification based on risk
structure
« Each agentifacesrisk Z=(X,Y)
— X. Is the idiosyncratic (individual) risk
— Y Is the systemic risk
— X, X;, Y :are all pairwise independent
Classification :
* General case : infinite dimension PDE

* No systemic risk Y : forward/backward
systems

* Finite agents state space : non linear
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forward/backward systems

Each agent | faces risk Z=(X,Y)

No systemic risk (noY) :

forward/backward systems

— Forward FP equation of the deterministic dynamic of
the density m of agents in the state space

— Backward generic agent HJB equation

Since seminal papers (2006), most MFG
papers are about forward/backward systems



General case . Master Equation

Each agent strategy depend on
— X : his current state
— m : the state of the community of agents

The value function V depends both on the position x of
the generic agent and on the density m of agents

Hence the Master equation is a PDE In infinite
dimension

Must be worked out for macro economic theory:

— JML&PLL introduced Master Equation to build
sound mathematical answers to Robert Lucas
iInsights and questions about Krussell Smith model

—



MFG-p: Master equation

t j::f” A+ a)Am — div {';é,‘;f m) )

% + (v + a)A U+ H(z, V U m)+
(MFG.P)
+0 %{TI”. Vm) + 2o ::;-;%TIFE'T, Vm) =0

and .f_,f'|,=.f = g(x,m)



MFG-d and hyperbolic systems

Each agent i faces risk Z=(X.,Y)

Finite state space : MFG hyperbolic systems

Monotone case: positive results on hyperbolic
systems contrasting with negative results In
fluid dynamics

Amazingly large and efficient modelling power
Yet few papers using monotone systems



MFG on graphs

* Agents state space is a (finite, large) graph

* Specific features linked to large graphs
case

* Potential applications to the new large sets
of data (« big data »)



Family |
forward/backward systems



(classic) stochastic control: agent ’s problem
and HJB framework

Max fT[f(Xt) + g(ay)ldt + h(X7)

with Xg = x and dX = a,dt + odW

the value function defined as

u(x,s) = Max IEfT[f(Xt) + g(ay)ldt

with X; = x and dX = a,dt + odW
is the viscosity solution of (backward) HJB equation (s.t. hyp..):
(HIB) 0=0,u+ f(x) + g (Vu) + Y%o?Au, and u(T,x) = h(x)

g (p) =Max{p.y + g(y)} a*(x,t) = ArgMax{Vu(x).y + g(y)}



MFG agent ’s problem

T
Max E [ [£(X) + glalde + h(Xp)
0
with X, = x and dX = a,dt + odW

MFG: f(x) = f(m,x), h(x) = h(mg,x)
where m(x, t) is the density of agents in the state space

T
example: Maxj Yo(x)*dt + m(T, X7)
0



MFEG agent ’'s optimal control

the value function
is the viscosity solution of (backward) HJB equation (s.t. hyp..):
(HIB) 0=0,u+ f(m,x) + g*(Vu) + %o?Au,
with u(T,x) = h(my, x)
9" (p) = Max{p.y + g(y)}
a*(x,t) = ArgMax{Vu(t,x).y + g(y)}

a*(x,t) = Vg*(Vu(t, x))



Density dynamics: the forward FP
eguation

each agent'sdynamicsis dX = a*(x,t) dt + adW
all agents have the same contol problem:

the optimal strategy of an agent depends where he is: x at time't
and does not depend on who he is

identical optimal feedback control a*(x,t) = Vg*(Vu(t, x))

all agents sources of risk (all Brownian W) are independent (iid)

hence the density function dynamics is defined
by the deterministic forward FP equation

0 = d,m + div(ma*) — Yao?Am, withm(0,x) = my(x)



MFG Equilibrium

the deterministic forward FP equation
0 = d,m+ div(ma*) — Yoo*Am, withm(0,x) = mqy(x)
together with the previous HJB:
0=20u+f(mx)+g*(Vu) + Yoo*Au, and u(T,x) = h(m,x)
and the definition of optimal feedback a® = Vg~ o Vu

define the forward/backward MFG equilibrium



MFG stationnary Equilibrium

(00)

Max IEJ e "t f(me, X;) + g(ap)]dt
0
with X, = x and dX = a,dt + odW

then the forward FP equation writes
0 = div(ma*) — Yaa*Am
and the HJB writes
0=—-ru+f(mx)+ g (Vu) + %o?Au, and u(T,x) = h(m,x)

and the optimal feedback a™ = Vg* o Vu



Eductive dynamics to equilibrium

define u and m as a function of x and a virtual time 6
satisfying the PDE system :

0gm = —div(mVg* o Vuy) + Yoo*Am

0gu = —ru+ f(m,x) + g*(Vu) + Yho*Au

This approximation process refers to the mind time
of an external observer trying to correct a mistaken equilibrium



Entrants, in and out flow of agents

in and out flow of players: a source term ¢ forward in the FP equation
0 = d,m + div(ma*) — Yo?Am — ¢

no change in the HJB
0=20u+ f(mx)+ g (Vu) + %o?Au,

in many applications the flow depends on u and m
example: ¢ = u — em,

entrant flow proportionnal to utility u to be in,
and death process proportional tom



MFG agent ’'s problem : congestion

T
Max E [ [f(X) + glalde + h(Xp)
0
with X, = x and dX = a,dt + odW

MFG: f(x) = f(m,x), h(x) = h(mg,x)
where m(x, t)is the density of agents in the state space
g(a.) = gla;, m)

example : gla,m) = (1/a) a*(y + mF)



MFG agent ’s problem : n populations

each agent in populationi (i = 1,..,n)maximise

T
Max B [ [fim, %) + gi(alde + hyomy, Xr)
0
with X, = x and dX = a.dt + adW

fi (m; X) — fi(ml) iy mn; X);
where m; (x, t) is the density of population i



N populations MFG equilibrium

Hence, if there are n populations the MFG equilibrium,is defined
by the following system forward — backward equations

0 = d;m; + div(m;a;) — Yo?Am;, withm;(0,x) = m; (x)
0 =0d.u; + f;(m,x) + g; (Vu;) + Y0 A,

and the definition of optimal feedback a; = Vg; o Vu,



Crowd dynamics

Motivations

¢ Today half of the human population lives in
urban areas, in 1950 ~ 30%, prediction for
2050 ~ 70%.

 Fatal accidents in the last decades increased,
e.g. Hadj in Mekka, Love Parade in Duisburg,
Water Festival in Phnom Penh ....

* Empirical studies of human crowd started
about 50 years ago, based on cbservations,
photographs and video data.

e Mathematical modeling and simulations have
been used successfully to secure dangerous



Crowd dynamics

Is crowd dynamics a game ?

Is It common knowledge between people
In the crowd that crowd dynamics Is a

game ?

Depenc
Also de

S on the context

nends on modeling objectives



Crowd dynamics: MFG

modeling

* MT Wolfram, A Lachapelle; Y Achdou,;..

* Sophisticated forward looking crowd
behaviours can be easily explained by
MFG models

* Including some systemic information
shocks



A quantum of systemic risk




A guantum of systemic risk: agent’s problem

T
F.(X;,a,,m;) dt

T

Fl(Xt; atimt) dt T j

T

MaxIEj
0

with X, = x and dX = a.dt + odW
where expectation E refers to the two stochastic variables:W and k
k = 2 with probability p, k = 3 with probability 1 —p

It is a common knowledge at initial time 0
that the value of k will be brodcasted at time T,



A guantum of systemic risk: MFG equilibrium

Three forward — backward systems (one on each branch)
0=0m; + div( miaé) — Yo?Am; i =123
0 = d,w; + F7 (Xe, al, my) + Yoo?Au; i =1,2,3
where F; (x,p,m) = Max {pa + F;(x,a,m)}
and ai(t,x) = ArgMax {pa + F;(x,a,m)}

initial condition m,(0,x) = my(x)
and final condition u, (T,,x) =0 for k = 2,3

and « systemic risk » matching conditions at time T :
my (Ty,x) = my(Ty,x) fork = 2,3

U (Ty,x) = puy(Ty,x) + (1 —p) us (T, x)



A Lachapelle MT Wolfram
Sophisticated two populations dynamics

Same parameters as in the previous examples but the exits are different

—— -

(a) Population my (b) Population mg



A Lachapelle MT Wolfram
Sophisticated two populations dynamics

e Computational domain 2 = [-1.5,1.5] x [-0.2,0.2]

D.TE]2+J—'2}

» Single source of people for every species, i.e. f(x) = 50 x exp(— (> 212

* [he parameters are

a=0.25 3=075 g=2, ,vu=0.05 k=1, r=1.

(c) Population my (d) Populaticn mz



A Lachapelle MT Wolfram
Sophisticated two populations dynamics

* Rectangular domain with two corridors and a small door (bottleneck).
e Two sources placed in the lower left and lower right corner

e The parameters are

(e) Population my (f} Population ms



Family Il.
Finite state space:
MFG-d systems



MFG-d systems

State of the population : m(t)=(m,(1),...,
m,(t))

‘Where m((t) is the number of agents In state
J

*In/out flows of players from state to state,
and from outside world

flows depend on the values u(t,m) and are
Impacted by exogenous shocks

*Agent’s gain per unit of time depends on m



state of the population of agents ism = (my, ..., m,),
where m; is the quantity of agents in state i (a real number)
the previous density function m on some domain in R™ is replaced by an histogram

u;(m) value function of an agent in state j
[ — e: discounted expectations of net gains

00

uj(m)=EJ e " B;(me)dt

0

with dm, = a(uw)dt + ¢dB
where a is tentatively exogenous, i — e:
we postpone the explanation of how a is endogeneously defined by the equilibrium

Hence, forj=1,..,n:

du;
0=—-ru+ I a(u) —L 4 Bi(m) + e Au
0mk



Some MFG-d systems are « HIB
gradients »

Start by an H]B eqution :
(HIB) 0= —re(m)+ G(V(p(m)) + F(m) + Ao

denote u;(m) = dp(m)/om;

0’p(m)  9%¢p(m)
omom,  Omom,
compute the jth derivative of (HJB), one finds :

assuming smoothness, hence:

n 6uj )
0=—-ry+ Ifap(u) o~ + Bi(m) + eAw;, witha=VGandf =VF:
Kk

'''''



«HJB gradients» and cross
derivatives:

if @ =VG and B = VF,then (assuming smoothness):

(CE1) Oap(w)/ow; = da;(u)/0uy

(CE2) 0fx(m)/om; = 0p;(m)/omy



MFG-d/g : the equilibrium framework



MFG-g:. agent’s optimisation problem

each vertex ¢ € (5, denote V, the subset of (7 of vertex s.t. {4, 7) 1s an hedge of (7. Suppose that each agent
can switch from i to j € V., according to a Poisson process of intensity A,;. Each agent in state 1 controls his

own A, =(4,)
(stationary case)

and g (A,) is the cost of choosing A,. Each agent solves the stochastic control problem

|'I E llllu

ma:-:EEe'”[ £G0) +g(x)+o(m,)]ds

.ll

where (m ) =(m_)

A 1el;

15 the number of agents at each vertex of the graph.



The value functions

Defining the value function u (m,) as the value function of a generic agent in state 4, L.e. as the above max.
expected value when 1, = kand m, = m, one has the following MFG.D system.

0=—ru(m)+ f(k)+o,(m) +max[z}l [u —ulﬂ; :|+ED:'

Indeed, each agent computes his optimal strategy

A1) = Argll}lﬂi[zﬂﬂ-{ﬁf —u)+ g.-(ﬂﬂ-]}



The population dynamics
and the equilibium condition

m, = o, where o, (u,m) = Eﬂ.ym}. —
kel

At equilibrium A = 1%

pxn

fEV,

MK




Modelling with MFG-d

* Three examples of models using MFG-d
framework:

— A. Taxi equilibrium: a stylized mini-model

— B. Dynamics of industrial capacities in a time
to build context

— C. Dynamics of order books



A. Taxi equilibrium: a stylized mini-
model



The town-airport stylized equilibrium

two locations : town, airport
m (resp.: 1 —m) is the proportion of taxi in town (resp. at the airport)

y is the random flow of airport clients
(ex.:yis areflected brownian in a range (yy,y1))

u,(m,y) (resp.: u,(m,y)) is the expected gain of a taxi in town (resp. at the airport)

a,dt is the probability of a taxi in town to move to the airport during the next period dt
a,dt is the probability of a taxi at the airport to move to town during the next period dt

b is the net flow of gain in town per unit of time,

c is the waiting cost at the airport per unit of time
R is the net gain in the moves between town and airport (both ways)

Each taxi control his own a, subject to a cost C(a,)

a; = y/(1 —m)

let us write the stationary equilibrium equations satisfied by functions u, and u,



The town-airport stylized equilibrium

If the dynamic of the population is given by dm = f(m,y)dt
then the optimal strategy of an agent is given by
a*(m,y) = ArgMax {a (u,(m,y) + R —u;(m,y)) — C(a)}

for example,if the cost functionis: C(a) = % a?
thena*(m,y) = u,(m,y) + R —u;(m, y)

At equilibrium, the optimal strategy of each agent should create
the expected dynamic of the population.
Hence the function f should be equal to:

fmy) = —a*(my)m+y
Hence functions u, and u, satisfy :

u;(m,y) = (1 —a*dt){u,(m + dm,y + dy) + bdt } + a*dt{R + u,(m,y)}
u,(m,y) = (1 — a,dt){fu,(m + dm,y + dy)} + a,dt{R + u,(m,y)}
with dm = fdt



The town-airport stylized equilibrium

Hence, by Taylor expansion and Ito’s lemma, functions u; and u, satisfy :

0= Ylu,(m,y) + R —u;(m,¥)1? + f(m, y) 0mus (m, y) + %0, u, (m, y)
0 = ay[u,(m,y) + R —u,(m,y)] + f(m,y)0,u,(m, y) + %0,,u,(m, y)

with f(m,y) = —u,(m,y) —R+u,(m,y) +y

Introducing w = u, — uy, one find the non linear PDE :
0= ay[R—w]—%[w+R]?+ (y—w—R)o,w+ %0,,w
with Neumann boundary conditions on linesy =y, andy = y;

The challenge here is to show that the Burger's non linearity wod,w
does not create shocks



Sample of a random trajectory of m

I



B. Dynamics of industrial capacities
In a time to build context
(from a joint work with
Plerre Louis Lions and Pierre Noél
Giraud)



Capacity industries, ex. : power plants

Time to build (stylized): pay to change the
amount of existing capacities

Attention! we will call x; what
was called before m, : the number
of agents in state |I.

EXx.: Lucas-Prescott model
— Main goal of Lucas-Prescott : link with

Danmsv/alant nlannar frarmaoawinarl anmd mathh +Anlce



Model with identical power plants



Stationary equilibrium : value
function
* Focus on stationary equilibrium

* Value function u(x) = discounted pay
off per one unit of capacity of
production

* X IS the production capacity = number
of production units = size of the
population

* X was previously named m
* Agents (owners of production units) are



Flow of entrants :
the time to build issue

g* is the flow of entrants = number of new units

Cost of a new units is exogenous : C(q)

C is the cost function of the industry which produce new
power plants

Competitive equilibrium of entrants
C'(g%)= u(x)
Ex: C(q) =¥z g? for >0, hence g*= u(t,x) for u>0

Convexity of the cost function C embodies (in this model)
the « time to build » issue

This framework might be compared to Lucas-Prescott
model where the the costly effort x to improve existing
production units has comparable effects on the size of
the productive capital (see last part of this document)



Dynamics of the production
capacity

* The dynamics of X Is
dx = (g*- a) dt
where g*=max(u,0) is the flow of entrants
and a Is a constant aging rate



Demand and pay off

The demand is exogenous : y=D(p), where y Is the
production and p the price

Examples :

— D(p)= 1/p°
— D(p) =b-cp forp<bhbl/c

Constant cost e per unit of produced energy

Power plants are identical, demand/offer
competitive equilibrium : x = D(p)

Pay off per one production unit: D(X) - e



Recursive (mfg) equation

We look for a stationary equilibrium:

u(x) = (1-rdt-adt) u(x+dx) + (D1(x) — e) dt
dx = (g*-a) dt, with g*= max(u,0)
O=-cu+ guwu, + f(x)

g(u) = max(u,0) —a; f(x)=D'(x)—e; c=r+a

g and —f are increasing functions



HJB and BP

* Define G,Fand U by: G'=qg, F'=f, U=u
* then U satisfies the HIB equation:
O0=-cU + GU) + F(XX)
* Hence U is the Bellman value function of the
control problem :

U(x,) = Max j e | F(x,)—G*(z,))dt

dx, =z.dt



MFG - BP / Monopolist
The BP optimization problem is not the Monopolist optimization problem
Example:

D(p)=1—p D (x)=1l—p

S =l—x—e=1l—x, F(x)=x—x>/2

gw)y=u—a, Gw)=w—a)/2, G*(z)=az+z’/2
U(x,) :Max_ofeﬂ (x, —x} /2 —az, —z} /2)dt

dx, =z dt

Monopolist vs Benevolent Planner:
F_(x)=x(1-x)

mon



Model with
two types of power plants
and two markets



oveview (1/3)

* Two types of power plants

— Type 1. expensive to build, produce
unexpensive energy

— Type 2: unexpensive to build, produce
expensive energy

* Two markets for energy

— Peak hours: high demand for energy, both
unexpensive and expensive energy can be
sold

— Off peak hours: low demand for energy, only
unexpensive energy can be sold



oveview (2/3)

* Type 2 power plants

— Recelve only earnings from peak hours
market,

— but are less expensive to build

* Model will tackle interaction of :
— Time to build with

— Competition of two populations of producers
on two markets



oveview (3/3)

Qe




Value functions

« State of the world In this model is x=(x,,X,)
where Is X IS the existing number of units of
type |

« The values functions u,(X;,X,) and u,(X;,X,)

are defined as (expected) discounted pay
off for the owner of one unit of type |

* We look for a stationnary competitive
equilibrium, I1-e: producers are price takers




Two flows of entrants

Fori=1,2, q, = flow of entrants of type | =
number of new units of type |

C.(q) = cost to build one new unit of type |

Convexity of C. will express the « time to build
ISsue » In this model

Cost to build C(q) Is assumed to be greater for
type 1 units : C.(q) > C,(q)

Cost to produce one unit of energy e, Is
greater for type 2 units: e, < e,

(NB = notations imply a adequate choice of

I B



Two flows of entrants

* For the sake of analytical simplicity, we assume
C(q) = Y2 c.g? for g>0

+ C,(q)>C,@Q),hence: ¢, > ¢,

* At equilibrium entrants flows satifies
_ Ci’(qi*) = U (X11X2) I=1,2
—Ccqgi* = u, (X, X,) 1=1,2



Peak and off-peak demand

D.(p)) Is the demand function and p, the energy

price

— Off peak hours |=0

— Peak hours |=1

Linear case : D(p) =a,—b,p, forp<ay/b

Example

— 8y << & bO:bl

— hence off-peak demand D, lower than peak demand
Dl

We assume no uncertalnlty In this model: each

AIA »y IA AIAI *LAAI :IA * B Ry, IAAI* IAAAI IAAII’A AIAAI Au



Demand and offer :
peak hours equilibrium (p,,x,) and

off-peak hours equilibrium (p,, X;+X,)




Pay off

The net pay off for one unit of type 2 Is
f,(X;,X,)=p,(X;,X,)-€, as this unit produce

only for the peak hours market

The pay off for one unit of type 1 Is
Fo(X1,X2)=Po(X1, %) +P4(X;,X,)-€, as this unit

produces both for the peak and off-peak

market

For the sake of simplicity, we will restrict
(here) tothe case e, <p,<e,<p,

Hence py(X;,X,)=Po(Xy) and py(X;,X,) = Py (X;+X,)



The stationary equilibrium
equations
* U(X,X,) = (1-rdt-kdt) u.(x,+dx,,x,+dx,) +
f.(x,,x,)dt
e dx, = g(X,,X,) dt, with
* gi(u,uy) = g*-k = u(x;,%,)/c;—K
(where Kk Is the rate of aging of all units)

IG'@OQ@ ;“‘1 t gl( ulﬂuz)dlul(xvxz) t gz( ulauz)ﬁzul(xpxz) * fl(xlaxz)

0= (r+ kju, + g1(”1»”2)31u2(x1»x2) t gz(uvuz)dz“z(xl»xz) t fz(xlaxz)



This MFG monotone system Is the
« gradient » of an HJB equation

for i=12: 0=(r+k)u + gl(ul,uz)ﬂlui(xl,xz) ¥ gz(ul,u2)§2ui(xl,x2) ¥ fi(xl,xz)
with %&()’p)’z) - (9182()’10’2) and ‘yzfl(xp)%) = a1][2()61’)62)

0,8 =08 and d,f,=df, imply (gl’gZ)=VG and (fl’f2)=VF

and (ul,u2)=VU where U s the solution of the HJIB equation:

0=(r+k)U+G(VU)+F



Ex. . Tax impact on equilibrium

Let's add a tax scheme - (91,92) fo the previous system:

0= (H k) u; * g1( “1»”2)(?1”i(x1>x2) i gz(”p”z)()z”i(xp%) f fl( x1>x2) t ei(xl7x2)
unless ﬁzﬁl(xl,xz) = (?102(x1,x2)

this will not be the gradient of some HJB equation



Remark: analytic solution
In the linear case

If all functions g,f,0. in the equations

0= (r+ k) u; t gl( ul9u2)dlui(xl9x2) i gz( M19u2)d2ui(xl9x2) i fi(x19x2) i Hi(xDxZ)
are linear then so is u

and solving the system means solving a Riccati equation



The Lucas-Prescott model

One type of firms, and one aggregate risk

Two states dynamic, hence : a two
dimensional model

But as there are no individual risks there will
be a competitive equilibrium without
Insurance

Agents are producers : each agent own a
production unit



Lucas-Prescott framework

The inverse demand function is p, = P(q,
u) where q, Is the total production

u, Is a stochastic demand shifter that
follows a diffusion process

du, = p(u)dt + o(u)dW,

Hence, agents (producers) share the
same collective risk : le level of demand,
hence the level of prices



Lucas-Prescott framework

Agents can improve their own production
unit

dk, = h(x/k)kdt

where k. Is the size of the unit (i-e: capital
own by the producer)

and x, Is the cost of iImprovement, and h a

technical function measuring the impact of
adjustment (i-e: improvement) costs




Lucas-Prescott framework

* Agents are identical, share the same risk,,
have same Initial conditions,..

« Hence agents behave identically, and g=x,
, K=k, where K Is the total amount of

productive capital in the economy (= : up
to suitable choice of units)

* Lucas-Prescott focus on the stationary
equilibrium



Lucas-Prescott framework

* Each individual firm solves the individual
optimization problem below, in which prices p,

are the given « mean field » (i-e: producers
are atomized price takers) with p, = D(q,, u,)

-
Vo = Iflklj'{ En[ e " [piky — x4)dt
£t

0



MFG equilibrium equations

*In order to write the MFG system of this
problem, we write the PDEs satisfied by the
value function of a producer w(k,,u,)=V, /k, (i-€,

the value of one production unit) when the state
of the economy is (k,,U,).
‘Hence w will satisfies:

rw (k,u) = Max, E{(1 = rdt)w(k + dk,u + du)(1 + h(x/k))dt) + P(k,u)dt — (x/k)dt}



MFG equilibrium equations

* Hence by expansion (Ito’s lemma) the “first” MFG

™W (k?u u:al’gl%w I?) dow+ p(u)d,w+ (%) o(u)? 0w+ wh(x'/k)+Pku) - (x*/k)

* Where x* is the optimal strateqy of all (identical) agents
x* = x*(wy, k) = k. ArgMax, [w h(x/k) — x /k]



MFG equilibrium equations

*As there are two state variables k and u, the MFG
monotone system should have a second unknown value
function v(k,u) satisfying a similar PDE.

*In this specific case the most straightforward path to this
second PDE is indirect, as we will see

*Note that the above PDE can be solved independently of
the “second” MFG equation



From one MFG equation to the MFG « gradient »

system...
Hence the two questions are :

can we write a MFG system of two equations

rw; = 91(W1,W2,k, u)akwi T gZ(WIJWZJkJ u)auwi + aauuwi T fl'(WDWZrk;u)

withw = wy gy (Wi, wy, k,u) = kh(x*/k) g (wi, wy ko) = p(w)  a = 0%(u)/2

fiwy, wy, k,u) = wh(x*/k) +D(k,u) — (x*/k)

x* = 2wy, k) = k. ArgMax,wih(x/k) - x k]

Can this system be the gradient of an H|B equation



From one MFG equation to the MFG « gradient »
system...

The previous system is the gradient of the HJB equation :
ro(k,u) = H(k,u,0,0,0,0,0) + ad,,0

with:
ayH(k,u,(p,y,Z) - 91(%3;}(;71) GZH(k,u,(p,y,Z) - gz(y;z:k,u)

withw = wy 91(W1;W2,k;u) = kh(x*/k) 92(W1;W2;k;u) = ﬂ(u) a= UZ(U)/Z



...from the MFG « gradient » system to the HJB
equation of Lucas-Prescott..

* Using the previous relationship one recover the Lucas-
Prescott HIB equation

ro(k,u) = Max, |—x + h(x/k)ko, @] + u(u)o, o + (%) o(u)?0yy @ + s(k,u)

Where s is the surplus defined by (D=P in Lucas-Prescott
notations):

0s(k,u) = D(k,u)



...from the HJB equation
to the Lucas-Prescott Benevolent Planner

* The solution ¢ of the HIB equation :

ro(k,u) = Max, |—x + h(x/k) ko] + u(u)d, e + (%) o(u)?d,,0 + s(k,u)

* Is the Bellman value function of the optimal control
problem :
@ (ko, up) If.l‘-&:{ EU[ e [s(ky, up) — xy]dt duy = p(w)dt + o(u,)dW,

e 0

® = ﬂfk’t - h(iﬂt,f{kz}ktdt

* This optimal control problem is the BP problem
Introduced by Lucas-Prescott

* Actually, Lucas-Prescott did it the reverse way : the
designed directly the previous BP problem from their
economics insights, then deduced the HJIB equation
from the BP pb.



To summarize..

 Starting with a framework of competitive
market model, and writing the MFG
monotone system (or part of it), we found a
gradient like system, hence an HJB
equation. This HJB equation HJB defines
an optimal control problem which is the
Benevolent planner problem

* the competitive equilibrium is identical to
the solution of this BP problem : agents
behave as If they were driven by the

[{ - P N P, | | B« o Y e Y



First and second welfare

theorems

First and second welfare theorems state that:

*any competitive equilibrium leads to a Pareto
efficient allocation of resources,

*such a Pareto allocation solves an
optimization problem

*Hence the competitive equilibrium is equal to
a solution designed by some Benevolent
Planner



Lucas-Prescott breakthrough

Lucas and Prescott breakthrough :

*Given that the competitive market equilibrium
IS also the optimal solution defined by some
Benevolent Planer

*In order to compute the competitive market
equilibrium can proceed in two steps :

— found the right BP, I-e: the right optimization
problem

— solve this optimization problem using all classic
tools of optimal control : namely HIB equation
when the context is optimal control of stochastic
diffiicion



Mfg vs BP

* While Lucas and Prescott found the right BP
using there economical insights, MFG
approach give an analytical process
requiring no insight:

— Write the mfg system

— Check if equality of cross derivatives ECD1 and
ECD2 holds

— |If ves. compute unknown function F and G

.....



Mfg vs BP

* Of course, as soon as there are « non
market interactions » between agents, the
equivalence of equilibrium and BP
optimization cancels (most of the time,
unless ECD still holds)

* « hon market interactions » might be:
— tax,
— frictions,
— Externalities,



C. Dynamics of order books
joint work with Aimé Lachapelle,
Charles Albert Lehalle et Pierre Louis
Lions



* Articles initiaux

— Mean field games, JM Lasry, PL Lions, Japanese Journal of
Mathematics 2 (1), 229-260

— Jeux a champ moyen. |-Le cas stationnaire, JM Lasry, PL Lions,
Comptes Rendus Mathématique 343 (9), 619-625

— Jeux a champ moyen. lI-Horizon fini et contréle optimal, JM
Lasry, PL Lions, Comptes Rendus Mathématique 343 (10), 679-
684

* Etaussi,

— Mean field games and applications, O Gueéant, JM Lasry, PL
Lions, Paris-Princeton Lectures on Mathematical Finance 2010,
205-266

— Notes on Mean Field Games, Pierre Cardaliaguet, January 15,
2012 (et la bibliographiede ce texte)

— PL Lions, cours aux College de France 2006-2012,
http://www.college-de-france.fr/site/en-pierre-louis-lions/course-2011-2


http://www.college-de-france.fr/site/en-pierre-louis-lions/course-2011-2012.htm
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