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1. Introduction

Singularly perturbed control system:
X ′(s) = f

(
X (s),Y (s), α(s)

)
, s > 0

Y ′(s) =
1

ε
g
(
X (s),Y (s), α(s)

)
, s > 0

X (0) = x , Y (0) = y .

(Sε)

α : [0,+∞)→ A measurable function (control),

A ⊂ Rd be a compact subset;

f : Rn × Rm × A→ Rn and g : Rn × Rm × A→ Rm

are the dynamics;

(x , y) ∈ Rn × Rm initial position, ε > 0 small
parameter;

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 3 / 26



1. Introduction

Singularly perturbed control system:
X ′(s) = f

(
X (s),Y (s), α(s)

)
, s > 0

Y ′(s) =
1

ε
g
(
X (s),Y (s), α(s)

)
, s > 0

X (0) = x , Y (0) = y .

(Sε)

α : [0,+∞)→ A measurable function (control),

A ⊂ Rd be a compact subset;

f : Rn × Rm × A→ Rn and g : Rn × Rm × A→ Rm

are the dynamics;

(x , y) ∈ Rn × Rm initial position, ε > 0 small
parameter;

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 3 / 26



trajectory:(
X ε(s),X ε(s)

)
≡
(
X ε(s; x , y , α),X ε(s; x , y , α)

)
,

X ε(·) is slow trajectory, Y ε(·) is fast trajectory.

Value function: for (x , y) ∈ Rn × Rm, t > 0

v ε(x , y , t) := inf
α

{∫ t

0

`
(
X ε(s),Y ε(s), α(s)

)
ds+h

(
X ε(t)

)}
` : Rn × Rm × A→ R is running cost;

h : Rn → R is final cost (or terminal cost).
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Approaches for singular perturbation problem

Goal. Asymptotic analysis when ε goes to zero ?

Dynamical system approach:

Asymptotic behavior of trajectory
(
X ε(·),Y ε(·)

)
, as

ε→ 0.

Order reduction method:
I for ODE [Levinson & Tichonov];
I for control system [Kokotov́ıc, Khalil, O’Reilly, Bensoussan, Dontchev,

Zolezzi, Veliov, ...];

Averaging method (limit occupational measures):
I Artstein, Gaitsgory, Leizarowitz and orthers.
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PDE approach: [Alvarez & Bardi, 2001, 2003, 2010]

Asymptotic behavior of value function v ε, as ε→ 0 ?

Under suitable assumptions, v ε is the unique viscosity
solution of HJB equation{
v εt + H

(
x , y ,Dxv

ε,
Dyv

ε

ε

)
= 0 in Rn × Rm ×(0,+∞),

v ε(x , y , 0) = h(x) in Rn × Rm,

where

H(x , y , p, q) = max
a∈A

{
−p·f (x , y , a)−q·g(x , y , a)−`(x , y , a)

}
.
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PDE approach aims at characterizing limit of v ε as
viscosity (sub-super) solutions of appropriate effective
HJB equation{

vt + H(x ,Dv) = 0 in Rn × (0,+∞),

v(x , 0) = h(x) in Rn.
(1)

→ In this talk, we will follow the PDE approach.
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2. Periodic setting: [Alvarez & Bardi 2003, 2010]

Standing assumptions:

Standard assumptions on datum: f , g , `, h bounded
uniformly continuous; f , g Lipschitz continuous in
state variables, uniformly in control variable;

Periodicity: f , g , ` are Zm-periodic in the fast variable;

Bounded time controllability on the fast system{
Y ′(τ) = g

(
x ,Y (τ), α(τ)

)
, τ > 0

Y (0) = y , x is fixed in Rn.
(FS)

for fixed x ∈ Rn, for any y , z ∈ Rm, there exist T > 0
and α ∈ A such that

Yy(τ ;α, x) = z for some τ ≤ T .
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Main results: periodic setting

Cell problem: For each (x0, p0) ∈ Rn × Rn, consider the
family of equations, for a constant λ ∈ R,

H
(
x0, y , p0,Du(y)

)
= λ in Rm. (CP)

Find λ ∈ R such that (CP) has periodic sub- and
supersolutions.

Theorem 1 [Alvarez & Bardi 2010]

For each (x0, p0) ∈ Rn × Rn, there exists a unique real
value c0 = c0(x0, p0) such that the cell problem (CP),
with λ = c0, admits a periodic subsolution and a periodic
supersolution. The effective Hamiltonian H is then
defined by setting

H(x0, p0) = c0.
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Remark 1. (Correctors)

Periodic subsolution and periodic supersolution of cell
problem play the roles of correctors allowing to adapt
Evans’s perturbed test function method.

Remark 2. (Connection to ergodic control problem)

lim
δ→0

δuδ(y ; x0, p0) = lim
t→+∞

w(y , t; x0, p0)

t
= −H(x0, p0)

uniformly in y ∈ Rm.
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where

uδ(y ; x0, p0) is the unique solution to the equation

δuδ + H
(
x0, y , p0,Duδ(y)

)
= 0 in Rm, uδ periodic,

w(y , t; x0, p0) is the unique solution to the problem{
wt + H(x0, y , p0,Dyw) = 0, (y , t) ∈ Rm × (0,+∞),

w(y , 0) = 0, w periodic in y , y ∈ Rm.
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Weak semilimits

Under standing assumptions,
{
v ε
}

, ε > 0, is equibounded
in Rn × Rm × [0,+∞), hence we can define
upper semilimit and lower semilimit of v ε, as ε→ 0,
respectively, by

v ∗(x , t) := lim sup
ε→0, (x ′,t ′)→(x ,t)

sup
y∈Rm

v ε(x ′, y , t ′),

v∗(x , t) := lim inf
ε→0, (x ′,t ′)→(x ,t)

inf
y∈Rm

v ε(x ′, y , t ′).

Note that, v ∗(x , t) and v∗(x , t) are, respectively, bounded
upper semicontinuous and bounded lower semicontinuous
in Rn × [0,+∞).
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Convergence result

Theorem 2 [Alvarez & Bardi 2010]

The weak semilimits v ∗ and v∗ are, respectively,
subsolution and supersolution of the effective problem{

vt + H(x ,Dv) = 0 in Rn × (0,+∞)

v(x , 0) = h(x) in Rn.
(HJ)

In addition, if (HJ) satisfies comparison principle, then v ε

locally uniformly converges on Rn × Rm × [0,+∞), as
ε→ 0, to the unique solution v = v ∗ = v∗ of (HJ).
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Key ideas and methods (periodic case)

Viscosity solution theory;

Periodic homogenization
[Lions, Papanicolau, Varadhan 1986];

Perturbed test function method
[Evans 1989, 1992].
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3. Non-periodic setting

Standard assumptions on datum: f , g , h bounded
uniformly continuous; f , g Lipschitz continuous in
state variables, uniformly in control variable; ` is
uniformly continuous;

Coercivity: ` is coercive in the fast variable, i.e.,

min
a∈A

`(x , y , a)→ +∞, as |y | → +∞, uniformly in x ;

Local bounded time controllability on the fast system:
Given compact subsets C ⊂ Rn, D ⊂ Rm. For fixed
x ∈ C , for any y , z ∈ D, there exist
T = T (C ,D) > 0 and α ∈ A such that

Yy(τ ;α, x) = z for some τ ≤ T .
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Critical value

For each (x0, p0) ∈ Rn × Rn, consider the family of
equations, for a constant λ ∈ R,

H
(
x0, y , p0,Du(y)

)
= λ in Rm. (2)

Remark. There is no hope to have periodic or even
bounded sub- and supersolutions to (2) for some
distinguished value λ.
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Theorem 1

For each (x0, p0) ∈ Rn × Rm, there exits a unique real
value c0 = c0(x0, p0) such that the equation

H
(
x0, y , p0,Du(y)

)
= c0 in Rm,

admits a bounded subsolution and a locally bounded
coercive supersolution.

Key ideas and methods (non-periodic case)

Approximation by coercive, convex Hamiltonians;

Some tools from Weak KAM theory
[Fathi & Siconolfi 2005].
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For each (x0, p0) ∈ Rn × Rn, define

H(x0, p0) := inf
{
λ ∈ R : (2) has a bounded subsolution

}
We let

H0(y , q) := H(x0, y , p0, q).

To approximate H0 by a sequence of coercive, convex
Hamiltonians Hk , k ∈ N∗, and consider a sequence of
equations

Hk(y ,Du) = λ in Rm. (3)

Define the critical value for Hk

ck := inf
{
λ ∈ R : (3) has a subsolution

}
.
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Claim 1. The ck is finite for any k , and make up a
non-increasing bounded sequence, and hence has a limit

c0 := lim
k→+∞

ck .

Consider the critical equation

Hk(y ,Du) = ck in Rm. (HJk)

Claim 2. There exist a sequence of equibounded
subsolutions uk and a sequence of locally equibounded,
equicoercive solutions wk to (HJk).

(Using semidistances Sk and Aubry set Ak for Hk)
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Claim 3. We set

u(y) = lim sup#uk(y) := sup
{

lim sup
k→+∞

uk(yk) : yk → y
}
,

w(y) = lim inf# wk(y) := inf
{

lim inf
k→+∞

wk(yk) : yk → y
}
,

then u and w are, respectively, bounded subsolution and
locally bounded coercive supersolution to the equation

H0(y ,Du) = c0 in Rm. (HJ0)

(Using stability property of viscosity solution)

Claim 4. c0 = H(x0, p0).
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Weak semilimits

The value functions v ε, ε > 0, is locally equibounded,
therefore we can define the weak sup-semilimit and
weak inf-semilimit of v ε, respectively, by

lim sup#v ε(x , y , t)

= sup
{

lim sup
ε→0

v ε(xε, yε, tε) : (xε, yε, tε)→ (x , y , t)
}

lim inf# v ε(x , y , t)

= inf
{

lim inf
ε→0

v ε(xε, yε, tε) : (xε, yε, tε)→ (x , y , t)
}
.

Claim. v := lim sup#v ε and v := lim inf# v ε are,
respectively, u.s.c and l.s.c, and moreover they are
independent of the fast variable y .
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Convergence result

Theorem 2

The weak sup-semilimit v and weak inf-semilimit v are,
respectively, subsolution and supersolution of the effective
Cauchy problem{

vt + H(x ,Dv) = 0 in Rn × (0,+∞)

v(x , 0) = h(x) in Rn.
(4)

In addition, if (4) satisfies comparison principle, v ε locally
uniformly converges on Rn × Rm × [0,+∞), as ε→ 0, to
the solution v = v = v of (4).
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Work is in progress ...

Existence of continuous viscosity solution to the
critical equation

H
(
x0, y , p0,Du(y)

)
= H(x0, p0) in Rm.

Connection to ergodic control problem.

Representation formula for H and the explicit form of
limit optimal control problem via limit occupational
measures.
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Thank you for your attention !
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