Regularity of the Hamiltonian along the Optimal Solution

M. Palladino
EEE Department, Imperial College London

Roma, 11 November 2014
New Perspectives in Optimal Control and Games
(Joint work with R. B. Vinter)
Outline of the Talk

- Introduction.
- **Main Results** (with sketch of the proof),
- **Application 1**: Regularity of Minimizers
- **Application 2**: Nondegeneracy Conditions
- Concluding Comments
Problem Formulation

Optimal Control Problem with state constraint:

\[
(P) \quad \begin{cases}
\text{Minimize } g(x(T)) \\
\text{over } x \in W^{1,1}([S, T]; \mathbb{R}^n) \\
\dot{x}(t) \in F(t, x(t)) \text{ a.e.} \\
x(S) = x_0, \quad x(T) \in C \\
h(x(t)) \leq 0, \quad t \in [S, T]
\end{cases}
\]

Data: \(g : \mathbb{R}^n \to \mathbb{R} \) (Lipschitz), \(F : [S, T] \times \mathbb{R}^n \rightrightarrows \mathbb{R}^n \), \(C \subset \mathbb{R}^n \) (closed), \(h : \mathbb{R}^n \to \mathbb{R} \) (differentiable).

Solutions to \(\dot{x}(t) \in F(t, x(t)) \) called \(F\)-trajectories.

Hamiltonian: \(H(t, p, x) = \max_{v \in F(t, x)} v \cdot p \)
Standard Hypotheses (SH)

(H1): $F(.,.)$ takes values closed convex sets and $F(.,x)$ is measurable for each x;

(H2): There exist $k(.,.) \in L^1$, and $\varepsilon > 0$ s.t.:

a) $F(t,x) \subset F(t,x') + k(t)|x - x'|B$

b) $F(t,x) \subset c(t)B$

for all $x, x' \in \bar{x}(t) + \varepsilon B$, a.e. $t \in [0, 1]$.

(for F-trajectory $\bar{x}(.)$ of interest).
Hamiltonian Inclusion N. C.

Take $\bar{x}(.)$ \textit{L}^\infty -\textbf{local minimizer} for (P).

There exist $\lambda \geq 0$, $p(.) \in W^{1,1}$ and a measure μ s.t.:

- $\lambda + \|p(.)\|_{L^\infty} + \|\mu\|_{T.V.} = 1$, \textbf{supp}(\mu) $\subset \{t : h(\bar{x}(t)) = 0\}$

- $(-\dot{p}(t), \dot{\bar{x}}(t)) \in \text{co} \partial_{x,p} H(t, \bar{x}(t), q(t))$,

- $-q(T) \in \lambda \partial g(\bar{x}(T)) + NC(\bar{x}(T))$,

where

$$q(t) = \begin{cases}
 p(t) + \int_{[S,t]} \nabla h(\bar{x}(s)) \mu(ds) & \text{if } t \in [S,T) \\
 p(T) + \int_{[S,T]} \nabla h(\bar{x}(s)) \mu(ds) & \text{if } t = T
\end{cases}.$$
.... plus

1) If $F(t,x) \equiv F(x)$ (autonomous problem):
 \[
 H(t, \bar{x}(t), q(t)) = c, \text{ for } t \in (S, T) \text{ (open)}
 \]

2) If $t \mapsto F(t,x)$ Lipschitz continuous:
 \[
 t \mapsto H(t, \bar{x}(t), q(t)) \text{ Lipschitz on } (S, T) \text{ (open)}
 \]

Not obvious because $t \mapsto q(t)$ is not continuous!!
Refined necessary conditions

Theorem: (Arutyunov-Aseev ’94)

Assume (SH) and \(t \mapsto F(t, x) \) Lipschitz. For \(\bar{x}(.) \) minimizer, then

\[
 t \mapsto H[t] := H(t, \bar{x}(t), q(t))
\]

is Lipschitz on the closed interval \([S, T]\).

Again,

\[
 q(t) = \begin{cases}
 p(t) + \int_{[S,t]} \nabla h(\bar{x}(s))\mu(ds) & \text{if } t \in [S, T) \\
 p(T) + \int_{[S,T]} \nabla h(\bar{x}(s))\mu(ds) & \text{if } t = T.
\end{cases}
\]
When do $H(.,.,.)$ regularity issue arise?

1) higher order analysis of optimal control problems.
 (singular optimal solutions).

2) non degeneracy for first order necessary conditions.

3) regularity properties of minimizers.

We will subsequently concentrate on 2) and 3).
Questions

We know:

- if $F(t, x) \equiv F(x) \implies H(t, \bar{x}(t), q(t))$ is constant.

- if $F(., x)$ Lipsch. $\implies t \mapsto H(t, \bar{x}(t), q(t))$ is Lipsch.

Question:

If $t \mapsto F(t, x)$ contin. $\implies t \mapsto H(t, \bar{x}(t), q(t))$ is contin.?

We answer to a related question...
B.V. Multifunctions

t ↦ F(t, x) is bounded variation (B.V.), uniformly along ¯x(.) if

\[\eta(T) < \infty, \]

where

\[\eta(t) := \sup_{\tau} \left\{ \sum_{i=0}^{N-1} \sup_{x} d_H(F(t_{i+1}, x), F(t_i, x)) : x \in G \right\}, \]

sup. over partitions \(\tau = \{t_0 = S, ..., t_N = t\} \) of \([S, t]\),

\[G = \{x : x \in \bar{x}([S, T])\} \]

t ↦ \(\eta(t) \) is denoted as cumulative variation function.
Properties of B.V. Multifunctions

Take $F : [S, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ B.V. multifunction.

1) $\eta(.)$ cumulative variation function of $F(.,.)$. Then

$$d_H(F(t, x), F(s, x)) \leq \eta(t) - \eta(s)$$

for all $[s, t] \subset [S, T]$, $x \in G$.

2) Take $s \in [S, T)$ and $t \in (S, T]$; then

$$\lim_{s' \rightarrow s^+} d_H(F(s', x), F(s, x)) = 0, \quad \lim_{t' \rightarrow t^-} d_H(F(t', x), F(t, x)) = 0$$

(there exist limits from the left and from the right!)

3) There exists a countable set A such that

$$\lim_{t' \rightarrow t} d_H(F(t', x), F(t, x)) = 0 \quad \forall t \in (S, T) \setminus A, \ x \in G.$$
Main Result

Theorem: (Palladino, Vinter)

Take $\bar{x}(.)$ minimizer for (P). Assume hypotheses (SH) and $t \mapsto F(t,x)$ is B.V.

Then the multipliers $(\lambda, p(\cdot), \mu)$ can be chosen to satisfy the additional condition:

$$|H(t, \bar{x}(t), q(t)) - H(s, \bar{x}(s), q(s))| \leq |q(\cdot)|_{L^\infty} \times (\eta(t) - \eta(s))$$

and $H[.]$ is right and left continuous at the respective endpoints.
Sketch of the Proof

1) Discrete Approximation

Take a partition \(\tau = \{t_0 = S, \ldots, t_N = T\} \)

\[
(P_N) \begin{cases}
\text{Minimize } g(x(T)) dt \\
\dot{x}(t) \in \sum_{j=0}^{N-1} F(t_j, x(t)) \chi_{[t_j, t_{j+1}]}(t) \quad t \in [S, T], \\
h(x(t)) \leq 0, \quad \text{for all } t \in [S, T] \\
x(S) = x_0, \quad x(T) \in C,
\end{cases}
\]

Convexity implies existence of a minimizer \(x_N(.) \).

By Filippov Theorem and Compactness Arguments,

\[x_N(.) \to \bar{x}(.) \quad \text{uniformly.} \]
Sketch of the Proof (Continued)

2) Use of the Multistage Necessary Conditions.

$H[.]$ is piecewise constant.

Jumps:

\[
\Delta_j = H(t_j^+, x_N(t_j), q(t_j)) - H(t_j^-, x_N(t_j), q(t_j)) \quad j = 1, \ldots, N-1
\]

and

\[
|\Delta_j| \leq K(\eta(t_j^+) - \eta(t_j^-)) \quad j = 1, \ldots, N-1
\]

Jumps are controlled by the cumulative variation function!
Application 1: Regularity

(CV) \[\left\{ \begin{array}{l}
\text{Minimize } \int_{S}^{T} L(t, x(t), \dot{x}(t)) dt \\
\text{over } x(.) \in W^{1,1}([S, T]) \text{ s.t.} \\
x(S) = x_0 \text{ and, } x(T) = x_1.
\end{array} \right. \]

(CV) admits a minimizer \(\bar{x}(.) \) if:

(HE) (i): \(L(.,.,.) \) is \(\mathcal{L} \times \mathcal{B}^{n \times n} \) measurable, and \(L(t,.,.) \) is lower semicontinuous for each \(t \in [S, T] \).

(ii): \(L(t, x, .) \) is convex for each \((t, x) \in \mathbb{R}^n \).

(iii): There exist \(\theta(.) : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) convex s.t. \(\lim_{r \uparrow \infty} \theta(r)/r = \infty \), and \(\alpha > 0 \) s.t.
\[L(t, x, v) \geq \theta(|v|) - \alpha |x| \quad \forall \ (t, x, v) \in [S, T] \times \mathbb{R}^n \times \mathbb{R}^n \]
Ball-Mizel Example

\[(Q) \quad \left\{ \begin{array}{l}
\text{Minimize } \int_0^1 \{r x^2(t) + (x^3(t) - t^2)^2 x^{14}(t)\} dt \\
\text{over } x(.) \in W^{1,1}(\mathbb{R}) \quad \text{s.t.} \\
x(0) = 0 \text{ and } x(1) = \bar{k}.
\end{array} \right.
\]

where \(r > 0 \) and \(\bar{k} > 0 \) are constants such that

\[
r = (2\bar{k}/3)^{12}(1 - \bar{k}^3)(13\bar{k}^3 - 7).
\]

There exists \(\varepsilon > 0 \) s.t., for all \(\bar{k} \in (1 - \varepsilon, 1) \),

\[
\bar{x}(t) = \bar{k}t^{2/3}
\]

is the unique (non-Lipschitz) minimizer for \((Q)\).
Corollary: Take $\bar{x}(.)$ minimizer. Assume (HE) and

- $(x,v) \mapsto L(t,x,v)$ is loc. Lipschitz a.e. $t \in [S,T]$.

- $t \mapsto L(t,x,v)$ is B.V. uniformly along $(\bar{x}(.),\dot{\bar{x}}(.))$.

Then $\bar{x}(.)$ is a Lipschitz minimizer.

(Replace Lipschitz continuity of $t \mapsto L(t,x,v)$ by B.V. assumption.)
Application 2: Non degeneracy

Consider the optimal control problem

\[
(ND) \quad \begin{cases}
\text{Minimize } g(x(T)) \\
\text{over } x \in W^{1,1}([S, T]; \mathbb{R}^n) \\
\dot{x}(t) \in U(t) \text{ a.e.} \\
x(S) = x_0, \\
h(x(t)) \leq 0, \quad t \in [S, T]
\end{cases}
\]

Take any feasible trajectory \(\bar{x}(.) \) s.t. \(h(\bar{x}(S)) = 0 \). Then

\[
p(t) \equiv -\nabla h(\bar{x}(S)), \; \mu(t) = \delta_{\{S\}}(t) \text{ and } \lambda = 0,
\]

satisfies necessary conditions.

(Trivial Multiplier!)
Application 2: (Continued)

If the data is $\mathbf{B.V.}$, then

$$|H(t, \bar{x}(t), q(t)) - H(s, \bar{x}(s), q(s))| \leq K \times (\eta(t) - \eta(s))$$
on every $[s, t] \subset [S, T]$ and $H[.]$ is right and left continuous at the endpoints.

Such strenghtened conditions give existence of non trivial multipliers.

Extend (Arutyunov-Aseev) result: replace $t \mapsto F(t, x)$ Lipschitz by $t \mapsto F(t, x)$ $\mathbf{B.V.}$
Application 2: (Continued)

Corollary: Take $\bar{x}(.)$ minimizer. Assume (SH), $F(.,x)\text{ B.V.}$ and

(I): There exists $v \in \lim \inf_{s \downarrow S} F(s,x_0)$ such that

$$\nabla h(x_0) \cdot v < 0 .$$

Then the strengthened non triviality condition holds true:

$$\lambda + \int_{(S,T]} \mu(ds)) \neq 0$$

(Rule out trivial multipliers!)
Concluding Remarks

This talk has showed that $H[.]$ inherits the same regularity of $F(.,x)$. We know:

- if $F(t,x) \equiv F(x) \implies t \mapsto H(\tilde{x}(t), q(t))$ is constant.
- if $F(.,x) \text{ Lipsch.} \implies t \mapsto H(t, \tilde{x}(t), q(t))$ is Lipsch.
- if $F(.,x) \text{ B.V.} \implies t \mapsto H(t, \tilde{x}(t), q(t))$ is B.V. (New!).

If $t \mapsto F(t,x) \text{ contin.} \implies t \mapsto H(t, \tilde{x}(t), q(t))$ is contin.?

Open Question!