Robustness of Performance & Stability for Multistep & Updated Multistep MPC

Lars Grüne and Vryan Gil Palma

Chair of Applied Mathematics, University of Bayreuth

Rome, 12 November 2014

- Setting and preliminaries
- 3 algorithms: standard, *m*-step and updated *m*-step MPC
- Nominal stability and performance of the *m*-step MPC
- Perturbed Systems
- The *m*-step and the updated *m*-step MPC in the perturbed setting

Consider the nonlinear discrete time control system

$$x(k+1) = f(x(k), u(k))$$

 \bullet state $x\in \mathbb{X}\subseteq X\,$ and $\,$ control value $u\in \mathbb{U}\subseteq U$

Consider the nonlinear discrete time control system

$$x(k+1) = f(x(k), u(k))$$

- \bullet state $x\in \mathbb{X}\subseteq X\,$ and $\,$ control value $u\in \mathbb{U}\subseteq U$
- $x_u(\cdot, x_0)$ trajectory when initial state x_0 is driven by control sequence $u(\cdot)$

Consider the nonlinear discrete time control system

$$x(k+1) = f(x(k), u(k))$$

- state $x \in \mathbb{X} \subseteq X$ and control value $u \in \mathbb{U} \subseteq U$
- $x_u(\cdot, x_0)$ trajectory when initial state x_0 is driven by control sequence $u(\cdot)$
- a time-dependent feedback law $\mu:\mathbb{X}\times\mathbb{N}_0\to\mathbb{U}$ yields the feedback controlled system

$$x(k+1) = f(x(k), \mu(x(\tilde{k}), k))$$

where $\tilde{k} = \tilde{k}(k) \leq k$

• Problem: find μ that 'solves' the infinite horizon OCP

$$\begin{array}{ll} \min & J_{\infty}\left(x_{0}, u(\cdot)\right) := \sum_{k=0}^{\infty} \ell\left(x_{u}(k, x_{0}), u(k)\right) \\ \text{w.r.t.} & u(\cdot) \in \mathbb{U}^{\infty}(x_{0}) \end{array}$$

• Problem: find μ that 'solves' the infinite horizon OCP

$$\begin{array}{ll} \min & J_{\infty}\left(x_{0}, u(\cdot)\right) := \sum_{k=0}^{\infty} \ell\left(x_{u}(k, x_{0}), u(k)\right) \\ \text{w.r.t.} & u(\cdot) \in \mathbb{U}^{\infty}(x_{0}) \end{array}$$

optimal value function:

$$V_{\infty}(x_0) := \inf_{u(\cdot) \in \mathbb{U}^{\infty}(x_0)} J_{\infty}(x_0, u(\cdot))$$

• closed-loop performance of μ : $J_{\infty}^{cl}(x_0,\mu) := \sum_{k=0}^{\infty} \ell\left(x_{\mu}(k,x_0),\mu(x_{\mu}(\tilde{k},x_0),k)\right)$

• Problem: find μ that 'solves' the infinite horizon OCP

$$\begin{array}{ll} \min & J_{\infty}\left(x_{0}, u(\cdot)\right) := \sum_{k=0}^{\infty} \ell\left(x_{u}(k, x_{0}), u(k)\right) \\ \text{w.r.t.} & u(\cdot) \in \mathbb{U}^{\infty}(x_{0}) \end{array}$$

optimal value function:

$$V_{\infty}(x_0) := \inf_{u(\cdot) \in \mathbb{U}^{\infty}(x_0)} J_{\infty}(x_0, u(\cdot))$$

• closed-loop performance of μ : $J_{\infty}^{cl}(x_0,\mu) := \sum_{k=0}^{\infty} \ell\left(x_{\mu}(k,x_0),\mu(x_{\mu}(\tilde{k},x_0),k)\right)$

 $\bullet~{\rm find}~\mu~{\rm such}~{\rm that}$

$$V_{\infty}(x_0) = J_{\infty}^{\mathsf{cl}}\left(x_0, \mu\right)$$

sampling time

sampling time

sampling time

sampling time

Issue: solving infinite horizon OCP is difficult.

• MPC: receding horizon strategy to obtain the feedback law

- MPC: receding horizon strategy to obtain the feedback law
- the finite horizon OCP counterpart:

$$\mathcal{P}_N(x_0) \qquad \min_{\substack{ V_N(x_0, u(\cdot)) := \sum_{k=0}^{N-1} \ell(x_u(k, x_0), u(k)) \\ \text{w.r.t.} \quad u(\cdot) \in \mathbb{U}^N(x_0)}$$

- MPC: receding horizon strategy to obtain the feedback law
- the finite horizon OCP counterpart:

$$\mathcal{P}_N(x_0) \qquad \begin{array}{ll} \min & J_N\left(x_0, u(\cdot)\right) := \sum_{k=0}^{N-1} \ell\left(x_u(k, x_0), u(k)\right) \\ \text{w.r.t.} & u(\cdot) \in \mathbb{U}^N(x_0) \end{array}$$

• optimal value function:

$$V_N(x_0) := \inf_{u(\cdot) \in \mathbb{U}^N(x_0)} J_N(x_0, u(\cdot))$$

• optimal control sequence: $u^*(\cdot)$

Let x_0 be an initial state. Let $u^*(0), u^*(1), \ldots, u^*(N-1)$ be an optimal control for $\mathcal{P}_N(x_0)$ and $x_{u^*}(0), x_{u^*}(1), \ldots, x_{u^*}(N)$ be the corresponding optimal state trajectory.

Then for any i, i = 0, 1, ..., N - 1, the control sequence $u^*(i), u^*(i+1), ..., u^*(N-1)$ is optimal control for $\mathcal{P}_{N-i}(x_{u^*}(i))$.

Let x_0 be an initial state. Let $u^*(0), u^*(1), \ldots, u^*(N-1)$ be an optimal control for $\mathcal{P}_N(x_0)$ and $x_{u^*}(0), x_{u^*}(1), \ldots, x_{u^*}(N)$ be the corresponding optimal state trajectory.

Then for any i, i = 0, 1, ..., N - 1, the control sequence $u^*(i), u^*(i+1), ..., u^*(N-1)$ is optimal control for $\mathcal{P}_{N-i}(x_{u^*}(i))$.

• tails of optimal control sequence are also optimal control sequences for adjusted initial value, time & horizon.

Let x_0 be an initial state. Let $u^*(0), u^*(1), \ldots, u^*(N-1)$ be an optimal control for $\mathcal{P}_N(x_0)$ and $x_{u^*}(0), x_{u^*}(1), \ldots, x_{u^*}(N)$ be the corresponding optimal state trajectory.

Then for any i, i = 0, 1, ..., N - 1, the control sequence $u^*(i), u^*(i+1), ..., u^*(N-1)$ is optimal control for $\mathcal{P}_{N-i}(x_{u^*}(i))$.

• tails of optimal control sequence are also optimal control sequences for adjusted initial value, time & horizon.

$$u^*(0)$$
 $u^*(1)$ $u^*(2)$... $u^*(N-1)$
 $x^*(0)$ $x^*(1)$ $x^*(2)$... $x^*(N-1)$ $x^*(N)$

Let x_0 be an initial state. Let $u^*(0), u^*(1), \ldots, u^*(N-1)$ be an optimal control for $\mathcal{P}_N(x_0)$ and $x_{u^*}(0), x_{u^*}(1), \ldots, x_{u^*}(N)$ be the corresponding optimal state trajectory.

Then for any i, i = 0, 1, ..., N - 1, the control sequence $u^*(i), u^*(i+1), ..., u^*(N-1)$ is optimal control for $\mathcal{P}_{N-i}(x_{u^*}(i))$.

• tails of optimal control sequence are also optimal control sequences for adjusted initial value, time & horizon.

$$u^*(1)$$
 $u^*(2)$... $u^*(N-1)$
 $x^*(1)$ $x^*(2)$... $x^*(N-1)$ $x^*(N)$

Given prediction horizon N and initial value x_0 .

Solve the OCP $\mathcal{P}_N(x_0)$

Solve the OCP $\mathcal{P}_N(x_0)$

Denote optimal control sequence by $u^*(\cdot)$.

Denote optimal control sequence by $u^*(\cdot)$.

Define NMPC-feedback $\mu_N(x_0, t_0) := u^*(0)$.

Use the feedback to generate the next state.

Repeat the process.

Repeat the process.

Repeat the process.

feedback law: μ_N

trajectory/solution: $x_{\mu_N}(k, x_0)$

Challenge/Issue: Solving OCP every step is expensive.

Multistep feedback - implement the first m elements.

 $u^{\star}(0), u^{\star}(1), \dots, u^{\star}(m-1).$

Then proceed with the next optimization.

m is called **control horizon**.
Multistep or m-step MPC Algorithm

feedback law: $\mu_{N,m}$

trajectory/solution: $x_{\mu_{N,m}}(k, x_0)$

Given prediction horizon N and initial value x_0 .

Solve $\mathcal{P}_N(x_0)$

Solve $\mathcal{P}_N(x_0)$

Implement the first element of the optimal control.

Re-optimize over shrunken horizon, i.e., solve $\mathcal{P}_{N-1}(x(t_1))$.

Re-optimize over shrunken horizon, i.e., solve $\mathcal{P}_{N-1}(x(t_1))$.

Re-optimize over shrunken horizon, i.e., solve $\mathcal{P}_{N-1}(x(t_1))$.

Implement the first element of the optimal control.

Solve $\mathcal{P}_{N-2}(x(t_2))$.

Solve $\mathcal{P}_{N-2}(x(t_2))$.

Solve $\mathcal{P}_{N-2}(x(t_2))$.

Implement the first element of the optimal control.

Solve $\mathcal{P}_N(x(t_3))$.

Implement the first element of the optimal control.

Solve $\mathcal{P}_{N-1}(x(t_4))$.

Solve $\mathcal{P}_{N-1}(x(t_4))$.

Implement the first element of the optimal control.

Solve $\mathcal{P}_{N-2}(x(t_5))$.

Implement the first element of the optimal control.

feedback law: $\hat{\mu}_{N,m}$

trajectory/solution: $x_{\hat{\mu}_{N,m}}(k, x_0)$

Inverted Pendulum

$$\begin{split} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{g}{\ell} \sin(x_1(t)) - \frac{k_L}{l} \arctan(1000x_2(t))x_2^2(t) - \frac{u(t)}{l} \cos(x_1(t)) \\ &- k_R \left(\frac{4ax_2(t)}{1 + 4(ax_2(t))^2} + \frac{2\arctan(bx_2(t))}{\pi} \right) \\ \dot{x}_3(t) &= x_4(t) \\ \dot{x}_4(t) &= u(t) \end{split}$$

Inverted Pendulum

$$\begin{split} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{g}{\ell} \sin(x_1(t)) - \frac{k_L}{l} \arctan(1000x_2(t))x_2^2(t) - \frac{u(t)}{l} \cos(x_1(t)) \\ &- k_R \left(\frac{4ax_2(t)}{1 + 4(ax_2(t))^2} + \frac{2\arctan(bx_2(t))}{\pi} \right) \\ \dot{x}_3(t) &= x_4(t) \\ \dot{x}_4(t) &= u(t) \end{split}$$

- stabilize the upright position $x_*=((2k+1)\pi,0,0,0),\ k\in\mathbb{N},$
- sampling period T = 0.2, prediction horizon N = 15, initial value $x_0 = (-\pi 0.1, 0, -0.1, 0)$

Figure: the standard MPC scheme (cyan), 1-step (red) and updated 1-step (green) MPC schemes

Figure: the standard MPC scheme (cyan), 2-step (red) and updated 2-step (green) MPC schemes

Figure: the standard MPC scheme (cyan), 3-step (red) and updated 3-step (green) MPC schemes

Figure: the standard MPC scheme (cyan), 4-step (red) and updated 4-step (green) MPC schemes

Figure: the standard MPC scheme (cyan), 5-step (red) and updated 5-step (green) MPC schemes

Figure: the standard MPC scheme (cyan), 6-step (red) and updated 6-step (green) MPC schemes

Perturbed Systems

sampling time

Perturbed Systems

sampling time

Perturbed Systems

sampling time

\bullet control moves of the $m\mbox{-step}$ MPC are based on old info

- \bullet control moves of the $m\mbox{-step}$ MPC are based on old info
- nominal closed-loop system

$$x(k+1) = f(x(k), \mu(x(\tilde{k}), k))$$

• perturbed closed-loop system

$$\tilde{x}(k+1) = f(\tilde{x}(k), \mu(\tilde{x}(\tilde{k}), k))) + d(k)$$

Inverted Pendulum

$$\begin{split} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{g}{\ell} \sin(x_1(t)) - \frac{k_L}{l} \arctan(1000x_2(t))x_2^2(t) - \frac{u(t)}{l} \cos(x_1(t)) \\ &- k_R \left(\frac{4ax_2(t)}{1 + 4(ax_2(t))^2} + \frac{2\arctan(bx_2(t))}{\pi} \right) \\ \dot{x}_3(t) &= x_4(t) \\ \dot{x}_4(t) &= u(t) \end{split}$$

- stabilize the upright position $x_* = ((2k+1)\pi, 0, 0, 0), \ k \in \mathbb{N}$,
- sampling period T = 0.2, prediction horizon N = 15, initial value $x_0 = (-\pi 0.1, 0, -0.1, 0)$
- randomly generated perturbation sequence $d(k) = [0, 0, d_3(k), 0]^{\top}$, $d_3(k) \in [-0.05, 0]$

Figure: the nominal 1-step MPC scheme (blue), the standard MPC scheme (cyan), 1-step (red) and updated 1-step (green) MPC schemes for the perturbed system

Figure: the nominal 2-step MPC scheme (blue), the standard MPC scheme (cyan), 2-step (red) and updated 2-step (green) MPC schemes for the perturbed system

Figure: the nominal 3-step MPC scheme (blue), the standard MPC scheme (cyan), 3-step (red) and updated 3-step (green) MPC schemes for the perturbed system

Figure: the nominal 4-step MPC scheme (blue), the standard MPC scheme (cyan), 4-step (red) and updated 4-step (green) MPC schemes for the perturbed system

Figure: the nominal 5-step MPC scheme (blue), the standard MPC scheme (cyan), 5-step (red) and updated 5-step (green) MPC schemes for the perturbed system

Figure: the nominal 6-step MPC scheme (blue), the standard MPC scheme (cyan), 6-step (red) and updated 6-step (green) MPC schemes for the perturbed system

Figure: the nominal 7-step MPC scheme (blue), the standard MPC scheme (cyan), 7-step (red) and updated 7-step (green) MPC schemes for the perturbed system

Figure: the nominal 8-step MPC scheme (blue), the standard MPC scheme (cyan), 8-step (red) and updated 8-step (green) MPC schemes for the perturbed system

Figure: $||d_3(k)|| = 0$, the nominal 5-step MPC scheme (blue), the standard MPC scheme (cyan), 5-step (red) and updated 5-step (green) MPC schemes for the perturbed system

Figure: $||d_3(k)|| = 10^{-2}$, the nominal 5-step MPC scheme (blue), the standard MPC scheme (cyan), 5-step (red) and updated 5-step (green) MPC schemes for the perturbed system

Figure: $||d_3(k)|| = 10^{-1}/2$, the nominal 5-step MPC scheme (blue), the standard MPC scheme (cyan), 5-step (red) and updated 5-step (green) MPC schemes for the perturbed system

Figure: $||d_3(k)|| = 10^{-1}$, the nominal 5-step MPC scheme (blue), the standard MPC scheme (cyan), 5-step (red) and updated 5-step (green) MPC schemes for the perturbed system

Figure: $||d_3(k)|| = 10^{-0}/2$, the nominal 5-step MPC scheme (blue), the standard MPC scheme (cyan), 5-step (red) and updated 5-step (green) MPC schemes for the perturbed system

Figure: $||d_3(k)|| = 10^{-0}$, the nominal 5-step MPC scheme (blue), the standard MPC scheme (cyan), 5-step (red) and updated 5-step (green) MPC schemes for the perturbed system

• Main Question:

How can we quantify the benefit of the updates (i.e., re-optimization) of the updated MPC scheme?

• Main Question:

How can we quantify the benefit of the updates (i.e., re-optimization) of the updated MPC scheme?

• Analyze the feedback laws $\ \mu_{N,m}$ and $\hat{\mu}_{N,m}$

$$\mathcal{K} = \left\{ \rho : \mathbb{R}_0^+ \to \mathbb{R}_0^+ \middle| \begin{array}{c} \rho \text{ is } \\ \text{and} \end{array} \right.$$

$$ho$$
 is continuous, $ho(0) = 0$
and is strictly increasing $\}$

Comparison Functions

$$\mathcal{K} = \left\{ \rho : \mathbb{R}_0^+ \to \mathbb{R}_0^+ \middle| \begin{array}{c} \rho \text{ is continuous, } \rho(0) = 0 \\ \text{and is strictly increasing} \end{array} \right\}$$

 $\mathcal{K}_{\infty} = \left\{ \rho : \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} \mid \rho \in \mathcal{K} \text{ and is unbounded } \right\}$

Comparison Functions

$$\mathcal{K} = \left\{ \rho : \mathbb{R}_0^+ \to \mathbb{R}_0^+ \middle| \begin{array}{c} \rho \text{ is continuous, } \rho(0) = 0\\ \text{ and is strictly increasing} \end{array} \right\}$$

$$\mathcal{K}_{\infty} = \left\{ \rho : \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} \ \left| \ \rho \in \mathcal{K} \text{ and is unbounded} \right. \right\}$$

$$\mathcal{KL} = \left\{ \beta : \mathbb{R}_0^+ \times \mathbb{R}_0^+ \to \mathbb{R}_0^+ \middle| \begin{array}{c} \beta \text{ is continuous,} \\ \forall r \lim_{t \to \infty} \beta(r, t) = 0 \text{ and} \\ \forall t \ge 0, \ \beta(\cdot, t) \in \mathcal{K}_{\infty} \end{array} \right\}$$

Comparison Functions

$$\mathcal{K} = \left\{ \rho : \mathbb{R}_0^+ \to \mathbb{R}_0^+ \middle| \begin{array}{c} \rho \text{ is continuous, } \rho(0) = 0 \\ \text{and is strictly increasing} \end{array} \right\}$$

$$\mathcal{K}_{\infty} = \left\{ \rho : \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} \ \left| \ \rho \in \mathcal{K} \text{ and is unbounded} \right. \right\}$$

$$\mathcal{KL} = \left\{ \beta : \mathbb{R}_0^+ \times \mathbb{R}_0^+ \to \mathbb{R}_0^+ \middle| \begin{array}{c} \beta \text{ is continuous,} \\ \forall r \lim_{t \to \infty} \beta(r, t) = 0 \text{ and} \\ \forall t \ge 0, \ \beta(\cdot, t) \in \mathcal{K}_{\infty} \end{array} \right\}$$

$$\mathcal{KL}_0 = \begin{cases} \beta : \mathbb{R}_0^+ \times \mathbb{R}_0^+ \to \mathbb{R}_0^+ \\ \gamma \lim_{t \to \infty} \beta(r, t) = 0 \text{ and} \\ \forall t \ge 0, \beta(\cdot, t) \in \mathcal{K}_\infty \\ \text{or } \beta(\cdot, t) \equiv 0 \end{cases}$$

Stabilizing MPC without terminal constraints

• Aim: to yield a controller stabilizing a given equilibrium

Stabilizing MPC without terminal constraints

• Aim: to yield a controller stabilizing a given equilibrium

 x^* is asymptotically stable if there exists $\beta \in \mathcal{KL}$ s.t.

 $||x_{\mu}(k, x_0)||_{x^*} \le \beta(||x_0||_{x^*}, k)$

for all $x_0 \in \mathbb{X}$ and all $k \in \mathbb{N}$.

Assumption 1 (A1)

There exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ s.t.

 $\alpha_1(\|x\|_{x_*}) \le \ell^*(x) \le \alpha_2(\|x\|_{x_*})$

for all $x \in \mathbb{X}$, where $\ell^*(x) := \inf_{u \in \mathbb{U}} \ell(x, u)$.
Stabilizing MPC without terminal constraints

Proposition 1 (P1)

Consider time-dependent $\mu : \mathbb{X} \times \mathbb{N}_0 \to U$ and $V : X \to \mathbb{R}_0^+$ satisfying the relaxed dynamic programming inequality

$$V(x_0) \ge V(x_{\mu}(m)) + \alpha \sum_{k=0}^{m-1} \ell(x_{\mu}(k), \mu(x_{\mu}(\tilde{k}), k))$$

for some $\alpha \in (0,1]$, some $m \ge 1$ and all $x_0 = x_\mu(0) \in \mathbb{X}$.

Stabilizing MPC without terminal constraints

Proposition 1 (P1)

Consider time-dependent $\mu : \mathbb{X} \times \mathbb{N}_0 \to U$ and $V : X \to \mathbb{R}_0^+$ satisfying the relaxed dynamic programming inequality

$$V(x_0) \ge V(x_{\mu}(m)) + \alpha \sum_{k=0}^{m-1} \ell(x_{\mu}(k), \mu(x_{\mu}(\tilde{k}), k))$$

for some $\alpha \in (0, 1]$, some $m \ge 1$ and all $x_0 = x_\mu(0) \in \mathbb{X}$. Then for all $x \in \mathbb{X}$, the ff. estimate holds:

 $V_{\infty}(x) \leq J_{\infty}^{\mathsf{cl}}(x,\mu) \leq V(x)/\alpha$

Stabilizing MPC without terminal constraints

Proposition 1 (P1)

Consider time-dependent $\mu : \mathbb{X} \times \mathbb{N}_0 \to U$ and $V : X \to \mathbb{R}_0^+$ satisfying the relaxed dynamic programming inequality

$$V(x_0) \ge V(x_{\mu}(m)) + \alpha \sum_{k=0}^{m-1} \ell(x_{\mu}(k), \mu(x_{\mu}(\tilde{k}), k))$$

for some $\alpha \in (0, 1]$, some $m \ge 1$ and all $x_0 = x_\mu(0) \in \mathbb{X}$. Then for all $x \in \mathbb{X}$, the ff. estimate holds:

 $V_{\infty}(x) \le J_{\infty}^{\mathsf{cl}}(x,\mu) \le V(x)/\alpha$

If (A1) holds and $\exists \alpha_3, \alpha_4 \in \mathcal{K}_{\infty}$ with

 $\alpha_3(\|x\|_{x_*}) \le V(x) \le \alpha_4(\|x\|_{x_*})$

then x_* is asymptotically stable for the closed-loop system.

• Show: $\mu_{N,m}$ and V_N satisfy the RDPI.

- Show: $\mu_{N,m}$ and V_N satisfy the RDPI.
- How do we compute α ?

- Show: $\mu_{N,m}$ and V_N satisfy the RDPI.
- How do we compute α ?

Assumption 2 (A2)

There exists $B_k \in \mathcal{K}_\infty$ such that the optimal value functions of $\mathcal{P}_k(x_0)$ satisfy

 $V_k(x) \leq B_k(\ell^*(x))$ for all $x \in \mathbb{X}$ and all $k = 2, \dots, N$

- Show: $\mu_{N,m}$ and V_N satisfy the RDPI.
- How do we compute α?

Assumption 2 (A2)

There exists $B_k \in \mathcal{K}_\infty$ such that the optimal value functions of $\mathcal{P}_k(x_0)$ satisfy

 $V_k(x) \leq B_k(\ell^*(x))$ for all $x \in \mathbb{X}$ and all $k = 2, \dots, N$

 \bullet the system is exponentially controllable w.r.t. ℓ

 \implies existence of such a $B_k \in \mathcal{K}_\infty$

- Show: $\mu_{N,m}$ and V_N satisfy the RDPI.
- How do we compute α?

Assumption 2 (A2)

There exists $B_k \in \mathcal{K}_\infty$ such that the optimal value functions of $\mathcal{P}_k(x_0)$ satisfy

 $V_k(x) \leq B_k(\ell^*(x))$ for all $x \in \mathbb{X}$ and all $k = 2, \dots, N$

Consider the optimization problem

$$\begin{aligned} \alpha &:= \inf_{\lambda_0, \dots, \lambda_{N-1}, \nu} \frac{\sum_{n=0}^{N-1} \lambda_n - \nu}{\sum_{n=0}^{m-1} \lambda_n} \\ \text{s.t.} \quad \sum_{n=k}^{N-1} \lambda_n &\leq B_{N-k}(\lambda_k), \quad k = 0, \dots, N-2 \\ \nu &\leq \sum_{n=0}^{j-1} \lambda_{n+m} + B_{N-j}(\lambda_{j+m}), \quad j = 0, \dots, N-m-1 \\ &\sum_{n=0}^{m-1} \lambda_n > 0, \ \lambda_0, \dots, \lambda_{N-1}, \nu \geq 0 \end{aligned}$$

Nominal Stability and Performance [Grüne, 2009]

Assume (A2) and that the optimization problem

$$\begin{aligned} \alpha &:= \inf_{\lambda_0, \dots, \lambda_{N-1}, \nu} \frac{\sum_{n=0}^{N-1} \lambda_n - \nu}{\sum_{n=0}^{m-1} \lambda_n} \\ \text{s.t.} \quad \sum_{n=k}^{N-1} \lambda_n &\leq B_{N-k}(\lambda_k), \quad k = 0, \dots, N-2 \\ \nu &\leq \sum_{n=0}^{j-1} \lambda_{n+m} + B_{N-j}(\lambda_{j+m}), \quad j = 0, \dots, N-m-1 \\ \sum_{n=0}^{m-1} \lambda_n &> 0, \ \lambda_0, \dots, \lambda_{N-1}, \nu \geq 0 \end{aligned}$$

has an optimal value $\alpha \in (0, 1]$.

Then the *m*-step feedback $\mu_{N,m}$ & optimal value fcn V_N satisfy the relaxed dynamic programming inequality

$$V_N(x_0) \ge V_N(x_{\mu_{N,m}}(m)) + \alpha \sum_{k=0}^{m-1} \ell(x_{\mu_{N,m}}(k), \mu_{N,m}(x_{\mu_{N,m}}(\tilde{k}), k))$$

Nominal Stability and Performance [Grüne, 2009]

Assume (A2) and that the optimization problem

$$\begin{aligned} \alpha &:= \inf_{\lambda_0, \dots, \lambda_{N-1}, \nu} \frac{\sum_{n=0}^{N-1} \lambda_n - \nu}{\sum_{n=0}^{m-1} \lambda_n} \\ \text{s.t.} \quad \sum_{n=k}^{N-1} \lambda_n &\leq B_{N-k}(\lambda_k), \quad k = 0, \dots, N-2 \\ \nu &\leq \sum_{n=0}^{j-1} \lambda_{n+m} + B_{N-j}(\lambda_{j+m}), \quad j = 0, \dots, N-m-1 \\ &\sum_{n=0}^{m-1} \lambda_n > 0, \ \lambda_0, \dots, \lambda_{N-1}, \nu \geq 0 \end{aligned}$$

has an optimal value $\alpha \in (0,1]$.

Then the ff. suboptimality estimate holds:

 $V_{\infty}(x) \leq J_{\infty}^{\mathsf{cl}}(x,\mu_{N,m}) \leq V_{N}(x)/\alpha \leq V_{\infty}(x)/\alpha \quad \forall x \in \mathbb{X}$

If (A1) also holds, then the closed loop is asymptotically stable.

 α is the index of suboptimality

Theorem

Let
$$B_k$$
, $k = 2, ..., N$, be linear functions.
Define $\gamma_k := \frac{B_k(r)}{r}$.
Then $\alpha = 1$ if and only if $\gamma_{m+1} \leq 1$. Otherwise,

$$\alpha = 1 - \frac{(\gamma_{m+1} - 1)\prod_{i=m+2}^{N} (\gamma_i - 1)\prod_{i=N-m+1}^{N} (\gamma_i - 1)}{\left(\prod_{i=m+1}^{N} \gamma_i - (\gamma_{m+1} - 1)\prod_{i=m+2}^{N} (\gamma_i - 1)\right) \left(\prod_{i=N-m+1}^{N} \gamma_i - \prod_{i=N-m+1}^{N} (\gamma_i - 1)\right)}$$

Course of reasoning:

- (A2) $(V_k(x) \leq B_k(\ell^*(x)))$ allows for the formulation of \mathcal{P}_{lpha}
- If \mathcal{P}_{α} has a solution $\alpha \in (0,1]$
 - \implies Relaxed Dynamic Programming Inequality (RDPI)
 - \implies assumptions of (P1) are fulfilled
 - \Longrightarrow asymptotic stability and performance estimates

 $x^* \in A$ is robustly stable on A if there exists $\beta \in \mathcal{KL}$ such that:

 $x^* \in A$ is robustly stable on A if there exists $\beta \in \mathcal{KL}$ such that:

 $\forall \delta > 0, \; \forall \Delta > \delta, \; \; \exists \; \bar{d} > 0 \; \; \text{s.t.}$

 $x^* \in A$ is robustly stable on A if there exists $\beta \in \mathcal{KL}$ such that:

 $\forall \delta > 0, \ \forall \Delta > \delta, \ \exists \ \bar{d} > 0 \ \text{s.t.}$

any perturbed solution $\tilde{x}_{\mu}(\cdot, x_0)$ with $||d(k)|| \leq \bar{d}$

 $x^* \in A$ is robustly stable on A if there exists $\beta \in \mathcal{KL}$ such that:

 $\forall \delta > 0, \; \forall \Delta > \delta, \; \; \exists \; \bar{d} > 0 \; \; \text{s.t.}$

any perturbed solution $\tilde{x}_{\mu}(\cdot, x_0)$ with $||d(k)|| \leq \bar{d}$

with $x_0 \in A$ and $||x_0||_{x^*} \leq \Delta$ satisfies

 $x^* \in A$ is robustly stable on A if there exists $\beta \in \mathcal{KL}$ such that:

 $\forall \delta > 0, \; \forall \Delta > \delta, \; \; \exists \; \bar{d} > 0 \; \; \text{s.t.}$

any perturbed solution $\tilde{x}_{\mu}(\cdot, x_0)$ with $||d(k)|| \leq \bar{d}$

with $x_0 \in A$ and $||x_0||_{x^*} \leq \Delta$ satisfies

 $\tilde{x}_{\mu_N}(k, x_0) \in A$ and

 $\|\tilde{x}_{\mu_N}(k, x_0)\|_{x^*} \le \max \{\beta(\|x_0\|_{x^*}, k), \delta\} \quad \forall k \in \mathbb{N}_0.$

Counterpart of (P1)

Consider time-dependent $\mu : \mathbb{X} \times \mathbb{N} \to U$, function $V : X \to \mathbb{R}_0^+$ and sets Y, P, \hat{P} with appropriate invariance properties. Assume $\exists \alpha \in (0, 1]$ s.t. the RDPI

$$V(x_0) \ge V(\tilde{x}_{\mu}(m, x_0)) + \alpha \sum_{k=0}^{m-1} \ell(\tilde{x}_{\mu}(k, x_0), \mu(\tilde{x}_{\mu}(\tilde{k}, x_0), k))$$

holds $\forall x_0 \in Y \setminus P$ and \forall perturbed soln $\tilde{x}_{\mu}(\cdot, x_0)$ with ||d(k)||.

Counterpart of (P1)

Consider time-dependent $\mu : \mathbb{X} \times \mathbb{N} \to U$, function $V : X \to \mathbb{R}_0^+$ and sets Y, P, \hat{P} with appropriate invariance properties. Assume $\exists \alpha \in (0, 1]$ s.t. the RDPI

$$V(x_0) \ge V(\tilde{x}_{\mu}(m, x_0)) + \alpha \sum_{k=0}^{m-1} \ell(\tilde{x}_{\mu}(k, x_0), \mu(\tilde{x}_{\mu}(\tilde{k}, x_0), k))$$

holds $\forall x_0 \in Y \setminus P$ and \forall perturbed soln $\tilde{x}_{\mu}(\cdot, x_0)$ with ||d(k)||.

Then $\forall x_0 \in Y \setminus \widehat{P}$ and $\forall \widetilde{x}_{\mu}(k, x_0)$, $J_{\widehat{P}}^{cl}(\widetilde{x}_{\mu}(k, x_0), \mu) \leq V(x_0)/\alpha$

Counterpart of (P1)

Consider time-dependent $\mu : \mathbb{X} \times \mathbb{N} \to U$, function $V : X \to \mathbb{R}_0^+$ and sets Y, P, \hat{P} with appropriate invariance properties. Assume $\exists \alpha \in (0, 1]$ s.t. the RDPI

$$V(x_0) \ge V(\tilde{x}_{\mu}(m, x_0)) + \alpha \sum_{k=0}^{m-1} \ell(\tilde{x}_{\mu}(k, x_0), \mu(\tilde{x}_{\mu}(\tilde{k}, x_0), k))$$

holds $\forall x_0 \in Y \setminus P$ and \forall perturbed soln $\tilde{x}_{\mu}(\cdot, x_0)$ with ||d(k)||.

Then
$$\forall x_0 \in Y \setminus \widehat{P}$$
 and $\forall \widetilde{x}_{\mu}(k, x_0)$,
 $J_{\widehat{P}}^{cl}(\widetilde{x}_{\mu}(k, x_0), \mu) \leq V(x_0)/\alpha$

If (A1) holds and
$$\exists \alpha_3, \alpha_4 \in \mathcal{K}_{\infty}$$
 s.t.
 $\alpha_3(\|x\|_{x_*}) \leq V(x) \leq \alpha_4(\|x\|_{x_*}),$
there are not the closed large vertex achieves the state

then μ renders the closed-loop system robustly stable.

- Aim: using the counterpart of (P1) for perturbed system, show that $\mu_{N,m}$ and $\hat{\mu}_{N,m}$ renders the perturbed system robustly stable
- ${\, \bullet \, }$ We need the corresponding $\alpha {\rm 's}$

Uniform Continuity

Consider vector spaces Z, Y, set $A \subset Z$ and arbitrary set W

• a function $\phi: Z \to Y$ is uniformly continuous on A if $\exists \ \omega \in \mathcal{K}$ s.t. $\forall \ z_1, z_2 \in A$

$$\|\phi(z_1) - \phi(z_2)\| \le \omega (\|z_1 - z_2\|).$$

Uniform Continuity

Consider vector spaces Z, Y, set $A \subset Z$ and arbitrary set W

• a function $\phi: Z \to Y$ is uniformly continuous on A if $\exists \ \omega \in \mathcal{K}$ s.t. $\forall \ z_1, z_2 \in A$

$$\|\phi(z_1) - \phi(z_2)\| \le \omega (\|z_1 - z_2\|).$$

• a function $\phi: Z \times W \to Y$ is uniformly continuous on A uniformly in $v \in W$ if $\exists \omega \in \mathcal{K}$ s.t. $\forall z_1, z_2 \in A$ and $\forall v \in W$

$$\|\phi(z_1, v) - \phi(z_2, v)\| \le \omega (\|z_1 - z_2\|).$$

Uniform Continuity

Consider vector spaces Z, Y, set $A \subset Z$ and arbitrary set W

• a function $\phi: Z \to Y$ is uniformly continuous on A if $\exists \ \omega \in \mathcal{K}$ s.t. $\forall \ z_1, z_2 \in A$

$$\|\phi(z_1) - \phi(z_2)\| \le \omega (\|z_1 - z_2\|).$$

• a function $\phi: Z \times W \to Y$ is uniformly continuous on A uniformly in $v \in W$ if $\exists \omega \in \mathcal{K}$ s.t. $\forall z_1, z_2 \in A$ and $\forall v \in W$

$$\|\phi(z_1, v) - \phi(z_2, v)\| \le \omega (\|z_1 - z_2\|).$$

The function ω is called the modulus of continuity.

$||J_N(x_1, u(\cdot)) - J_N(x_2, u(\cdot))|| \le \omega_{J_N}(||x_1 - x_2||)$

uniform continuity of J_N uniformly on $u(\cdot)$

$$||J_N(x_1, u(\cdot)) - J_N(x_2, u(\cdot))|| \le \omega_{J_N}(||x_1 - x_2||)$$

$$||J_N(x_1, u(\cdot)) - J_N(x_2, u(\cdot))|| \le \omega_{J_N}(||x_1 - x_2||)$$

- $\omega_{V_N} \leq \omega_{J_N}$
- $\omega_{V_N} \ll \omega_{J_N}$ for open-loop unstable and controllable

Obtaining analogous statements

Recall \mathcal{P}_{α}

$$\begin{split} \boldsymbol{\alpha} & := \inf_{\lambda_0, \dots, \lambda_{N-1}, \nu} \frac{\sum_{n=0}^{N-1} \lambda_n - \nu}{\sum_{n=0}^{m-1} \lambda_n} \\ \text{s.t.} & \sum_{n=k}^{N-1} \lambda_n \leq B_{N-k}(\lambda_k) & k = 0, \dots, N-2 \\ & \nu \leq \sum_{n=0}^{j-1} \lambda_{n+m} + B_{N-j}(\lambda_{j+m}) & j = 0, \dots, N-m-1 \\ & \sum_{n=0}^{m-1} \lambda_n > 0, \ \lambda_0, \dots, \lambda_{N-1}, \nu \geq 0 \end{split}$$

Obtaining analogous statements

Define $\mathcal{P}^{\mathsf{pmult}}_{\alpha}$

$$\begin{split} \alpha^{\mathsf{pmult}} &:= \inf_{\lambda_0, \dots, \lambda_{N-1}, \nu} \frac{\sum_{n=0}^{N-1} \lambda_n - \nu}{\sum_{n=0}^{m-1} \lambda_n} \\ \mathsf{s.t.} & \sum_{n=k}^{N-1} \lambda_n \leq B_{N-k}(\lambda_k) + \xi^{\mathsf{pmult}}, \qquad k = 0, \dots, N-2 \\ & \nu \leq \sum_{n=0}^{j-1} \lambda_{n+m} + B_{N-j}(\lambda_{j+m}) + \xi^{\mathsf{pmult}}, \quad j = 0, \dots, N-m-1 \\ & \sum_{n=0}^{m-1} \lambda_n > \zeta, \ \lambda_0, \dots, \lambda_{N-1}, \nu \geq 0 \end{split}$$

where
$$\begin{aligned} \xi_k^{\text{pmult}} &= \sum_{j=1}^{N-k-1} \omega_{J_{N-k-j}} \left(\| d(k+j) \| \right) \\ &+ \omega_{B_{N-k}} (\lambda_{k,k,0} - \lambda_{k,0,0}) + \omega_{J_{N-k}} (x_{k,k,0} - x_{k,0,0}) \end{aligned}$$

Obtaining analogous statements

Define $\mathcal{P}^{\mathsf{upd}}_{\alpha}$

$$\begin{aligned} \alpha^{\text{upd}} & := \inf_{\lambda_0, \dots, \lambda_{N-1}, \nu} \frac{\sum_{n=0}^{N-1} \lambda_n - \nu}{\sum_{n=0}^{m-1} \lambda_n} \\ \text{s.t.} & \sum_{n=k}^{N-1} \lambda_n \le B_{N-k}(\lambda_k) + \xi^{\text{upd}} \ , \qquad k = 0, \dots, N-2 \\ & \nu \le \sum_{n=0}^{j-1} \lambda_{n+m} + B_{N-j}(\lambda_{j+m}) + \xi^{\text{upd}} \ , \quad j = 0, \dots, N-m-1 \\ & \sum_{n=0}^{m-1} \lambda_n > \zeta, \ \lambda_0, \dots, \lambda_{N-1}, \nu \ge 0 \end{aligned}$$

where
$$\xi_k^{\text{upd}} = \sum_{j=1}^{N-k-1} \omega_{V_{N-k-j}} (\|d(k+j)\|)$$

• $\mathcal{P}^{\mathsf{pmult}}_{lpha}$ and $\mathcal{P}^{\mathsf{upd}}_{lpha}$ are 'perturbed' versions of \mathcal{P}_{lpha}
Comparing $\alpha, \alpha^{\text{pmult}}, \alpha^{\text{upd}}$

• $\mathcal{P}^{\mathsf{pmult}}_{\alpha}$ and $\mathcal{P}^{\mathsf{upd}}_{\alpha}$ are 'perturbed' versions of \mathcal{P}_{α}

Theorem

Consider problems \mathcal{P}_{α} , $\mathcal{P}_{\alpha}^{pmult}$ and $\mathcal{P}_{\alpha}^{upd}$. Assume that the B_k , $k \in \mathbb{N}$ from (A2) are linear functions. Then

$$\alpha^{pmult} \ge \alpha - \frac{B_{m+1}(\xi^{pmult}) + \xi^{pmult}}{\zeta}$$
$$\alpha^{upd} \ge \alpha - \frac{B_{m+1}(\xi^{upd}) + \xi^{upd}}{\zeta}$$

Comparing $\alpha, \alpha^{\text{pmult}}, \alpha^{\text{upd}}$

• $\mathcal{P}^{\mathsf{pmult}}_{\alpha}$ and $\mathcal{P}^{\mathsf{upd}}_{\alpha}$ are 'perturbed' versions of \mathcal{P}_{α}

Theorem

Consider problems \mathcal{P}_{α} , $\mathcal{P}_{\alpha}^{pmult}$ and $\mathcal{P}_{\alpha}^{upd}$. Assume that the B_k , $k \in \mathbb{N}$ from (A2) are linear functions. Then

$$\alpha^{pmult} \ge \alpha - \frac{B_{m+1}(\xi^{pmult}) + \xi^{pmult}}{\zeta}$$
$$\alpha^{upd} \ge \alpha - \frac{B_{m+1}(\xi^{upd}) + \xi^{upd}}{\zeta}$$

 \bullet lower bounds for $\alpha^{\rm pmult}$ and $\alpha^{\rm upd}$ in terms of α

Assume some technical assumptions. Let α^{pmult} be the solution of $\mathcal{P}^{\text{pmult}}_{\alpha}$ for $d(\cdot)$ and some $\zeta > 0$.

Then the RDPI

$$V_N(x_0) \ge V_N(x_{\mu_{N,m}}(m, x_0)) + \tilde{\alpha}^{\mathsf{pmult}} \sum_{k=0}^{m-1} \ell(\tilde{x}_{\mu_{N,m}}(k, x_0), \mu_{N,m}(x_0, k))$$

holds for

$$\tilde{\alpha}^{\mathsf{pmult}} = \alpha^{\mathsf{pmult}} - \frac{\sigma}{\zeta} \quad \text{where } \sigma = \sum_{j=1}^{m-1} \omega_{J_{N-j}}(\|d(j)\|)$$

Assume some technical assumptions. Let α^{upd} be the solution of $\mathcal{P}^{\text{upd}}_{\alpha}$ for $d(\cdot)$ and some $\zeta > 0$.

Then the RDPI

$$V_N(x_0) \ge V_N(x_{\hat{\mu}_{N,m}}(m, x_0)) + \tilde{\alpha}^{\mathsf{upd}} \sum_{k=0}^{m-1} \ell(\tilde{x}_{\hat{\mu}_{N,m}}(k, x_0), \hat{\mu}_{N,m}(x_0, k))$$

holds for

$$\tilde{\alpha}^{\mathsf{upd}} = \alpha^{\mathsf{upd}} - \frac{\sigma}{\zeta} \quad \text{where } \sigma = \sum_{j=1}^{m-1} \omega_{V_{N-j}}(\|d(j)\|)$$

- the decisive difference bet. the 2 cases: error terms
- for μ_{N,m}, dependence on ω_{Jk} for μ̂_{N,m}, dependence on ω_{Vk}
- these error terms determine the bound for \overline{d} and the suboptimality index α

Numerical Example

Table: Comparison of time requirements in CPU time

m	multistep	updated
1	11.0447	11.0967
2	5.6484	10.4687
3	3.6762	10.3646
4	2.5522	10.1046
5	2.1921	9.3766
6	1.8241	8.6125
7	1.5801	7.7765
8	1.2321	7.7845
9	1.0881	7.2405
10	1.0641	6.5404
11	0.9521	6.1124
12	0.8601	5.7884
13	0.8681	5.2243

Table: Suboptimality index α of the schemes for various m and iterations

m	nominal multistep	perturbed multistep	updated multistep
1	0.9908	0.8667	0.8667
2	0.9911	0.8678	0.8681
3	0.9915	0.7936	0.7955
4	0.9917	0.7672	0.7729
5	0.9916	0.7632	0.7734
6	0.9913	0.7724	0.7868
7	0.9908	0.7404	0.7629
8	0.9902	0.7103	0.7414
9	0.9895	0.7066	0.7423
10	0.9888	0.6988	0.7379
11	0.9883	0.6477	0.6953
12	0.9880	0.6183	0.6688
13	0.9879	0.6133	0.6609

 statements analogous to those of the nominal MPC closed-loop are obtained for the perturbed closed-loop setting

- statements analogous to those of the nominal MPC closed-loop are obtained for the perturbed closed-loop setting
- a RDPI holds for feedbacks $\mu_{N,m}$ and $\hat{\mu}_{N,m}$ along perturbed trajectories

- statements analogous to those of the nominal MPC closed-loop are obtained for the perturbed closed-loop setting
- a RDPI holds for feedbacks $\mu_{N,m}$ and $\hat{\mu}_{N,m}$ along perturbed trajectories \implies robust stability and performance

- statements analogous to those of the nominal MPC closed-loop are obtained for the perturbed closed-loop setting
- a RDPI holds for feedbacks $\mu_{N,m}$ and $\hat{\mu}_{N,m}$ along perturbed trajectories \implies robust stability and performance
- enhanced robustness induced by the updates in $\hat{\mu}_{N,m}$ manifest via the moduli of continuity ω_{V_k} , which are often considerably smaller than their counterparts ω_{J_k}

- statements analogous to those of the nominal MPC closed-loop are obtained for the perturbed closed-loop setting
- a RDPI holds for feedbacks $\mu_{N,m}$ and $\hat{\mu}_{N,m}$ along perturbed trajectories \implies robust stability and performance
- enhanced robustness induced by the updates in $\hat{\mu}_{N,m}$ manifest via the moduli of continuity ω_{V_k} , which are often considerably smaller than their counterparts ω_{J_k}

Where do we use the results?

• to be applied to a sensitivity-based *m*-step MPC where the sensitivity-based updates can be viewed as a less costly approximation of the updates of the updated *m*-step MPC

- statements analogous to those of the nominal MPC closed-loop are obtained for the perturbed closed-loop setting
- a RDPI holds for feedbacks $\mu_{N,m}$ and $\hat{\mu}_{N,m}$ along perturbed trajectories \implies robust stability and performance
- enhanced robustness induced by the updates in $\hat{\mu}_{N,m}$ manifest via the moduli of continuity ω_{V_k} , which are often considerably smaller than their counterparts ω_{J_k}

Where do we use the results?

• to be applied to a sensitivity-based *m*-step MPC where the sensitivity-based updates can be viewed as a less costly approximation of the updates of the updated *m*-step MPC

Thank you for your attention! :)