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The optimal control problem

Consider the IVP with dynamic boundary condition

yt − ∆y + f ′(y) = u a.e. in Q, (1)

∂tyΓ− ∆ΓyΓ + ∂ny + g′(yΓ) = uΓ, y|Γ = yΓ, a.e. on Σ, (2)

y(0) = y0 a.e. in Ω, yΓ(0) = y0Γ
a.e. on Γ. (3)

Here, we have

� ∆Γ : Laplace–Beltrami operator, n : outward unit normal derivative;

� f , g : given nonlinearities;

� u , uΓ : control functions;

� y0 ∈ H1(Ω) : initial datum s.t. y0|Γ = y0Γ
.
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Physical interpretation

The system (1)–(3) constitutes a model for an isothermal phase transition between two different

phases that takes place in the container Ω ⊂ IR3 and is accompanied by surface diffusion on

the boundary Γ . Here, y plays the role of a non-conserved “order parameter” (Allen–Cahn

type) of the phase transition, which is typically the fraction of one of the phases and therefore

should attain values in [0, 1] .

The corresponding “free energy” is of the form

F(y) =
∫
Ω

(
f (y) +

1
2
|∇y|2

)
dx +

∫
Γ

(
g(yΓ) +

1
2
|∇ΓyΓ|2

)
dΓ ,

where ∇Γ denotes the surface gradient.

We remark that the corresponding system for a conserved order parameter (Cahn–Hilliard

type) can also be treated, but is more difficult.
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The optimal control problem

We introduce the Banach spaces

H := L2(Ω), V := H1(Ω), HΓ := L2(Γ), VΓ := H1(Γ),

H := L2(Q)× L2(Σ), X := L∞(Q)× L∞(Σ),

Y :=
{
(y, yΓ) : y ∈ H1(0, T ; H)∩ C0([0, T]; V)∩ L2(0, T ; H2(Ω)),

yΓ ∈ H1(0, T ; HΓ)∩ C0([0, T]; VΓ)∩ L2(0, T ; H2(Γ)), yΓ = y|Γ
}

,

endowed with their respective natural norms. We also assume:

(A1) There are given functions

zQ ∈ L2(Q), zΣ ∈ L2(Σ), zT ∈ V , zΓ,T ∈ VΓ,

ũ1, ũ2 ∈ L∞(Q) with ũ1 ≤ ũ2 a.e. in Q,

ũ1Γ
, ũ2Γ
∈ L∞(Σ) with ũ1Γ

≤ ũ2Γ
a.e. on Σ .
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The optimal control problem

(CP) Minimize the (tracking-type) cost functional

J((y, yΓ), (u, uΓ)) :=
β1
2

T∫
0

∫
Ω

∣∣y− zQ
∣∣2 dx dt +

β2

2

T∫
0

∫
Γ

|yΓ− zΣ|2 dΓ dt

+
β3

2

∫
Ω

|y(·, T)− zT |2 dx +
β4
2

∫
Γ

|yΓ(·, T)− zΓ,T |2 dΓ

+
β5

2

T∫
0

∫
Ω

|u|2 dx dt +
β6

2

T∫
0

∫
Γ

|uΓ|2 dΓ dt (4)

subject to the state system (1)–(3) and to the control constraint

(u, uΓ) ∈ Uad := {(w, wΓ) ∈ H : ũ1 ≤ w ≤ ũ2 a.e. in Q,

ũ1Γ
≤ wΓ ≤ ũ2Γ

a.e. on Σ } . (5)
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General assumptions

(A2) f = f1 + f2 , g = g1 + g2 , where f2, g2 ∈ C3[0, 1] , and where

f1, g1 ∈ C3(0, 1) are convex and satisfy:

lim
r↘0

f ′1(r) = lim
r↘0

g′1(r) = −∞ , lim
r↗1

f ′1(r) = lim
r↗1

g′1(r) = +∞ (6)

∃ M1 ≥ 0, M2 > 0 : | f ′1(r)| ≤ M1 + M2 |g′1(r)| ∀ r ∈ (0, 1). (7)

(A3) y0 ∈ V , y0Γ
= y0|Γ , f1(y0) ∈ L1(Ω) , g1(y0Γ

) ∈ L1(Γ) , and

0 < y0 < 1 a.e. in Ω, 0 < y0Γ
< 1 a.e. on Γ . (8)

(A4) U ⊂ X is open such that Uad ∈ U , and there is some R > 0 with

‖u‖L∞(Q) + ‖uΓ‖L∞(Σ) ≤ R ∀ (u, uΓ) ∈ U . (9)
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General assumptions

Remarks:

1. (A2) implies that the singularity on the boundary grows at least with the same order as

the one in the bulk.

2. Typical nonlinearities satisfying (5) and (6) are

f1(r) = c1(r log(r) + (1− r) log(1− r)) ,

g1(r) = c2(r log(r) + (1− r) log(1− r)) ,

where c1 > 0 , c2 > 0 .

3. We assume here a differentiable situation. The results are submitted to SIAM J. Control

Optimization. A non-differentiable case was studied in Colli–Farshbaf-Shaker–Sprekels (to

appear 2014 in Appl. Math. Optim.): there, we assume that f1 = g1 = I[0,1] , so that

we have to replace f ′1 , g′1 in (1) and (2) by the subdifferential ∂I[0,1] .
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The state system

The following result is a special case of results proved in Calatroni–Colli (Nonlinear Anal. 2013):

Theorem 1: Suppose that (A2) , (A3) are satisfied. Then we have:

(i) The state system (1)–(3) has for any (u, uΓ) ∈ H a unique solution (y, yΓ) ∈ Y
such that

0 < y < 1 a.e. in Q, 0 < yΓ < 1 a.e. on Σ . (10)

(ii) If also (A4) holds, ∃ K∗1 > 0 : for any (u, uΓ) ∈ U the associated solution

(y, yΓ) ∈ Y satisfies

‖(y, yΓ)‖Y ≤ K∗1 , ‖ f ′(y)‖L2(Q) + ‖g′(yΓ)‖L2(Σ) ≤ K∗1 . (11)

Moreover, ∃ K∗2 > 0 : whenever (u1, u1Γ
) , (u2, u2Γ

) ∈ U are given, then we have

‖y1− y2‖C0([0,T];H) + ‖∇(y1− y2)‖L2(Q) + ‖y1Γ
− y2Γ

‖C0([0,T];HΓ)

+ ‖∇Γ(y1Γ
− y2Γ

)‖L2(Σ)

≤ K∗2
(
‖u1− u2‖L2(Q) + ‖u1Γ

− u2Γ
‖L2(Σ)

)
. (12)
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The state system

Remark:

4. Owing to Theorem 1, the control-to-state mapping

S : (u, uΓ) 7→ S(u, uΓ) := (y, yΓ)

is defined as a mapping from X into Y . Moreover, S is Lipschitz continuous

when viewed as a mapping from the subset U of H into the space(
C0([0, T]; H)∩ L2(0, T ; V)

)
×
(
C0([0, T]; HΓ)∩ L2(0, T ; VΓ)

)
.

We now come to a linearized version of Theorem 1, which will play a central role

in the derivation of first-order necessary and second-order sufficient conditions for (CP).
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A linear system

Theorem 2: Let (u, uΓ) ∈ H , c1 ∈ L∞(Q) , c2 ∈ L∞(Σ) , as well as

(w0, w0Γ
) ∈ V × VΓ with w0|Γ = w0Γ

be given. Then we have:

(i) The linear IBVP

wt − ∆w + c1(x, t)w = u a.e. in Q, (13)

∂twΓ− ∆Γ wΓ + ∂nw + c2(x, t)wΓ = uΓ , w|Γ = wΓ , a.e. on Σ, (14)

w( · , 0) = w0 a.e. in Ω, wΓ( · , 0) = w0Γ
a.e. on Γ, (15)

has a unique solution (w, wΓ) ∈ Y .

(ii) There is some Ĉ > 0 such that: whenever w0 = 0 and w0Γ
= 0 then

‖(w, wΓ)‖Y ≤ Ĉ ‖(u, uΓ)‖H . (16)
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A linear system

Idea of Proof: (i) is more or less a consequence of Theorem 1. Now let w0 = 0 ,

w0Γ
= 0 . Testing (13) by wt and applying Young’s and Gronwall’s inequalities, we easily

find

‖w‖H1(0,T ;H)∩C0([0,T];V) + ‖wΓ‖H1(0,T ;HΓ)∩C0([0,T];VΓ) ≤ C1 ‖(u, uΓ)‖H .

Comparison in (13) yields

‖∆w‖L2(Q) ≤ C2 ‖(u, uΓ)‖H .

Then, applying a standard embedding result,

‖w‖L2(0,T ;H3/2(Ω)) ≤ C3 ‖(u, uΓ)‖H ,

whence, by the trace theorem,

‖∂nw‖L2(0,T ;HΓ) ≤ C4 ‖(u, uΓ)‖H .
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A linear system

But then, by comparison in (14),

‖∆ΓwΓ‖L2(Σ) ≤ C5 ‖(u, uΓ)‖H ,

whence

‖wΓ‖L2(0,T ;H2(Γ)) ≤ C6 ‖(u, uΓ)‖H .

Standard elliptic estimates then yield

‖w‖L2(0,T ;H2(Ω)) ≤ C7 ‖(u, uΓ)‖H .

Remark:

5. It cannot be expected that (w, wΓ) ∈ L∞(Q)× L∞(Σ) , in general.
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An L∞ bound for (y, yΓ)

(A5) It holds y0 ∈ L∞(Ω) , y0Γ
∈ L∞(Γ) , as well as

0 < ess inf
x∈Ω

y0(x), ess sup
x∈Ω

y0(x) < 1,

0 < ess inf
x∈Γ

y0Γ
(x), ess sup

x∈Γ

y0Γ
(x) < 1 .

Lemma 3: Let (A2)–(A5) hold. Then ∃ 0 < r∗ < r∗ < 1 such that:

whenever (y, yΓ) = S(u, uΓ) for some (u, uΓ) ∈ U , then it holds

r∗ ≤ y ≤ r∗ a.e. in Q, r∗ ≤ yΓ ≤ r∗ a.e. on Σ. (17)

Remark:

6. In view of (A2) and Lemma 3, we may assume that

max
0≤i≤3

{
max

{
‖ f (i)(y)‖L∞(Q) , ‖g(i)(y)‖L∞(Σ)

}}
≤ K∗1 , (18)

whenever (y, yΓ) = S(u, uΓ) for some (u, uΓ) ∈ U .
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An L∞ bound for (y, yΓ)

Proof: There are constants 0 < r∗ ≤ r∗ < 1 such that

r∗ ≤ min
{

ess inf
x∈Ω

y0(x) , ess inf
x∈Γ

y0Γ
(x)
}

,

r∗ ≥ max

{
ess sup

x∈Ω

y0(x) , ess sup
x∈Γ

y0Γ
(x)

}
,

max{ f ′(r) + R , g′(r) + R} ≤ 0 ∀ r ∈ (0, r∗),

min{ f ′(r)− R , g′(r)− R} ≥ 0 ∀ r ∈ (r∗, 1).

Now define w := (y− r∗)+ . Clearly, we have w ∈ V and w|Γ ∈ VΓ . We put

wΓ := w|Γ and test (1) by w . We readily see that

0 =
1
2
‖w(T)‖2

H +

T∫
0

‖∇w(t)‖2
H dt +

T∫
0

‖∇ΓwΓ(t)‖2
HΓ

dt

+
1
2
‖wΓ(T)‖2

HΓ
+ Φ,

Optimal control ... · SADCO Roma 2014 · Page 14 (27)



An L∞ bound for (y, yΓ)

where

Φ :=
T∫

0

∫
Ω

( f ′(y)− u)w dx dt +

T∫
0

∫
Γ

(g′(yΓ)− uΓ)wΓ dΓ dt ≥ 0 .

In conclusion, w = (y− r∗)+ = 0 , i. e., y ≤ r∗ , almost everywhere in Q and on Σ .

The remaining inequalities follow similarly by testing (1) with w := −(y− r∗)− .

Remark:

7. Assume (A2)–(A5) are satisfied. Using arguments similar to those in the proof of (16), we

are able to improve the stability estimate (12); ∃ K∗3 > 0 :

whenever (yi, yiΓ
) = S(ui, uiΓ

) for (ui, uiΓ
) ∈ U , i = 1, 2 , then

‖(y1, y1Γ
)− (y2, y2Γ

)‖Y ≤ K∗3 ‖(u1, u1Γ
)− (u2, u2Γ

)‖H . (19)

This higher Lipschitz continuity is needed to show the Fréchet differentiability of the

control-to-state mapping S .
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Existence of optimal controls

Theorem 4: Suppose that (A1)–(A4) are fulfilled. Then (CP) has a solution.

Proof: Pick a minimizing sentence {(un, unΓ)} ⊂ Uad , and let

(un, unΓ) = S(un, unΓ) , n ∈ IN . By the a priori estimates, we may assume that

un → ū weakly-* in L∞(Q) , unΓ → ūΓ weakly-* in L∞(Σ),

yn → ȳ weakly-* in H1(0, T ; H)∩ L∞(0, T ; V)∩ L2(0, T ; H2(Ω))∩ L∞(Q),

ynΓ → ȳΓ weakly-* in H1(0, T ; HΓ)∩ L∞(0, T ; VΓ)∩ L2(0, T ; H2(Γ))∩ L∞(Σ) .

In particular, we have (by compact embedding)

yn → ȳ strongly in C0([0, T]; H) , ynΓ → ȳΓ strongly in C0([0, T]; HΓ).

Passage to the limit n→ ∞ in (1)–(3) easily shows that (ȳ, ȳΓ) = S(ū, ūΓ) , and the

weak sequential lower semicontinuity of J yields that ((ū, ūΓ), (ȳ, ȳΓ)) is an optimal pair.
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Differentiability of the control-to-state operator

Theorem 5: Suppose that (A2)–(A5) hold. Then we have

(i) Let (ū, ūΓ) ∈ U be arbitrary. Then S : X → Y is Fréchet differentiable at (ū, ūΓ) ,

and the Fréchet derivative DS(ū, ūΓ) is given by DS(ū, ūΓ)(h, hΓ) = (ξ, ξΓ) , where

for any given (h, hΓ) ∈ X the pair (ξ, ξΓ) ∈ Y solves the linearized system

ξt − ∆ξ + f ′′(ȳ) ξ = h a. e. in Q, (20)

∂tξΓ− ∆ΓξΓ + ∂nξ + g′′(ȳΓ) ξΓ = hΓ, ξΓ = ξ|Γ, a. e. on Σ, (21)

ξ( · , 0) = 0 a. e. in Ω, ξΓ( · , 0) = 0 a. e. on Γ. (22)

(ii) The mapping DS : U → L(X ,Y) , (ū, ūΓ) 7→ DS(ū, ūΓ) , satisfies for all

(ū, ūΓ), (ū, ūΓ) ∈ U and (h, hΓ) ∈ X :

‖(DS(u, uΓ)− DS(ū, ūΓ))(h, hΓ)‖Y ≤ K∗4 ‖(u, uΓ)− (ū, ūΓ)‖H ‖(h, hΓ)‖H .
(23)
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Differentiability of the control-to-state operator

Remarks:

8. For any (h, hΓ) ∈ X the linear system (20)–(22) is of the form (13)–(15) with zero

initial conditions, hence has a unique solution in Y , and it holds

‖(ξ, ξΓ)‖Y ≤ Ĉ‖h, hΓ)‖H .

9. By Theorem 4 the reduced cost functional J (u, uΓ) := J(S(u, uΓ), (u, uΓ))

is Fréchet differentiable at every (u, uΓ) ∈ U with the dervative

DJ (ū, ūΓ) =D(y,yΓ) J(S(ū, ūΓ), (ū, ūΓ)) ◦ DS(ū, ūΓ)

+ D(u,uΓ) J(S(ū, ūΓ), (ū, ūΓ)) . (24)

Now notice that Uad is convex, hence we must have

DJ (ū, ūΓ)(v− ū, vΓ− ūΓ) ≥ 0 ∀ (v, vΓ) ∈ Uad . (25)

for any minimizer (u, uΓ) ∈ Uad of J .
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Differentiability of the control-to-state operator

Remarks:
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The variational inequality

In terms of our cost functional, this means that the following variational inequality must be

satisfied: for every (v, vΓ) ∈ Uad it holds

β1

T∫
0

∫
Ω

(ȳ− zQ) ξ dx dt + β2

T∫
0

∫
Γ

(ȳΓ− zΣ) ξΓ dΓ dt

+ β3

∫
Ω

(ȳ( · , T)− zT) ξ( · , T)dx + β4

∫
Γ
(ȳΓ( · , T)− zΓ,T) ξΓ( · , T)dΓ

+ β5

t∫
0

∫
Ω

ū(v− ū)dx dt + β6

t∫
0

∫
Γ

ūΓ(vΓ− ūΓ)dΓ dt ≥ 0 , (26)

where (ξ, ξΓ) ∈ Y is the unique solution to (20)–(22) with

(h, hΓ) = (v− ū, vΓ− ūΓ) . We aim to eliminate (ξ, ξΓ) by introducing the adjoint

state system.
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First-order necessary conditions

(A6) It holds β3 = β4 and zΓ,T = zT|Γ .

Theorem 6: Let the assumptions (A1)–(A6) be satisfied, and let (ū, ūΓ) ∈ Uad be optimal

and (ȳ, ȳΓ) = S(ū, ūΓ) ∈ Y . Then the adjoint state system

− pt − ∆p + f ′′(ȳ) p = β1 (ȳ− zQ) a.e. in Q, (27)

∂n p− ∂t pΓ− ∆Γ pΓ + g′′(ȳΓ) pΓ = β2 (ȳΓ− zΣ) a.e. on Σ, (28)

p( · , T) = β3(ȳ( · , T)− zT) a.e. in Ω,

pΓ( · , T) = β4 (ȳΓ( · , T)− zΓ,T) a.e. on Γ, (29)

has a unique solution (p, pΓ) ∈ Y , and for every (v, vΓ) ∈ Uad we have

T∫
0

∫
Ω

(p + β5 ū)(v− ū)dx dt +

T∫
0

∫
Γ

(pΓ + β6 ūΓ)(vΓ− ūΓ)dΓ dt ≥ 0 . (30)
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First-order necessary conditions

Remarks:

10. The compatibility condition (A6) was needed to guarantee the applicability of Theorem 2

(namely, to have p(·, T)|Γ = pΓ(·, T) ).

11. As usual, the Fréchet derivative DJ (ū, ūΓ) ∈ L(X ,Y) can be identified with the

pair (p + β5 ū, pΓ + β6 ūΓ) . In fact, with the standard inner product (·, ·)H
in H we have for all (h, hΓ) ∈ X :

DJ (ū, ūΓ)(h, hΓ) = ((p + β5 ū, pΓ + β6 ūΓ), (h, hΓ))H .

12. If β5 > 0 and β6 > 0 , then it follows

ū(x, t) = IP[ũ1(x,t),ũ2(x,t)](−β−1
5 p(x, t)) ,

ūΓ(x, t) = IP[ũ1Γ
(x,t),ũ2Γ

(x,t)](−β−1
6 pΓ(x, t)) (31)

where

IP[a,b](x) =


a, x < a
x, a ≤ x ≤ b
b, x > b

. (32)

Optimal control ... · SADCO Roma 2014 · Page 21 (27)



First-order necessary conditions

13. The variational inequality (30) follows from (26), since it holds the identity

β1

T∫
0

∫
Ω

(ȳ− zQ) ξ dx dt + β2

T∫
0

∫
Γ

(ȳΓ− zΣ) ξΓ dΓ dt

+ β3

∫
Ω

(ȳ( · , T)− zT) ξ( · , T)dx + β4

∫
Γ
(ȳΓ( · , T)− zΓ,T) ξΓ( · , T)dΓ

=

T∫
0

∫
Ω

p h dx dt +

T∫
0

∫
Γ

pΓ hΓ dΓ dt ,

which follows from (20)–(22) and (27)–(29) using repeated integration by parts.
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Concluding remarks

14. It is possible to derive second-order sufficient optimality conditions. To this end, it has to

be shown that the control-to-state operator S is twice continuously differentiable. This

requires to assume f , g ∈ C4(0, 1) . The second Fréchet derivative D2S(ū, ūΓ) is

defined as follows: if (h, hΓ), (k, kΓ) ∈ X are arbitrary then

D2S(ū, ūΓ)[(h, hΓ) , (k, kΓ)] =: (η, ηΓ) ∈ Y
is the unique solution to the IVBP

ηt − ∆η+ f ′′(ȳ) η = − f (3)(ȳ)φ ψ a. e in Q, (33)

∂nη+ ∂tηΓ− ∆ΓηΓ + g′′(ȳΓ) ηΓ = −g(3)(ȳΓ)φΓ ψΓ a. e. on Σ, (34)

η( · , 0) = 0 a. e. in Ω, ηΓ( · , 0) = 0 a. e. on Γ, (35)

where

(ȳ, ȳΓ) = S(ū, ūΓ), (φ, φΓ) = DS(ū, ūΓ)(h, hΓ),

(ψ, ψΓ) = DS(ū, ūΓ)(k, kΓ) . (36)

The proof is technical, but not too difficult (see Colli–Sprekels, WIAS-Preprint No. 1750).
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Concluding remarks

It turns out that the mapping

D2S : U → L(X ,L(X ,Y)), (ū, ūΓ) 7→ D2S(ū, ūΓ),

is Lipschitz continuous on U ⊂ X only in the following sense: there exists a constant

K∗5 > 0 such that for every (u, uΓ), (ū, ūΓ) ∈ U and all (h, hΓ), (k, kΓ) ∈ X it

holds

‖(D2S(u, uΓ)− D2S(ū, ūΓ))[(h, hΓ), (k, kΓ)]‖Y

≤ K∗5 ‖(u, uΓ)− (ū, ūΓ)‖H ‖(h, hΓ)‖H ‖(k, kΓ)‖H . (37)

Notice: we have to deal with a two-norm discrepancy.

15. The problem is considerably more difficult in the case of non-differentiability. In the paper

Colli–Farshbaf-Shaker–Sprekels (to appear in Appl. Math. Optim.), we considered the

same cost functional J (with β3 = β4 ) and the same set of control constraints Uad .

The state system has the form:
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Concluding remarks

yt − ∆y + ξ + f ′2(y) = u a.e. in Q (38)

∂t yΓ− ∆ΓyΓ + ∂ny + ξΓ + g′2(yΓ) = uΓ a.e. on Σ (39)

ξ ∈ ∂I[−1,1](y) a.e. in Q , ξΓ ∈ ∂I[−1,1](y) a.e. on Σ (40)

y(·, 0) = y0 a.e. in Ω , yΓ(·, 0) = y0Γ
a.e. on Γ . (41)

The general idea of handling this control problem was to use a deep quench approach using

the results of the differentiable case: one replaces the inclusions (35) by

ξ = ϕ(α) h′(y) , ξΓ = ψ(α) h′(y) , (42)

where ϕ(α) = ψ(α) = o(α) as α↘ 0 and 0 < ϕ(α) ≤ Cψ(α) for α > 0 , as

well as

h(r) = (1− r) log(1− r) + (1 + r) log(1 + r) , −1 ≤ r ≤ +1 . (43)
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Concluding remarks

This approach turns out to be successful:

� “Global” result: If αn ↘ 0 and (ūαn , ūαn
Γ ) is an optimal control of the

αn -approximating differentiable problem, n ∈ IN , then a subsequence

converges weakly to an optimal control of the non-differentiable problem.

� “Local” result: For any fixed optimizer (ū, ūΓ) define the “adapted” cost functional

J̃((y, yΓ), (u, uΓ)) = J((y, yΓ), (u, uΓ))+
1
2
‖u− ū‖2

L2(Q) +
1
2
‖uΓ− ūΓ‖2 .

Then consider the α -approximating problems with this functional. It holds:

– ∃ αn ↘ 0 and minimizers (ūαn , ūαn
Γ ) of the αn -approximating problems

such that (ūαn , ūαn
Γ ) → (ū, ūΓ) strongly in H .

– Letting αn ↘ 0 in the first-order necessary optimality conditions for the

αn -approximating problems leads to first-order conditions for the

non-differentiable case.
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