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Optimal Trading And Mean Field of Controls

Optimal Trading [Lehalle et al., 2013, Chapitre 3]

I Investors use trading algorithms to buy and sell large amounts
of shares or contracts

I It meets the demand of regulators: more tractability, less
complex products

I Intermediaries themselves use trading algorithms.

No more isolating an agent

I Up to now, the literature focused on one large investor facing a
background noise (with the exception of
[Jaimungal and Nourian, 2015], modeling one large risk-averse
agent vs. small agents sensitive to their expected gain only).

I Here instead of having one isolated mean-variance agent
[Almgren and Chriss, 2000],

I We will model all agents conducting simultaneously the same
kind of strategies à la [Cartea and Jaimungal, 2015].
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A Little Bit More on Mean Field Games in Finance

Generic considerations on MFG
I Mean Field Game is about a continuum of agents, characterized by their distribution,
I Each agent is fully identified by its position in the state space (from the viewpoint of one specific agent,

others can be reordered),

I Each agent is sensitive to others via a Mean Field , and each agent contributes to this mean field (think
about the pressure in a room where agents are particules),

I Each agent solves a (backward) optimization problem (his cost function can be a functional of the
distribution at t),

I The distribution of agents is transported (via the controls) a forward way.

The natural mean field of financial markets
I Endogenous liquidity is often missing in the cost function of each agent (think about replicating bank’s risk),

I Each bank is facing a mean field , i.e. the aggregation of others’ actions is meant to be martingale,
I In reality banks do communicate via the global state of liquidity.

I Liquidity is the natural mean field to inject mathematical finance models in a game theoretical
framework (slow: [Carmona et al., 2013] and HF: [Lachapelle et al., 2016], now instantaneous).
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Optimal Trading

On our database of 300,000 large orders
[Bacry et al., 2015]

Optimal Trading is about

I Trading slow enough to avoid market impact

I and fast enough so that the price is close to the decision.

Investors
I tacke decisions based on private information and portfolio

construction methods,
I concentrate their decisions on their dealing desk,
I who study the liquidity of the portfolios to buy and sell,
I and use brokers to execute an automated way these decisions.
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Trading Algorithms: Typical Features

Benchmark Type of stock Type of trade Main feature

PoV Medium to large
market depth

(1) Long duration position (1) Follows current market flow, (2) Very reactive, can
be very aggressive, (3) More price opportunity driven
if the range between the max percent and min percent
is large

VWAP / TWAP Any market depth (1) Hedging order, (2) Long duration position, (3) Un-
wind tracking error (delta hedging of a fast evolving in-
ventory)

(1) Follows the “usual” market flow, (2) Good if market
moves with unexpected volumes in the same direction
as the order (up for a buy order), (3) Can be passive

Implementation
Shortfall (IS)

Medium liquidity
depth

(1) Alpha extraction, (2) Hedge of a non-linear position
(typically Gamma hedging), (3) Inventory-driven trade

(1) Will finish very fast if the price is good and enough
liquidity is available, (2) Will “cut losses” if the price
goes too far away

Liquidity Seeker Poor a frag-
mented market
depth

(1) Alpha extraction, (2) Opportunistic position mount-
ing, (3) Already split / scheduled order

(1) Relative price oriented (from one liquidity pool to
another, or from one security to another), (2) Capture
liquidity everywhere, (3) Stealth (minimum information
leakage using fragmentation)
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Trading Algorithms: Typical Uses

Benchmark Region of prefer-
ence

Order characteristics Market context Type of hedged risk

PoV Asia Large order size (more than 10%
of ADV: Average daily consolidated
volume)

Possible negative news Do not miss the rapid propagation
of an unexpected news event (espe-
cially if I have the information)

VWAP / TWAP Asia and Europe Medium size (from 5 to 15% of ADV) Any “unusual” volume is negligible Do not miss the slow propagation of
information in the market

Implementation
Shortfall (IS)

Europe and US Small size (0 to 6% of ADV) Possible price opportunities Do not miss an unexpected price
move in the stock

Liquidity Seeker US (Europe) Any size The stock is expected to “oscillate”
around its “fair value”

Do not miss a liquidity burst or a rel-
ative price move on the stock

More on all this in the three “reference books” for practitioners:
I Market Microstructure in Practice [Lehalle et al., 2013]
I The Financial Mathematics of Market Liquidity [Guéant, 2016]
I Algorithmic and High-Frequency Trading [Cartea et al., 2015]
I Quantitative Trading: Algorithms, Analytics, Data, Models, Optimization [Guo et al., 2016]
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Optimal Trading Rate

The first papers [Almgren and Chriss, 2000], [Bertsimas and Lo, 1998], focussed on the optimal trading rate, or
trading speed (i.e. how many shares to buy or sell every 5 minutes) for long metaorders.

I it does not deal with microscopic orderbook dynamics,
I it is a convenient way to take into account any information or constraint at this time scale.

It is very useful for asset managers, brokers, or hedgers. I.e. especially when the decision step is separated from
the execution step.
Nevertheless it can be used for opportunistic trading too, when risk management at an intraday scale is
important.
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The Cartea and Jaimungal Version

The usual (simplistic) example of (continuous time) optimal trading (for a large sell order)

1. Write the Markovian dynamics or the price P, the quantity to trade Q and the cash account X for a sell of Q0
shares before t = T (control is the –negative– trading speed ν)

dQ = ν dt , dX = −ν (P + κ · ν)dt , dP = µ dt + σ dW .

2. Write the cost function to maximize

V (t , p, q, x , ν) = E

(
XT + QT (PT − A · QT )− φ

∫ T

τ=t
Q2
τ dτ

∣∣∣∣∣Ft

)
.

3. it gives the HJB and its terminal condition V (T, . . .) = x + q(p − Aq)

−µ∂PV = ∂t V +
σ2

2
∂2

PV − φ q2 + maxν {ν∂QV dt − ν(p + κ · ν)∂X V} .
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The Quadratic Solution is Nice

4. After the change of variable V (t , p, q, x) = x + q p + v(t , q), you have

−µ∂PV = ∂t v − φ q2 + max
ν

{
ν∂Qv − κν2

}
.

5. The optimal control is ν∗ = ∂Qv/(2κ), and the PDE −µ∂Pv = ∂t v − φ q2 + κ(∂Qv)2/(4κ).

6. When the value function is quadratic: v(t , q) = h0(t) + q h1(t)− q2 h2(t)/2, you can separate the PDE in
three: 

2κφ = −2κh′2 + h2
2

−µ = h′1 − 2h1h2
0 = h′0 + h2

1

And terminal conditions h0(T ) = h1(T ) = 0 and h2(T ) = −2A: backward dynamics.

Cartea and Jaimungal (with misc. co-authors) developed this framework for plenty versions: with a (slightly)
different objective function (VWAP, PoV), with permanent market impact µ→ µ+ ν, with µt any (adapted)
process, etc.
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Different Levels of Loops to Close

Two areas are not explored enough

I for practitioners : statistical learning; how to adapt online to regime switches (remember what we said
about liquidity game vs. price game)? How to be robust to transitory phases? “Closing the loop” with
learning is mixing exploration and exploitation.

I for regulators : game theory; what is the result of putting rational agents together? The more quants will
read the 3 books, the more it will be needed to understand such interactions, and how changing “meta
parameters” (ie rules) will modify the outcome of this game?

For game theory on financial market:
I few agents usually leads to principal - agent problems,
I a lot of agents usually leads to mean field games.

Moreover, game theory is a way to obtain robust control .
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Mean Field Games

I the number of players needs to be "large enough"
I all players contribute to a "mean field" (i.e. a global variable: available shares, volatility, resource, etc)
I a function of this mean field (at least its mean, may be its standard deviation, etc) appear in this utility

function of the players

→ in the real (modelled) world, the information needs to be available.

For optimal trading, practitioners take qualitatively into account others’ flows,
intermediaries use different ways to estimate future trading flows
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MFG of Controls and An Application To Trade Crowding
(Joint work with Pierre Cardaliaguet)

A continuum of agents trade optimally “à la Cartea-Jaimungal”.

dSt = αµt dt + σ dWt .

(1) dQa
t = νa

t dt ,

now for a seller, Qa
0 > 0 (the associated control νa will be mostly negative) and the wealth suffers from linear

trading costs driven by κ (or temporary, or immediate market impact):

dX a
t = −νa

t (St + κ · νa
t ) dt .

Same equations as for the standard framework, except the trend is made of the permanent impact of all
agents:

µ =

∫
a∈A

νa df (a),

where f (a) is the density of the agents in a feature space A.
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From Cost Function to HJB

The cost function of investor a selling from t = 0 and T is similar to the ones used in [Cartea et al., 2015]: the
terminal inventory is penalized and a quadratic running cost is subtracted:

V a
t := sup

ν
E

(
X a

T + Qa
T (ST − Aa · Qa

T )− φ
a
∫ T

s=t
(Qa

s )
2 ds

∣∣∣Ft

)
.

Here we took T common to all investors, i.e. the end of the trading day.

Our framework is then
I Each agent a has an initial quantity Qa

0 to buy (Qa
0 < 0) or to sell (Qa

0 > 0) we can even have purely
opportunistic agents (Qa

0 = 0).
I They all start at the open of the trading session t = 0 and end at the close t = T .
I Each of them maximizes the value of his trades for the day: cash + penalized remaning quantity (by Aa) -

cost of risk (with his own risk aversion φa).
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HJB For One Player (Backward Value Function)

The associated Hamilton-Jacobi-Bellman is

0 = ∂t V a − φa q2 +
1
2
σ2∂2

SV a + αµ∂SV a + sup
ν

{
ν∂QV a − ν(s + κ ν)∂X V a} ,

with the terminal condition V a(T , x , s, q;µ) = x + q(s − Aaq).

The usual solution: Following the Cartea and Jaimungal’s approach, we will use the following ersatz:
V a = x + qs + va(t , q;µ). Thus the HJB on v is

−αµ q = ∂t va − φa q2 + sup
ν

{
ν∂Qva − κ ν2

}
,

with the teminal condition va(T , q;µ) = −Aaq2.

The associated optimal feedback / control is straightforward to find:

(2) νa(t , q) =
∂Qva(t , q)

2κ
.

⇒We know that if we have the value function of an agent v , we can deduce the associated optimal control.
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Transport of the Mass of the Players (Forward)

Distribution of agents is mainly defined by the joint distribution m(t , dq, da) of

I the inventory Qa
t , with known initial values.

I the preferences of the agent: the risk aversion φa, and the terminal penalization Aa.

The net trading flow µ driving the trend of the public price at time t reads:

µt =

∫
(q,a)

νa
t (q)m(t , dq, da) =

∫
q,a

∂Qva(t , q)
2κ

m(t , dq, da).

⇒ va is an implicit function of µ (look at the HJB), meaning we will have a fixed point problem to solve in µ.

By the dynamics of Qa
t , the transport of the measure m(t , dq, da) has to follow (continuity equation)

∂t m + ∂q

(
m
∂Qva

2κ

)
= 0 with initial condition m0 = m0(dq, da).
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Obtaining The Backward-Forward Dynamics

Now we can have side to side:
I the HJB (backward) PDE where we plug the value of µ;
I the (Forward) transport of the mass of agents m, driven by the aggregation of their instantaneous decisions.

−αq
∫
(q′,a′)

∂Qva′ (t , q′)
2κ

m(t , dq′, da′)︸ ︷︷ ︸
aggregate of all agents

= ∂t va − φa q2 +
(∂Qva)2

4κ︸ ︷︷ ︸
optimal for one agent

∂t m + ∂q

(
m ∂Qva

2κ

)
= 0

Under boundary (resp. initial and terminal) conditions: m(0, dq, da) = m0(dq, da) ,

va(T , q;µ) = −Aaq2 , ∀a.
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Explicit Solution For a Special Case Same preferences for all agents: φa ≡ φ, Aa ' A

We will need a notation for the aggregated (i.e. net) position of all agents E(t) = E [Qt ] =

∫
q

q m(t , dq).

Then we can write:

E ′(t) =
∫

q q∂t m(t , dq) ← definition

= −
∫

q q∂q

(
m(t , q) ∂Qv(t,q)

2κ

)
dq ← forward dynamics (transport)

=
∫

q
∂Qv(t,q)

2κ m(t , dq) ← integration by parts.

Moreover, v(t , q) can be expressed as a quadratic function of q: v(t , q) = h0(t) + q h1(t)− q2 h2(t)
2 , leading to:

E ′(t) =
∫

q
m(t , q)

(
h1(t)
2κ
−

h2(t)
2κ

q
)

dq =
h1(t)
2κ
−

h2(t)
2κ

E(t).

In a more compact form:
2κE ′(t) = h1(t)− E(t) · h2(t).
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Dynamics For Identical Preferences

We now collect all the equations:

(3a)

(3b)

(3c)

(3d)


4κφ = −2κh′2(t) + (h2(t))2,

αh2(t)E(t) = 2κh′1(t) + h1(t) (α− h2(t)) ,

− (h1(t))2 = 4κh′0(t),

2κE ′(t) = h1(t)− h2(t)E(t).

with the boundary conditions h0(T ) = h1(T ) = 0, h2(T ) = 2A, E(0) = E0, where E0 =
∫

q qm0(q)dq is the net
initial inventory of market participants (i.e. the expectation of the initial density m).

The Master Equation For Identical Preferences

The previous system of ordinary differential equations implies

(4) 0 = 2κE ′′(t) + αE ′(t)− 2φE(t)

with boundary conditions E(0) = E0 and κE ′(T ) + AE(T ) = 0.
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Solving The Mean Field

Closed form for the net inventory dynamics E(t)

For any α ∈ R, the problem (4) has a unique solution E , given by

E(t) = E0a (exp{r+t} − exp{r−t}) + E0 exp{r−t}

where a is given by

a =
(α/4 + κθ − A) exp{−θT}

−α2 sh{θT}+ 2κθch{θT}+ 2Ash{θT}
,

the denominator being positive and the constants r±α and θ being given by

r± := −
α

4κ
± θ, θ :=

1
κ

√
κφ+

α2

16
.
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Solving the Control

Solving h2(t)

h2 solves the following backward ordinary differ-
ential equation (3a): 0 = 2κ · h′2(t) + 4κ · φ −
(h2(t))2 under h2(T ) = 2A. It is easy to check
the solution is

h2(t) = 2
√
κφ

1 + c2ert

1− c2ert
,

where r = 2
√
φ/κ and c2 solves the terminal

condition. Hence

c2 =
1− A/

√
κφ

1 + A/
√
κφ
· e−rT .

Keep in mind the optimal control is

ν∗ =
∂Qv(t , q)

2κ
=

h1(t)
2κ
− q ·

h2(t)
2κ

,

Solving h1(t)

The affine component of the control can be eas-
ily deduced from h2(t) and E(t):

h1(t) = 2κ · E ′(t) + h2(t) · E(t).
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Qualitative Meaning of All This

Dependence of the Solution to the Mean Field

The optimal control is

ν∗ =
∂Qv(t , q)

2κ
=

h1(t)
2κ︸ ︷︷ ︸

reaction to
the mean field

− q ·
h2(t)
2κ︸ ︷︷ ︸

inventory
control

.

I The second term is proportional to your inventory, i.e; the remaning quantity to buy/sell,
it is independent of E ;

I The first term embeds the dependence to the mean field : h1(t) = 2κ · E ′(t) + h2(t) · E(t).

⇒ locally you adapt your behaviour to the mean field via h1,

→ then (you changed your inventory), you slowly (re)adapt to be ready for boundary conditions / costs.
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The Standard Case
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Dynamics of E (left) and −h1 and h2 (right) for a standard set of parameters: α = 0.4, κ = 0.2, φ = 0.1,
A = 2.5, T = 5, E0 = 10.
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Small α
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Comparison of the dynamics of E (left) and −h1 and h2 (right) between the “reference” parameters of Figure ??
and smaller α (i.e. α = 0.1 instead of 0.4) such that |h1(0)| is smaller.
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h2 Almost Constant
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Comparison of the dynamics of E (left) and −h1 and h2 (right) between the “reference” parameters of Figure ??
and when

√
κφ ' A: in such a case h2 is almost constant but E and h1 are almost unchanged.
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A Case With Not Monotonous E
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A specific case for which E is not monotonous: α = 0.01, κ = 1.5, φ = 0.03, A = 2.5, T = 5 and E0 = 10.
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Not Monotonous E
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Conclusion on MFG of Controls For Liquidation

It is a proof of maturity of the use if stochastic control in financial math:

I Four years ago, it was difficult to think about a game theoretical version of the Almgren and Chriss optimal
liquidation problem (schied and jaimungal).

I Our understanding of the problem itself improved (see Guéant and Cartead and Jaimungal books)
I and some extensions of MFG have been needed (see the paper).

I but we now know how to handle it (and in a specific case it is fully solved)

Solving game theoretical versions of what we know is important (instead of sophisticating it in a mean field
���game), because

I it is a way to obtain robust control
I it helps regulator to understand the system to adjust some meta parameters (κ is this example)

MFG is not the only way to answer to such questions. Nevertheless in general Mean Field Games can take into
account interactions between different market participants as soon as they interact via liquidity (i.e. the mean
field).
Moreover learning should not be forgot (done in our paper): what does change when information is not complete?
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Thank You For Your Attention
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http://www.worldscientific.com/worldscibooks/10.1142/8967
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