ONE SIDED MINIMAX DIFFERENTIABILITY FOR THE COMPUTATION OF CONTROL, SHAPE, AND TOPOLOGICAL DERIVATIVES

Michel C. Delfour1 and Kevin Sturm2

1Centre de recherches mathématiques
Département de mathématiques et de statistique
Université de Montréal, Canada

2Johann Radon Institute
Altenberger Strasse 69
4040 Linz, Austria

NUMOC - June 23, 2017, Roma
Simple Illustrative Examples in PDE Control and Shape
- Derivative of PDE Constrained Utility Function with respect to Control
- Shape Derivative
- Construction of Micheletti: complete metric group and its tangent space

Averaged Adjoint for State Constrained Objective Functions
- Some Background
- Abstract Framework
- A New Condition in the Singleton Case with an Extra Term
- Back to the Simple Illustrative Example from PDE Control

Example of a Topological Derivative: Non-zero Extra Term
- Topological Derivative
- A One Dimensional Example

Mutivalued Case
- Two Theorems Without and With the Extra Term
- First Theorem: Mild Generalization
- Second Theorem: General Case
- Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

References
1 Simple Illustrative Examples in PDE Control and Shape
- Derivative of PDE Constrained Utility Function with respect to Control
- Shape Derivative
- Construction of Micheletti: complete metric group and its tangent space

2 Averaged Adjoint for State Constrained Objective Functions
- Some Background
- Abstract Framework
- A New Condition in the Singleton Case with an Extra Term
- Back to the Simple Illustrative Example from PDE Control

3 Example of a Topological Derivative: Non-zero Extra Term
- Topological Derivative
- A One Dimensional Example

4 Mutivalued Case
- Two Theorems Without and With the Extra Term
- First Theorem: Mild Generalization
- Second Theorem: General Case
- Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5 References
Let $\Omega \subset \mathbb{R}^N$, $N \geq 1$, bounded open and $a \in L^2(\Omega)$ be the control variable to which is associated the state $u = u(a) \in H_0^1(\Omega)$ solution of the variational state equation

$$
\int_{\Omega} \nabla u(a) \cdot \nabla \psi - a \psi \, dx = 0, \quad \forall \psi \in H_0^1(\Omega),
$$

(1.1)

where $x \cdot y$ denotes the inner product of x and y in \mathbb{R}^N.

Given a target function $g \in L^2(\Omega)$, associate with $u(a)$ the objective function

$$
f(a) \overset{\text{def}}{=} \int_{\Omega} \frac{1}{2} |u(a) - g|^2 \, dx.
$$

(1.2)

By introducing the Lagrangian, we get an unconstrained minimax formulation

$$
G(a, \varphi, \psi) \overset{\text{def}}{=} \int_{\Omega} \frac{1}{2} |\varphi - g|^2 \, dx + \int_{\Omega} \nabla \varphi \cdot \nabla \psi - a \psi \, dx
$$

$$
f(a) = \inf_{\varphi \in H^1(\Omega) \psi \in H_0^1(\Omega)} \sup_{\psi \in H_0^1(\Omega)} G(a, \varphi, \psi).
$$
Let $\Omega \subset \mathbb{R}^N$, $N \geq 1$, bounded open and $a \in L^2(\Omega)$ be the control variable to which is associated the state $u = u(a) \in H^1_0(\Omega)$ solution of the variational state equation

$$
\int_{\Omega} \nabla u(a) \cdot \nabla \psi - a \psi \, dx = 0, \quad \forall \psi \in H^1_0(\Omega),
$$

(1.1)

where $x \cdot y$ denotes the inner product of x and y in \mathbb{R}^N.

Given a target function $g \in L^2(\Omega)$, associate with $u(a)$ the objective function

$$
f(a) \overset{\text{def}}{=} \int_{\Omega} \frac{1}{2} |u(a) - g|^2 \, dx.
$$

(1.2)

By introducing the Lagrangian, we get an unconstrained minimax formulation

$$
G(a, \varphi, \psi) \overset{\text{def}}{=} \int_{\Omega} \frac{1}{2} |\varphi - g|^2 \, dx + \int_{\Omega} \nabla \varphi \cdot \nabla \psi - a \psi \, dx
$$

$$
f(a) = \inf_{\varphi \in H^1(\Omega)} \sup_{\psi \in H^1(\Omega)} G(a, \varphi, \psi).
$$
If we are only interested in a descent method, we can obtain the semidifferential of \(f(a) \) by a similar minimax formulation. Given the direction \(b \in L^2(\Omega) \), to compute

\[
df(a; b) = \lim_{t \searrow 0} \frac{f(a + tb) - f(a)}{t},
\]

where the state \(u^t \in H^1_0(\Omega) \) at \(t > 0 \) is solution of

\[
\int_\Omega \nabla u^t \cdot \nabla \psi - (a + tb) \psi \, dx = 0, \quad \forall \psi \in H^1_0(\Omega).
\] \hspace{1cm} (1.3)

The associated Lagrangian is

\[
L(t, \varphi, \psi) \overset{\text{def}}{=} \int_\Omega \frac{1}{2} |\varphi - g|^2 \, dx + \int_\Omega \nabla \varphi \cdot \nabla \psi - (a + tb) \psi \, dx.
\]

It is readily seen that

\[
g(t) \overset{\text{def}}{=} \inf_{\varphi \in H^1_0(\Omega)} \sup_{\psi \in H^1_0(\Omega)} L(t, \varphi, \psi) = f(a + tb)
\]

\[
dg(0) \overset{\text{def}}{=} \lim_{t \searrow 0} \frac{g(t) - g(0)}{t} = df(a; b).
\]
1. **Simple Illustrative Examples in PDE Control and Shape**
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2. **Averaged Adjoint for State Constrained Objective Functions**
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3. **Example of a Topological Derivative: Non-zero Extra Term**
 - Topological Derivative
 - A One Dimensional Example

4. **Multivalued Case**
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5. **References**
Consider the state (1.1) and objective function (1.2). Now perturb the domain Ω by a family of diffeomorphisms T_t generated by a smooth velocity field $V(t)$:

$$\frac{dx}{dt}(t; X) = V(t, x(t; X)), \quad x(0; X) = X, \quad T_t(X) \overset{\text{def}}{=} x(t; X), \quad t \geq 0,$$

$$\Omega_t \overset{\text{def}}{=} T_t(\Omega).$$

The state equation and objective function at $t > 0$ become

$$\int_{\Omega_t} \nabla u_t \cdot \nabla \psi - a \psi \, dx = 0, \quad \forall \psi \in H^1_0(\Omega_t), \quad f(t) \overset{\text{def}}{=} \int_{\Omega_t} |u_t - g|^2 \, dx. \quad (1.4)$$

Introducing the composition $u^t = u_t \circ T_t$ to work in the fixed space $H^1_0(\Omega)$:

$$\int_{\Omega} \left[A(t) \nabla u^t \cdot \nabla \psi - a \psi \right] j(t) \, dx = 0, \quad \forall \psi \in H^1_0(\Omega), \quad (1.5)$$

$$A(t) = DT_t^{-1} (DT_t^{-1})^*, \quad j(t) = \det DT_t, \quad DT_t \text{ is the Jacobian matrix},$$

$$\Rightarrow f(t) = \int_{\Omega_t} |u_t - g|^2 \, dx = \int_{\Omega} |u^t - g \circ T_t|^2 j(t) \, dx, \quad (1.7)$$

Lagrangian: $L(t, \varphi, \psi) \overset{\text{def}}{=} \int_{\Omega} \left[\frac{1}{2} |\varphi - g \circ T_t|^2 + A(t) \nabla \varphi \cdot \nabla \psi - a \psi \right] j(t) \, dx.$

$$\Rightarrow g(t) = \inf_{\varphi \in H^1_0(\Omega)} \sup_{\psi \in H^1_0(\Omega)} L(t, \varphi, \psi), \quad dg(0) = \lim_{t \searrow 0} (g(t) - g(0))/t = df(\Omega; V(0)).$$
1 Simple Illustrative Examples in PDE Control and Shape
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2 Averaged Adjoint for State Constrained Objective Functions
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3 Example of a Topological Derivative: Non-zero Extra Term
 - Topological Derivative
 - A One Dimensional Example

4 Multivalued Case
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5 References
Associate with a real vector space (usually a Banach space) Θ of mappings $\theta : \mathbb{R}^N \to \mathbb{R}^N$ (Micheletti used the space $\Theta = C^k_0(\mathbb{R}^N, \mathbb{R}^N)$, $k \geq 1$), the following space of transformations (endomorphisms) of \mathbb{R}^N:

$$\mathcal{F}(\Theta) \overset{\text{def}}{=} \left\{ F : \mathbb{R}^N \to \mathbb{R}^N \text{ bijective} : F - I \in \Theta, \text{ and } F^{-1} - I \in \Theta \right\},$$

(1.8)

where $x \mapsto I(x) \overset{\text{def}}{=} x : \mathbb{R}^N \to \mathbb{R}^N$ is the identity mapping.

Given a fixed set $\Omega_0 \subset \mathbb{R}^N$ (Micheletti used used a bounded open set of class C^k), consider the set of images

$$\mathcal{X}(\Omega_0) \overset{\text{def}}{=} \left\{ F(\Omega_0) : \forall F \in \mathcal{F}(\Theta) \right\}$$

(1.9)

of Ω_0 by the elements of $\mathcal{F}(\Theta)$ and the subgroup

$$\mathcal{G}(\Omega_0) \overset{\text{def}}{=} \left\{ F \in \mathcal{F}(\Theta) : F(\Omega_0) = \Omega_0 \right\}.$$

So there is a bijection between the set of images of Ω_0 and the quotient space

$$\mathcal{X}(\Omega_0) \leftrightarrow \mathcal{F}(\Theta) / \mathcal{G}(\Omega_0).$$
The objective is to construct a metric on $\mathcal{F}(\Theta)/\mathcal{G}(\Omega_0)$ that will serve as a distance between two mages $F_1(\Omega_0)$ and $F_2(\Omega_0)$.

Associate with $F \in \mathcal{F}(\Theta)$ the following candidate for a metric

$$d_0(I, F) \stackrel{\text{def}}{=} \| F - I \|_\Theta + \| F^{-1} - I \|_\Theta, \quad d_0(F, G) \stackrel{\text{def}}{=} d_0(I, G \circ F^{-1}). \quad (1.10)$$

Unfortunately, d_0 is only a semi-metric that will not satisfy the triangle inequality.

Consider the following second candidate (called Courant metric by Micheletti)

$$d(I, F) \stackrel{\text{def}}{=} \inf_{F = F_1 \circ \cdots \circ F_n} \sum_{i=1}^{n} \| F_i - I \|_\Theta + \| F_i^{-1} - I \|_\Theta, \quad (1.11)$$

where the infimum is taken over all finite factorizations of F in $\mathcal{F}(\Theta)$ of the form

$$F = F_1 \circ \cdots \circ F_n, \quad F_i \in \mathcal{F}(\Theta).$$

In particular $d(I, F) = d(I, F^{-1})$. Extend this function to all F and G in $\mathcal{F}(\Theta)$

$$d(F, G) \stackrel{\text{def}}{=} d(I, G \circ F^{-1}). \quad (1.12)$$

By definition, d is right-invariant since for all F, G and H in $\mathcal{F}(\Theta)$

$$d(F, G) = d(F \circ H, G \circ H).$$
The objective is to construct a metric on $\mathcal{F}(\Theta)/\mathcal{G}(\Omega_0)$ that will serve as a distance between two mages $F_1(\Omega_0)$ and $F_2(\Omega_0)$.

Associate with $F \in \mathcal{F}(\Theta)$ the following candidate for a metric

$$d_0(I, F) \overset{\text{def}}{=} \|F - I\|_\Theta + \|F^{-1} - I\|_\Theta, \quad d_0(F, G) \overset{\text{def}}{=} d_0(I, G \circ F^{-1}).$$ \hfill (1.10)

Unfortunately, d_0 is only a semi-metric that will not satisfy the triangle inequality. Consider the following second candidate (called Courant metric by Micheletti)

$$d(I, F) \overset{\text{def}}{=} \inf_{F = F_1 \circ \ldots \circ F_n \atop F_i \in \mathcal{F}(\Theta)} \sum_{i=1}^n \|F_i - I\|_\Theta + \|F_i^{-1} - I\|_\Theta,$$ \hfill (1.11)

where the infimum is taken over all finite factorizations of F in $\mathcal{F}(\Theta)$ of the form

$$F = F_1 \circ \ldots \circ F_n, \quad F_i \in \mathcal{F}(\Theta).$$

In particular $d(I, F) = d(I, F^{-1})$. Extend this function to all F and G in $\mathcal{F}(\Theta)$

$$d(F, G) \overset{\text{def}}{=} d(I, G \circ F^{-1}).$$ \hfill (1.12)

By definition, d is right-invariant since for all F, G and H in $\mathcal{F}(\Theta)$

$$d(F, G) = d(F \circ H, G \circ H).$$
The objective is to construct a metric on \(\mathcal{F}(\Theta)/\mathcal{G}(\Omega_0) \) that will serve as a distance between two mages \(F_1(\Omega_0) \) and \(F_2(\Omega_0) \).

Associate with \(F \in \mathcal{F}(\Theta) \) the following candidate for a metric

\[
d_0(I, F) \overset{\text{def}}{=} \| F - I \|_\Theta + \| F^{-1} - I \|_\Theta, \quad d_0(F, G) \overset{\text{def}}{=} d_0(I, G \circ F^{-1}).
\]

Unfortunately, \(d_0 \) is only a semi-metric that will not satisfy the triangle inequality. Consider the following second candidate (called Courant metric by Micheletti)

\[
d(I, F) \overset{\text{def}}{=} \inf_{F = F_1 \circ \cdots \circ F_n} \sum_{i=1}^n \| F_i - I \|_\Theta + \| F_i^{-1} - I \|_\Theta,
\]

where the infimum is taken over all finite factorizations of \(F \) in \(\mathcal{F}(\Theta) \) of the form

\(F = F_1 \circ \cdots \circ F_n, \quad F_i \in \mathcal{F}(\Theta). \)

In particular \(d(I, F) = d(I, F^{-1}) \). Extend this function to all \(F \) and \(G \) in \(\mathcal{F}(\Theta) \)

\[
d(F, G) \overset{\text{def}}{=} d(I, G \circ F^{-1}).
\]

By definition, \(d \) is right-invariant since for all \(F, G \) and \(H \) in \(\mathcal{F}(\Theta) \)

\[
d(F, G) = d(F \circ H, G \circ H).
\]
(\mathcal{F}(\Theta), d) \text{ is complete for } \Theta \text{ equal to the Banach spaces}

C^k_0(\mathbb{R}^N, \mathbb{R}^N), \ C^k(\mathbb{R}^N, \mathbb{R}^N) \subset B^k(\mathbb{R}^N, \mathbb{R}^N) \text{ and } C^{k,1}(\mathbb{R}^N, \mathbb{R}^N), \ k \geq 0,

and, through special constructions, for the Fréchet spaces

C^\infty_0(\mathbb{R}^N, \mathbb{R}^N) \subset B(\mathbb{R}^N, \mathbb{R}^N) = \cap_{k \geq 0} B^k(\mathbb{R}^N, \mathbb{R}^N).

For any Banach or Fréchet space \(\Theta \subset C^{0,1}(\mathbb{R}^N, \mathbb{R}^N) \), \(\mathcal{F}(\Theta) \) is an open subset of \(I + \Theta \)
- the tangent space is \(\Theta \) at each point \(F \in \mathcal{F}(\Theta) \)
- and the associated smooth structure is trivial.

The analogue would be the general linear group \(GL(n) \) of invertible linear maps from \(\mathbb{R}^N \) to \(\mathbb{R}^N \) which is an open subset of \(\mathcal{L}(\mathbb{R}^N, \mathbb{R}^N) \). So, the tangent space is \(\mathcal{L}(\mathbb{R}^N, \mathbb{R}^N) \).

Choose \(\Theta = C^k_0(\mathbb{R}^N, \mathbb{R}^N), \ k \geq 1 \), \(\mathcal{F}(\Theta) \), and the set \(\mathcal{X}(\Omega_0) \) of the images of an open crack free set \(\Omega_0 \subset \mathbb{R}^N \). Consider a function \(J : \mathcal{X}(\Omega_0) \rightarrow \mathbb{R} \).

Theorem

*Let \(\Omega = F(\Omega_0) \in \mathcal{X}(\Omega_0) \) for some \(F \in \mathcal{F}(\Omega_0) \). Then \(J \) is continuous at \(\Omega \) for the Courant metric if and only if

\[
\lim_{t \downarrow 0} J(T_t(\Omega)) = J(\Omega), \quad \frac{dT_t}{dt} = V(t) \circ T_t, \quad T_0 = F,
\]

for all families of velocity fields \(V \in C^0([0, \tau]; C^k_0(\mathbb{R}^N, \mathbb{R}^N)) \).*
(\mathcal{F}(\Theta), d) is complete for \Theta equal to the Banach spaces
\[C^k_0(\mathbb{R}^N, \mathbb{R}^N), \quad C^k(\overline{\mathbb{R}^N}, \mathbb{R}^N) \subset B^k(\mathbb{R}^N, \mathbb{R}^N) \quad \text{and} \quad C^{k,1}(\overline{\mathbb{R}^N}, \mathbb{R}^N), \quad k \geq 0, \]
and, through special constructions, for the Fréchet spaces
\[C_0^\infty(\mathbb{R}^N, \mathbb{R}^N) \subset B(\mathbb{R}^N, \mathbb{R}^N) = \bigcap_{k \geq 0} B^k(\mathbb{R}^N, \mathbb{R}^N). \]

For any Banach or Fréchet space \(\Theta \subset C^{0,1}(\overline{\mathbb{R}^N}, \mathbb{R}^N) \), \(\mathcal{F}(\Theta) \) is an open subset of \(I + \Theta \)
- the tangent space is \(\Theta \) at each point \(F \in \mathcal{F}(\Theta) \)
- and the associated smooth structure is trivial.

The analogue would be the general linear group \(GL(n) \) of invertible linear maps from \(\mathbb{R}^N \) to \(\mathbb{R}^N \) which is an open subset of \(\mathcal{L}(\mathbb{R}^N, \mathbb{R}^N) \). So, the tangent space is \(\mathcal{L}(\mathbb{R}^N, \mathbb{R}^N) \).

Choose \(\Theta = C^k_0(\mathbb{R}^N, \mathbb{R}^N), k \geq 1 \), \(\mathcal{F}(\Theta) \), and the set \(\mathcal{X}(\Omega_0) \) of the images of an open crack free set \(\Omega_0 \subset \mathbb{R}^N \). Consider a function \(J : \mathcal{X}(\Omega_0) \rightarrow \mathbb{R} \).

Theorem

Let \(\Omega = F(\Omega_0) \in \mathcal{X}(\Omega_0) \) for some \(F \in \mathcal{F}(\Omega_0) \). Then \(J \) is continuous at \(\Omega \) for the Courant metric if and only if

\[
\lim_{t \searrow 0} J(T_t(\Omega)) = J(\Omega), \quad \frac{dT_t}{dt} = V(t) \circ T_t, \quad T_0 = F,
\]

for all families of velocity fields \(V \in C^0([0, \tau]; C^k_0(\mathbb{R}^N, \mathbb{R}^N)) \).
\((\mathcal{F}(\Theta), d)\) is complete for \(\Theta\) equal to the Banach spaces
\[
C_0^k(\mathbb{R}^N, \mathbb{R}^N), \; C^k(\overline{\mathbb{R}^N}, \mathbb{R}^N) \subset B^k(\mathbb{R}^N, \mathbb{R}^N) \text{ and } C^{k,1}(\overline{\mathbb{R}^N}, \mathbb{R}^N), \quad k \geq 0,
\]
and, through special constructions, for the Fréchet spaces
\[
C_0^\infty(\mathbb{R}^N, \mathbb{R}^N) \subset B(\mathbb{R}^N, \mathbb{R}^N) = \bigcap_{k \geq 0} B^k(\mathbb{R}^N, \mathbb{R}^N).
\]

For any Banach or Fréchet space \(\Theta \subset C^{0,1}(\overline{\mathbb{R}^N}, \mathbb{R}^N)\), \(\mathcal{F}(\Theta)\) is an open subset of \(I + \Theta\)
- the tangent space is \(\Theta\) at each point \(F \in \mathcal{F}(\Theta)\)
- and the associated smooth structure is trivial.

The analogue would be the general linear group \(GL(n)\) of invertible linear maps from \(\mathbb{R}^N\) to \(\mathbb{R}^N\) which is an open subset of \(\mathcal{L}(\mathbb{R}^N, \mathbb{R}^N)\). So, the tangent space is \(\mathcal{L}(\mathbb{R}^N, \mathbb{R}^N)\).

Choose \(\Theta = C_0^k(\mathbb{R}^N, \mathbb{R}^N), \; k \geq 1\), \(\mathcal{F}(\Theta)\), and the set \(\mathcal{X}(\Omega_0)\) of the images of an open crack free set \(\Omega_0 \subset \mathbb{R}^N\). Consider a function \(J : \mathcal{X}(\Omega_0) \to \mathbb{R}\).

\[\text{Theorem}\]

Let \(\Omega = F(\Omega_0) \in \mathcal{X}(\Omega_0)\) for some \(F \in \mathcal{F}(\Omega_0)\). Then \(J\) is continuous at \(\Omega\) for the Courant metric if and only if
\[
\lim_{t \searrow 0} J(T_t(\Omega)) = J(\Omega), \quad \frac{dT_t}{dt} = V(t) \circ T_t, \quad T_0 = F,
\]
for all families of velocity fields \(V \in C^0([0, \tau]; C_0^k(\mathbb{R}^N, \mathbb{R}^N))\).
Definition

Let $\Theta = C^k_0(\mathbb{R}^N, \mathbb{R}^N)$. The function $J : \mathcal{X}(\Omega_0) = \{F(\Omega_0) : F \in \mathcal{F}(\Theta)\} \rightarrow \mathbb{R}$ is Hadamard semidifferentiable at $F(\Omega_0)$, $F \in \mathcal{F}(\Theta)$, if

(i) for all $V \in C^0([0, \tau]; D(\mathbb{R}^N, \mathbb{R}^N))$

$$dJ(F(\Omega_0); V) \overset{\text{def}}{=} \lim_{t \searrow 0} \frac{J(T_t(V)(F(\Omega_0))) - J(F(\Omega_0))}{t} \quad \text{exists,} \quad \frac{dT_t}{dt} = V(t) \circ T_t, \ T_0 = F,$$

(ii) and there exists a function $dJ(F(\Omega_0)) : D(\mathbb{R}^N, \mathbb{R}^N) \rightarrow \mathbb{R}$ such that for all $V \in C^0([0, \tau]; D(\mathbb{R}^N, \mathbb{R}^N))$

$$dJ(F(\Omega_0); V) = dJ(F(\Omega_0))(V(0)).$$

Definition

$J : \mathcal{X}(\Omega_0) \rightarrow \mathbb{R}$ is Hadamard differentiable at $F(\Omega_0)$, $F \in \mathcal{F}(\Theta)$, if

- it is Hadamard semidifferentiable at $F(\Omega_0)$
- and the function $dJ(F(\Omega_0)) : D(\mathbb{R}^N, \mathbb{R}^N) \rightarrow \mathbb{R}$ is linear and continuous.
Definition

Let $\Theta = C^k_0(\mathbb{R}^N, \mathbb{R}^N)$. The function $J : \mathcal{X}(\Omega_0) = \{ F(\Omega_0) : F \in \mathcal{F}(\Theta) \} \to \mathbb{R}$ is Hadamard semidifferentiable at $F(\Omega_0)$, $F \in \mathcal{F}(\Theta)$, if

1. for all $V \in C^0([0, \tau]; D(\mathbb{R}^N, \mathbb{R}^N))$

 \[
 dJ(F(\Omega_0); V) \overset{\text{def}}{=} \lim_{t \searrow 0} \frac{J(T_t(V)(F(\Omega_0))) - J(F(\Omega_0))}{t} \quad \text{exists}, \quad \frac{dT_t}{dt} = V(t) \circ T_t, \ T_0 = F,
 \]

2. and there exists a function $dJ(F(\Omega_0)) : D(\mathbb{R}^N, \mathbb{R}^N) \to \mathbb{R}$ such that for all $V \in C^0([0, \tau]; D(\mathbb{R}^N, \mathbb{R}^N))$

 \[
 dJ(F(\Omega_0); V) = dJ(F(\Omega_0))(V(0)).
 \]

Definition

$J : \mathcal{X}(\Omega_0) \to \mathbb{R}$ is Hadamard differentiable at $F(\Omega_0)$, $F \in \mathcal{F}(\Theta)$, if

- it is Hadamard semidifferentiable at $F(\Omega_0)$
- and the function $dJ(F(\Omega_0)) : D(\mathbb{R}^N, \mathbb{R}^N) \to \mathbb{R}$ is linear and continuous.

1. Simple Illustrative Examples in PDE Control and Shape
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2. Averaged Adjoint for State Constrained Objective Functions
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3. Example of a Topological Derivative: Non-zero Extra Term
 - Topological Derivative
 - A One Dimensional Example

4. Mutivalued Case
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5. References
AVERAGED ADJOINT METHOD
SOME BACKGROUND

Differentiability of Minima and Minimax
Danskin (1966, 1967)
Dem’janov (1969)
Lemaire (1970)
Dem’janov-Malozemov (1974)
Correa-Seeger (1985)
Delfour-Zolésio (1988)
Sturm (2014, 2015)
Delfour-Sturm (2017, 2016), . . .

Shape Derivative
Zolésio (1979)

Topological Derivative
Sokołowski-Zochowski (1999)
Novotny-Sokolowski (2013)
1 Simple Illustrative Examples in PDE Control and Shape
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2 Averaged Adjoint for State Constrained Objective Functions
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3 Example of a Topological Derivative: Non-zero Extra Term
 - Topological Derivative
 - A One Dimensional Example

4 Mutivalued Case
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5 References
In this paper, a \textit{Lagrangian} is a function of the form
\[(t, x, y) \mapsto G(t, x, y) : [0, \tau] \times X \times Y \to \mathbb{R}, \quad \tau > 0,\]
where Y is a \textit{vector space}, X is a subset of a vector space, and $y \mapsto G(t, x, y)$ is \textit{affine}. Associate with the \textit{parameter} $t \geq 0$ the \textit{parametrized minimax function}
\[t \mapsto g(t) \overset{\text{def}}{=} \inf_{x \in X} \sup_{y \in Y} G(t, x, y) : [0, \tau] \to \mathbb{R}. \quad (2.1)\]

When the limits exist we shall use the following compact notation:
\[
\begin{align*}
dg(0) & \overset{\text{def}}{=} \lim_{t \searrow 0} \frac{g(t) - g(0)}{t} = \begin{cases}
\frac{dg(0)}{def} \overset{\text{def}}{=} \lim_{t \searrow 0} \inf (g(t) - g(0)) / t \\
\frac{dg(0)}{def} \overset{\text{def}}{=} \lim_{t \searrow 0} \sup (g(t) - g(0)) / t \\
\frac{dg(0)}{def} \overset{\text{def}}{=} \lim_{t \searrow 0} (G(t, x, y) - G(0, x, y)) / t \\
\phi \in X, \quad d_x G(t, x, y; \phi) \overset{\text{def}}{=} \lim_{\theta \searrow 0} \frac{G(t, x + \theta \phi, y) - G(t, x, y)}{\theta} \\
\psi \in Y, \quad d_y G(t, x, y; \psi) \overset{\text{def}}{=} \lim_{\theta \searrow 0} \frac{G(t, x, y + \theta \psi) - G(t, x, y)}{\theta}.
\end{cases}
\end{align*}
\]

The notation $t \searrow 0$ and $\theta \searrow 0$ means that t and θ go to 0 by strictly positive values.
Since $G(t, x, y)$ is affine in y, for all $(t, x) \in [0, \tau] \times X$,

$$\forall y, \psi \in Y, \quad d_y G(t, x, y; \psi) = G(t, x, \psi) - G(t, x, 0) = d_y G(t, x, 0; \psi).$$

The state equation at $t \geq 0$:

\[
\boxed{\text{to find } x^t \in X \text{ such that for all } \psi \in Y, \ d_y G(t, x^t, 0; \psi) = 0.}
\]

The set of solutions (states) x^t at $t \geq 0$ is denoted

$$E(t) \overset{\text{def}}{=} \left\{ x^t \in X : \forall \varphi \in Y, \ d_y G(t, x^t, 0; \varphi) = 0 \right\}$$

The standard adjoint state equation at $t \geq 0$:

\[
\boxed{\text{to find } p^t \in Y \text{ such that } \forall \varphi \in X, \ d_x G(t, x^t, p^t; \varphi) = 0, \quad Y(t, x^t) \overset{\text{def}}{=} \text{set of solutions}.}
\]

Under appropriate conditions and uniqueness of the pair (x^t, p^t),

$$dg(0) = d_t G(0, x^0, p^0),$$

where (x^0, p^0) is the solution of the coupled state-adjoint state equations at $t = 0$.
states: \(E(t) \overset{\text{def}}{=} \left\{ x^t \in X : \forall \varphi \in Y, \; d_y G(t, x^t, 0; \varphi) = 0 \right\} \)

minimizers: \(X(t) \overset{\text{def}}{=} \left\{ x^t \in X : g(t) = \inf_{x \in X} \sup_{y \in Y} G(t, x, y) = \sup_{y \in Y} G(t, x^t, y) \right\} \).

Lemma (Constrained Infimum and Minimax)

(i) \(\inf_{x \in X} \sup_{y \in Y} G(t, x, y) = \inf_{x \in E(t)} G(t, x, 0). \)

(ii) The minimax \(g(t) = +\infty \) if and only if \(E(t) = \emptyset \). In that case \(X(t) = X \).

(iii) If \(E(t) \neq \emptyset \), then

\[
X(t) = \left\{ x^t \in E(t) : G(t, x^t, 0) = \inf_{x \in E(t)} G(t, x, 0) \right\} \subset E(t) \quad (2.2)
\]

and \(g(t) < +\infty \).
Hypothesis (H0). Let X be a vector space.

(i) For all $t \in [0, \tau]$, $x^0 \in X(0)$, $x^t \in X(t)$, and $y \in Y$, the function

$$s \mapsto G(t, x^0 + s(x^t - x^0), y) : [0, 1] \to \mathbb{R} \quad (2.3)$$

is absolutely continuous. This implies that, for almost all s, the derivative exists and is equal to $d_x G(t, x^0 + s(x^t - x^0), y; x^t - x^0)$ and that it is the integral of its derivative. In particular,

$$G(t, x^t, y) = G(t, x^0, y) + \int_0^1 d_x G(t, x^0 + s(x^t - x^0), y; x^t - x^0) \, ds. \quad (2.4)$$

(ii) For all $t \in [0, \tau]$, $x^0 \in X(0)$, $x^t \in X(t)$, $y \in Y$, $\varphi \in X$, and almost all $s \in (0, 1)$, $d_x G(t, x^0 + s(x^t - x^0), y; \varphi)$ exists and the function $s \mapsto d_x G(t, x^0 + s(x^t - x^0), y; \varphi)$ belongs to $L^1(0, 1)$.
Standard adjoint at \(t \geq 0 \): to find \(p^t \in Y \) such that \(\forall \varphi \in X, \quad d_x G(t, x^t, p^t; \varphi) = 0. \)

Definition (K. Sturm)

Given \(x^0 \in X(0) \) and \(x^t \in X(t) \), the averaged adjoint state equation:

\[
\text{to find } y^t \in Y \text{ such that } \forall \varphi \in X, \quad \int_0^1 d_x G(t, x^0 + s(x^t - x^0), y^t; \varphi) \, ds = 0.
\] (2.5)

The set of solutions will be denoted \(Y(t, x^0, x^t) \).

At \(t = 0 \), \(Y(0, x^0, x^0) \) reduces to the set of standard adjoint states

\[
Y(0, x^0) \overset{\text{def}}{=} \left\{ p^0 \in Y : \forall \varphi \in X, \quad d_x G(0, x^0, p^0; \varphi) = 0 \right\}.
\] (2.6)

An important consequence of the introduction of the averaged adjoint state is the following identity: for all \(x^0 \in X(0) \), \(x^t \in X(t) \), and \(y^t \in Y(t, x^0, x^t) \),

\[
g(t) = G(t, x^t, 0) = G(t, x^t, y^t) = G(t, x^0, y^t).
\] (2.7)
AVERAGED ADJOINT METHOD
PRELIMINARIES

Standard adjoint at $t \geq 0$: to find $p^t \in Y$ such that $\forall \varphi \in X$, $d_x G(t, x^t, p^t; \varphi) = 0$.

Definition (K. Sturm)

Given $x^0 \in X(0)$ and $x^t \in X(t)$, the **averaged adjoint state equation**:

| to find $y^t \in Y$ such that $\forall \varphi \in X$, $\int_0^1 d_x G(t, x^0 + s(x^t - x^0), y^t; \varphi) \, ds = 0$. |

(2.5)

The set of solutions will be denoted $Y(t, x^0, x^t)$.

At $t = 0$, $Y(0, x^0, x^0)$ reduces to the set of **standard adjoint states**

| $Y(0, x^0) \overset{\text{def}}{=} \{ p^0 \in Y : \forall \varphi \in X, \ d_x G(0, x^0, p^0; \varphi) = 0 \}$ |

(2.6)

An **important consequence** of the introduction of the averaged adjoint state is the following identity: for all $x^0 \in X(0)$, $x^t \in X(t)$, and $y^t \in Y(t, x^0, x^t)$,

| $g(t) = G(t, x^t, 0) = G(t, x^t, y^t) = G(t, x^0, y^t)$. |

(2.7)
An *important consequence* of the introduction of the averaged adjoint state is the following identity: for all $x^0 \in X(0)$, $x^t \in X(t)$, and $y^t \in Y(t, x^0, x^t)$,

$$g(t) = G(t, x^t, 0) = G(t, x^t, y^t) = G(t, x^0, y^t)$$ \hspace{1cm} (2.8)

$$g(0) = G(0, x^0, 0) = G(0, x^0, y^0).$$ \hspace{1cm} (2.9)

As a result

$$g(t) - g(0) = G(t, x^0, y^t) - G(0, x^0, y^0)$$

$$dg(0) = \lim_{t \searrow 0} \frac{g(t) - g(0)}{t} = \lim_{t \searrow 0} \frac{G(t, x^0, y^t) - G(0, x^0, y^0)}{t}.$$
1 Simple Illustrative Examples in PDE Control and Shape
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2 Averaged Adjoint for State Constrained Objective Functions
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3 Example of a Topological Derivative: Non-zero Extra Term
 - Topological Derivative
 - A One Dimensional Example

4 Multivalued Case
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5 References
Consider the Lagrangian functional

\[(t, x, y) \mapsto G(t, x, y) : [0, \tau] \times X \times Y \to \mathbb{R}, \quad \tau > 0,\]

where \(X\) and \(Y\) are vector spaces and the function \(y \mapsto G(t, x, y)\) is affine. Let \((H0)\) and the following hypotheses be satisfied:

\((H1) \) for all \(t \in [0, \tau] \), \(g(t) \) is finite, \(X(t) = \{x^t\} \) and \(Y(t, x^0, x^t) = \{y^t\} \) are singletons;

\((H2) \) \(d_t G(t, x^0, y) \) exists for all \(t \in [0, \tau] \) and all \(y \in Y \);

\((H3) \) the following limit exists

\[
\lim_{s \searrow 0, t \searrow 0} d_t G(s, x^0, y^t) = d_t G(0, x^0, y^0). \tag{2.10}
\]

Then, \(dg(0)\) exists and

\[dg(0) = d_t G(0, x^0, y^0).\]

Condition \((H3)\) is similar and typical of what can be found in the literature. See, for instance, [Correa-Seeger (1985)].
Proof.

From Hypothesis (H2), \(d_t G(t, x^0, y) \) exists for all \(t \in [0, \tau] \) and \(y \in Y \). Hence, there exists \(\theta_t \in (0, 1) \) such that

\[
G(t, x^0, y^t) - G(0, x^0, y^0) = G(0, x^0, y^t) + t d_t G(\theta_t t, x^0, y^t) - G(0, x^0, y^0)
\]

\[
= d_y G(0, x^0, 0; y^t - y^0) + t d_t G(\theta_t t, x^0, y^t) = t d_t G(\theta_t t, x^0, y^t)
\]

\[
\Rightarrow \frac{G(t, x^0, y^t) - G(0, x^0, y^0)}{t} = d_t G(\theta_t t, x^0, y^t)
\]

since \(d_y G(0, x^0, 0; y^t - y^0) = 0 \). From hypothesis (H3)

\[
\lim_{s \searrow 0, t \searrow 0} d_t G(s, x^0, y^t) = d_t G(0, x^0, y^0). \tag{2.11}
\]

\[
\Rightarrow dG(0) = \lim_{t \searrow 0} \frac{G(t, x^0, y^t) - G(0, x^0, y^0)}{t} = d_t G(0, x^0, y^0). \tag{2.12}
\]
This is an extension of [Sturm (2014)] [Sturm (2015), Thm. 3.1] with only a local differentiability condition at \(t = 0 \). To our best knowledge, the extra term \(R(0, x^0, y^0) \) is new. An example of a topological derivative will be given later.

Theorem (Singleton Case, [Delfour-Sturm (2017), Delfour-Sturm (2016)])

Consider the Lagrangian functional

\[
(t, x, y) \mapsto G(t, x, y) : [0, \tau] \times X \times Y \to \mathbb{R}, \quad \tau > 0,
\]

where \(X \) and \(Y \) are vector spaces and the function \(y \mapsto G(t, x, y) \) is affine. Let (H0) and the following hypotheses be satisfied:

(H1) for all \(t \in [0, \tau] \), \(g(t) \) is finite, \(X(t) = \{ x^t \} \) and \(Y(t, x^0, x^t) = \{ y^t \} \) are singletons;

(H2) \(d_1 G(0, x^0, y^0) \) exists;

(H3) the following limit exists

\[
R(0, x^0, y^0) \equiv \lim_{t \downarrow 0} d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right).
\]

(2.13)

Then, \(d g(0) \) exists and

\[
d g(0) = d_1 G(0, x^0, y^0) + R(0, x^0, y^0).
\]
Proof.

Recalling that \(g(t) = G(t, x^t, y^t) = G(t, x^0, y^t) \),

\[
g(t) - g(0) = G(t, x^0, y^t) - G(0, x^0, y^0) = G(t, x^0, y^0) + d_y G(t, x^0, 0; y^t - y^0) - G(0, x^0, y^0)
\]

\[
\Rightarrow \quad \frac{g(t) - g(0)}{t} = d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right) + \frac{G(t, x^0, y^0) - G(0, x^0, y^0)}{t}
\]

\[
\Rightarrow \quad dg(0) = \lim_{t \searrow 0} d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right) + d_t G(0, x^0, y^0)
\]

from hypotheses (H2) and (H3).

Condition (H3) is optimal since under hypotheses (H1)

\[
dg(0) \text{ exists } \iff \lim_{t \searrow 0} d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right) \text{ exists}
\]
Hypotheses (H2) and (H3) are weaker and more general than (H2) and (H3).

(H2) It is only assumed that $d_t G(0, x^0, y^0)$ exists.
Hypothesis (H2) assumes that $d_t G(t, x^0, y)$ exists for all $t \in [0, \tau]$ and $y \in Y$.

(H3) Hypothesis (H3) assumes that

$$\lim_{s \to 0, \ t \to 0} d_t G(s, x^0, y^t) = d_t G(0, x^0, y^0).$$

(2.14)

which implies

$$R(0, x^0, y^0) = \lim_{t \to 0} d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right) = 0.$$

(2.15)

Hence, condition (H3) with $R(0, x^0, y^0) = 0$ is weaker and potentially more general (when the limit is not zero) than (H3).

All this is possible since $G(t, x, y)$ is a Lagrangian. For zero-sum games, condition (H3) and a similar condition for the max min would not be as interesting.
Recalling that $g(t) = G(t, x^t, y)$ and $g(0) = G(0, x^0, y)$ for any $y \in Y$, then for the standard adjoint state p^0 at $t = 0$

$$g(t) - g(0) = G(t, x^t, p^0) - G(t, x^0, p^0) + \left(G(t, x^0, p^0) - G(0, x^0, p^0) \right).$$

Dividing by $t > 0$

$$\frac{g(t) - g(0)}{t} = \frac{G(t, x^t, p^0) - G(t, x^0, p^0)}{t} + \frac{G(t, x^0, p^0) - G(0, x^0, p^0)}{t}
= \int_0^1 d_x G \left(t, (1 - \theta)x^0 + \theta x^t, p^0; \frac{x^t - x^0}{t} \right) d\theta + \frac{G(t, x^0, p^0) - G(0, x^0, p^0)}{t}.$$

Therefore, in view of hypothesis (H2), the limit $dg(0)$ exists if and only if the limit of the first term exists

$$\Rightarrow \quad dg(0) = \lim_{t \searrow 0} \int_0^1 d_x G \left(t, (1 - \theta)x^0 + \theta x^t, p^0; \frac{x^t - x^0}{t} \right) d\theta + d_t G(0, x^0, p^0) \quad \text{and the existence of the limit of the first term can replace hypothesis (H3). As a result, we have two ways of expression hypothesis (H3) since}
\lim_{t \searrow 0} \int_0^1 d_x G \left(t, (1 - \theta)x^0 + \theta x^t, p^0; \frac{x^t - x^0}{t} \right) d\theta = \lim_{t \searrow 0} d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right).
Since $d_x G$ and $d_x d_y G$ both exist, Hypothesis (H3) can be rewritten as follows:

$$
d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right) = d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right) - d_y G \left(t, x^t, 0; \frac{y^t - y^0}{t} \right)
$$

$$
= \int_0^1 d_x d_y G \left(t, \theta x^0 + (1 - \theta) x^t, 0; \frac{y^t - y^0}{t^{\alpha}}; \frac{x^0 - x^t}{t^{1-\alpha}} \right) \, d\theta,
$$

for some $\alpha \in [0, 1]$. For instance with $\alpha = 1/2$, it would be sufficient to find bounds on the differential quotients

$$
\frac{y^t - y^0}{t^{1/2}} \quad \text{and} \quad \frac{x^t - x^0}{t^{1/2}}
$$

which is less demanding than finding a bound on $(x^t - x^0)/t$ or $(y^t - y^0)/t$.

When the integral can be taken inside

$$
d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right) = d_x d_y G \left(t, \frac{x^0 + x^t}{2}, 0; \frac{y^t - y^0}{t^{\alpha}}; \frac{x^0 - x^t}{t^{1-\alpha}} \right)
$$

$$
\lim_{t \downarrow 0} d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right) = \lim_{t \downarrow 0} d_x d_y G \left(t, \frac{x^0 + x^t}{2}, 0; \frac{y^t - y^0}{t^{\alpha}}; \frac{x^0 - x^t}{t^{1-\alpha}} \right).
$$
1 Simple Illustrative Examples in PDE Control and Shape
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2 Averaged Adjoint for State Constrained Objective Functions
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3 Example of a Topological Derivative: Non-zero Extra Term
 - Topological Derivative
 - A One Dimensional Example

4 Mutivalued Case
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5 References
If we are only interested in a descent method, we can obtain the semidifferential of $f(a)$ by a similar minimax formulation.

Given the direction $b \in L^2(\Omega)$, we want to compute

$$df(a; b) = \lim_{t \downarrow 0} \frac{f(a + tb) - f(a)}{t}.$$

The state $u^t \in H_0^1(\Omega)$ at $t > 0$ is solution of

$$\int_{\Omega} \nabla u^t \cdot \nabla \psi - (a + tb) \psi \, dx = 0, \quad \forall \psi \in H_0^1(\Omega),$$

and the associated Lagrangian is

$$L(t, \varphi, \psi) \overset{\text{def}}{=} \int_{\Omega} \frac{1}{2} |\varphi - g|^2 \, dx + \int_{\Omega} \nabla \varphi \cdot \nabla \psi - (a + tb) \psi \, dx.$$

It is readily seen that

$$g(t) \overset{\text{def}}{=} f(a + tb) = \inf_{\varphi \in H_0^1(\Omega)} \sup_{\psi \in H_0^1(\Omega)} L(t, \varphi, \psi)$$

$$dg(0) \overset{\text{def}}{=} \lim_{t \downarrow 0} \frac{g(t) - g(0)}{t} = df(a; b).$$
AVERAGED ADJOINT METHOD
EXAMPLE IN CONTROL THEORY

Recall
\[L(t, \varphi, \psi) \overset{\text{def}}{=} \int_{\Omega} \frac{1}{2} |\varphi - g|^2 + \nabla \varphi \cdot \nabla \psi - (a + tb) \psi \, dx. \]

It is readily seen that
\[dy L(t, \varphi, \psi; \psi') = \int_{\Omega} \nabla \varphi \cdot \nabla \psi' - (a + tb) \psi' \, dx \]
\[dx L(t, \varphi, \psi; \varphi') = \int_{\Omega} (\varphi - g) \varphi' + \nabla \varphi' \cdot \nabla \psi \, dx, \quad dt L(t, \varphi, \psi) = - \int_{\Omega} b \psi \, dx. \]

Observe that the derivative of the state \(\dot{u} \in H^1_0(\Omega) \) exists:
\[\int_{\Omega} \nabla \left(\frac{u^t - u^0}{t} \right) \cdot \nabla \psi - b \psi \, dx = 0, \quad \forall \psi \in H^1_0(\Omega), \quad (2.17) \]

implies that \((u^t - u^0)/t = \dot{u} \in H^1_0(\Omega) \) solution of
\[\int_{\Omega} \nabla \dot{u} \cdot \nabla \psi - b \psi \, dx = 0, \quad \psi \in H^1_0(\Omega). \quad (2.18) \]

The averaged adjoint \(y^t \in H^1_0(\Omega) \) is solution of
\[\int_{\Omega} \left(\frac{u^t + u^0}{2} \right) \varphi + \nabla y^t \cdot \nabla \varphi \, dx = 0, \quad \forall \varphi \in H^1_0(\Omega). \]
\[\int_{\Omega} \left(\frac{u^t + u^0}{2} \right) \varphi + \nabla y^t \cdot \nabla \varphi \, dx = 0, \quad \forall \varphi \in H^1_0(\Omega).\]

adjoint at \(t = 0 \) :
\[\int_{\Omega} u^0 \varphi + \nabla y^0 \cdot \nabla \varphi \, dx = 0, \quad \forall \varphi \in H^1_0(\Omega),\]

\[\Rightarrow \int_{\Omega} \frac{1}{2} \left(\frac{u^t - u^0}{t} \right) \varphi + \nabla \left(\frac{y^t - y^0}{t} \right) \cdot \nabla \varphi \, dx = 0, \quad \forall \varphi \in H^1_0(\Omega). \quad (2.19)\]

It remains to check that the limit in (2.13) exists:
\[d_y G(t, x^0, 0; (y^t - y^0)/t) \to 0\]

\[\int_{\Omega} \nabla u^0 \cdot \nabla \left(\frac{y^t - y^0}{t} \right) - (a + tb) \left(\frac{y^t - y^0}{t} \right) \, dx = -t \int_{\Omega} b \left(\frac{y^t - y^0}{t} \right) \, dx \]

\[= -t \int_{\Omega} \nabla \left(\frac{u^t - u^0}{t} \right) \cdot \nabla \left(\frac{y^t - y^0}{t} \right) \, dx = \frac{t}{2} \int_{\Omega} \left| \frac{u^t - u^0}{t} \right|^2 \, dx = \frac{t}{2} \int_{\Omega} |\dot{u}|^2 \, dx \rightarrow 0\]
as \(t \to 0 \) using (2.18) and (2.19). Therefore, by Theorem 9,
\[df(a; b) = -\int_{\Omega} b y^0 \, dx, \quad y^0 \in H^1_0(\Omega), \quad (2.20)\]

\[\int_{\Omega} (u - g)\varphi + \nabla y^0 \cdot \nabla \varphi \, dx = 0, \quad \forall \varphi \in H^1_0(\Omega). \quad (2.21)\]
1 Simple Illustrative Examples in PDE Control and Shape
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2 Averaged Adjoint for State Constrained Objective Functions
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3 Example of a Topological Derivative: Non-zero Extra Term
 - Topological Derivative
 - A One Dimensional Example

4 Mutivalued Case
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where \(X(0)\) is not a singleton

5 References
The topological derivative rigorously introduced by [Sokołowski-Zochowski (1999)] induces topological changes.

For instance, let f be an objective function defined on a family of open subsets of \mathbb{R}^N. Given a point a in the open set Ω, let $\overline{B}_r(a)$ be a closed ball of radius r and center a such that $\overline{B}_r(a) \subset \Omega$.

Consider the perturbed domain $\Omega_r \overset{\text{def}}{=} \Omega \setminus \overline{B}_r(a)$: Ω minus the hole $\overline{B}_r(a)$. In this simple case the topological derivative is defined as

$$df(0) \overset{\text{def}}{=} \lim_{r \searrow 0} \frac{f(\Omega_r) - f(\Omega)}{|\overline{B}_r(a)|}, \quad (3.1)$$

where $|\overline{B}_r(a)|$ is the volume of $\overline{B}_r(a)$ in \mathbb{R}^N.

When f is of the form $f(\Omega) = \int_\Omega \varphi \, dx$, the application of the Lebesgue differentiation theorem gives $df(0) = -\varphi(a)$. Of course, many other types of topological perturbations can be considered (see the recent IFIP paper of [Delfour (2017)]).
1 Simple Illustrative Examples in PDE Control and Shape
- Derivative of PDE Constrained Utility Function with respect to Control
- Shape Derivative
- Construction of Micheletti: complete metric group and its tangent space

2 Averaged Adjoint for State Constrained Objective Functions
- Some Background
- Abstract Framework
- A New Condition in the Singleton Case with an Extra Term
- Back to the Simple Illustrative Example from PDE Control

3 Example of a Topological Derivative: Non-zero Extra Term
- Topological Derivative
- A One Dimensional Example

4 Mutivalued Case
- Two Theorems Without and With the Extra Term
- First Theorem: Mild Generalization
- Second Theorem: General Case
- Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5 References
Given ε, $0 < \varepsilon < 1$, $a > 0$, and the domain $\Omega = (-a, a)$, consider the problem: to find $u \in W^{1,2-\varepsilon}(-a, a)$ such that

$$\forall \varphi \in W^{1,2-\varepsilon}(-a, a) \quad \int_{-a}^{a} \frac{du}{dx} \frac{d\varphi}{dx} + u \varphi \, dx = \int_{-a}^{a} \sqrt{|x|} \frac{d\varphi}{dx} + \sqrt{|x|} \varphi \, dx.$$ (3.2)

Here, $X = W^{1,2-\varepsilon}(-a, a)$ and $Y = W^{1,\frac{2-\varepsilon}{1-\varepsilon}}(-a, a)$ are reflexive Banach spaces since $2 - \varepsilon > 1$ and $\frac{2-\varepsilon}{1-\varepsilon} > 1$. The elements of X will be denoted u and $x \in (-a, a)$ will be the space variable. There exists a unique\(^1\) solution $u(x) = \sqrt{|x|}$, $-a \leq x \leq a$, and the injections $W^{1,2-\varepsilon}(-a, a) \to C^0[-a, a]$ and $W^{1,\frac{2-\varepsilon}{1-\varepsilon}}(-a, a) \to C^0[-a, a]$ are continuous and the following objective function is well-defined:

$$f(\Omega) \overset{\text{def}}{=} |u(a)|^2 + |u(-a)|^2 - 2 |u(0)|^2.$$

\(^1\)Given measurable functions $k_1, k_2 : [-a, a] \to \mathbb{R}$ such that $\alpha \leq k_i(x) \leq \beta$ for some constants $\alpha > 0$ and $\beta > 0$, and real numbers $1 < p < \infty$, $p^{-1} + q^{-1} = 1$, associate with the continuous bilinear mapping

$$\varphi, \psi \mapsto b(\varphi, \psi) \overset{\text{def}}{=} \int_{-a}^{a} k_1(x) \frac{d\varphi}{dx} \frac{d\psi}{dx} + k_2(x) \varphi \psi \, dx : W^{1,p}(-a, a) \times W^{1,q}(-a, a) \to \mathbb{R},$$

the continuous linear operator $A : W^{1,p}(-a, a) \to W^{1,q}(-a, a)'$ which is a topological isomorphism for all $p \in (1, \infty)$ ([Auscher-Tchamitchian (1998)]). Here, $p = 2 - \varepsilon$ and $q = (2 - \varepsilon)/(1 - \varepsilon)$.
Given $\varepsilon, 0 < \varepsilon < 1$, $a > 0$, and the domain $\Omega = (-a, a)$, consider the problem:
to find $u \in W^{1,2-\varepsilon}(-a, a)$ such that
\[
\forall \varphi \in W^{1,2-\varepsilon}(-a, a) \quad \int_{-a}^{a} \frac{du}{dx} \frac{d\varphi}{dx} + u \varphi dx = \int_{-a}^{a} \frac{d}{dx} \sqrt{|x|} \frac{d\varphi}{dx} + \sqrt{|x|} \varphi dx.
\] (3.2)

Here, $X = W^{1,2-\varepsilon}(-a, a)$ and $Y = W^{1,2-\varepsilon}(-a, a)$ are reflexive Banach spaces since
$2 - \varepsilon > 1$ and $\frac{2-\varepsilon}{1-\varepsilon} > 1$. The elements of X will be denoted u and $x \in (-a, a)$ will be
the space variable. There exists a unique solution $u(x) = \sqrt{|x|}$, $-a \leq x \leq a$, and the
injections $W^{1,2-\varepsilon}(-a, a) \to C^0[-a, a]$ and $W^{1,2-\varepsilon}(-a, a) \to C^0[-a, a]$ are continuous
and the following objective function is well-defined:
\[
f(\Omega) \overset{\text{def}}{=} |u(a)|^2 + |u(-a)|^2 - 2 |u(0)|^2.
\]

\[1\]Given measurable functions $k_1, k_2 : [-a, a] \to \mathbb{R}$ such that $\alpha \leq k_i(x) \leq \beta$ for some constants $\alpha > 0$ and $\beta > 0$, and real numbers $1 < p < \infty$, $p^{-1} + q^{-1} = 1$, associate with the continuous bilinear mapping
\[
\varphi, \psi \mapsto b(\varphi, \psi) \overset{\text{def}}{=} \int_{-a}^{a} k_1(x) \frac{d\varphi}{dx} \frac{d\psi}{dx} + k_2(x) \varphi \psi dx : W^{1,p}(-a, a) \times W^{1,q}(-a, a) \to \mathbb{R},
\]
the continuous linear operator $A : W^{1,p}(-a, a) \to W^{1,q}(-a, a)'$ which is a topological isomorphism for all
$p \in (1, \infty)$ ([Auscher-Tchamitchian (1998)]). Here, $p = 2 - \varepsilon$ and $q = (2 - \varepsilon)/(1 - \varepsilon)$.

\(\overline{B}_r(0) \subset \mathbb{R} \) be the closed ball of radius \(r \) in \(0 \). Volume: \(t = |\overline{B}_r(0)| = 2r \). Perturbed domain is \(\Omega_r = \Omega \setminus \overline{B}_r(0) = (-a, -r) \cup (r, a) \) has 2 connected components and it is not possible to construct a bijection between \(\Omega \) and \(\Omega_r \).

Perturbed problems parametrized by \(r, 0 < r < a/2 \): to find \(u_r \in W^{1,2-\varepsilon}(\Omega_r) \) s. t.

\[
\forall \varphi \in W^{1,\frac{2-\varepsilon}{1-\varepsilon}}(\Omega_r), \quad \int_{\Omega_r} \frac{d u_t}{dx} \frac{d \varphi}{dx} + u_t \varphi \, dx = \int_{\Omega_r} \frac{d \sqrt{|x|}}{dx} \frac{d \varphi}{dx} + \sqrt{|x|} \varphi \, dx
\]

with the objective function

\[
j(r) \overset{\text{def}}{=} |u_r(a)|^2 - |u_r(r)|^2 + |u_r(-a)|^2 - |u_r(-r)|^2.
\]

The function \(u_r(x) = \sqrt{|x|} \) is the unique solution and

\[
j(r) = 2a - 2r \quad \Rightarrow \quad dj(0) \overset{\text{def}}{=} \lim_{r \searrow 0} \frac{1}{2r} (j(r) - j(0)) = -1.
\]

By construction, \(\Omega_r = T_r(\Omega \setminus \{0\}) \), where

\[
\text{Bijection } x \mapsto T_r(x) \overset{\text{def}}{=} \begin{cases}
 x - r \left(1 + \frac{x}{a}\right), & x \in (-a, 0) \\
 x + r \left(1 - \frac{x}{a}\right), & x \in (0, a)
\end{cases}
\begin{align*}
: \Omega \setminus \{0\} & \to \Omega_r = \Omega \setminus \overline{B}_r(0) \\
\end{align*}
\]

and notice that \(T_r(0^-) = -r, T_r(0^+) = r, T_r(a^-) = a, \) and \(T_r(-a^+) = -a \).
\(\overline{B}_r(0) \subset \mathbb{R} \) be the closed ball of radius \(r \) in \(0 \). Volume: \(t = |\overline{B}_r(0)| = 2r \). Perturbed domain is \(\Omega_r = \Omega \setminus \overline{B}_r(0) = (-a, -r) \cup (r, a) \) has 2 connected components and it is not possible to construct a bijection between \(\Omega \) and \(\Omega_r \).

Perturbed problems parametrized by \(r, 0 < r < a/2 \): to find \(u_r \in W^{1,2-\varepsilon}(\Omega_r) \) s. t.

\[
\forall \varphi \in W^{1,\frac{2-\varepsilon}{1-\varepsilon}}(\Omega_r), \quad \int_{\Omega_r} \frac{du_t}{dx} \frac{d\varphi}{dx} + u_t \varphi \, dx = \int_{\Omega_r} \frac{d\sqrt{|x|}}{dx} \frac{d\varphi}{dx} + \sqrt{|x|} \varphi \, dx
\]

with the objective function

\[
j(r) \overset{\text{def}}{=} |u_r(a)|^2 - |u_r(r)|^2 + |u_r(-a)|^2 - |u_r(-r)|^2.
\]

The function \(u_r(x) = \sqrt{|x|} \) is the unique solution and

\[
j(r) = 2a - 2r \quad \Rightarrow \quad dj(0) \overset{\text{def}}{=} \lim_{r \searrow 0} \frac{1}{2r} (j(r) - j(0)) = -1.
\]

By construction, \(\Omega_r = T_r(\Omega \setminus \{0\}) \), where

\[
\text{Bijection } x \mapsto T_r(x) \overset{\text{def}}{=} \begin{cases}
 x - r \left(1 + \frac{x}{a} \right), & x \in (-a, 0) \\
 x + r \left(1 - \frac{x}{a} \right), & x \in (0, a)
\end{cases} : \Omega \setminus \{0\} \to \Omega_r = \Omega \setminus \overline{B}_r(0)
\]

and notice that \(T_r(0^-) = -r \), \(T_r(0^+) = r \), \(T_r(a^-) = a \), and \(T_r(-a^+) = -a \).
for $a = 1$

the function u has a cusp at the point 0
Prior to proceeding, it is advantageous to simplify the computations by observing that
the function $u^r(x) = \sqrt{|T_r(x)|}$ is symmetrical with respect to $x = 0$, that is,
$u^r(-x) = u^r(x)$ and

$$j(r) = 2 \left[u^r(a)^2 - u^r(0^+)^2 \right]. \quad (3.3)$$

As a result

$$dj(0) = \lim_{r \searrow 0} \frac{j(r) - j(0)}{2r} = \lim_{r \searrow 0} \frac{u^r(a)^2 - u^r(0^+)^2}{r}$$

By changing the variable r to t, it is sufficient to apply Theorem 9 to the following
problem on $(0, a)$: to find $u^t \in W^{1, 2-\varepsilon}(0, a)$ such that for all $\varphi \in W^{1, 2-\varepsilon}(0, a)$

$$\int_0^a \frac{a}{a-t} \frac{du^t}{dx} \frac{d\varphi}{dx} + \frac{a-t}{a} u^t \varphi \, dx = \int_0^a \frac{1}{2\sqrt{T_t(x)}} \frac{d\varphi}{dx} + \frac{a-t}{a} \sqrt{T_t(x)} \varphi \, dx \quad (3.4)$$

with the objective function

$$j^+(t) \overset{\text{def}}{=} u^t(a)^2 - u^t(0^+)^2, \quad dj^+(0) = \lim_{t \searrow 0} (j^+(t) - j^+(0))/t.$$
From Theorem 9, the Lagrangian associated with the perturbed problems is

\[
G(t, \varphi, \psi) \overset{\text{def}}{=} |\varphi(a)|^2 - |\varphi(0)|^2 \\
+ \int_0^a \left(\frac{a}{a-t} \right) \frac{d\varphi}{dx} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) \varphi \psi \, dx \\
- \int_0^a \frac{1}{2 \sqrt{T_t(x)}} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) \sqrt{T_t(x)} \psi \, dx.
\]

(3.5)

It is non-convex in the \(\varphi \) variable in view of the presence of the term \(-|\varphi(0)|^2\). The standard adjoint \(p^t \) is solution of the adjoint equation

\[
\forall \varphi \in W^{1,2-\varepsilon}(0, a), \quad \left\{ \begin{array}{l}
2u^t(a) \varphi(a) - 2u^t(0) \varphi(0) \\
+ \int_0^a \left(\frac{a}{a-t} \right) \frac{d\varphi}{dx} \frac{dp^t}{dx} + \left(\frac{a-t}{a} \right) \varphi p^t \, dx = 0.
\end{array} \right.
\]

(3.6)

In particular this is true for all \(\varphi \in H^1(0, a) = W^{1,2}(0, a) \subset W^{1,2-\varepsilon}(0, a) \). Since the differential operator is uniformly coercive for \(0 \leq t \leq a/2 \), there exist a unique \(p^t \in H^1(0, a) \).
But, in view of the fact that for $0 \leq t \leq a/2$, u^t is finite for all x, we get more regularity: $p_t \in H^2(0, a) \cap C^\infty(0, a)$ is solution of

$$
-a a^{-2} p_t + \frac{a - t}{a} p^t = 0 \text{ in } (0, a)
$$

$$
\frac{a}{a-t} \frac{dp^t}{dx}(a) = -2 u^t(a), \quad \frac{a}{a-t} \frac{dp^t}{dx}(0) = -2 u^t(0).
$$

The explicit solution for $u^t(0) = \sqrt{t}$ and $u^t(a) = \sqrt{a}$ is

$$
p^t(x) = \frac{a}{a-t} \frac{2}{e^{a-t} - e^{-(a-t)}} \left[\sqrt{t} \left(e^{\frac{a-t}{a}(a-x)} + e^{-\frac{a-t}{a}(a-x)} \right) - \sqrt{a} \left(e^{\frac{a-t}{a}x} + e^{-\frac{a-t}{a}x} \right) \right].
$$

At $t = 0$,

$$
p^0(x) = -2\sqrt{a} \frac{e^x + e^{-x}}{e^a - e^{-a}}.
$$
The right-hand side \(t \)-derivative is

\[
d_t G(t, \varphi, \psi) = \int_0^a \frac{a}{(a-t)^2} \frac{d\varphi}{dx} \frac{d\psi}{dx} - \frac{1}{a} \varphi \psi \, dx + \frac{1}{a} \int_0^a \sqrt{T_t} \psi \, dx \\
- \frac{1}{2} \int_0^a \left[\frac{-1}{2(T_t)^{3/2}} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) \frac{1}{\sqrt{T_t}} \psi \right] \, dx \\
+ \frac{1}{2a} \int_0^a \left[\frac{-x}{2(T_t)^{3/2}} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) \frac{x}{\sqrt{T_t}} \psi \right] \, dx.
\]

At \(t = 0 \), substitute \(u^0(x) = \sqrt{x} \) and \(p^0 \) and Integrate by parts

\[
d_t G(0, u^0, p^0) = \int_0^a \frac{1}{a} \frac{d\sqrt{x}}{dx} \frac{dp^0}{dx} dx - \frac{1}{a} \sqrt{x} p^0 \, dx + \frac{1}{a} \int_0^a \sqrt{x} p^0 \, dx \\
- \frac{1}{2} \int_0^a \left[\frac{-1}{2x^{3/2}} \frac{dp^0}{dx} + \frac{1}{\sqrt{x}} p^0 \right] \, dx + \frac{1}{2a} \int_0^a \left[\frac{-1}{2\sqrt{x}} \frac{dp^0}{dx} + \sqrt{x}p^0 \right] \, dx \\
= \frac{1}{2a} \int_0^a \frac{d\sqrt{x}}{dx} \frac{dp^0}{dx} \, dx + \sqrt{x}p^0 \, dx - \frac{1}{2} \int_0^a \left[\frac{d}{dx} \frac{1}{\sqrt{x}} \frac{dp^0}{dx} + \frac{1}{\sqrt{x}} p^0 \right] \, dx = 0.
\]
Go back to the Lagrangian (3.5) of the perturbed problem and compute

$$d_x G(t, \bar{\varphi}, \psi; \varphi) = 2 \bar{\varphi}(a) \varphi(a) - 2 \bar{\varphi}(0) \varphi(0) + \int_0^a \left(\frac{a}{a-t} \right) \frac{d\varphi}{dx} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) \varphi \psi \, dx.$$

The averaged adjoint state equation for y^t must satisfy the equation: for all $\varphi \in W^{1,2-\varepsilon}(0, a)$

$$0 = \int_0^1 d_x G(t, u^0 + s(u^t - u^0), y^t; \varphi)$$

$$= (u^t(a) + u^0(a)) \varphi(a) - (u^t(0) + u^0(0)) \varphi(0) + \int_0^a \left(\frac{a}{a-t} \right) \frac{d\varphi}{dx} \frac{dy^t}{dx} + \left(\frac{a-t}{a} \right) \varphi \, y^t \, dx.$$

Its solution $y^t \in H^2(0, a) \cap C^\infty(0, a)$ satisfies the following equations

$$- \left(\frac{a}{a-t} \right) \frac{d^2 y^t}{dx^2} + \left(\frac{a-t}{a} \right) y^t = 0, \quad \text{in } (0, a)$$

$$\left(\frac{a}{a-t} \right) \frac{dy^t}{dx}(0) = -(u^t(0) + u^0(0)) \text{ at } x = 0$$

$$\left(\frac{a}{a-t} \right) \frac{dy^t}{dx}(a) = -(u^t(a) + u^0(a)) \text{ at } x = a.$$
Its explicit expression with $u^t(0) = \sqrt{t}$ and $u^t(a) = \sqrt{a}$ is

$$y^t(x) = \frac{a}{a-t} \left[\frac{1}{e^{a-t} - e^{-(a-t)}} \right] \left[\sqrt{t} \left(e^{\frac{a-t}{a}(a-x)} + e^{-\frac{a-t}{a}(a-x)} \right) - 2\sqrt{a} \left(e^{\frac{a-t}{a}x} + e^{-\frac{a-t}{a}x} \right) \right].$$

The condition to be checked is the existence of the limit (the extra term)

$$\lim_{t \to 0} dyG \left(t, u^0, 0; \frac{y^t - y^0}{t} \right).$$

So, for $\psi = (y^t - y^0)/t \in H^2(0, a)$,

$$dyG(t, u^0, 0; \psi) = \int_0^a \left(\frac{a}{a-t} \right) \frac{du^0}{dx} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) u^0 \psi dx - \int_0^a \frac{1}{2\sqrt{T_t(x)}} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) \sqrt{T_t(x)} \psi dx$$

$$= \int_0^a \left(\frac{a}{a-t} \right) \frac{du^0}{dx} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) u^0 \psi dx - \int_0^a \frac{a}{a-t} \frac{d\sqrt{T_t(x)}}{dx} \frac{d\psi}{dx} + \frac{a-t}{a} \sqrt{T_t(x)} \psi dx$$

$$= \int_0^a \left(\frac{a}{a-t} \right) \frac{d(u^0 - u^t)}{dx} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) (u^0 - u^t) \psi dx$$

$$= (u^0 - u^t) \left(\frac{a}{a-t} \right) \frac{d}{dx} \left(\frac{y^t - y^0}{t} \right) \bigg|_{x=0}^a \to -1.$$
Its explicit expression with $u^t(0) = \sqrt{t}$ and $u^t(a) = \sqrt{a}$ is

$$y^t(x) = \frac{a}{a-t} \frac{1}{e^{a-t} - e^{-(a-t)}} \left[\sqrt{t} \left(e^{\frac{a-t}{a}(a-x)} + e^{-\frac{a-t}{a}(a-x)} \right) - 2\sqrt{a} \left(e^{\frac{a-t}{a}x} + e^{-\frac{a-t}{a}x} \right) \right].$$

The condition to be checked is the existence of the limit (the extra term)

$$\lim_{t \searrow 0} d_y G \left(t, u^0, 0; \frac{y^t - y^0}{t} \right).$$

So, for $\psi = (y^t - y^0) / t \in H^2(0, a)$,

$$d_y G(t, u^0, 0; \psi)$$

$$= \int_0^a \left(\frac{a}{a-t} \right) \frac{du^0}{dx} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) u^0 \psi dx - \int_0^a \frac{1}{2\sqrt{T_t(x)}} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) \sqrt{T_t(x)} \psi dx$$

$$= \int_0^a \left(\frac{a}{a-t} \right) \frac{d(u^0 - u^t)}{dx} \frac{d\psi}{dx} + \left(\frac{a-t}{a} \right) (u^0 - u^t) \psi dx$$

$$= (u^0 - u^t) \left(\frac{a}{a-t} \right) \frac{d}{dx} \left(\frac{y^t - y^0}{t} \right) \bigg|_{x=0} \rightarrow -1.$$
Theorem

(i) For $0 < \varepsilon < 1$ and $t \in [0, a/2]$,

$$\|u^t\|_{W^{1,2-\varepsilon}(0,a)} \leq c(\varepsilon, a), \quad \|u^t - u^0\|_{C^0[0,a]} \leq \sqrt{t}, \quad u^t \rightharpoonup u^0 \text{ in } W^{1,2-\varepsilon}(0,a)$$

weak and this rate of convergence is sharp.

(ii) For $x \in (0,a)$, the material derivative is given by

$$\dot{u}(x) \overset{\text{def}}{=} \lim_{t \searrow 0} \frac{u^t(x) - u^0(x)}{t} = \frac{1}{2} \left(\frac{1}{\sqrt{|x|}} - \frac{\sqrt{|x|}}{a} \right) \geq 0,$$

$$\dot{u} \in L^{2-\varepsilon}(0,a) \text{ for } 0 < \varepsilon \leq 1, \text{ but } \dot{u} \notin L^2(0,a).$$

Moreover, as $t \to 0$,

$$\left\| \frac{(u^t - u^0)}{t} - \dot{u} \right\|_{L^{2-\varepsilon}(0,a)} \to 0. \quad (3.7)$$

(iii) As for the derivative of \dot{u},

$$\frac{d\dot{u}}{dx}(x) = -\frac{1}{4\sqrt{|x|}} \begin{cases} 1/x + 1/a, & x \in (0,a) \\ 1/x - 1/a, & x \in (-a,0) \end{cases} \quad \frac{d\dot{u}}{dx}(0^+) = -\infty.$$
Therefore,

\[\frac{d\dot{u}}{dx} \notin L^1(0, a), \text{ and, a fortiori, } \frac{d\dot{u}}{dx} \notin L^{2-\varepsilon}(0, a). \]

From part (iii) we cannot apply the chain rule to get \(dj(0^+)\) since the expression is undetermined:

\[2u^0(a)\dot{u}(a) - 2u^0(0)\dot{u}(0) = 2u^0(a)\dot{u}(a) - 2[0(\infty)]! \]
1. **Simple Illustrative Examples in PDE Control and Shape**
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2. **Averaged Adjoint for State Constrained Objective Functions**
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3. **Example of a Topological Derivative: Non-zero Extra Term**
 - Topological Derivative
 - A One Dimensional Example

4. **Multivalued Case**
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5. **References**
We give two theorems for the existence and expressions of $dg(0)$ in the multivalued case where only a right-hand side derivative of g is expected.

- New conditions and quadratic examples were given in [Delfour-Sturm (2017)] without the extra term.

- Complete conditions including the extra term were published in [Delfour-Sturm (2016)] at an IFAC meeting in 2016 prior to the publication of [Delfour-Sturm (2017)] due to longer publication delays in the Journal of Convex Analysis.

Here, we give the latest version from [Delfour-Sturm (2016)].

The first theorem is a mild generalization of the singleton case. Yet, it can be applied to PDE problems with non-homogeneous Dirichlet boundary conditions where non-unique extensions are used (cf. [Delfour-Zolésio (2011)]).

A new non-convex multivalued example will be given for the second more general theorem.
Outline

1 Simple Illustrative Examples in PDE Control and Shape
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2 Averaged Adjoint for State Constrained Objective Functions
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3 Example of a Topological Derivative: Non-zero Extra Term
 - Topological Derivative
 - A One Dimensional Example

4 Multivalued Case
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5 References
Theorem (A first extension)

Given X, Y, and G, let (H0) and the following hypotheses be satisfied:

(H1) for all t in $[0, \tau]$, $X(t) \neq \emptyset$ and $g(t)$ is finite, and for all $x^t \in X(t)$ and $x^0 \in X(0)$, $Y(t, x^0, x^t) \neq \emptyset$;

(H2) for all $x \in X(0)$ and $y \in Y(0, x)$, $d_t G(0, x, y)$ exists;

(H3) there exist $\hat{x}^0 \in X(0)$, $\hat{y}^0 \in Y(0, \hat{x}^0)$, and $R(0, \hat{x}^0, \hat{y}^0)$ such that for each sequence $t_n \to 0$, $0 < t_n \leq \tau$, there exist a subsequence $\{t_{n_k}\}$ of $\{t_n\}$, $x^{t_{n_k}} \in X(t_{n_k})$, and $y^{t_{n_k}} \in Y(t_{n_k}, \hat{x}^0, x^{t_{n_k}})$ such that

$$
\lim_{k \to \infty} d_y G\left(t_{n_k}, \hat{x}^0, 0; (y^{t_{n_k}} - \hat{y}^0)/t_{n_k}\right) = R(0, \hat{x}^0, \hat{y}^0).
$$

Then, $dg(0)$ exists and there exist $\hat{x}^0 \in X(0)$ and $\hat{y}^0 \in Y(0, \hat{x}^0)$ such that

$$
dg(0) = d_t G(0, \hat{x}^0, \hat{y}^0) + R(0, \hat{x}^0, \hat{y}^0).
$$

When $X(0) = \{x^0\}$ and $Y(0, x^0) = \{y^0\}$ are singletons, the above hypotheses are equivalent to the ones of Thm. 9.
1 Simple Illustrative Examples in PDE Control and Shape
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2 Averaged Adjoint for State Constrained Objective Functions
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3 Example of a Topological Derivative: Non-zero Extra Term
 - Topological Derivative
 - A One Dimensional Example

4 Mutivalued Case
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5 References
Theorem (General Case)

Given X, Y, and G, let (H0) and the following hypotheses be satisfied:

(H1) $\forall t \in [0, \tau], X(t) \neq \emptyset$, $g(t)$ is finite, and $\forall x^t \in X(t)$ and $x^0 \in X(0)$, $Y(t, x^0, x^t) \neq \emptyset$;

(H2) for all $x \in X(0)$ and $y \in Y(0, x)$, $d_t G(0, x, y)$ exists and, for each $x \in X(0)$, there exists a function $y \mapsto R(0, x, y) : Y(0, x) \to \mathbb{R}$ satisfying (H3) and (H4) below;

(H3) for each sequence $t_n \to 0$, $0 < t_n \leq \tau$, $\exists x^0 \in X(0)$ such that for all $y^0 \in Y(0, x^0)$, $\exists a$ subsequence $\{t_{n_k}\}$ of $\{t_n\}$, $x^{t_{n_k}} \in X(t_{n_k})$, and $y^{t_{n_k}} \in Y(t_{n_k}, x^0, x^{t_{n_k}})$ such that

$$\liminf_{k \to \infty} d_y G \left(t_{n_k}, x^0, 0; (y^{t_{n_k}} - y^0)/t_{n_k} \right) \geq R(0, x^0, y^0);$$

(H4) for each sequence $t_n \to 0$, $0 < t_n \leq \tau$ and all $x^0 \in X(0)$, there exist $y^0 \in Y(0, x^0)$, a subsequence $\{t_{n_k}\}$ of $\{t_n\}$, $x^{t_{n_k}} \in X(t_{n_k})$, and $y^{t_{n_k}} \in Y(t_{n_k}, x^0, x^{t_{n_k}})$ such that

$$\limsup_{k \to \infty} d_y G \left(t, x^0, 0; (y^{t_{n_k}} - y^0)/t_{n_k} \right) \leq R(0, x^0, y^0).$$

Then, $dg(0)$ exists and there exists $\hat{x}^0 \in X(0)$ and $\hat{y}^0 \in Y(0, \hat{x}^0)$ such that

$$dg(0) = d_t G(0, \hat{x}^0, \hat{y}^0) + R(0, \hat{x}^0, \hat{y}^0)$$

$$= \sup_{y \in Y(0, \hat{x}^0)} d_t G(0, \hat{x}^0, y) + R(0, \hat{x}^0, y) = \inf_{x \in X(0)} \sup_{y \in Y(0, x)} d_t G(0, x, y) + R(0, x, y).$$
OUTLINE

1 Simple Illustrative Examples in PDE Control and Shape
 - Derivative of PDE Constrained Utility Function with respect to Control
 - Shape Derivative
 - Construction of Micheletti: complete metric group and its tangent space

2 Averaged Adjoint for State Constrained Objective Functions
 - Some Background
 - Abstract Framework
 - A New Condition in the Singleton Case with an Extra Term
 - Back to the Simple Illustrative Example from PDE Control

3 Example of a Topological Derivative: Non-zero Extra Term
 - Topological Derivative
 - A One Dimensional Example

4 Mutivalued Case
 - Two Theorems Without and With the Extra Term
 - First Theorem: Mild Generalization
 - Second Theorem: General Case
 - Second Theorem: A Non-convex Example where $X(0)$ is not a singleton

5 References
Consider the objective function and the constraint set
\[f(x) \overset{\text{def}}{=} Qx \cdot x, \quad U \overset{\text{def}}{=} \{ x \in \mathbb{R}^n : Ax \cdot x = 1 \}, \quad \inf f(U) \] (4.1)

Where \(Q \) is an arbitrary symmetrical \(n \times n \) matrix and \(A > 0 \) is a symmetrical \(n \times n \) positive definite matrix. \(U \neq \emptyset \) is compact and the function \(f \) is not necessarily convex.

The minimization problem is equivalent to the generalized eigenvalue problem
\[\lambda(Q, A) \overset{\text{def}}{=} \inf_{x \neq 0} \frac{Qx \cdot x}{Ax \cdot x} \] (4.2)

where the minimizer \(\hat{x} \) is solution of the problem
\[[Q - \lambda(Q, A)A] \hat{x} = 0, \quad A\hat{x} \cdot \hat{x} = 1. \] (4.3)

The semidifferential of \(\lambda(Q, A) \) with respect to \(Q \) in a direction \(Q' \) and \(A \) in the direction \(A' \) can be found in [Delfour 2011, pp. 166–168] for symmetrical matrices:
\[d\lambda(Q, A; Q', A') = \inf_{x \in X(0)} Q' x \cdot x (Ax \cdot x) - (Qx \cdot x) A' x \cdot x \]
\[= \inf_{x \in X(0)} Q' x \cdot x - \lambda(Q, A) A' x \cdot x, \] (4.4)

minimizers \(X(0) \overset{\text{def}}{=} \{ x \in \mathbb{R}^n : [Q - \lambda(Q, A)A]x = 0 \text{ and } Ax \cdot x = 1 \} \) (4.5)

states \(E(0) \overset{\text{def}}{=} \{ x \in \mathbb{R}^n : Ax \cdot x = 1 \} \).
For $t \geq 0$, $x \in \mathbb{R}^n$, and $y \in \mathbb{R}$, introduce the Lagrangian

$$G(t, x, y) \overset{\text{def}}{=} (Q + tQ')x \cdot x + y [(A + tA')x \cdot x - 1]$$

$$g(t) \overset{\text{def}}{=} \inf_{x \in \mathbb{R}^n} \sup_{y \in \mathbb{R}} G(t, x, y), \quad dg(0) \overset{\text{def}}{=} \frac{g(t) - g(0)}{t}.$$

where A' and Q' are symmetrical matrices. Set $Q(t) = Q + tQ'$ and $A(t) = A + tA'$. It is easy to check that

$$d_t G(t, x, y) = Q'x \cdot x + y A'x \cdot x$$

$$d_x G(t, x, y; x') = 2 [Q(t) + y A(t)] x \cdot x'$$

$$d_y G(t, x, y; y') = y' [A(t)x \cdot x - 1].$$

Since A is positive definite, there exists $\alpha > 0$ such that for all $x \in \mathbb{R}^n$, $Ax \cdot x \geq \alpha \|x\|^2$. Hence, there exists $\tau > 0$ such that for all $0 \leq t \leq \tau$

$$\forall t, 0 \leq t \leq \tau, \forall x \in \mathbb{R}^n, \quad A(t)x \cdot x \geq \frac{\alpha}{2} \|x\|^2$$

and for such t, the set of constraints $E(t) \overset{\text{def}}{=} \{x : A(t)x \cdot x = 1\} \neq \emptyset$ is compact. So there exist minimizers $x^t \in \mathbb{R}^n$ and $X(t)$ is not empty for $0 \leq t \leq \tau$

$$\lambda^t \overset{\text{def}}{=} \inf_{A(t)x \cdot x = 1} Q(t)x \cdot x = Q(t)x^t \cdot x^t.$$
To summarize,

\[d_t G(t, x, y) = Q'x \cdot x + y A'x \cdot x \] (4.13)

\[\left[Q(t) + y^t A(t) \right] \frac{x^t + x^0}{2} = 0 \text{ (average adjoint equation)} \] (4.14)

\[\forall y', \quad d_y G(t, x^t, 0; y') = y' [A(t)x^t \cdot x^t - 1] = 0 \text{ (state equation)} \] (4.15)

\[d_y G \left(t, x^0, 0; \frac{y^t - y^0}{t} \right) = \frac{y^t - y^0}{t} [A(t)x^0 \cdot x^0 - 1]. \] (4.16)

From the Lagrange Multiplier rule, the standard adjoint is solution of

\[\left[Q(t) + p^t A(t) \right] x^t = 0 \quad \Rightarrow \quad p^t = -Q(t)x^t \cdot x^t = -\lambda^t. \] (4.17)

The set of minimizers is given by the expression

\[X(t) = \left\{ x \in \mathbb{R}^n : [Q(t) + p^t A(t)]x = 0 \text{ and } A(t)x \cdot x = 1 \right\}. \] (4.18)

For all \(x^t \in X(t), x^t \neq 0 \) and \(-x^t \in X(t) \). So \(X(t) \) is not a singleton. However,

\[\forall x^t \in X(t), \quad Y(t, x^t) = \{-\lambda^t\} \]

and \(Y(t, x^t) \) is a singleton independent of the choice of the minimizer \(x^t \in X(t) \).
Mutivalued Case
A Non-convex Example where $X(0)$ is not a singleton

Given $x^0 \in X(0)$ and $x^t \in X(t)$, the *averaged adjoint* is solution of the equation:

$$\forall x', \quad 0 = \int_0^1 dx G(t, x^0 + s(x^t - x^0), y^t; x') ds$$

$$= 2 \int_0^1 \left[Q(t) + y^t A(t) \right] (x^0 + s(x^t - x^0)) \cdot x' ds$$

$$= 2 \left[Q(t) + y^t A(t) \right] \frac{x^t + x^0}{2} \cdot x'$$

$$\Rightarrow \left[Q(t) + y^t A(t) \right] \frac{x^t + x^0}{2} = 0. \quad (4.19)$$

$$\Rightarrow Y(t, x^0, x^t) = \begin{cases}
- \frac{Q(t) x^t + x^0}{2} \cdot \frac{x^t + x^0}{2}, & \text{if } x^t + x^0 \neq 0 \\
0, & \text{if } x^t + x^0 = 0
\end{cases} \quad (4.20)$$

Therefore, $Y(t, x^0, x^t) \neq \emptyset$.
A preliminary lemma.

(i) For all \(t \), \(0 \leq t \leq \tau \),

\[
\forall x^t \in X(t), \quad Y(t, x^t, x^t) = \{-\lambda^t\}
\]

(4.21)

where \(\lambda^t \) is the minimum of the objective function \(Q(t)x \cdot x \) with respect to \(E(t) = \{x \in \mathbb{R}^n : A(t)x \cdot x = 1\} \) as seen in (4.12).

(ii) For each sequence \(\{t_n : 0 < t_n \leq \tau\} \), there exist \(\bar{x} \in X(0) \), \(x^{t_n} \in X(t_n) \), and \(y^{t_n} \in Y(t_n, \bar{x}, x^{t_n}) \) such that

\[
x^{t_n} \to \bar{x}, \quad \lambda^{t_n} \to \lambda^0, \quad \text{and} \quad y^{t_n} \to y^0 = -\lambda^0,
\]

(4.22)

and the set of averaged adjoint states \(Y(t_n, \bar{x}, x^{t_n}) = \{y^{t_n}\} \) is a singleton.

(iii) As \(t \searrow 0 \), the quotient

\[
\frac{\lambda^t - \lambda^0}{t}
\]

(4.23)

is bounded.

(iv) For the sequences of part (ii), the quotients

\[
\frac{\lambda^{t_n} - \lambda^0}{t_n} \quad \text{and} \quad \frac{y^{t_n} - y^0}{t_n}
\]

(4.24)

are bounded.
Given symmetrical $n \times n$ matrices $A, A', Q,$ and Q' such that A is positive definite, there exists at least one x^0 such that $Ax^0 \cdot x^0 = 1$ and

$$\lambda(Q, A) = \inf_{Ax \cdot x = 1} Qx \cdot x = Qx^0 \cdot x^0. \tag{4.25}$$

Moreover

$$d\lambda(Q, A; Q', A') \stackrel{\text{def}}{=} \lim_{t \to 0} \frac{\lambda(Q + tQ', A + tA') - \lambda(Q, A)}{t} = \inf_{x^0 \in X(0)} \left[Q' - \lambda(Q, A) A' \right] x^0 \cdot x^0, \tag{4.26}$$

$$X(0) \stackrel{\text{def}}{=} \{ x \in \mathbb{R}^n : Ax \cdot x = 1 \text{ and } [Q - \lambda(Q, A)A]x = 0 \}. \tag{4.27}$$

If $X(0)$ is not simple the dimension of the space $X(0)$ is greater or equal to 2 and we only have a semi-différential.
Proof.

(i) **Hypothesis (H1).** We have seen that for all $0 \leq t \leq \tau$, $X(t) \neq \emptyset$ and that, for all $x^t \in X(t)$, $Y(t, x^t) = \{-\lambda^t\}$. For the averaged adjoint y^t

\[
\Rightarrow Y(t, x^0, x^t) = \begin{cases}
\left\{ -\frac{Q(t)\frac{x^t+x^0}{2} \cdot \frac{x^t+x^0}{2}}{A(t)\frac{x^t+x^0}{2} \cdot \frac{x^t+x^0}{2}} \right\}, & \text{if } x^t + x^0 \neq 0 \\
\mathbb{R}, & \text{if } x^t + x^0 = 0
\end{cases}
\]

(ii) **Hypothesis (H2).** We have seen that $d_t G(t, x, y) = Q'x \cdot x + y A'x \cdot x$. So for all $x^0 \in X(0)$ and the singleton $Y(0, x^0) = \{-\lambda^0\}$

\[
d_t G(t, x^0, y^0) = Q'x^0 \cdot x^0 - \lambda^0 A'x^0 \cdot x^0.
\]

(iii) **Hypothesis (H3).** For each sequence $t_n \to 0$, $0 < t_n \leq \tau$, choose the sequence $\{x^{t_n}\}$ and its limit $\bar{x} \in X(0)$ from the Lemma (ii) and use the fact that the corresponding sequence \(\frac{y^{t_n} - y^0}{t_n} \) is bounded by some constant c from the Lemma (iv):

\[
\left| d_y G \left(t_n, \bar{x}, 0; \frac{y^{t_n} - y^0}{t_n} \right) \right| = \left| \frac{y^{t_n} - y^0}{t} \right| [A(t_n)\bar{x} \cdot \bar{x} - 1] \\
\leq \left| \frac{y^{t_n} - y^0}{t_n} \right| |A(t_n)\bar{x} \cdot \bar{x} - 1| \leq c \left| A(t_n)\bar{x} \cdot \bar{x} - 1 \right| \to c \left| A(0)\bar{x} \cdot \bar{x} - 1 \right| = 0
\]
(iv) *Hypothesis (H4).* For all \(x^0 \in X(0) \) \(Y(0, x^0) = \{-\lambda^0\} \) is a singleton independent of \(x^0 \in X(0) \). As in (iii), for each sequence \(t_n \to 0 \), \(0 < t_n \leq \tau \), choose the sequence \(\{x^{t_n}\} \) and its limit \(\bar{x} \in X(0) \) from the Lemma (ii) and use the fact that the corresponding sequence \(\frac{y^{t_n} - y^0}{t_n} \) is bounded by some constant \(c \) from the Lemma (iv):

\[
\left| d_y G \left(t_n, x^0, 0; \frac{y^{t_n} - y^0}{t_n} \right) \right| = \left| \frac{y^{t_n} - y^0}{t} \left[A(t_n)x^0 \cdot x^0 - 1 \right] \right|
\leq \left| \frac{y^{t_n} - y^0}{t_n} \right| \left| A(t_n)x^0 \cdot x^0 - 1 \right|
\leq c \left| A(t_n)x^0 \cdot x^0 - 1 \right| \to c \left| A(0)x^0 \cdot x^0 - 1 \right| = 0.
\]

(v) The conclusion follows from Theorem 12 where the \(\sup \) disappears since \(Y(0, x^0) = \{-\lambda^0\} = \{-\lambda(Q, A)\} \) is a singleton independent of \(x^0 \in X(0) \).
Thank you for your attention

[Lemaire (1970)] Lemaire B., Problèmes min-max et applications au contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles linéaires, Thèse de doctorat d’état, Univ. de Montpellier, France 1970.

