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Problem statement

For a given unstable matrix A ∈ S with S a prescribed structure,
stabilization consists in looking for a nearest stable matrix B ∈ S.

Few extensions

Feedback stabilization of a linear control system (a classical open
problem in control theory);

Stabilization of polynomials (through companion matrices);

Stabilization of gyroscopic systems;

Computation of the closest correlation matrix (symmetric
positive definite with unit diagonal) to a symmetric matrix
(relevant problem from finance, see e.g. N. Higham webpage).

This distance is measured in a matrix norm, often the spectral or the
Frobenius norm. In this talk we consider the Frobenius norm.
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Feedback stabilization of linear control systems

Consider the linear dynamical system with input and output defined by

{

ẋ(t) = A x(t) + B u(t),
y(t) = C x(t)

where A ∈ R
n,n, B ∈ R

n,p, C ∈ R
q,n, x is the state, u is the input

and y is the output. Setting the control u proportional to the output,
u = ∆y (with ∆ ∈ C

p,q) one gets the ODE

ẋ(t) = (A+ B∆C ) x(t).

where ∆ ∈ C
p,q. If A is not Hurwitz, a fundamental problem is to

find a stabilizing feedback, i.e. a matrix ∆ of minimum norm s.t.
A+ B∆C is Hurwitz.

The constraints on actuators require ∆ as small as possible.
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Example: Boeing767-matrix
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From flutter analysis of the Boeing 767 aircraft. A unstable (two
eigenvalues in C

+) B and C are fixed n × 2 and 2× n matrices.
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Stabilization: motivation and preliminary ideas

For a linear system of ODEs, arising from discretization of a PDE and
by successive model reduction, it is possible that peculiar properties,
like stability are lost. For this reason it is important to provide a
minimal norm correction of the matrix A, say A+∆, which is stable.

How to stabilize
A natural idea is that of sweeping the eigenvalues in the right complex
plane to the left, along an optimal path traveled by the eigenvalues in
the complex plane under a smoothly varying perturbation to A.

Drawback of individual sweeping
This however turns out to be very difficult and often inefficient.
The reason is that at the same time several eigenvalues from the left
usually move to the right and controlling a large part of the spectrum
woud be very demanding.
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Nicola Guglielmi (Università dell’Aquila) Low-rank ODEs 23 June, 2017 5 / 27



Stabilization of an unstable system
Given A ∈ S consider y ′ = Ay with eigenvalues with positive real part.

How far is A from a Hurwitz matrix?
For ε s.t. ‖∆‖ ≤ ε, how small can be spectral abscissa of A+∆?

This is a difficult optimization problem, it is non-convex and
non-smooth (the spectral abscissa is non-Lipschitz).

Some recent literature

Nesterov, Orbandexivry and van Dooren, 2013 propose an iterative
method based on successive convex approximations. The method
behaves well but its efficiency is limited by the dimension.
Overton, 2012 proposes a BFGS-based penalization method

f (∆) = ‖∆|‖F + ρα(A+∆) (with ρ > 0 if α(A+∆) > 0)

In our experiments results sometimes far from optimality.
Gillis & Sharma, 2017 propose a reformulation using linear dissipative
Hamiltonian systems. Very good results for small problems.
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Problem setting

Let A ∈ S, where S denotes a structured set of matrices e.g.

S = R
n,n, matrices with prescribed sparsity pattern, Toeplitz . . .

an unstable matrix, having few eigenvalues in the right complex plane.

A matrix nearness problem. Compute

dS(A) = inf
{

‖A− B‖ : B ∈ S is Hurwitz
}

.

One clear fact: the matrix B has necessarily eigenvalues on imaginary
axis. If not, by continuity of eigenvalues ‖A− B‖ may be reduced.

For practical purposes it seems natural to prefer a structured distance
although the unstructured one has also interest.
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Synthesis of our contribute

Methodology
We use a two-level procedure that uses matrix ODEs on the inner
level and a fast one-dimensional optimization on the outer level.

Local optimality
As with the algorithms proposed in the literature, our method is not
guaranteed to yield the perturbation of globally minimal norm.
However, our method is globally convergent to a local optimum.

Numerical experience
In our many numerical experiments we found, however, that the
approach presented here yields stabilizing perturbations that have a
norm comparable to or smaller than those given by the algorithm of
Nesterov, Orbandexivry & van Dooren, at significantly reduced
computational cost especially for matrices of dimension d ≥ 30.
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Sketch of the methodology
Notation. Let m+ denote the number of eigenvalues with positive real
part of the given matrix A.

Our approach can be sketched as follows.

Choose an integer m (usually m ≥ m+) and consider the m
eigenvalues with largest real part of perturbations A+∆.

Find a perturbation ∆ of minimal norm such that these m
eigenvalues are aligned on the imaginary axis.

Remark: for m > m+, it may appear counterintuitive to try to align
more eigenvalues on the imaginary axis than the original number m+.

If A is Hermitian this result is rigorous (by Weyl theory).

In the general case this is motivated by numerical results with the
algorithm of Nesterov, Orbandexivry & van Dooren where such an
alignment is observed in the stabilized matrix.
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Example: a 10× 10 matrix, m = 6
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in black the eigenvalues of A; in red those of A+∆.
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A measure of instability

For a given m and a fixed perturbation size ε > 0, we write ∆ = εE
(with ‖E‖F = 1) and minimize the function

Fε(E ) =
1

2

m
∑

i=1

(

Re λi(A+εE )
)2

(constrained by ‖E‖F = 1),

where {λi}
m
i=1 have largest real part. If Fε(E ) > 0 we have a measure

of minimal instability associated to an optimal perturbation of norm ε.

Remark: we prove that the optimal perturbation matrix E has rank at
most m. This motivates to formulate an algorithm that considers only
rank-m perturbations. Interesting when n ≫ m.
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Modified functional

Instead of the functional Fε, one could choose a different functional

Φε(E ) =
m
∑

i=1

ωi

(

Re λi(A+ εE )
)

with nonnegative weights ωi , which may depend on E .

A natural choice is to choose ωi proportional to Re λi(A+ εE ) for
those i where the real part is larger than 0. So one might choose

ωi = max
{

0,Re λi(A+ εE )
}

.

For the following we have chosen to work with the smooth functional
Fε, but we note that the whole program could be carried out also for
Φε with minor modifications.
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Two-level procedure for matrix matrix stabilization

Assume S is a linear space of matrices.

Matrix A is given.

(i) For given ε > 0, find E = E (ε) ∈ S of unit norm which
minimizes Fε(E ).

(ii) Modify ε until Fε(E ) = 0 i.e. find ε∗ −→ min
ε>0

{

Fε(E (ε)) = 0
}

.

use a structured ODE for determining E in the first step
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An ODE approach
Idea: to construct a smooth matrix valued function (here ε is fixed)

A+ εE (t), with E (t) ∈ S and ‖E (t)‖F ≡ 1

such that Fε(E (t)) is decreasing w.r.t. t.

Lemma (Basic perturbation result: Wilkinson, Kato, ...)

Let t 7→ E (t) be a differentiable matrix valued function,
and λ(t) a path of simple eigenvalues of A+ εE (t). Then,

λ̇(t) =
y(t)∗Ė (t)x(t)

y(t)∗x(t)
= σ(t)

〈

y(t)x(t)∗, Ė (t)
〉

where y(t), x(t) are left and right eigenvectors of A+ εE (t) to λ(t)
(in the sequel we assume σ(t) = 1/y(t)∗x(t) > 0).

〈A,B〉 = trace (A∗B) denotes the Frobenius inner product
Nicola Guglielmi (Università dell’Aquila) Low-rank ODEs 23 June, 2017 14 / 27



Free gradient

Consider Fε(E ) : C
n,n −→ R

Let Ė (t) the derivative of a smooth matrix-valued function E (t), then

d

dt
Fε (E (t)) = εRe

〈

m
∑

i=1

γi(t) yi(t)xi(t)
∗, Ė (t)

〉

with γi(t) = Re λi

(

A+ εE (t)
)

/yi(t)
∗xi(t), i = 1, . . . ,m.

This yields the free gradient

G0(E ) =
m
∑

i=1

γiyix
∗

i a rank-m matrix
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Projected gradient of the functional

The optimization problem

Z∗ = argmin
Z∈S

Re
〈 m
∑

i=1

γi yix
∗

i ,Z
〉

subj to Re 〈E ,Z 〉 = 0 (norm preservation)

and ‖Z‖F = 1 (for uniqueness)

The solution is given by

Z∗ ∝ − G (E ) = − PS

(

G0(E )
)

+ µE ,

where PS(·) denotes orthogonal projection onto S and G (E ) the
projected gradient onto manifold S ∩ {Z ∈ C

n,n : Re 〈E ,Z 〉 = 0}.
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Gradient system

In order to minimize Fε we consider the ODE Ė = − G (E ),

Ė = −PS (G0(E )) + µE , with µ = Re 〈PS (G0(E )) ,E 〉

Theorem

The flow of the ODE has the following properties:
1 Norm conservation: ‖E (t)‖F = 1 for all t;
2 Monotonicity: Fε (E (t)) decreasing along solutions of ODE;
3 Stationary points: the following statements are equivalent:

d

dt
Fε

(

E (t)
)

= 0 ⇐⇒ Ė = 0 ⇐⇒ E real multiple of PS (G0(E ))

Issues: Computing stationary points of the ODEs efficiently.
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Low-rank ODEs in the case S = C
n,n

Note: Stationary points are obtained by

Ė = −G0(E ) + µE = 0 =⇒ E ∝ G0(E ) =
m
∑

i=1

γiyix
∗

i (rank-m).

Alas the solution of the ODE has full rank (even if E (0) has rank-m).
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Low-rank ODEs in the case S = C
n,n

Note: Stationary points are obtained by

Ė = −G0(E ) + µE = 0 =⇒ E ∝ G0(E ) =
m
∑

i=1

γiyix
∗

i (rank-m).

Alas the solution of the ODE has full rank (even if E (0) has rank-m).

Main result: dynamics on the manifold Mm of rank-m matrices
by F-orthogonal projection Πm

E to tangent space TEM
m:

Ė = − Πm
E

(

−G0(E ) + µE
)

Theorem

The projected ODE has the same properties of the unprojected ODE
(monotonicity, norm conservation, stationary points).
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Rank-m differential equations

Every rank-m matrix E can be written in the form E = USV ∗ where
U ,V ∈ C

n,m are orthonormal and S ∈ C
m,m is invertible.

The decomposition is not unique but we use a unique decomposition
in the tangent space. Using the explicit projection formula

Πm
E (G0) = G0VV

∗ − UU∗G0VV
∗ + UU∗G0, G0 ∈ C

n,n

we get for the projected ODE















U̇ = (I − UU∗)G0VS
−1 (U ∈ C

n,m orthonormal)

V̇ = (I − VV ∗)G ∗

0US
−∗ (V ∈ C

n,m orthonormal)

Ṡ = U∗G0V (S ∈ C
m,m of unit norm)
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Implementation

Difficulties: the right-hand sides of the ODEs for U and V have S−1,
which may cause numerical difficulties with standard integrators when
S is nearly singular, i.e. E is close to a matrix of rank smaller than m.

1 We follow the approach by Lubich & Oseledets, 2014, based on
splitting the tangent space projection Πm

E , that is an alternating
sum of three subprojections. A time step is based on the Lie–
Trotter splitting corresponding to these three terms.

2 Step size control based on decrease of Fε(E )
(no need to follow the trajectory accurately)

3 Eigenvalue computation by implicitly restarted Arnoldi method
exploiting possibly sparse plus low-rank structure of A+ εE .
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A key variational formula

Given ε we compute a local extremizer E (ε) which minimizes Fε(E ).

In order to approximate the distance we have to solve equation

Fε (E (ε)) = 0 with respect to ε.

Derivative of Fε

Theorem

Let E (ε) be a smooth path of extremizers s.t. Fε (E (ε)) > 0. Then

dFε (E (ε))

dε
= − ‖G0(ε)‖F < 0

with G0(ε) =
m
∑

i=1

γi(ε) yi(ε)xi(ε)
∗.
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Optimal stabilization

We denote as ε∗ the smallest root of Fε (E (ε)) = 0.

The zero ε∗ of Fε (E (ε)) is generically double and we use a modified
Newton iteration which converges quadratically from the left. From
the right we use bisection which provides linear reduction of the error.
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An interesting small example: the 30× 30 Grcar matrix.

Nesterov et al. gives
‖B − A‖F ≈ 6.50 in > 48 hours

BFGS method gives
‖B − A‖F ≈ 27.01 in 79 seconds

The ODE method gives
‖B − A‖F ≈ 6.57 in 143 seconds

Gillis-Sharma method improves to
‖B − A‖F ≈ 6.11 in 101 seconds
Quite disappointing!
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Spectra of A and B (ODE method)

Peculiarity of the ODE approach The spectral abscissa is not smooth
due to rightmost eigenvalues exchange. An ODE approach sweeping
all the eigenvalues in C

+ can smooth out the problem.
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Large size example: Brusselator

This sparse matrix1 (of size = 800) arises from form a 2-dimensional
reaction-diffusion model in chemical engeenering.

Algorithm Structure Norm of Stabilizer ∆
GL R 0.07750

GS R 0.15102

Ov R 0.15102

ONV R not computed

Legenda. The acronym GL stands for Guglielmi-Lubich, GS for
Gillis-Sharma, Ov for Overton and ONV for Orbandexivry, Nesterov,
and Van Dooren.

1see http://math.nist.gov/MatrixMarket/data/NEP/brussel/brussel.html
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Large size example: Brusselator...
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Figure: Rightmost eigenvalues of the stabilized matrix computed by the methods
Ov and GS (black squares) and by the GL method (red circles). The eigenvalue
with real part close to −0.07 is double for the stabilized matrices computed by
the GS and Ov methods while it is simple for the stabilized matrix computed by
the GL method. Indeed moving the double eigenvalue to the right would allow to
reduce the norm of the stabilized matrix in the methods by GS and Ov.
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Large size example: Tolosa

Tolosa2 matrix (size = 1090, type sparse) arises in stability analysis of
a model of an airplane in flight. Indeeed the shifted matrix A+ 1

2
I is

considered here, in order to robustly increase stability of the matrix.

Algorithm Structure Norm of Stabilizer ∆
GL R 157.930

GS R 287.957 (∞)

Ov R 6.0131 · 106

ONV R not computed

2see http://math.nist.gov/MatrixMarket/data/NEP/mvmtls/mvmtls.html
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Some issues

Robustness of the method is increased by varying m;

Characterization of globally optimal solutions of the stabilization
problem is hard and open;

Use of 2-norm and other norms unexplored;

Some extensions of the proposed approach are very natural but
require technical developments;

Adaptation to related problems and exploitation of the underlying
low-rank structure is also to be studied (for example when
imposing preservation of sparsity pattern);

Improving convergence speed to stationary points of the ODEs.
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