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Formal deformations of associative algebras (Gerstenhaber)

A formal deformation µ+ C of an associative algebra (A, µ) is defined by
a series C =

∑
r≥1 t

rCr of bilinear maps Cr : A×A to A so that

(µ+C )
(
(µ+C )(u, v),w

)
−(µ+C )

(
u, (µ+C )(v ,w)

)
= 0 ∀u, v ,w ∈ A.

At order 1 : µ(C1(u, v),w) + C1(µ(u, v),w)− C1(u, µ(v ,w))− µ(u,C1(v ,w)) = 0, hence
C1 is a 2-cocycle for the Hochschild cohomology of A with values in A.

Two formal deformations (µ+ C ) and (µ+ C ′) are equivalent if there
exists of a series T =

∑
r≥1 t

rTr of linear maps Tr : A → A such that

(µ+ C ′)(u, v) = eT
(

(µ+ C )(e−Tu, e−T v)
)
.

At order 1 : C ′1(u, v) = C1(u, v) + T1(u, v)− µ(T1u, v)− µ(u,T1v), i.e. C ′1 − C1 is a
Hochschild coboundary.

If H2
H(A,A) = 0, all formal deformations are trivial (i.e. equivalent to µ)

and any deformation at order 1 can be prolongated into a deformation.
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Hochschild complex of an associative algebra

Let (A, µ) be an associative algebra over K of characteristic 0.
The Hochschild complex of A with values in the bimodule A is
CH(A,A) :=

⊕
n∈N Cn

H(A,A) , with grading by number of arguments.

The Gerstenhaber multiplication ◦G : CH × CH → CH is the bilinear map
of degree −1 defined for any f ∈ C k

H(A,A) and any g ∈ C l
H(A,A) by

(f ◦G g)(a1, . . . , ak+l−1) =
∑k

i=1(−1)(i−1)(l−1)f (a1, . . . , ai−1, g(ai , . . . , ai+l−1), ai+l , . . . , ak+l−1).

One considers, on the shifted space G(A) := CH(A,A)[1] for which k − 1
is the shifted degree of a k-cochain f , the graded commutator,

[f , g ]G = f ◦G g − (−1)(k−1)(l−1)g ◦G f ,

called the Gerstenhaber bracket.

Any bilinear map µ : A×A → A is of degree 1 in G(A), and gives an
associative multiplication iff [µ, µ]G = 0. For any such µ the square of
b := [µ, ]G vanishes and defines, up to a global sign, the Hochschild
coboundary operator on the complex CH(A,A)[1].
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Differential graded Lie algebras

A differential graded Lie algebra (G, b, [ , ]), consists of a graded Lie
algebra (G, [ , ]) and a K-linear map b : G→ G of degree 1 such that
b2 = 0, and b is a graded derivation of the graded Lie bracket [ , ].
Ex: For (A, µ) an associative algebra

(
CH(A,A)[1], b = [µ, ]G , [ , ]G ).

Its cohomology H with respect to b, Hn :=
ZnG; = {C ∈ Gn | bC = 0}
BnG := {bC |C ∈ Gn−1}

carries a canonical graded Lie bracket [ , ]H induced from [ , ] so that
(H, 0, [ , ]H) is again a graded Lie algebra.

A deformation µ+ C of the associative algebra (A, µ) yields an element
C ∈ CH(A,A)[1]t[[t]] of degree 1 so that [µ+ C , µ+ C ]G = 0 i.e.

bC+ 1
2 [C ,C ]G = 0 hence bC1 = 0 and [C1,C1]G = −2bC2 so [[C1], [C1]]H = 0

Equivalence is given by the action of eT with T ∈ CH(A,A)[1]t[[t]] of
degree 0 via : µ+ C ′ = (exp[T , ]G ) (µ+ C ). Then C ′1 = C1 − bT1. One
defines the infinitesimal action T · C := −bT + [T ,C ].
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L∞ algebras

Let W = ⊕j∈ZW
j a Z-graded vector space. Let V = W [1] be the shifted

graded vector space. The graded symmetric bialgebra of V , denoted SV ,
is the quotient of the free algebra TV by the two-sided graded ideal
generated by x ⊗ y − (−1)|x ||y |y ⊗ x for any homog. elements x , y in V .

The graded cocommutative comultiplication ∆sh is induced by the shuffle comultiplication ∆sh : TV → TV ⊗ TV which is

the homomorphism of associative algebras so that ∆sh(x) = 1⊗ x + x ⊗ 1 (with signs given by Koszul convention).

A L∞-structure on W is defined to be a graded coderivation D of
S (W [1]) of degree 1 satisfying D2 = 0 and D(1SW [1]) = 0.
Such a D is determined by D := prW [1] ◦ D : S (W [1])→W [1] via D = µsh ◦ D ⊗ Id ◦∆sh and

we write D = D. The pair (W ,D) is called an L∞-algebra.

Ex: (G, b, [ , ]) a dga ⇒
(
G,D = b[1] + [ , ][1] on S(G[1])

)
.

A solution bC + 1
2

[C ,C ]G = 0 corresponds to a C ′ ∈ V 0t[[t]] such that D(eC
′
) = 0.

For a linear map φ : V⊗k → W⊗`, φ[j] : V [j]⊗k → W [j]⊗` via φ[j] := (s⊗`)−j ◦ φ ◦ (s⊗k )j where s : V → V [−1] is

the identity.
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L∞–morphisms, quasi-isomorphisms and Formality

A L∞-morphism from a L∞-algebra (W ,D) to a L∞-algebra (W ′,D′) is a
morphism of graded con. coalgebras Φ :

(
S(W [1]),D

)
→
(
S(W ′[1]),D′

)
,

intertwining differentials Φ ◦ D = D′ ◦ Φ.
Such a morphism is determined by ϕ := prW ′[1] ◦ Φ : S (W [1])→W ′[1] with ϕ(1) = 0 via

Φ = e∗ϕ with A ∗ B = µ ◦ A⊗ B ◦∆ for A,B ∈ Hom(S(W [1]),S(W ′[1]))

A L∞-map Φ is called an L∞-quasi-isomorphism if its first component
Φ1 = Φ|W [1] = ϕ1 : W [1]→W ′[1] –which is a chain map
(W [1],D1)→ (W ′[1],D′1)– induces an isomorphism in cohomology.

A formality for a differential graded Lie algebra (G, b, [ , ]) is a
L∞-quasi-isomorphism from the L∞-algebra corresponding to (H, 0, [ , ]H)
(the cohomology of G with respect to b ), to the L∞-algebra
corresponding to (G, b, [ , ]) : Φ : S(H[1])→ S(G[1]), such that
Φ ◦ [ , ]H [1] = (b[1] + [ , ][1]) ◦ Φ
A quasi-isomorphism yields isomorphic moduli spaces of deformations.
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Low orders terms of a formality

We look for ϕ : S(H[1])→ G[1] a degree 0 map vanishing on 1, such that
Φ = e∗ϕ : S(H[1])→ S(G[1]) satisfies Φ ◦ [ , ]H [1] = (b[1] + [ , ][1]) ◦ Φ.
Denoting ϕn the restriction of ϕ to Symn(H[1]), we have in particular that
b[1] ◦ ϕ1 = 0 and ϕ1 : (H[1], 0)]→ (G[1], b[1]) must induce an
isomorphism in cohomology.

The cohomology of (G[1], b[1]) identifies with H[1].
We denote by π : ZG = {C ∈ G | bC = 0} → H the canonical projection.
We must have b[1] ◦ ϕ1 = 0 and π[1] ◦ ϕ1 = Id.
We can choose a vector space X complement to BG = {bC |C ∈ G} in
ZG and let ϕ1 be the inverse of the restriction of π to X .
The condition on ϕ2 : S2(H[1])→ G[1] writes more easily on its shift
φ2 = ϕ2[−1] : Λ2H→ G as 0 = b ◦ φ2 + [ , ]G ◦ (φ1 ⊗ φ1)− φ1 ◦ [ , ]H .

ΛV is the quotient of TV by the two-sided graded ideal gen. by x ⊗ y + (−1)|x||y|y ⊗ x .
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ΛV is the quotient of TV by the two-sided graded ideal gen. by x ⊗ y + (−1)|x||y|y ⊗ x .
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A characteristic 3-class

Let ϕ1 : H[1]→ G[1] and ϕ2 : S2(H[1])→ G[1] be degree 0 maps, such
that their shifts φi = ϕi [−1] : ΛiH→ G satisfy 0 = b ◦ φ1, π ◦ φ1 = IdH
and 0 = b ◦ φ2 + [ , ]G ◦ (φ1 ⊗ φ1)− φ1 ◦ [ , ]H .

1 The linear map w3(ϕ) : Λ3H→ G of degree −1 defined on
homogeneous elements y1, y2, y3 ∈ H by
w3(ϕ)(y1, y2, y3) = (−1)|y1|

[
φ1(y1), φ2(y2, y3)

]
G
− (−1)|y2|(−1)|y2||y1|

[
φ1(y2), φ2(y1, y3)

]
G

+

(−1)|y3|(−1)|y3|(|y1|+|y2|)
[
φ1(y3), φ2(y1, y2)

]
G
− φ2

(
[y1, y2]H , y3

)
+

(−1)|y3||y2|φ2
(

[y1, y3]H , y2
)

(−1)(|y2|+|y3|)|y1|φ2
(

[y2, y3]H , y1
) satisfies b ◦ w3(ϕ) = 0.

2 The trilinear map z3(ϕ) = π ◦ w3(ϕ) : Λ3H→ H is a graded
Chevalley-Eilenberg 3-cocycle of degree −1, i.e. δHz3 = 0, and its
class c3 = c3

(
G, b, [ , ]G

)
does not depend on the chosen ϕ1, ϕ2.

The Chevalley Eilenberg coboundary operator on a graded Lie algebra is given by the usual formulas with signs.

3 There is a L∞-quis of order 3 between G and its cohom. H iff c3 = 0.
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What is formality for the Hochschild complexe of Ug?

We are interested in checking whether there is formality for the graded Lie
algebra

(
CH(A,A)[1], b = [µ, ]G , [ , ]G

)
given by the Hochschild complex

of the associative algebra (A, µ) when A = Ug is the universal enveloping
algebra of a Lie algebra g, thus in checking whether one can build a
quasi-isomophism

e∗ϕ : S
(
HH(Ug,Ug)[2]

)
→ S

(
CH(Ug,Ug)[2]

)
Theorem[Cartan-Eilenberg] . Let g be a finite dim Lie algebra and M be
a Ug-bimodule. Then Hn

H(Ug,M) ' Hn
CE (g,Ma) where Ma =M with

the action of g ∈ g defined by g ·m := gm −mg . In particular

Hn
H(Ug,Ug) ' Hn

CE (g,Ug) ' Hn
CE (g,Sg)
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The Chevalley-Eilenberg complex
(
CCE (g,Sg), δg

)
Sg is a g-module via the adjoint representation. CCE (g,Sg) is canonically
isomorphic to Sg⊗ Λg∗ and is Z-graded by the form degree of Λg∗.
It is a graded commutative algebra by means of the tensor product of the commutative

multiplication in Sg and the usual exterior multiplication in Λg∗ which we also denote by ∧.

f ∈ Sg is viewed as a polynomial function on the dual space g∗ so
CCE (g,Sg) is viewed as the space of all polynomial poly-vector-fields on g∗.
It is equipped with the usual Schouten bracket [ , ]s :

[F ,G ]s =
∑n

i=1 ιei (F ) ∧ ∂ iG − (−1)(|F |−1)(|G |−1)
∑n

i=1 ιei (G) ∧ ∂ iF .
where e1, . . . , en is a basis of g, ε1, . . . , εn the dual basis; ιξ : Λg∗ → Λg∗, for each ξ ∈ g, is the

usual interior product graded derivation and for each y ∈ g∗, ιy : Sg→ Sg the corresponding

derivation, writing ιεi (f ) = ∂ i f for each f ∈ Sg and extending these derivations to Sg⊗ Λg∗.

Let π = [ , ] = 1
2

∑
i ,j ,k c

i
jkei ⊗ (εj ∧ εk) be the linear Poisson structure of

g∗, where c ijk = εi
(
[ej , ek ]

)
∈ K are the structure constants. Then [π, π]s = 0 and

δg = [π, ]s is the (shifted) Chevalley Eilenberg coboundary operator.(
CCE (g,Sg)[1], δg, [ , ]s

)
is a differential graded Lie algebra.
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Kontsevich formality

Kontsevich gives the construction of a quasi-isomorphism

e∗ϕ : S
(
CCE (g,Sg)[2]

)
→ S

(
CH(Sg,Sg)[2]

)
from the L∞-algebra S

(
CCE (g,Sg)[2]

)
associated to the graded Lie

algebra
(
CCE (g,Sg)[1], 0, [ , ]s

)
of all polynomial poly-vector-fields on the

vector space g∗, equipped with zero differential and the usual Schouten
bracket [ , ]S , to the L∞-algebra S

(
CH(Sg,Sg)[2]

)
associated to the

graded Lie algebra (CH(Sg,Sg)[1], b, [ , ]G ) of all poly-differential
operators on g∗ with polynomial coefficients, equipped with the
Hochschild differential b and the Gerstenhaber bracket [ , ]G .

Simone Gutt (ULB) Non L∞-formality Rome, September 11, 2018 11 / 23



Quasi isomorphism between the Hochschild complex of Ug
and the Chevalley-Eilenberg complex of g with values in Sg

Theorem (Kontsevich, also Bordemann and Makhlouf):

Let (g, [ , ]) be a finite-dimensional Lie-algebra.
There is a L∞-quasi-isomorphism between the differential graded Lie
algebra

(
CCE (g,Sg)[1], δg, [ , ]s

)
and the differential graded Lie algebra(

CH(Ug,Ug)[1], b, [ , ]G
)
.

In particular, this induces an isomorphism of the graded Lie algebras of
their cohomologies (with respect to δg and b, respectively).
Hence, the L∞-formality of

(
CCE (g,Sg)[1], δg, [ , ]s

)
is equivalent to the

L∞-formality of
(
CH(Ug,Ug)[1], b, [ , ]G

)
.
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Abelian Lie algebras

In case the Lie algebra g is abelian, Ug = Sg, the Chevalley-Eilenberg
differential is zero, whence

HH(Ug,Ug) ∼= HCE (g,Sg) ∼= CCE (g,Sg)

and formality of
(
CH(Ug,Ug)[1], b, [ , ]G

) ∼= (
CH(Sg,Sg)[1], b, [ , ]G

)
is

the content of the Kontsevich formality theorem where one builds a
quasi-isomorphism

e∗ϕ : S
(
CCE (g,Sg)[2]

)
→ S

(
CH(Sg,Sg)[2]

)
.

Thus the Hochschild complex of the universal enveloping algebra of an
abelian algebra is formal.
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Cartan 3-regular quadratic Lie algebras

A triple (g, [ , ], κ) is called a quadratic Lie algebra if the symmetric
bilinear form κ : g× g→ K is invariant and nondegenerate. (A symmetric

bilinear form is invariant if for all ξ, ξ′, ξ′′ ∈ g we have κ
(
[ξ, ξ′], ξ′′

)
= κ

(
ξ, [ξ′, ξ′′]

)
.)

The Cartan 3-cocycle Ω ∈ Λ3g∗ is then defined by

Ω(ξ, ξ′, ξ′′) = κ
(
ξ, [ξ′, ξ′′]

)
A quadratic Lie algebra (g, [ , ], κ) is called a Cartan-3-regular if the
cohomology class of the Cartan cocycle Ω, [Ω], is nonzero.

The Casimir is the element q ∈ S2g which is the ‘inverse’ of κ (q = Σqijei ⊗ ej ,
∑

j q
ijκjr = δir ).

The space of polynomials in q, K[q] , injects in the invariant polynomials
(
Sg
)g ∼= H0

CE (g,Sg).

When (g, [ , ], κ) is Cartan-3-regular,the map K[q]→ H3
CE (g,Sg) : α→ [α ∧ Ω] is injective.
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Non formality of Ug for a Cartan 3-regular quadratic g

In CCE (g,Sg) we have also the linear Poisson structure π and the Euler field E =
∑n

i=1 ei ⊗ εi .
The Schouten brackets are given, for α, β, γ ∈ K[q] and α′ denoting the derivative of the polynomial α, by:

δg(α) = [π, α]s = 0, δg(α ∧ Ω) = [π, α ∧ Ω]s = 0, δg(α ∧ E) = [π, α ∧ E ]s = α ∧ π,
[α, β]s = 0, [E , α]s = 2qα′, [E ,Ω]s = −3Ω, [β ∧ Ω, α]s = 2(βα′) ∧ π = δg

(
2(βα′) ∧ E

)
,

[β ∧ Ω, γ ∧ Ω]s = 2(βγ′ − γβ′) ∧ π ∧ Ω = δg
(

2(βγ′ − γβ′) ∧ E ∧ Ω
)
.

Theorem Let
(
g, [ , ], κ

)
be a finite-dimensional Cartan-3-regular

quadratic Lie algebra. Then the Hochschild complex of its universal
envelopping algebra is NOT L∞-formal.
We prove that the Chevalley-Eilenberg complex G of g with values in Sg is not L∞-formal. Choose any graded vector space
complement of the δg-coboundaries which includes all α ∈ K[q] and all β ∧ Ω; the resulting section φ1 : H→ G satisfies

φ1([α]) = α and φ1([α ∧ Ω]) = α ∧ Ω. We can choose a K-linear map φ2 : Λ2H→ G of degree −1 satisfying
φ2(α, β) = 0 and φ2(α, β ∧ Ω) = 2(α′β) ∧ E .
The Chevalley-Eilenberg 3-cocycle z3 (which represents the characteristic 3-class c3 of the differential graded Lie algebra
G = CCE (g,Sg)[1] and depends on φ1 and φ2,) takes the following values: z3

(
[α], [β], [γ]

)
= 0, and,

z3
(

[α], [β], [γ ∧ Ω]
)

= 8[qα′β′γ].

If c3 = 0, there would be a graded 2-form θ : Λ2H→ H (where H = HCE (g,Sg)[1]) of degree −1 such that z3 = δHθ. We
evaluate δHθ on [α], [β], and [γ ∧ Ω] of H. θ([α], [β]) = 0 since both [α] and [β] are of degree −1 as is θ, and

θ([α], [γ ∧ Ω]) has to be of degree 0, hence in H1
CE (g,Sg). We consider the particular case α = q = β and γ = 1. Let

D ∈ Hom(g,Sg) be a δg-1-cocycle such that [D] = θ([q], [Ω]). Then z3([q], [q], [Ω]) = (δHθ)([q], [q], [Ω]) implies

8[q] = −2
[
[q], [D]

]
H

= 2[D(q)], but D =
∑

Dr must be a 1-cocycle, hence D1 : g→ g would be a derivation of g,

and we must have D1(q) = 4q, hence κ(D1(ξ), ξ′) + κ(ξ,D1(ξ′)) = 4κ(ξ, ξ′) which contradicts Ω non exact.
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The Schouten brackets are given, for α, β, γ ∈ K[q] and α′ denoting the derivative of the polynomial α, by:
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2(βα′) ∧ E

)
,

[β ∧ Ω, γ ∧ Ω]s = 2(βγ′ − γβ′) ∧ π ∧ Ω = δg
(

2(βγ′ − γβ′) ∧ E ∧ Ω
)
.

Theorem Let
(
g, [ , ], κ

)
be a finite-dimensional Cartan-3-regular

quadratic Lie algebra. Then the Hochschild complex of its universal
envelopping algebra is NOT L∞-formal.
We prove that the Chevalley-Eilenberg complex G of g with values in Sg is not L∞-formal. Choose any graded vector space
complement of the δg-coboundaries which includes all α ∈ K[q] and all β ∧ Ω; the resulting section φ1 : H→ G satisfies

φ1([α]) = α and φ1([α ∧ Ω]) = α ∧ Ω. We can choose a K-linear map φ2 : Λ2H→ G of degree −1 satisfying
φ2(α, β) = 0 and φ2(α, β ∧ Ω) = 2(α′β) ∧ E .
The Chevalley-Eilenberg 3-cocycle z3 (which represents the characteristic 3-class c3 of the differential graded Lie algebra
G = CCE (g,Sg)[1] and depends on φ1 and φ2,) takes the following values: z3

(
[α], [β], [γ]

)
= 0, and,

z3
(

[α], [β], [γ ∧ Ω]
)

= 8[qα′β′γ].

If c3 = 0, there would be a graded 2-form θ : Λ2H→ H (where H = HCE (g,Sg)[1]) of degree −1 such that z3 = δHθ. We
evaluate δHθ on [α], [β], and [γ ∧ Ω] of H. θ([α], [β]) = 0 since both [α] and [β] are of degree −1 as is θ, and

θ([α], [γ ∧ Ω]) has to be of degree 0, hence in H1
CE (g,Sg). We consider the particular case α = q = β and γ = 1. Let

D ∈ Hom(g,Sg) be a δg-1-cocycle such that [D] = θ([q], [Ω]). Then z3([q], [q], [Ω]) = (δHθ)([q], [q], [Ω]) implies

8[q] = −2
[
[q], [D]

]
H

= 2[D(q)], but D =
∑

Dr must be a 1-cocycle, hence D1 : g→ g would be a derivation of g,

and we must have D1(q) = 4q, hence κ(D1(ξ), ξ′) + κ(ξ,D1(ξ′)) = 4κ(ξ, ξ′) which contradicts Ω non exact.
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Reductive Lie algebras

g = z⊕ [g, g]

where z is its centre and the derived ideal l = [g, g] is semisimple.

Pick any nondegenerate symmetric bilinear form on z
and the Killing form κl : (ξ, ξ′) 7→ trace(adξ ◦ adξ′) on l,
and let κ be the orthogonal sum of those two.

The Cartan 3-cocycle Ω w.r.t. g is given by

Ω(z1 + l1, z2 + l2, z3 + l3) = Ωl(l1, l2, l3) = κl(l1, [l2, l3])

where Ωl is the Cartan 3-cocycle of l which is well-known to be a
nontrivial 3-cocycle.

Hence
(
g, [ , ], κ

)
is Cartan-3-regular and so (the Hochschild complex of)

its universal envelopping algebra is not L∞-formal.
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Semisimple Lie algebras

The above shows that (the Hochschild complex of) the universal
envelopping algebra of a semisimple Lie algebra is not L∞-formal.

Nonetheless, the deformation theory of Ug is well known : Ug is rigid
because

H2
H(Ug,Ug) ∼= H2

CE (g,Sg) = 0
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beyond formality

We shall put a L∞-structure on the cohomology (HCE (g,Sg)[1], 0, [ , ]sH )
of (CCE (g,Sg)[1], δg, [ , ]s

)
whose coderivation d of S(HCE (g,Sg)[2]) is

given by a series d = d2 +
∑

k>3 dk = d2 + d ′ where d2 = [ , ]sH [1].

It is well-known that it is always possible to find a sequence of ‘higher
order brackets’ dk : Sk(HCE (g,Sg)[2])→ HCE (g,Sg)[2] for k > 3 and a
L∞-quasi-isomorphism

Φ = e∗ϕ :
(
S(HCE (g,Sg)[2]), [ , ]sH [1] + d ′

)
→
(
S(CCE (g,Sg))[2]), δg[1] + [ , ]s [1]

)
.

We do that for g = so(3). We know that

H := HCE (so(3),Sso(3))[1] = K[q] 1⊕{0} ⊕ {0} ⊕K[q][Ω].
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The Lie algebra so(3)

Theorem
1 The Chevalley-Eilenberg complex G of so(3) is NOT formal.
2 Gred := K[q] 1⊕K[q]E ⊕K[q]π ⊕K[q]Ω is a differential graded Lie

subalgebra of (G : HCE (so(3),Sso(3))[1] =, δ, [ , ]s) and the injection
Gred → G is a quasi-isomorphism of differential graded Lie algebras.

3 There is an L∞ structure d on S(H[1]) whose only nonvanishing
Taylor coefficient is d3 which is the shifted characteristic 3-class
d3 = z3[−1] and there is an L∞-quasi-isomorphism e∗ϕ from(
S(H[1]), d3

)
to
(
S(Gred[1]), δg[1] + [ , ]s [1]).

The only nonvanishing Taylor coefficients of e∗ϕ are ϕ1 and ϕ2 which
can explicitly be given.

The results follows from the L∞ perturbation lemma. There is a (homotopy)

contraction : the natural injection i : H = K[q] 1⊕{0} ⊕ {0} ⊕ K[q][Ω]→ Gred, the natural

projection p : Gred → H with kernel K[q]E ⊕ K[q]π , and the homotopy map h given by

h = h1 : K[q]π → K[q]E , h1(α ∧ π) = α ∧ E , for α ∈ K[q], and is defined to vanish in degree

−1, 0, 2. (p ◦ i = IdU , IdV − i ◦ p = bV ◦ h + h ◦ bU , h2 = 0, h ◦ i = 0, p ◦ h = 0)
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Perturbation Lemma

Let (i , p, h) be a contraction between the complexes (U, bU) and (V , bV )
( the differentials bU and bV have degree 1, i : U → V and p : V → U are chain maps,

h : V → V has degree −1 and p ◦ i = IdU , IdV − i ◦ p = bV ◦ h + h ◦ bU ,

h2 = 0, h ◦ i = 0, p ◦ h = 0) where U and V carry exhaustive and separated filtrations with V

complete and such that the maps bU , bV , i , p and h are of filtration degree 0.

Moreover, let δV : V → V be a perturbation of bV , i.e. a morphism δV : V → V

of degree +1 such that (bV + δV )2 = 0 and suppose that δV is of filtration degree −1.

Then the linear maps (idV + h ◦ δV ) and (idV + δV ◦ h) from V to V are
invertible, and we define

ı̃ = (idV + h ◦ δV )−1 ◦ i
p̃ = p ◦ (idV + δV ◦ h)−1

h̃ = (idV + h ◦ δV )−1 ◦ h
δU = p ◦ (idV + δV ◦ h)−1 ◦ δV ◦ i .

Then δU is a perturbation of bU of filtration degree −1, and (ĩ , p̃ and h̃)
define a new contraction between (U, bU + δU) and (V , bV + δV ).
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define a new contraction between (U, bU + δU) and (V , bV + δV ).

Simone Gutt (ULB) Non L∞-formality Rome, September 11, 2018 20 / 23



L∞-contraction

Let (i , p, h) a contraction between the complexes (U, bU) and (V , bV ).
The graded coderivations bU [1] of S(U[1]) and bV [1] of S(V [1]) are
differentials. Setting ϕ1 := i [1] and ψ1 := p[1], the morphisms of graded
coalgebras e∗ϕ1 : S(U[1])→ S(V [1]) and e∗ψ1 : S(V [1])→ S(U[1]) are
chain maps satisfying e∗ψ1 ◦ e∗ϕ1 = idS(U[1]).
Since P = [h, bV ] : V → V is an idempotent, let VU be its kernel, and
Vacyc its image; so V = VU ⊕ Vac, and S(V [1]) ∼= S(VU [1])⊗S(Vac[1]) as
graded bialgebras. Define β : S(V [1])→ S(V [1]) of degree 0 by :
for all y1, . . . , yk ∈ VU [1] and w1, . . . ,wl ∈ Vacyc[1] where k, l ∈ N:

β(y1 • · · · • yk • w1 • · · · • wl ) =

{
1
l
(y1 • · · · • yk • w1 • · · · • wl ) if l 6= 0,

0 if l = 0,
(1)

and set η = h[1] ◦ β = β ◦ h[1].
Then (e∗ϕ1 , e∗ψ1 , η) is a contraction from

(
S(U[1]), bU [1]

)
to(

S(V [1]), bV [1]
)
.
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differentials. Setting ϕ1 := i [1] and ψ1 := p[1], the morphisms of graded
coalgebras e∗ϕ1 : S(U[1])→ S(V [1]) and e∗ψ1 : S(V [1])→ S(U[1]) are
chain maps satisfying e∗ψ1 ◦ e∗ϕ1 = idS(U[1]).
Since P = [h, bV ] : V → V is an idempotent, let VU be its kernel, and
Vacyc its image; so V = VU ⊕ Vac, and S(V [1]) ∼= S(VU [1])⊗S(Vac[1]) as
graded bialgebras. Define β : S(V [1])→ S(V [1]) of degree 0 by :
for all y1, . . . , yk ∈ VU [1] and w1, . . . ,wl ∈ Vacyc[1] where k, l ∈ N:

β(y1 • · · · • yk • w1 • · · · • wl ) =

{
1
l
(y1 • · · · • yk • w1 • · · · • wl ) if l 6= 0,

0 if l = 0,
(1)

and set η = h[1] ◦ β = β ◦ h[1].
Then (e∗ϕ1 , e∗ψ1 , η) is a contraction from

(
S(U[1]), bU [1]

)
to(

S(V [1]), bV [1]
)
.
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L∞-perturbation Lemma (Bordemann Elchinger)

Let (i , p, h) be a contraction between the complexes (U, bU) and (V , bV ).
Let (e∗ϕ1 , e∗ψ1 , η) be the corresponding contraction from

(
S(U[1]), bU [1]

)
to
(
S(V [1]), bV [1]

)
.

Suppose D = bV [1] + D ′V with D ′V =
∑

k>2 D
′
k : S(V [1])→ V [1] of

degree 1 defines an L∞-structure, whence δS(V [1]) = D ′V is a perturbation

of bV [1].

The maps ẽ∗ϕ1 , ẽ∗ψ1 , δS(U[1]), and η̃ of the Perturbation Lemma so that

(ẽ∗ϕ1 , ẽ∗ψ1 , η̃) is homotopy contraction between
(
S(U[1]), bU [1] + δS(U[1])

)
and

(
S(V [1]), bV [1] + D ′V

)
automatically preserve the structure of graded

connected coalgebras, i.e. ẽ∗ϕ1 and ẽ∗ψ1 are morphism of graded
differential connected coalgebras, and δS(U[1]) will be a graded coderivation

of degree 1. This entails in particular that ẽ∗ϕ1 =: e∗ϕ is a

L∞-quasi-isomorphism with quasi-inverse ẽ∗ψ1 =: e∗ψ.
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The maps ẽ∗ϕ1 , ẽ∗ψ1 , δS(U[1]), and η̃ of the Perturbation Lemma so that

(ẽ∗ϕ1 , ẽ∗ψ1 , η̃) is homotopy contraction between
(
S(U[1]), bU [1] + δS(U[1])

)
and

(
S(V [1]), bV [1] + D ′V

)
automatically preserve the structure of graded
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