L_{∞}-formality question for the universal algebra of semisimple Lie algebras

Simone Gutt

joint work with Martin Bordemann, Olivier Elchinger and Abdenacer Makhlouf,

$$
\text { arXiv : } 1807.03086
$$

Workshop on Poisson Geometry and Higher Structures, Rome, September 2018

Formal deformations of associative algebras (Gerstenhaber)

A formal deformation $\mu+C$ of an associative algebra (\mathcal{A}, μ) is defined by a series $C=\sum_{r \geq 1} t^{r} C_{r}$ of bilinear maps $C_{r}: \mathcal{A} \times \mathcal{A}$ to \mathcal{A} so that
$(\mu+C)((\mu+C)(u, v), w)-(\mu+C)(u,(\mu+C)(v, w))=0 \quad \forall u, v, w \in \mathcal{A}$.
At order 1: $\mu\left(C_{1}(u, v), w\right)+C_{1}(\mu(u, v), w)-C_{1}(u, \mu(v, w))-\mu\left(u, C_{1}(v, w)\right)=0$, hence C_{1} is a 2 -cocycle for the Hochschild cohomology of \mathcal{A} with values in \mathcal{A}.

At order 1: $C_{1}^{\prime}(u, v)=C_{1}(u, v)+T_{1}(u, v)-\mu\left(T_{1} u, v\right)-\mu\left(u, T_{1} v\right)$, i.e. $C_{1}^{\prime}-C_{1}$ is a Hochschild coboundary

Formal deformations of associative algebras (Gerstenhaber)

A formal deformation $\mu+C$ of an associative algebra (\mathcal{A}, μ) is defined by a series $C=\sum_{r \geq 1} t^{r} C_{r}$ of bilinear maps $C_{r}: \mathcal{A} \times \mathcal{A}$ to \mathcal{A} so that
$(\mu+C)((\mu+C)(u, v), w)-(\mu+C)(u,(\mu+C)(v, w))=0 \quad \forall u, v, w \in \mathcal{A}$.
At order 1: $\mu\left(C_{1}(u, v), w\right)+C_{1}(\mu(u, v), w)-C_{1}(u, \mu(v, w))-\mu\left(u, C_{1}(v, w)\right)=0$, hence C_{1} is a 2 -cocycle for the Hochschild cohomology of \mathcal{A} with values in \mathcal{A}. Two formal deformations $(\mu+C)$ and $\left(\mu+C^{\prime}\right)$ are equivalent if there exists of a series $T=\sum_{r \geq 1} t^{r} T_{r}$ of linear maps $T_{r}: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\left(\mu+C^{\prime}\right)(u, v)=e^{T}\left((\mu+C)\left(e^{-T} u, e^{-T} v\right)\right)
$$

At order 1: $C_{1}^{\prime}(u, v)=C_{1}(u, v)+T_{1}(u, v)-\mu\left(T_{1} u, v\right)-\mu\left(u, T_{1} v\right)$, i.e. $C_{1}^{\prime}-C_{1}$ is a Hochschild coboundary.

Formal deformations of associative algebras (Gerstenhaber)

A formal deformation $\mu+C$ of an associative algebra (\mathcal{A}, μ) is defined by a series $C=\sum_{r \geq 1} t^{r} C_{r}$ of bilinear maps $C_{r}: \mathcal{A} \times \mathcal{A}$ to \mathcal{A} so that
$(\mu+C)((\mu+C)(u, v), w)-(\mu+C)(u,(\mu+C)(v, w))=0 \quad \forall u, v, w \in \mathcal{A}$.
At order 1: $\mu\left(C_{1}(u, v), w\right)+C_{1}(\mu(u, v), w)-C_{1}(u, \mu(v, w))-\mu\left(u, C_{1}(v, w)\right)=0$, hence C_{1} is a 2 -cocycle for the Hochschild cohomology of \mathcal{A} with values in \mathcal{A}. Two formal deformations $(\mu+C)$ and $\left(\mu+C^{\prime}\right)$ are equivalent if there exists of a series $T=\sum_{r \geq 1} t^{r} T_{r}$ of linear maps $T_{r}: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\left(\mu+C^{\prime}\right)(u, v)=e^{T}\left((\mu+C)\left(e^{-T} u, e^{-T} v\right)\right)
$$

At order 1: $C_{1}^{\prime}(u, v)=C_{1}(u, v)+T_{1}(u, v)-\mu\left(T_{1} u, v\right)-\mu\left(u, T_{1} v\right)$, i.e. $C_{1}^{\prime}-C_{1}$ is a Hochschild coboundary.
If $H_{H}^{2}(\mathcal{A}, \mathcal{A})=0$, all formal deformations are trivial (i.e. equivalent to μ) and any deformation at order 1 can be prolongated into a deformation.

Hochschild complex of an associative algebra

Let (\mathcal{A}, μ) be an associative algebra over \mathbb{K} of characteristic 0 . The Hochschild complex of \mathcal{A} with values in the bimodule \mathcal{A} is $C_{H}(\mathcal{A}, \mathcal{A}):=\bigoplus_{n \in \mathbb{N}} C_{H}^{n}(\mathcal{A}, \mathcal{A})$, with grading by number of arguments. The Gerstenhaber multiplication $\circ_{G}: C_{H} \times C_{H} \rightarrow C_{H}$ is the bilinear map of degree -1 defined for any $f \in C_{H}^{k}(\mathcal{A}, \mathcal{A})$ and any $g \in C_{H}^{\prime}(\mathcal{A}, \mathcal{A})$ by

$$
\left(f \circ \circ_{G} g\right)\left(a_{1}, \ldots, a_{k+l-1}\right)=\sum_{i=1}^{k}(-1)^{(i-1)(l-1)} f\left(a_{1}, \ldots, a_{i-1}, g\left(a_{i}, \ldots, a_{i+1-1}\right), a_{i+1}, \ldots, a_{k+l-1}\right) .
$$

One considers, on the shifted space $\mathfrak{G}(\mathcal{A}):=C_{H}(\mathcal{A}, \mathcal{A})[1]$ for which $k-1$ is the shifted degree of a k-cochain f, the graded commutator,

$$
[f, g]_{G}=f \circ_{G} g-(-1)^{(k-1)(I-1)} g \circ_{G} f,
$$

called the Gerstenhaber bracket.
Any bilinear map $\mu: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is of degree 1 in $\mathfrak{G}(\mathcal{A})$, and gives an associative multiplication iff $[\mu, \mu]_{G}=0$. For any such μ the square of $b:=[\mu,]_{G}$ vanishes and defines, up to a global sign, the Hochschild

Hochschild complex of an associative algebra

Let (\mathcal{A}, μ) be an associative algebra over \mathbb{K} of characteristic 0 . The Hochschild complex of \mathcal{A} with values in the bimodule \mathcal{A} is $C_{H}(\mathcal{A}, \mathcal{A}):=\bigoplus_{n \in \mathbb{N}} C_{H}^{n}(\mathcal{A}, \mathcal{A})$, with grading by number of arguments. The Gerstenhaber multiplication $\circ_{G}: C_{H} \times C_{H} \rightarrow C_{H}$ is the bilinear map of degree -1 defined for any $f \in C_{H}^{k}(\mathcal{A}, \mathcal{A})$ and any $g \in C_{H}^{\prime}(\mathcal{A}, \mathcal{A})$ by

$$
\left(f \circ \circ_{G} g\right)\left(a_{1}, \ldots, a_{k+l-1}\right)=\sum_{i=1}^{k}(-1)^{(i-1)(l-1)} f\left(a_{1}, \ldots, a_{i-1}, g\left(a_{i}, \ldots, a_{i+1-1}\right), a_{i+1}, \ldots, a_{k+l-1}\right) .
$$

One considers, on the shifted space $\mathfrak{G}(\mathcal{A}):=C_{H}(\mathcal{A}, \mathcal{A})[1]$ for which $k-1$ is the shifted degree of a k-cochain f, the graded commutator,

$$
[f, g]_{G}=f \circ_{G} g-(-1)^{(k-1)(I-1)} g \circ_{G} f
$$

called the Gerstenhaber bracket.
Any bilinear map $\mu: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is of degree 1 in $\mathfrak{G}(\mathcal{A})$, and gives an associative multiplication iff $[\mu, \mu]_{G}=0$. For any such μ the square of $b:=[\mu,]_{G}$ vanishes and defines, up to a global sign, the Hochschild coboundary operator on the complex $C_{H}(\mathcal{A}, \mathcal{A})[1]$.

Differential graded Lie algebras

A differential graded Lie algebra $(\mathfrak{G}, b,[]$,$) , consists of a graded Lie$ algebra $(\mathfrak{G},[]$,$) and a \mathbb{K}$-linear map $b: \mathfrak{G} \rightarrow \mathfrak{G}$ of degree 1 such that $b^{2}=0$, and b is a graded derivation of the graded Lie bracket [,]. Ex: For (\mathcal{A}, μ) an associative algebra $\left(C_{H}(\mathcal{A}, \mathcal{A})[1], b=[\mu,]_{G},[,]_{G}\right)$.

Its cohomology \mathfrak{H} with respect to b, \mathfrak{H}

A deformation $\mu+C$ of the associative algebra (\mathcal{A}, μ) yields an element $C \in C_{H}(\mathcal{A}, \mathcal{A})[1] t[[t]]$ of degree 1 so that $[\mu+C, \mu+C]_{G}=0$ i.e. $b C+\frac{1}{2}[C, C]_{G}=0$ hence $b C_{1}=0$ and $\left[C_{1}, C_{1}\right]_{G}=-2 b C_{2}$ so $\left[\left[C_{1}\right],\left[C_{1}\right]\right]_{H}=C$ Equivalence is given by the action of e^{T} with $T \in C_{H}(\mathcal{A}, \mathcal{A})[1] t[[t]]$ of degree 0 via : $\mu+C^{\prime}=\left(\exp [T,]_{G}\right)(\mu+C)$. Then $C_{1}^{\prime}=C_{1}-b T_{1}$. One defines the infinitesimal action

Differential graded Lie algebras

A differential graded Lie algebra $(\mathfrak{G}, b,[]$,$) , consists of a graded Lie$ algebra $(\mathfrak{G},[]$,$) and a \mathbb{K}$-linear map $b: \mathfrak{G} \rightarrow \mathfrak{G}$ of degree 1 such that $b^{2}=0$, and b is a graded derivation of the graded Lie bracket [,]. Ex: For (\mathcal{A}, μ) an associative algebra $\left(C_{H}(\mathcal{A}, \mathcal{A})[1], b=[\mu,]_{G},[,]_{G}\right)$. Its cohomology \mathfrak{H} with respect to $b, \mathfrak{H}^{n}:=\frac{Z^{n} \mathfrak{G} ;=\left\{C \in \mathfrak{G}^{n} \mid b C=0\right\}}{B^{n} \mathfrak{G}:=\left\{b C \mid C \in \mathfrak{G}^{n-1}\right\}}$ carries a canonical graded Lie bracket [,] H induced from [,] so that $\left(\mathfrak{H}, 0,[,]_{H}\right)$ is again a graded Lie algebra.
A deformation $\mu+C$ of the associative algebra (\mathcal{A}, μ) yields an element $C \in C_{H}(\mathcal{A}, \mathcal{A})[1] t[[t]]$ of degree 1 so that $[\mu+C, \mu+C]_{G}=0$ i.e. $b C+\frac{1}{2}[C, C]_{G}=0$ hence $b C_{1}=0$ and $\left[C_{1}, C_{1}\right]_{G}=-2 b C_{2}$ so $\left[\left[C_{1}\right],\left[C_{1}\right]_{H}=C\right.$ Equivalence is given by the action of e^{T} with $T \in C_{H}(\mathcal{A}, \mathcal{A})[1] t[[t]]$ of degree 0 via : $\mu+C^{\prime}=\left(\exp [T,]_{G}\right)(\mu+C)$. Then $C_{1}^{\prime}=C_{1}-b T_{1}$. One defines the infinitesimal action

Differential graded Lie algebras

A differential graded Lie algebra $(\mathfrak{G}, b,[]$,$) , consists of a graded Lie$ algebra $(\mathfrak{G},[]$,$) and a \mathbb{K}$-linear map $b: \mathfrak{G} \rightarrow \mathfrak{G}$ of degree 1 such that $b^{2}=0$, and b is a graded derivation of the graded Lie bracket [,]. Ex: For (\mathcal{A}, μ) an associative algebra $\left(C_{H}(\mathcal{A}, \mathcal{A})[1], b=[\mu,]_{G},[,]_{G}\right)$. Its cohomology \mathfrak{H} with respect to $b, \mathfrak{H}^{n}:=\frac{Z^{n} \mathfrak{G} ;=\left\{C \in \mathfrak{G}^{n} \mid b C=0\right\}}{B^{n} \mathfrak{G}:=\left\{b C \mid C \in \mathfrak{G}^{n-1}\right\}}$ carries a canonical graded Lie bracket [,] H_{H} induced from [,] so that $\left(\mathfrak{H}, 0,[,]_{H}\right)$ is again a graded Lie algebra.
A deformation $\mu+C$ of the associative algebra (\mathcal{A}, μ) yields an element $C \in C_{H}(\mathcal{A}, \mathcal{A})[1] t[[t]]$ of degree 1 so that $[\mu+C, \mu+C]_{G}=0$ i.e. $b C+\frac{1}{2}[C, C]_{G}=0$ hence $b C_{1}=0$ and $\left[C_{1}, C_{1}\right]_{G}=-2 b C_{2}$ so $\left[\left[C_{1}\right],\left[C_{1}\right]\right]_{H}=0$

Equivalence is given by the action of e^{T} with $T \in C_{H}(\mathcal{A}, \mathcal{A})[1] t[[t]]$ of degree 0 via

Differential graded Lie algebras

A differential graded Lie algebra $(\mathfrak{G}, b,[]$,$) , consists of a graded Lie$ algebra $(\mathfrak{G},[]$,$) and a \mathbb{K}$-linear map $b: \mathfrak{G} \rightarrow \mathfrak{G}$ of degree 1 such that $b^{2}=0$, and b is a graded derivation of the graded Lie bracket [,]. Ex: For (\mathcal{A}, μ) an associative algebra $\left(C_{H}(\mathcal{A}, \mathcal{A})[1], b=[\mu,]_{G},[,]_{G}\right)$.
Its cohomology \mathfrak{H} with respect to $b, \mathfrak{H}^{n}:=\frac{Z^{n} \mathfrak{G} ;=\left\{C \in \mathfrak{G}^{n} \mid b C=0\right\}}{B^{n} \mathfrak{G}:=\left\{b C \mid C \in \mathfrak{G}^{n-1}\right\}}$ carries a canonical graded Lie bracket [, $]_{H}$ induced from [,] so that $\left(\mathfrak{H}, 0,[,]_{H}\right)$ is again a graded Lie algebra.
A deformation $\mu+C$ of the associative algebra (\mathcal{A}, μ) yields an element $C \in C_{H}(\mathcal{A}, \mathcal{A})[1] t[[t]]$ of degree 1 so that $[\mu+C, \mu+C]_{G}=0$ i.e.
$b C+\frac{1}{2}[C, C]_{G}=0$ hence $b C_{1}=0$ and $\left[C_{1}, C_{1}\right]_{G}=-2 b C_{2}$ so $\left[\left[C_{1}\right],\left[C_{1}\right]\right]_{H}=0$
Equivalence is given by the action of e^{T} with $T \in C_{H}(\mathcal{A}, \mathcal{A})[1] t[[t]]$ of degree 0 via : $\mu+C^{\prime}=\left(\exp [T,]_{G}\right)(\mu+C)$. Then $C_{1}^{\prime}=C_{1}-b T_{1}$. One defines the infinitesimal action $T \cdot C:=-b T+[T, C]$.

L_{∞} algebras

Let $W=\oplus_{j \in \mathbb{Z}} W^{j}$ a \mathbb{Z}-graded vector space. Let $V=W[1]$ be the shifted graded vector space. The graded symmetric bialgebra of V, denoted $\mathcal{S V}$, is the quotient of the free algebra $\mathcal{T V}$ by the two-sided graded ideal generated by $x \otimes y-(-1)^{|x||y|} y \otimes x$ for any homog. elements x, y in V.

The graded cocommutative comultiplication $\Delta_{\text {sh }}$ is induced by the shuffle comultiplication $\Delta_{\text {sh }}: \mathcal{T V} \rightarrow \mathcal{T V} \otimes \mathcal{T V}$ which is the homomorphism of associative algebras so that $\Delta_{s h}(x)=1 \otimes x+x \otimes 1$ (with signs given by Koszul convention).

L_{∞} algebras

Let $W=\oplus_{j \in \mathbb{Z}} W^{j}$ a \mathbb{Z}-graded vector space. Let $V=W[1]$ be the shifted graded vector space. The graded symmetric bialgebra of V, denoted $\mathcal{S V}$, is the quotient of the free algebra $\mathcal{T V}$ by the two-sided graded ideal generated by $x \otimes y-(-1)^{|x||y|} y \otimes x$ for any homog. elements x, y in V. The graded cocommutative comultiplication $\Delta_{\text {sh }}$ is induced by the shuffle comultiplication $\Delta_{\text {sh }}: \mathcal{T V} \rightarrow \mathcal{T V} \otimes \mathcal{T V}$ which is the homomorphism of associative algebras so that $\Delta_{s h}(x)=1 \otimes x+x \otimes 1$ (with signs given by Koszul convention).

A L_{∞}-structure on W is defined to be a graded coderivation \mathcal{D} of $\mathcal{S}(W[1])$ of degree 1 satisfying $\mathcal{D}^{2}=0$ and $\mathcal{D}\left(\mathbf{1}_{\mathcal{S W}[1]}\right)=0$. Such a \mathcal{D} is determined by $D:=p r_{W[1]} \circ \mathcal{D}: \mathcal{S}(W[1]) \rightarrow W[1]$ via $\mathcal{D}=\mu_{\text {sh }} \circ D \otimes \operatorname{Id} \circ \Delta_{\text {sh }}$ and we write $\mathcal{D}=\bar{D}$. The pair (W, \mathcal{D}) is called an L_{∞}-algebra.

L_{∞} algebras

Let $W=\oplus_{j \in \mathbb{Z}} W^{j}$ a \mathbb{Z}-graded vector space. Let $V=W[1]$ be the shifted graded vector space. The graded symmetric bialgebra of V, denoted $\mathcal{S V}$, is the quotient of the free algebra $\mathcal{T V}$ by the two-sided graded ideal generated by $x \otimes y-(-1)^{|x||y|} y \otimes x$ for any homog. elements x, y in V. The graded cocommutative comultiplication $\Delta_{\text {sh }}$ is induced by the shuffle comultiplication $\Delta_{\text {sh }}: \mathcal{T V} \rightarrow \mathcal{T V} \otimes \mathcal{T V}$ which is the homomorphism of associative algebras so that $\Delta_{s h}(x)=1 \otimes x+x \otimes 1$ (with signs given by Koszul convention).

A L_{∞}-structure on W is defined to be a graded coderivation \mathcal{D} of $\mathcal{S}(W[1])$ of degree 1 satisfying $\mathcal{D}^{2}=0$ and $\mathcal{D}\left(\mathbf{1}_{\mathcal{S W}[1]}\right)=0$. Such a \mathcal{D} is determined by $D:=\operatorname{pr}_{W[1]} \circ \mathcal{D}: \mathcal{S}(W[1]) \rightarrow W[1]$ via $\mathcal{D}=\mu_{\text {sh }} \circ D \otimes \operatorname{Id} \circ \Delta_{\text {sh }}$ and we write $\mathcal{D}=\bar{D}$. The pair (W, \mathcal{D}) is called an L_{∞}-algebra. Ex: $(\mathfrak{G}, b,[]$,$) a dga \Rightarrow(\mathfrak{G}, \mathcal{D}=\overline{b[1]+[,][1]}$ on $\mathcal{S}(\mathfrak{G}[1]))$. A solution $b C+\frac{1}{2}[C, C]_{G}=0$ corresponds to a $C^{\prime} \in V^{0} t[[t]]$ such that $\mathcal{D}\left(e^{C^{\prime}}\right)=0$. For a linear map $\phi: V^{\otimes k} \rightarrow W^{\otimes \ell}, \phi[j]: V[j]^{\otimes k} \rightarrow W[j]^{\otimes \ell}$ via $\phi[j]:=\left(s^{\otimes \ell}\right)^{-j} \circ \phi \circ\left(s^{\otimes k}\right)^{j}$ where $s: V \rightarrow V[-1]$ is the identity.

L_{∞}-morphisms, quasi-isomorphisms and Formality

A L_{∞}-morphism from a L_{∞}-algebra (W, \mathcal{D}) to a L_{∞}-algebra $\left(W^{\prime}, \mathcal{D}^{\prime}\right)$ is a morphism of graded con. coalgebras $\Phi:(\mathcal{S}(W[1]), \mathcal{D}) \rightarrow\left(\mathcal{S}\left(W^{\prime}[1]\right), \mathcal{D}^{\prime}\right)$, intertwining differentials $\Phi \circ \mathcal{D}=\mathcal{D}^{\prime} \circ \Phi$.
Such a morphism is determined by $\varphi:=\operatorname{pr}_{W^{\prime}[1]} \circ \Phi: \mathcal{S}(W[1]) \rightarrow W^{\prime}[1]$ with $\varphi(1)=0$ via $\Phi=e^{* \varphi}$ with $A * B=\mu \circ A \otimes B \circ \Delta$ for $A, B \in \operatorname{Hom}\left(\mathcal{S}(W[1]), \mathcal{S}\left(W^{\prime}[1]\right)\right)$

L_{∞}-morphisms, quasi-isomorphisms and Formality

A L_{∞}-morphism from a L_{∞}-algebra (W, \mathcal{D}) to a L_{∞}-algebra $\left(W^{\prime}, \mathcal{D}^{\prime}\right)$ is a morphism of graded con. coalgebras $\Phi:(\mathcal{S}(W[1]), \mathcal{D}) \rightarrow\left(\mathcal{S}\left(W^{\prime}[1]\right), \mathcal{D}^{\prime}\right)$, intertwining differentials $\Phi \circ \mathcal{D}=\mathcal{D}^{\prime} \circ \Phi$.
Such a morphism is determined by $\varphi:=\operatorname{pr}_{W^{\prime}[1]} \circ \Phi: \mathcal{S}(W[1]) \rightarrow W^{\prime}[1]$ with $\varphi(1)=0$ via $\Phi=e^{* \varphi}$ with $A * B=\mu \circ A \otimes B \circ \Delta$ for $A, B \in \operatorname{Hom}\left(\mathcal{S}(W[1]), \mathcal{S}\left(W^{\prime}[1]\right)\right)$

A L_{∞}-map Φ is called an L_{∞}-quasi-isomorphism if its first component $\Phi_{1}=\left.\Phi\right|_{W[1]}=\varphi_{1}: W[1] \rightarrow W^{\prime}[1]$-which is a chain map $\left(W[1], \mathcal{D}_{1}\right) \rightarrow\left(W^{\prime}[1], \mathcal{D}_{1}^{\prime}\right)$ - induces an isomorphism in cohomology. corresponding to $(\mathfrak{G}, b,[]):, \Phi: \mathcal{S}(\mathfrak{H}[1]) \rightarrow \mathcal{S}(\mathfrak{G}[1])$, such that

L_{∞}-morphisms, quasi-isomorphisms and Formality

A L_{∞}-morphism from a L_{∞}-algebra (W, \mathcal{D}) to a L_{∞}-algebra $\left(W^{\prime}, \mathcal{D}^{\prime}\right)$ is a morphism of graded con. coalgebras $\Phi:(\mathcal{S}(W[1]), \mathcal{D}) \rightarrow\left(\mathcal{S}\left(W^{\prime}[1]\right), \mathcal{D}^{\prime}\right)$, intertwining differentials $\Phi \circ \mathcal{D}=\mathcal{D}^{\prime} \circ \Phi$.
Such a morphism is determined by $\varphi:=\operatorname{pr}_{W^{\prime}[1]} \circ \Phi: \mathcal{S}(W[1]) \rightarrow W^{\prime}[1]$ with $\varphi(1)=0$ via $\Phi=e^{* \varphi}$ with $A * B=\mu \circ A \otimes B \circ \Delta$ for $A, B \in \operatorname{Hom}\left(\mathcal{S}(W[1]), \mathcal{S}\left(W^{\prime}[1]\right)\right)$

A L_{∞}-map Φ is called an L_{∞}-quasi-isomorphism if its first component $\Phi_{1}=\left.\Phi\right|_{W[1]}=\varphi_{1}: W[1] \rightarrow W^{\prime}[1]$-which is a chain map $\left(W[1], \mathcal{D}_{1}\right) \rightarrow\left(W^{\prime}[1], \mathcal{D}_{1}^{\prime}\right)$ - induces an isomorphism in cohomology.

A formality for a differential graded Lie algebra $(\mathfrak{G}, b,[]$,$) is a$ L_{∞}-quasi-isomorphism from the L_{∞}-algebra corresponding to $\left(\mathfrak{H}, 0,[,]_{H}\right)$ (the cohomology of \mathfrak{G} with respect to b), to the L_{∞}-algebra corresponding to $(\mathfrak{G}, b,[]):, \Phi: \mathcal{S}(\mathfrak{H}[1]) \rightarrow \mathcal{S}(\mathfrak{G}[1])$, such that $\Phi \circ[,]_{H}[1]=\overline{(b[1]+[,][1])} \circ \Phi$
A quasi-isomorphism yields isomorphic moduli spaces of deformations.

Low orders terms of a formality

We look for $\varphi: \mathcal{S}(\mathfrak{H}[1]) \rightarrow \mathfrak{G}[1]$ a degree 0 map vanishing on 1 , such that $\Phi=e^{* \varphi}: \mathcal{S}(\mathfrak{H}[1]) \rightarrow \mathcal{S}(\mathfrak{G}[1])$ satisfies $\Phi \circ[,]_{H}[1]=\overline{(b[1]+[,][1])} \circ \Phi$. Denoting φ_{n} the restriction of φ to $\operatorname{Sym}^{n}(\mathfrak{H}[1])$, we have in particular that $b[1] \circ \varphi_{1}=0$ and $\left.\varphi_{1}:(\mathfrak{H}[1], 0)\right] \rightarrow(\mathfrak{G}[1], b[1])$ must induce an isomorphism in cohomology.

[^0]
Low orders terms of a formality

We look for $\varphi: \mathcal{S}(\mathfrak{H}[1]) \rightarrow \mathfrak{G}[1]$ a degree 0 map vanishing on 1 , such that $\Phi=e^{* \varphi}: \mathcal{S}(\mathfrak{H}[1]) \rightarrow \mathcal{S}(\mathfrak{G}[1])$ satisfies $\Phi \circ[,]_{H}[1]=\overline{(b[1]+[,][1])} \circ \Phi$. Denoting φ_{n} the restriction of φ to $\operatorname{Sym}^{n}(\mathfrak{H}[1])$, we have in particular that $b[1] \circ \varphi_{1}=0$ and $\left.\varphi_{1}:(\mathfrak{H}[1], 0)\right] \rightarrow(\mathfrak{G}[1], b[1])$ must induce an isomorphism in cohomology.

The cohomology of $(\mathfrak{G}[1], b[1])$ identifies with $\mathfrak{H}[1]$.
We denote by $\pi: Z \mathfrak{G}=\{C \in \mathfrak{G} \mid b C=0\} \rightarrow \mathfrak{H}$ the canonical projection.
We must have $b[1] \circ \varphi_{1}=0$ and $\pi[1] \circ \varphi_{1}=\mathrm{Id}$.
We can choose a vector space X complement to $B \mathfrak{G}=\{b C \mid C \in \mathfrak{G}\}$ in $Z \mathfrak{G}$ and let φ_{1} be the inverse of the restriction of π to X.

ΛV is the quotient of $\mathcal{T} V$ by the two-sided graded ideal gen. by $x \otimes y+(-1)^{\mid}$

Low orders terms of a formality

We look for $\varphi: \mathcal{S}(\mathfrak{H}[1]) \rightarrow \mathfrak{G}[1]$ a degree 0 map vanishing on 1 , such that $\Phi=e^{* \varphi}: \mathcal{S}(\mathfrak{H}[1]) \rightarrow \mathcal{S}(\mathfrak{G}[1])$ satisfies $\Phi \circ \overline{[,]_{H}[1]}=\overline{(b[1]+[,][1])} \circ \Phi$. Denoting φ_{n} the restriction of φ to $\operatorname{Sym}^{n}(\mathfrak{H}[1])$, we have in particular that $b[1] \circ \varphi_{1}=0$ and $\left.\varphi_{1}:(\mathfrak{H}[1], 0)\right] \rightarrow(\mathfrak{G}[1], b[1])$ must induce an isomorphism in cohomology.

The cohomology of $(\mathfrak{G}[1], b[1])$ identifies with $\mathfrak{H}[1]$.
We denote by $\pi: Z \mathfrak{G}=\{C \in \mathfrak{G} \mid b C=0\} \rightarrow \mathfrak{H}$ the canonical projection.
We must have $b[1] \circ \varphi_{1}=0$ and $\pi[1] \circ \varphi_{1}=\mathrm{Id}$.
We can choose a vector space X complement to $B \mathfrak{G}=\{b C \mid C \in \mathfrak{G}\}$ in $Z \mathfrak{G}$ and let φ_{1} be the inverse of the restriction of π to X.
The condition on $\varphi_{2}: \mathcal{S}^{2}(\mathfrak{H}[1]) \rightarrow \mathfrak{G}[1]$ writes more easily on its shift $\phi_{2}=\varphi_{2}[-1]: \Lambda^{2} \mathfrak{H} \rightarrow \mathfrak{G}$ as $0=b \circ \phi_{2}+[,]_{G} \circ\left(\phi_{1} \otimes \phi_{1}\right)-\phi_{1} \circ[,]_{H}$.
ΛV is the quotient of $\mathcal{T} V$ by the two-sided graded ideal gen. by $x \otimes y+(-1)^{|x||y|} y \otimes x$.

A characteristic 3-class

Let $\varphi_{1}: \mathfrak{H}[1] \rightarrow \mathfrak{G}[1]$ and $\varphi_{2}: \mathcal{S}^{2}(\mathfrak{H}[1]) \rightarrow \mathfrak{G}[1]$ be degree 0 maps, such that their shifts $\phi_{i}=\varphi_{i}[-1]: \Lambda^{i} \mathfrak{H} \rightarrow \mathfrak{G}$ satisfy $0=b \circ \phi_{1}, \quad \pi \circ \phi_{1}=\operatorname{Id}_{\mathfrak{H}}$ and $0=b \circ \phi_{2}+[,]_{G} \circ\left(\phi_{1} \otimes \phi_{1}\right)-\phi_{1} \circ[,]_{H}$.
(1) The linear map $w_{3}(\varphi): \Lambda^{3} \mathfrak{H} \rightarrow \mathfrak{G}$ of degree -1 defined on homogeneous elements $y_{1}, y_{2}, y_{3} \in \mathfrak{H}$ by

$$
\begin{aligned}
& w_{3}(\varphi)\left(y_{1}, y_{2}, y_{3}\right)=(-1)^{\left|y_{1}\right|}\left[\phi_{1}\left(y_{1}\right), \phi_{2}\left(y_{2}, y_{3}\right)\right]_{G}-(-1)^{\left|y_{2}\right|}(-1)^{\left|y_{2}\right|\left|y_{1}\right|}\left[\phi_{1}\left(y_{2}\right), \phi_{2}\left(y_{1}, y_{3}\right)\right]_{G}+ \\
& (-1)^{\left|y_{3}\right|}(-1)^{\left|y_{3}\right|\left(\left|y_{1}\right|+\left|y_{2}\right|\right)}\left[\phi_{1}\left(y_{3}\right), \phi_{2}\left(y_{1}, y_{2}\right)\right]_{G}-\phi_{2}\left(\left[y_{1}, y_{2}\right]_{H}, y_{3}\right)+ \\
& (-1)^{\left|y_{3}\right|\left|y_{2}\right|} \phi_{2}\left(\left[y_{1}, y_{3}\right]_{H}, y_{2}\right)(-1)^{\left(\left|y_{2}\right|+\left|y_{3}\right|\right)\left|y_{1}\right|} \phi_{2}\left(\left[y_{2}, y_{3}\right]_{H}, y_{1}\right) \text { satisfies } b \circ w_{3}(\varphi)=0 .
\end{aligned}
$$

The Chevalley Eilenberg coboundary operator on a graded Lie algebra is given by the usual formulas with signs.
(3) There is a L_{∞}-quis of order 3 between \mathfrak{G} and its cohom. \mathfrak{H} iff $c_{3}=0$

A characteristic 3-class

Let $\varphi_{1}: \mathfrak{H}[1] \rightarrow \mathfrak{G}[1]$ and $\varphi_{2}: \mathcal{S}^{2}(\mathfrak{H}[1]) \rightarrow \mathfrak{G}[1]$ be degree 0 maps, such that their shifts $\phi_{i}=\varphi_{i}[-1]: \Lambda^{i} \mathfrak{H} \rightarrow \mathfrak{G}$ satisfy $0=b \circ \phi_{1}, \quad \pi \circ \phi_{1}=\operatorname{Id}_{\mathfrak{H}}$ and $0=b \circ \phi_{2}+[,]_{G} \circ\left(\phi_{1} \otimes \phi_{1}\right)-\phi_{1} \circ[,]_{H}$.
(1) The linear map $w_{3}(\varphi): \Lambda^{3} \mathfrak{H} \rightarrow \mathfrak{G}$ of degree -1 defined on homogeneous elements $y_{1}, y_{2}, y_{3} \in \mathfrak{H}$ by
$w_{3}(\varphi)\left(y_{1}, y_{2}, y_{3}\right)=(-1)^{\left|y_{1}\right|}\left[\phi_{1}\left(y_{1}\right), \phi_{2}\left(y_{2}, y_{3}\right)\right]_{G}-(-1)^{\left|y_{2}\right|}(-1)^{\left|y_{2}\right|}\left|y_{1}\right|\left[\phi_{1}\left(y_{2}\right), \phi_{2}\left(y_{1}, y_{3}\right)\right]_{G}+$ $(-1)^{\left|y_{3}\right|}(-1)^{\left|y_{3}\right|| | y_{1}\left|+\left|y_{2}\right|\right]}\left[\phi_{1}\left(y_{3}\right), \phi_{2}\left(y_{1}, y_{2}\right)\right]_{6}-\phi_{2}\left(\left[y_{1}, y_{2}\right] H, y_{3}\right)+$
$(-1)^{\left|y_{3}\right|\left|y_{2}\right|} \phi_{2}\left(\mid y_{1}, y_{3} H_{\mu}, y_{2}\right)(-1)^{\left(\left|y_{2}\right|+\left|y_{3}\right|\right)\left|y_{1}\right| \phi_{2}\left(\left[y_{2}, y_{3}\right]_{H}, y_{1}\right)}$ satisfies $b \circ w_{3}(\varphi)=0$.
(2) The trilinear map $z_{3}(\varphi)=\pi \circ w_{3}(\varphi): \Lambda^{3} \mathfrak{H} \rightarrow \mathfrak{H}$ is a graded Chevalley-Eilenberg 3-cocycle of degree -1, i.e. $\delta_{\mathfrak{H}} z_{3}=0$, and its class $c_{3}=c_{3}\left(\mathfrak{G}, b,[,]_{G}\right)$ does not depend on the chosen φ_{1}, φ_{2}.
The Chevalley Eilenberg coboundary operator on a graded Lie algebra is given by the usual formulas with signs.

A characteristic 3-class

Let $\varphi_{1}: \mathfrak{H}[1] \rightarrow \mathfrak{G}[1]$ and $\varphi_{2}: \mathcal{S}^{2}(\mathfrak{H}[1]) \rightarrow \mathfrak{G}[1]$ be degree 0 maps, such that their shifts $\phi_{i}=\varphi_{i}[-1]: \Lambda^{i} \mathfrak{H} \rightarrow \mathfrak{G}$ satisfy $0=b \circ \phi_{1}, \quad \pi \circ \phi_{1}=\operatorname{Id}_{\mathfrak{H}}$ and $0=b \circ \phi_{2}+[,]_{G} \circ\left(\phi_{1} \otimes \phi_{1}\right)-\phi_{1} \circ[,]_{H}$.
(1) The linear map $w_{3}(\varphi): \Lambda^{3} \mathfrak{H} \rightarrow \mathfrak{G}$ of degree -1 defined on homogeneous elements $y_{1}, y_{2}, y_{3} \in \mathfrak{H}$ by
$w_{3}(\varphi)\left(y_{1}, y_{2}, y_{3}\right)=(-1)^{\left|y_{1}\right|}\left[\phi_{1}\left(y_{1}\right), \phi_{2}\left(y_{2}, y_{3}\right)\right]_{G}-(-1)^{\left|y_{2}\right|}(-1)^{\left|y_{2}\right|\left|y_{1}\right|}\left[\phi_{1}\left(y_{2}\right), \phi_{2}\left(y_{1}, y_{3}\right)\right]_{G}+$ $(-1)^{\left|y_{3}\right|}(-1)^{\left|y_{3}\right|| | y_{1}\left|+\left|y_{2}\right|\right]}\left[\phi_{1}\left(y_{3}\right), \phi_{2}\left(y_{1}, y_{2}\right)\right]_{6}-\phi_{2}\left(\left[y_{1}, y_{2}\right] H, y_{3}\right)+$
$\left.(-1)^{\left|y_{3}\right|\left|y_{2}\right|} \phi_{2}\left(\mid y_{1}, y_{z_{3}}\right]_{\mu}, y_{2}\right)(-1)^{\left(\left|y_{2}\right|+\left|y_{3}\right|\left|y_{1}\right|\right.} \phi_{\phi_{2}}\left(\left[y_{2}, y_{3}\right]_{H}, y_{1}\right)$ satisfies $b \circ w_{3}(\varphi)=0$.
(2) The trilinear map $z_{3}(\varphi)=\pi \circ w_{3}(\varphi): \Lambda^{3} \mathfrak{H} \rightarrow \mathfrak{H}$ is a graded Chevalley-Eilenberg 3-cocycle of degree -1, i.e. $\delta_{\mathfrak{H}} z_{3}=0$, and its class $c_{3}=c_{3}\left(\mathfrak{G}, b,[,]_{G}\right)$ does not depend on the chosen φ_{1}, φ_{2}.
The Chevalley Eilenberg coboundary operator on a graded Lie algebra is given by the usual formulas with signs.
(3) There is a L_{∞}-quis of order 3 between \mathfrak{G} and its cohom. \mathfrak{H} iff $c_{3}=0$.

What is formality for the Hochschild complexe of $\mathcal{U} \mathfrak{g}$?

We are interested in checking whether there is formality for the graded Lie algebra $\left(C_{H}(\mathcal{A}, \mathcal{A})[1], b=[\mu,]_{G},[,]_{G}\right)$ given by the Hochschild complex of the associative algebra (\mathcal{A}, μ) when $\mathcal{A}=\mathcal{U} \mathfrak{g}$ is the universal enveloping algebra of a Lie algebra \mathfrak{g}, thus in checking whether one can build a quasi-isomophism

$$
e^{* \varphi}: \mathcal{S}\left(H_{H}(\mathcal{U} \mathfrak{g}, \mathcal{U} \mathfrak{g})[2]\right) \rightarrow \mathcal{S}\left(C_{H}(\mathcal{U} \mathfrak{g}, \mathcal{U} \mathfrak{g})[2]\right)
$$

$$
H_{H}^{n}(\mathcal{U g}, \mathcal{U g}) \simeq H_{C E}^{n}(\mathfrak{g}, \mathcal{U} \mathfrak{g}) \simeq H_{C E}^{n}(\mathfrak{g}, \mathcal{S} \mathfrak{g})
$$

What is formality for the Hochschild complexe of $\mathcal{U} \mathfrak{g}$?

We are interested in checking whether there is formality for the graded Lie algebra $\left(C_{H}(\mathcal{A}, \mathcal{A})[1], b=[\mu,]_{G},[,]_{G}\right)$ given by the Hochschild complex of the associative algebra (\mathcal{A}, μ) when $\mathcal{A}=\mathcal{U} \mathfrak{g}$ is the universal enveloping algebra of a Lie algebra \mathfrak{g}, thus in checking whether one can build a quasi-isomophism

$$
e^{* \varphi}: \mathcal{S}\left(H_{H}(\mathcal{U} \mathfrak{g}, \mathcal{U} \mathfrak{g})[2]\right) \rightarrow \mathcal{S}\left(C_{H}(\mathcal{U} \mathfrak{g}, \mathcal{U} \mathfrak{g})[2]\right)
$$

Theorem[Cartan-Eilenberg]. Let \mathfrak{g} be a finite dim Lie algebra and \mathcal{M} be a $\mathcal{U} \mathfrak{g}$-bimodule. Then $H_{H}^{n}(\mathcal{U} \mathfrak{g}, \mathcal{M}) \simeq H_{C E}^{n}\left(\mathfrak{g}, \mathcal{M}_{a}\right)$ where $\mathcal{M}_{a}=\mathcal{M}$ with the action of $g \in \mathfrak{g}$ defined by $g \cdot m:=g m-m g$. In particular

$$
H_{H}^{n}(\mathcal{U g}, \mathcal{U} \mathfrak{g}) \simeq H_{C E}^{n}(\mathfrak{g}, \mathcal{U} \mathfrak{g}) \simeq H_{C E}^{n}(\mathfrak{g}, \mathcal{S} \mathfrak{g})
$$

The Chevalley-Eilenberg complex $\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g}), \delta_{\mathfrak{g}}\right)$

$\mathcal{S} \mathfrak{g}$ is a \mathfrak{g}-module via the adjoint representation. $C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})$ is canonically isomorphic to $\mathcal{S g} \otimes \Lambda \mathfrak{g}^{*}$ and is \mathbb{Z}-graded by the form degree of $\Lambda \mathfrak{g}^{*}$. It is a graded commutative algebra by means of the tensor product of the commutative multiplication in $\mathcal{S g}$ and the usual exterior multiplication in $\wedge \mathfrak{g}^{*}$ which we also denote by \wedge.
 It is equipped with the usual Schouten bracket $[,]_{s}$
\qquad usual interior product graded derivation and for each $y \in \mathfrak{g}^{*}, \iota_{y}: \mathcal{S g} \rightarrow \mathcal{S g}$ the corresponding derivation, writing,$(f)=\partial^{i} f$ for each $f \in \operatorname{Sg}$ and extending these derivations to $\operatorname{Sg} \otimes \operatorname{Mg}^{3}$ Let $\pi=[]=,\frac{1}{2} \sum_{i, j, k} c_{j k}^{i} e_{i} \otimes\left(\epsilon^{j} \wedge \epsilon^{k}\right)$ be the linear Poisson structure of \mathfrak{g}^{*}, where $c_{j k}^{i}=\epsilon^{i}\left(\left[e_{j}, e_{k}\right]\right) \in \mathbb{K}$ are the structure constants. Then $[\pi, \pi]_{s}=0$ and $\delta_{\mathfrak{g}}=[\pi,]_{s}$ is the (shifted) Chevalley Eilenberg coboundary operator $\left(C_{C F}(g, \mathcal{S g})[1], \delta_{\mathrm{g}},[,]_{s}\right)$ is a differential graded Lie algebra

The Chevalley-Eilenberg complex $\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g}), \delta_{\mathfrak{g}}\right)$

$\mathcal{S} \mathfrak{g}$ is a \mathfrak{g}-module via the adjoint representation. $C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})$ is canonically isomorphic to $\mathcal{S g} \otimes \Lambda \mathfrak{g}^{*}$ and is \mathbb{Z}-graded by the form degree of $\Lambda \mathfrak{g}^{*}$. It is a graded commutative algebra by means of the tensor product of the commutative multiplication in $\mathcal{S g}$ and the usual exterior multiplication in $\wedge \mathfrak{g}^{*}$ which we also denote by \wedge. $f \in \mathcal{S g}$ is viewed as a polynomial function on the dual space \mathfrak{g}^{*} so $C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})$ is viewed as the space of all polynomial poly-vector-fields on \mathfrak{g}^{*}. It is equipped with the usual Schouten bracket [, $]_{s}$:

$$
[F, G]_{s}=\sum_{i=1}^{n} \iota_{e_{i}}(F) \wedge \partial^{i} G-(-1)^{(|F|-1)(|G|-1)} \sum_{i=1}^{n} \iota_{e_{i}}(G) \wedge \partial^{i} F
$$

where e_{1}, \ldots, e_{n} is a basis of $\mathfrak{g}, \epsilon^{1}, \ldots, \epsilon^{n}$ the dual basis; $\iota_{\xi}: \Lambda \mathfrak{g}^{*} \rightarrow \Lambda \mathfrak{g}^{*}$, for each $\xi \in \mathfrak{g}$, is the usual interior product graded derivation and for each $y \in \mathfrak{g}^{*}, \iota y: \mathcal{S g} \rightarrow \mathcal{S} \mathfrak{g}$ the corresponding derivation, writing $\iota_{\epsilon^{i}}(f)=\partial^{i} f$ for each $f \in \mathcal{S g}$ and extending these derivations to $\mathcal{S} \mathfrak{g} \otimes \Lambda \mathfrak{g}^{*}$.
\square Chevalley Eilenberg coboundary operator.
\square

The Chevalley-Eilenberg complex $\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g}), \delta_{\mathfrak{g}}\right)$

$\mathcal{S} \mathfrak{g}$ is a \mathfrak{g}-module via the adjoint representation. $C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})$ is canonically isomorphic to $\mathcal{S g} \otimes \Lambda \mathfrak{g}^{*}$ and is \mathbb{Z}-graded by the form degree of $\Lambda \mathfrak{g}^{*}$. It is a graded commutative algebra by means of the tensor product of the commutative multiplication in $\mathcal{S g}$ and the usual exterior multiplication in $\wedge \mathfrak{g}^{*}$ which we also denote by \wedge. $f \in \mathcal{S g}$ is viewed as a polynomial function on the dual space \mathfrak{g}^{*} so $C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})$ is viewed as the space of all polynomial poly-vector-fields on \mathfrak{g}^{*}. It is equipped with the usual Schouten bracket $[,]_{s}$:

$$
[F, G]_{s}=\sum_{i=1}^{n} \iota_{e_{i}}(F) \wedge \partial^{i} G-(-1)^{(|F|-1)(|G|-1)} \sum_{i=1}^{n} \iota_{e_{i}}(G) \wedge \partial^{i} F
$$

where e_{1}, \ldots, e_{n} is a basis of $\mathfrak{g}, \epsilon^{1}, \ldots, \epsilon^{n}$ the dual basis; $\iota_{\xi}: \Lambda \mathfrak{g}^{*} \rightarrow \Lambda \mathfrak{g}^{*}$, for each $\xi \in \mathfrak{g}$, is the usual interior product graded derivation and for each $y \in \mathfrak{g}^{*}, \iota_{y}: \mathcal{S g} \rightarrow \mathcal{S} \mathfrak{g}$ the corresponding derivation, writing $\iota_{\epsilon^{i}}(f)=\partial^{i} f$ for each $f \in \mathcal{S} \mathfrak{g}$ and extending these derivations to $\mathcal{S} \mathfrak{g} \otimes \Lambda \mathfrak{g}^{*}$. Let $\pi=[]=,\frac{1}{2} \sum_{i, j, k} c_{j k}^{i} e_{i} \otimes\left(\epsilon^{j} \wedge \epsilon^{k}\right)$ be the linear Poisson structure of \mathfrak{g}^{*}, where $c_{j k}^{j}=\epsilon^{i}\left(\left[e_{j}, e_{k}\right]\right) \in \mathbb{K}$ are the structure constants. Then $[\pi, \pi]_{s}=0$ and $\delta_{\mathfrak{g}}=[\pi,]_{s}$ is the (shifted) Chevalley Eilenberg coboundary operator. $\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[1], \delta_{\mathfrak{g}},[,]_{s}\right)$ is a differential graded Lie algebra.

Kontsevich formality

Kontsevich gives the construction of a quasi-isomorphism

$$
e^{* \varphi}: \mathcal{S}\left(C_{C E}(\mathfrak{g}, \mathcal{S g})[2]\right) \rightarrow \mathcal{S}\left(C_{H}(\mathcal{S g}, \mathcal{S} \mathfrak{g})[2]\right)
$$

from the L_{∞}-algebra $\mathcal{S}\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[2]\right)$ associated to the graded Lie algebra $\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[1], 0,[,]_{s}\right)$ of all polynomial poly-vector-fields on the vector space \mathfrak{g}^{*}, equipped with zero differential and the usual Schouten bracket $[,]_{S}$, to the L_{∞}-algebra $\mathcal{S}\left(C_{H}(\mathcal{S g}, \mathcal{S g})[2]\right)$ associated to the graded Lie algebra $\left(C_{H}(\mathcal{S g}, \mathcal{S g})[1], b,[,]_{G}\right)$ of all poly-differential operators on \mathfrak{g}^{*} with polynomial coefficients, equipped with the Hochschild differential b and the Gerstenhaber bracket $[,]_{G}$.

Quasi isomorphism between the Hochschild complex of $\mathcal{U g}$ and the Chevalley-Eilenberg complex of \mathfrak{g} with values in $\mathcal{S} \mathfrak{g}$

Theorem (Kontsevich, also Bordemann and Makhlouf):
Let $(\mathfrak{g},[]$,$) be a finite-dimensional Lie-algebra.$
There is a L_{∞}-quasi-isomorphism between the differential graded Lie algebra $\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[1], \delta_{\mathfrak{g}},[,]_{s}\right)$ and the differential graded Lie algebra $\left(C_{H}(\mathcal{U g}, \mathcal{U} \mathfrak{g})[1], b,[,]_{G}\right)$.
In particular, this induces an isomorphism of the graded Lie algebras of their cohomologies (with respect to $\delta_{\mathfrak{g}}$ and b, respectively)
Hence, the L_{∞}-formality of $\left(C_{C E}(\mathfrak{g}, \mathcal{S g})[1]\right.$
L_{∞}-formality of $\left(C_{H}(\mathcal{U g}, \mathcal{U g})[1], b,[,]_{G}\right)$

Quasi isomorphism between the Hochschild complex of $\mathcal{U g}$ and the Chevalley-Eilenberg complex of \mathfrak{g} with values in $\mathcal{S} \mathfrak{g}$

Theorem (Kontsevich, also Bordemann and Makhlouf):
Let $(\mathfrak{g},[]$,$) be a finite-dimensional Lie-algebra.$
There is a L_{∞}-quasi-isomorphism between the differential graded Lie algebra $\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[1], \delta_{\mathfrak{g}},[,]_{s}\right)$ and the differential graded Lie algebra $\left(C_{H}(\mathcal{U g}, \mathcal{U g})[1], b,[,]_{G}\right)$.
In particular, this induces an isomorphism of the graded Lie algebras of their cohomologies (with respect to $\delta_{\mathfrak{g}}$ and b, respectively). Hence, the L_{∞}-formality of $\left(C_{C E}(\mathfrak{g}, \mathcal{S g})[1], \delta_{\mathfrak{g}},[,]_{s}\right)$ is equivalent to the L_{∞}-formality of $\left(C_{H}(\mathcal{U} \mathfrak{g}, \mathcal{U} \mathfrak{g})[1], b,[,]_{G}\right)$.

Abelian Lie algebras

In case the Lie algebra \mathfrak{g} is abelian, $\mathcal{U} \mathfrak{g}=\mathcal{S g}$, the Chevalley-Eilenberg differential is zero, whence

$$
H_{H}(\mathcal{U} \mathfrak{g}, \mathcal{U} \mathfrak{g}) \cong H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g}) \cong C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})
$$

and formality of $\left(C_{H}(\mathcal{U g}, \mathcal{U} \mathfrak{g})[1], b,[,]_{G}\right) \cong\left(C_{H}\left(\mathcal{S} \mathfrak{g}, \mathcal{S g}^{\prime}\right)[1], b,[,]_{G}\right)$ is the content of the Kontsevich formality theorem where one builds a quasi-isomorphism

$$
e^{* \varphi}: \mathcal{S}\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[2]\right) \rightarrow \mathcal{S}\left(C_{H}(\mathcal{S} \mathfrak{g}, \mathcal{S} \mathfrak{g})[2]\right)
$$

Thus the Hochschild complex of the universal enveloping algebra of an abelian algebra is formal.

Cartan 3-regular quadratic Lie algebras

A triple $(\mathfrak{g},[],, \kappa)$ is called a quadratic Lie algebra if the symmetric bilinear form $\kappa: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{K}$ is invariant and nondegenerate. (A symmetric bilinear form is invariant if for all $\xi, \xi^{\prime}, \xi^{\prime \prime} \in \mathfrak{g}$ we have $\kappa\left(\left[\xi, \xi^{\prime}\right], \xi^{\prime \prime}\right)=\kappa\left(\xi,\left[\xi^{\prime}, \xi^{\prime \prime}\right]\right)$.)

The Cartan 3-cocycle $\Omega \in \Lambda^{3} \mathfrak{g}^{*}$ is then defined by

$$
\Omega\left(\xi, \xi^{\prime}, \xi^{\prime \prime}\right)=\kappa\left(\xi,\left[\xi^{\prime}, \xi^{\prime \prime}\right]\right)
$$

A quadratic Lie algebra $(\mathfrak{g},[],, \kappa)$ is called a Cartan-3-regular if the cohomology class of the Cartan cocycle $\Omega,[\Omega]$, is nonzero.

The Casimir is the element $q \in \mathcal{S}^{2} \mathfrak{g}$ which is the 'inverse' of $\kappa\left(q=\Sigma q^{i j} e_{i} \otimes e_{j}, \sum_{j} q^{i j} \kappa_{j r}=\delta_{r}^{i}\right)$ The space of polynomials in $q, \mathbb{K}[q]$, injects in the invariant polynomials $(\mathcal{S g})^{\mathfrak{g}} \cong H_{C E}^{0}(\mathfrak{g}, \mathcal{S g})$. When $(\mathfrak{g},[],, \kappa)$ is Cartan-3-regular, the map $\mathbb{K}[q] \rightarrow H_{C \mathcal{F}}^{3}(\mathfrak{g}, \mathcal{S g}): \alpha \rightarrow[\alpha \wedge \Omega]$ is injective.

Cartan 3-regular quadratic Lie algebras

A triple $(\mathfrak{g},[],, \kappa)$ is called a quadratic Lie algebra if the symmetric bilinear form $\kappa: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{K}$ is invariant and nondegenerate. (A symmetric bilinear form is invariant if for all $\xi, \xi^{\prime}, \xi^{\prime \prime} \in \mathfrak{g}$ we have $\kappa\left(\left[\xi, \xi^{\prime}\right], \xi^{\prime \prime}\right)=\kappa\left(\xi,\left[\xi^{\prime}, \xi^{\prime \prime}\right]\right)$.)

The Cartan 3-cocycle $\Omega \in \Lambda^{3} \mathfrak{g}^{*}$ is then defined by

$$
\Omega\left(\xi, \xi^{\prime}, \xi^{\prime \prime}\right)=\kappa\left(\xi,\left[\xi^{\prime}, \xi^{\prime \prime}\right]\right)
$$

A quadratic Lie algebra $(\mathfrak{g},[],, \kappa)$ is called a Cartan-3-regular if the cohomology class of the Cartan cocycle $\Omega,[\Omega]$, is nonzero.

The Casimir is the element $q \in \mathcal{S}^{2} \mathfrak{g}$ which is the 'inverse' of $\kappa\left(q=\Sigma q^{i j} e_{i} \otimes e_{j}, \sum_{j} q^{i j} \kappa_{j r}=\delta_{r}^{i}\right)$. The space of polynomials in $q, \mathbb{K}[q]$, injects in the invariant polynomials $(\mathcal{S g})^{\mathfrak{g}} \cong H_{C E}^{0}(\mathfrak{g}, \mathcal{S})$. When $(\mathfrak{g},[],, \kappa)$ is Cartan-3-regular,the map $\mathbb{K}[q] \rightarrow H_{C E}^{3}(\mathfrak{g}, \mathcal{S g}): \alpha \rightarrow[\alpha \wedge \Omega]$ is injective.

Non formality of $\mathcal{U} \mathfrak{g}$ for a Cartan 3 -regular quadratic \mathfrak{g}

In $C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})$ we have also the linear Poisson structure π and the Euler field $E=\sum_{i=1}^{n} e_{i} \otimes \epsilon^{i}$.
The Schouten brackets are given, for $\alpha, \beta, \gamma \in \mathbb{K}[q]$ and α^{\prime} denoting the derivative of the polynomial α, by:
$\delta_{\mathfrak{g}}(\alpha)=[\pi, \alpha]_{s}=0, \quad \delta_{\mathfrak{g}}(\alpha \wedge \Omega)=[\pi, \alpha \wedge \Omega]_{s}=0, \quad \delta_{\mathfrak{g}}(\alpha \wedge E)=[\pi, \alpha \wedge E]_{s}=\alpha \wedge \pi$, $[\alpha, \beta]_{s}=0, \quad[E, \alpha]_{s}=2 q \alpha^{\prime}, \quad[E, \Omega]_{s}=-3 \Omega, \quad[\beta \wedge \Omega, \alpha]_{s}=2\left(\beta \alpha^{\prime}\right) \wedge \pi=\delta_{\mathfrak{g}}\left(2\left(\beta \alpha^{\prime}\right) \wedge E\right)$, $[\beta \wedge \Omega, \gamma \wedge \Omega]_{s}=2\left(\beta \gamma^{\prime}-\gamma \beta^{\prime}\right) \wedge \pi \wedge \Omega=\delta_{\mathfrak{g}}\left(2\left(\beta \gamma^{\prime}-\gamma \beta^{\prime}\right) \wedge E \wedge \Omega\right)$.

Theorem Let (g, [,
quadratic Lie algebra envelopping algebra is NOT L_{∞}-formal
We prove that the Chevalley-Eilenberg complex \mathfrak{G} of \mathfrak{g} with values in $S \mathfrak{g}$ is not L_{∞}-formal. Choose any graded vector space complement of the δ_{q}-coboundaries which includes all $\alpha \in \mathbb{K}[q]$ and all $\beta \wedge \Omega$; the resulting section $\phi_{1}: \mathfrak{F} \rightarrow \mathbb{G}$ satisfies $\phi_{1}([\alpha])=\alpha$ and $\phi_{1}([\alpha \wedge \Omega])=\alpha \wedge \Omega$. We can choose a \mathbb{K}-linear map $\phi_{2}: \wedge^{2} \mathfrak{H} \rightarrow \mathscr{F}$ of degree -1 satisfying The Chevalley-Eilenberg 3-cocycle z_{3} (which represents the characteristic 3 -class c_{3} of the differential graded Lie algebra $\mathfrak{G}=C_{C E}(\mathfrak{g}, \mathcal{S g})[1]$ and depends on ϕ_{1} and ϕ_{2},) takes the following values: $z_{3}([\alpha],[\beta],[\gamma])=0$, and,

$8[q]=-2[[q],[D]]_{H}=2[D(q)], \quad$ but $D=\sum D_{r}$ must be a 1-cocycle, hence $D_{1}: \mathfrak{g} \rightarrow \mathfrak{g}$ would be a derivation of \mathfrak{g}

Non formality of $\mathcal{U} \mathfrak{g}$ for a Cartan 3-regular quadratic \mathfrak{g}

$\operatorname{In} C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})$ we have also the linear Poisson structure π and the Euler field $E=\sum_{i=1}^{n} e_{i} \otimes \epsilon^{i}$. The Schouten brackets are given, for $\alpha, \beta, \gamma \in \mathbb{K}[q]$ and α^{\prime} denoting the derivative of the polynomial α, by: $\delta_{\mathfrak{g}}(\alpha)=[\pi, \alpha]_{s}=0, \quad \delta_{\mathfrak{g}}(\alpha \wedge \Omega)=[\pi, \alpha \wedge \Omega]_{s}=0, \quad \delta_{\mathfrak{g}}(\alpha \wedge E)=[\pi, \alpha \wedge E]_{s}=\alpha \wedge \pi$, $[\alpha, \beta]_{s}=0, \quad[E, \alpha]_{s}=2 q \alpha^{\prime}, \quad[E, \Omega]_{s}=-3 \Omega, \quad[\beta \wedge \Omega, \alpha]_{s}=2\left(\beta \alpha^{\prime}\right) \wedge \pi=\delta_{\mathfrak{g}}\left(2\left(\beta \alpha^{\prime}\right) \wedge E\right)$, $[\beta \wedge \Omega, \gamma \wedge \Omega]_{s}=2\left(\beta \gamma^{\prime}-\gamma \beta^{\prime}\right) \wedge \pi \wedge \Omega=\delta_{\mathfrak{g}}\left(2\left(\beta \gamma^{\prime}-\gamma \beta^{\prime}\right) \wedge E \wedge \Omega\right)$.

Theorem Let $(\mathfrak{g},[],, \kappa)$ be a finite-dimensional Cartan-3-regular quadratic Lie algebra. Then the Hochschild complex of its universal envelopping algebra is NOT L_{∞}-formal.

Non formality of $\mathcal{U} \mathfrak{g}$ for a Cartan 3-regular quadratic \mathfrak{g}

In $C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})$ we have also the linear Poisson structure π and the Euler field $E=\sum_{i=1}^{n} e_{i} \otimes \epsilon^{i}$. The Schouten brackets are given, for $\alpha, \beta, \gamma \in \mathbb{K}[q]$ and α^{\prime} denoting the derivative of the polynomial α, by:
$\delta_{\mathfrak{g}}(\alpha)=[\pi, \alpha]_{s}=0, \quad \delta_{\mathfrak{g}}(\alpha \wedge \Omega)=[\pi, \alpha \wedge \Omega]_{s}=0, \quad \delta_{\mathfrak{g}}(\alpha \wedge E)=[\pi, \alpha \wedge E]_{s}=\alpha \wedge \pi$, $[\alpha, \beta]_{s}=0, \quad[E, \alpha]_{s}=2 q \alpha^{\prime}, \quad[E, \Omega]_{s}=-3 \Omega, \quad[\beta \wedge \Omega, \alpha]_{s}=2\left(\beta \alpha^{\prime}\right) \wedge \pi=\delta_{\mathfrak{g}}\left(2\left(\beta \alpha^{\prime}\right) \wedge E\right)$, $[\beta \wedge \Omega, \gamma \wedge \Omega]_{s}=2\left(\beta \gamma^{\prime}-\gamma \beta^{\prime}\right) \wedge \pi \wedge \Omega=\delta_{\mathfrak{g}}\left(2\left(\beta \gamma^{\prime}-\gamma \beta^{\prime}\right) \wedge E \wedge \Omega\right)$.

Theorem Let $(\mathfrak{g},[],, \kappa)$ be a finite-dimensional Cartan-3-regular quadratic Lie algebra. Then the Hochschild complex of its universal envelopping algebra is NOT $L_{\infty^{-}}$-formal.
We prove that the Chevalley-Eilenberg complex \mathfrak{G} of \mathfrak{g} with values in $\mathcal{S} \mathfrak{g}$ is not L_{∞}-formal. Choose any graded vector space complement of the $\delta_{\mathfrak{g}}$-coboundaries which includes all $\alpha \in \mathbb{K}[q]$ and all $\beta \wedge \Omega$; the resulting section $\phi_{1}: \mathfrak{H} \rightarrow \mathfrak{G}$ satisfies $\phi_{1}([\alpha])=\alpha$ and $\phi_{1}([\alpha \wedge \Omega])=\alpha \wedge \Omega$. We can choose a \mathbb{K}-linear map $\phi_{2}: \wedge^{2} \mathfrak{H} \rightarrow \mathfrak{G}$ of degree -1 satisfying $\phi_{2}(\alpha, \beta)=0$ and $\phi_{2}(\alpha, \beta \wedge \Omega)=2\left(\alpha^{\prime} \beta\right) \wedge E$.
The Chevalley-Eilenberg 3 -cocycle z_{3} (which represents the characteristic 3-class c_{3} of the differential graded Lie algebra

$8[q]=-2[[q],[D]]_{H}=2[D(q)], \quad$ but $D=\sum D_{r}$ must be a 1-cocycle, hence $D_{1}: \mathfrak{g} \rightarrow \mathfrak{g}$ would be a derivation of \mathfrak{g},

Non formality of $\mathcal{U} \mathfrak{g}$ for a Cartan 3-regular quadratic \mathfrak{g}

In $C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})$ we have also the linear Poisson structure π and the Euler field $E=\sum_{i=1}^{n} e_{i} \otimes \epsilon^{i}$. The Schouten brackets are given, for $\alpha, \beta, \gamma \in \mathbb{K}[q]$ and α^{\prime} denoting the derivative of the polynomial α, by:
$\delta_{\mathfrak{g}}(\alpha)=[\pi, \alpha]_{s}=0, \quad \delta_{\mathfrak{g}}(\alpha \wedge \Omega)=[\pi, \alpha \wedge \Omega]_{s}=0, \quad \delta_{\mathfrak{g}}(\alpha \wedge E)=[\pi, \alpha \wedge E]_{s}=\alpha \wedge \pi$, $[\alpha, \beta]_{s}=0, \quad[E, \alpha]_{s}=2 q \alpha^{\prime}, \quad[E, \Omega]_{s}=-3 \Omega, \quad[\beta \wedge \Omega, \alpha]_{s}=2\left(\beta \alpha^{\prime}\right) \wedge \pi=\delta_{\mathfrak{g}}\left(2\left(\beta \alpha^{\prime}\right) \wedge E\right)$, $[\beta \wedge \Omega, \gamma \wedge \Omega]_{s}=2\left(\beta \gamma^{\prime}-\gamma \beta^{\prime}\right) \wedge \pi \wedge \Omega=\delta_{\mathfrak{g}}\left(2\left(\beta \gamma^{\prime}-\gamma \beta^{\prime}\right) \wedge E \wedge \Omega\right)$.

Theorem Let $(\mathfrak{g},[],, \kappa)$ be a finite-dimensional Cartan-3-regular

 quadratic Lie algebra. Then the Hochschild complex of its universal envelopping algebra is NOT L_{∞}-formal.We prove that the Chevalley-Eilenberg complex \mathfrak{G} of \mathfrak{g} with values in $\mathcal{S} \mathfrak{g}$ is not L_{∞}-formal. Choose any graded vector space complement of the $\delta_{\mathfrak{g}}$-coboundaries which includes all $\alpha \in \mathbb{K}[q]$ and all $\beta \wedge \Omega$; the resulting section $\phi_{1}: \mathfrak{H} \rightarrow \mathfrak{G}$ satisfies $\phi_{1}([\alpha])=\alpha$ and $\phi_{1}([\alpha \wedge \Omega])=\alpha \wedge \Omega$. We can choose a \mathbb{K}-linear map $\phi_{2}: \wedge^{2} \mathfrak{H} \rightarrow \mathfrak{G}$ of degree -1 satisfying $\phi_{2}(\alpha, \beta)=0$ and $\phi_{2}(\alpha, \beta \wedge \Omega)=2\left(\alpha^{\prime} \beta\right) \wedge E$.
The Chevalley-Eilenberg 3-cocycle z_{3} (which represents the characteristic 3 -class c_{3} of the differential graded Lie algebra $\mathfrak{G}=C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[1]$ and depends on ϕ_{1} and $\left.\phi_{2},\right)$ takes the following values: $z_{3}([\alpha],[\beta],[\gamma])=0$, and,

$$
z_{3}([\alpha],[\beta],[\gamma \wedge \Omega])=8\left[q \alpha^{\prime} \beta^{\prime} \gamma\right] .
$$

If $c_{3}=0$, there would be a graded 2-form $\theta: \Lambda^{2} \mathfrak{H} \rightarrow \mathfrak{H}$ (where $\left.\mathfrak{H}=H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[1]\right)$ of degree -1 such that $z_{3}=\delta_{\mathfrak{H}} \theta$. We evaluate $\delta_{\mathfrak{H}} \theta$ on $[\alpha],[\beta]$, and $[\gamma \wedge \Omega]$ of $\mathfrak{H} . \theta([\alpha],[\beta])=0$ since both $[\alpha]$ and $[\beta]$ are of degree -1 as is θ, and $\theta([\alpha],[\gamma \wedge \Omega])$ has to be of degree 0 , hence in $H_{C E}^{1}(\mathfrak{g}, \mathcal{S} \mathfrak{g})$. We consider the particular case $\alpha=q=\beta$ and $\gamma=1$. Let $D \in \operatorname{Hom}(\mathfrak{g}, \mathcal{S g})$ be a $\delta_{\mathfrak{g}}$-1-cocycle such that $[D]=\theta([q],[\Omega])$. Then $z_{3}([q],[q],[\Omega])=\left(\delta_{\mathfrak{H}} \theta\right)([q],[q],[\Omega])$ implies

$$
8[q]=-2[[q],[D]]_{H}=2[D(q)], \quad \text { but } D=\sum D_{r} \text { must be a 1-cocycle, hence } D_{1}: \mathfrak{g} \rightarrow \mathfrak{g} \text { would be a derivation of } \mathfrak{g},
$$

and we must have $D_{1}(q)=4 q$, hence $\kappa\left(D_{1}(\xi), \xi^{\prime}\right)+\kappa\left(\xi, D_{1}\left(\xi^{\prime}\right)\right)=4 \kappa\left(\xi, \xi^{\prime}\right)$ which contradicts Ω non exact.

Reductive Lie algebras

$$
\mathfrak{g}=\mathfrak{z} \oplus[\mathfrak{g}, \mathfrak{g}]
$$

where \mathfrak{z} is its centre and the derived ideal $\mathfrak{l}=[\mathfrak{g}, \mathfrak{g}]$ is semisimple.
Pick any nondegenerate symmetric bilinear form on \mathfrak{z} and the Killing form $\kappa_{\mathfrak{l}}:\left(\xi, \xi^{\prime}\right) \mapsto \operatorname{trace}\left(\operatorname{ad}_{\xi} \circ \mathrm{ad}_{\xi^{\prime}}\right)$ on \mathfrak{l}, and let κ be the orthogonal sum of those two.

The Cartan 3-cocycle Ω w.r.t. \mathfrak{g} is given by

$$
\Omega\left(z_{1}+l_{1}, z_{2}+l_{2}, z_{3}+l_{3}\right)=\Omega_{\mathfrak{l}}\left(l_{1}, l_{2}, l_{3}\right)=\kappa_{l}\left(l_{1},\left[l_{2}, l_{3}\right]\right)
$$

where $\Omega_{\mathfrak{l}}$ is the Cartan 3-cocycle of \mathfrak{l} which is well-known to be a nontrivial 3-cocycle.
Hence $(\mathfrak{g},[],, \kappa)$ is Cartan-3-regular and so (the Hochschild complex of) its universal envelopping algebra is not L_{∞}-formal.

Semisimple Lie algebras

The above shows that (the Hochschild complex of) the universal envelopping algebra of a semisimple Lie algebra is not $L_{\infty^{\prime}}$-formal.

Nonetheless, the deformation theory of $\mathcal{U g}$ is well known : $\mathcal{U g}$ is rigid because

$$
H_{H}^{2}(\mathcal{U g}, \mathcal{U} \mathfrak{g}) \cong H_{C E}^{2}(\mathfrak{g}, \mathcal{S} \mathfrak{g})=0
$$

Semisimple Lie algebras

The above shows that (the Hochschild complex of) the universal envelopping algebra of a semisimple Lie algebra is not $L_{\infty^{\prime}}$-formal.

Nonetheless, the deformation theory of $\mathcal{U g}$ is well known: $\mathcal{U g}$ is rigid because

$$
H_{H}^{2}(\mathcal{U} \mathfrak{g}, \mathcal{U} \mathfrak{g}) \cong H_{C E}^{2}(\mathfrak{g}, \mathcal{S} \mathfrak{g})=0
$$

beyond formality

We shall put a L_{∞}-structure on the cohomology $\left(H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[1], 0,[,]_{S_{H}}\right)$ of $\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[1], \delta_{\mathfrak{g}},[,]_{s}\right)$ whose coderivation \bar{d} of $\mathcal{S}\left(H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[2]\right)$ is given by a series $d=d_{2}+\sum_{k \geqslant 3} d_{k}=d_{2}+d^{\prime}$ where $d_{2}=[,]_{S_{H}}[1]$.

It is well-known that it is always possible to find a sequence of 'higher order brackets' $d_{k}: \mathcal{S}^{k}\left(H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[2]\right) \rightarrow H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[2]$ for $k \geqslant 3$ and a L_{∞}-quasi-isomorphism

$$
\left.\Phi=e^{* \varphi}:\left(\mathcal{S}\left(H_{C E}\left(\mathfrak{g}, \mathcal{S}_{\mathfrak{g}}\right)[2]\right), \overline{[,]_{s_{H}}[1]+d^{\prime}}\right) \rightarrow\left(\mathcal{S}\left(C_{C E}\left(\mathfrak{g}, \mathcal{S}_{\mathfrak{g}}\right)\right)[2]\right), \overline{\delta_{\mathfrak{g}}[1]+[,]_{s}[1]}\right) .
$$

We do that for $\mathfrak{g}=\mathfrak{s o}(3)$. We know that

beyond formality

We shall put a L_{∞}-structure on the cohomology $\left(H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[1], 0,[,]_{S_{H}}\right)$ of $\left(C_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[1], \delta_{\mathfrak{g}},[,]_{s}\right)$ whose coderivation \bar{d} of $\mathcal{S}\left(H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[2]\right)$ is given by a series $d=d_{2}+\sum_{k \geqslant 3} d_{k}=d_{2}+d^{\prime}$ where $d_{2}=[,]_{S_{H}}[1]$.

It is well-known that it is always possible to find a sequence of 'higher order brackets' $d_{k}: \mathcal{S}^{k}\left(H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[2]\right) \rightarrow H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[2]$ for $k \geqslant 3$ and a L_{∞}-quasi-isomorphism

$$
\left.\Phi=e^{* \varphi}:\left(\mathcal{S}\left(H_{C E}(\mathfrak{g}, \mathcal{S} \mathfrak{g})[2]\right), \overline{\left.[,]_{s_{H}} 1\right]+d^{\prime}}\right) \rightarrow\left(\mathcal{S}\left(C_{C E}\left(\mathfrak{g}, \mathcal{S}_{\mathfrak{g}}\right)\right)[2]\right), \overline{\delta_{\mathfrak{g}}[1]+[,]_{s}[1]}\right)
$$

We do that for $\mathfrak{g}=\mathfrak{s o}(3)$. We know that

$$
\mathfrak{H}:=H_{C E}(\mathfrak{s o}(3), \mathcal{S s o}(3))[1]=\mathbb{K}[q] \mathbf{1} \oplus\{0\} \oplus\{0\} \oplus \mathbb{K}[q][\Omega] .
$$

The Lie algebra $\mathfrak{s o}(3)$

Theorem

(1) The Chevalley-Eilenberg complex \mathfrak{G} of $\mathfrak{s o (3)}$ is NOT formal.
(2) $\mathfrak{G}_{\text {red }}:=\mathbb{K}[q] 1 \oplus \mathbb{K}[q] E \oplus \mathbb{K}[q] \pi \oplus \mathbb{K}[q] \Omega$ is a differential graded Lie subalgebra of $\left(\mathfrak{G}: H_{C E}(\mathfrak{s o}(3), \mathcal{S s o}(3))[1]=, \delta,[,]_{S}\right)$ and the injection $\mathfrak{G}_{\text {red }} \rightarrow \mathfrak{G}$ is a quasi-isomorphism of differential graded Lie algebras.
(3) There is an L_{∞} structure d on $\mathcal{S}(\mathfrak{H}[1])$ whose only nonvanishing Taylor coefficient is d_{3} which is the shifted characteristic 3-class $d_{3}=z_{3}[-1]$ and there is an L_{∞}-quasi-isomorphism $e^{* \varphi}$ from $\left(\mathcal{S}(\mathfrak{H}[1]), \overline{d_{3}}\right)$ to $\left(\mathcal{S}\left(\mathfrak{G}_{\text {red }}[1]\right), \overline{\delta_{g}}[1]+[,]_{s}[1]\right)$
The only nonvanishing Taylor coefficients of $e^{* \varphi}$ are φ_{1} and φ_{2} which can explicitly be given.
The results follows from the L_{∞} perturbation lemma. There is a (homotopy) contraction : the natural injection $i: \mathfrak{H}=\mathbb{K}[q] 1 \oplus\{0\} \oplus\{0\} \oplus \mathbb{K}[q][\Omega] \rightarrow \mathfrak{G}_{\text {red }}$, the natural projection $p: \mathfrak{G}_{\text {red }} \rightarrow \mathfrak{H}$ with kernel $\mathbb{K}[q] E \oplus \mathbb{K}[q] \pi$, and the homotopy map h given by $h=h^{1}: \mathbb{K}[q] \pi \rightarrow \mathbb{K}[q] E, h^{1}(\alpha \wedge \pi)=\alpha \wedge E$, for $\alpha \in \mathbb{K}[q]$, and is defined to vanish in degree

The Lie algebra $\mathfrak{s o}(3)$

Theorem

(1) The Chevalley-Eilenberg complex \mathfrak{G} of $\mathfrak{s o (3)}$ is NOT formal.
(2) $\mathfrak{G}_{\text {red }}:=\mathbb{K}[q] \mathbf{1} \oplus \mathbb{K}[q] E \oplus \mathbb{K}[q] \pi \oplus \mathbb{K}[q] \Omega$ is a differential graded Lie subalgebra of $\left(\mathfrak{G}: H_{C E}(\mathfrak{s o}(3), \mathcal{S s o}(3))[1]=, \delta,[,]_{s}\right)$ and the injection $\mathfrak{G}_{\text {red }} \rightarrow \mathfrak{G}$ is a quasi-isomorphism of differential graded Lie algebras.

Taylor coefficient is d_{3} which is the shifted characteristic 3-class
$d_{3}=z_{3}[-1]$ and there is an L_{∞}-quasi-isomorphism $e^{* \varphi}$ from

The only nonvanishing Taylor coefficients of $e^{* \varphi}$ are φ_{1} and φ_{2} which can explicitly be given
The results follows from the L_{∞} perturbation lemma. There is a (homotopy) contraction : the natural injection $i: \mathfrak{H}=\mathbb{K}[q] \mathbb{1} \oplus\{0\} \oplus\{0\} \oplus \mathbb{K}[q][\Omega] \rightarrow \mathfrak{G}_{\text {red }}$, the natural projection $p: G_{\text {red }} \rightarrow 5$ with kernel $\mathbb{K}[q] E \oplus \mathbb{K}[q] \pi$, and the homotopy map h given by

The Lie algebra $\mathfrak{s o}(3)$

Theorem

(1) The Chevalley-Eilenberg complex \mathfrak{G} of $\mathfrak{s o (3)}$ is NOT formal.
(2) $\mathfrak{G}_{\text {red }}:=\mathbb{K}[q] \mathbf{1} \oplus \mathbb{K}[q] E \oplus \mathbb{K}[q] \pi \oplus \mathbb{K}[q] \Omega$ is a differential graded Lie subalgebra of $\left(\mathfrak{G}: H_{C E}(\mathfrak{s o}(3), \mathcal{S s o}(3))[1]=, \delta,[,]_{s}\right)$ and the injection $\mathfrak{G}_{\text {red }} \rightarrow \mathfrak{G}$ is a quasi-isomorphism of differential graded Lie algebras.
(3) There is an L_{∞} structure d on $\mathcal{S}(\mathfrak{H}[1])$ whose only nonvanishing Taylor coefficient is d_{3} which is the shifted characteristic 3-class $d_{3}=z_{3}[-1]$ and there is an L_{∞}-quasi-isomorphism $e^{* \varphi}$ from $\left(\mathcal{S}(\mathfrak{H}[1]), \overline{d_{3}}\right)$ to $\left(\mathcal{S}\left(\mathfrak{G}_{\text {red }}[1]\right), \overline{\delta_{\mathfrak{g}}}[1]+[,]_{s}[1]\right)$.
The only nonvanishing Taylor coefficients of $e^{* \varphi}$ are φ_{1} and φ_{2} which can explicitly be given.
The results follows from the L_{∞} perturbation lemma. There is a (homotopy) contraction : the natural injection $i: \mathfrak{H}=\mathbb{K}[q] \mathbf{1} \oplus\{0\} \oplus\{0\} \oplus \mathbb{K}[q][\Omega] \rightarrow \mathfrak{G}_{\text {red }}$, the natural projection $n: \mathfrak{G}_{\text {red }} \rightarrow \mathfrak{G}$ with kernel $\mathbb{K}[q] F \oplus \mathbb{K}[q] \pi$, and the homotopy man h given by $h=h^{1}: \mathbb{K}[q] \pi \rightarrow \mathbb{K}[q] E, h^{1}(\alpha \wedge \pi)=\alpha \wedge E$, for $\alpha \in \mathbb{K}[q]$, and is defined to vanish in degree

The Lie algebra $\mathfrak{s o}(3)$

Theorem

(1) The Chevalley-Eilenberg complex \mathfrak{G} of $\mathfrak{s o (3)}$ is NOT formal.
(2) $\mathfrak{G}_{\text {red }}:=\mathbb{K}[q] \mathbf{1} \oplus \mathbb{K}[q] E \oplus \mathbb{K}[q] \pi \oplus \mathbb{K}[q] \Omega$ is a differential graded Lie subalgebra of $\left(\mathfrak{G}: H_{C E}(\mathfrak{s o}(3), \mathcal{S s o}(3))[1]=, \delta,[,]_{s}\right)$ and the injection $\mathfrak{G}_{\text {red }} \rightarrow \mathfrak{G}$ is a quasi-isomorphism of differential graded Lie algebras.
(3) There is an L_{∞} structure d on $\mathcal{S}(\mathfrak{H}[1])$ whose only nonvanishing Taylor coefficient is d_{3} which is the shifted characteristic 3-class $d_{3}=z_{3}[-1]$ and there is an L_{∞}-quasi-isomorphism $e^{* \varphi}$ from $\left(\mathcal{S}(\mathfrak{H}[1]), \overline{d_{3}}\right)$ to $\left(\mathcal{S}\left(\mathfrak{G}_{\text {red }}[1]\right), \overline{\delta_{\mathfrak{g}}}[1]+[,]_{s}[1]\right)$.
The only nonvanishing Taylor coefficients of $e^{* \varphi}$ are φ_{1} and φ_{2} which can explicitly be given.
The results follows from the L_{∞} perturbation lemma. There is a (homotopy) contraction : the natural injection $i: \mathfrak{H}=\mathbb{K}[q] \mathbf{1} \oplus\{0\} \oplus\{0\} \oplus \mathbb{K}[q][\Omega] \rightarrow \mathfrak{G}_{\text {red }}$, the natural projection $n: \mathfrak{G}_{\text {red }} \rightarrow \mathfrak{G}$ with kernel $\mathbb{K}[q] F \oplus \mathbb{K}[q] \pi$, and the homotopy man h given by $h=h^{1}: \mathbb{K}[q] \pi \rightarrow \mathbb{K}[q] E, h^{1}(\alpha \wedge \pi)=\alpha \wedge E$, for $\alpha \in \mathbb{K}[q]$, and is defined to vanish in degree

The Lie algebra $\mathfrak{s o}(3)$

Theorem

(1) The Chevalley-Eilenberg complex \mathfrak{G} of $\mathfrak{s o (3)}$ is NOT formal.
(2) $\mathfrak{G}_{\text {red }}:=\mathbb{K}[q] \mathbf{1} \oplus \mathbb{K}[q] E \oplus \mathbb{K}[q] \pi \oplus \mathbb{K}[q] \Omega$ is a differential graded Lie subalgebra of $\left(\mathfrak{G}: H_{C E}(\mathfrak{s o}(3), \mathcal{S s o}(3))[1]=, \delta,[,]_{s}\right)$ and the injection $\mathfrak{G}_{\text {red }} \rightarrow \mathfrak{G}$ is a quasi-isomorphism of differential graded Lie algebras.
(3) There is an L_{∞} structure d on $\mathcal{S}(\mathfrak{H}[1])$ whose only nonvanishing Taylor coefficient is d_{3} which is the shifted characteristic 3-class $d_{3}=z_{3}[-1]$ and there is an L_{∞}-quasi-isomorphism $e^{* \varphi}$ from $\left(\mathcal{S}(\mathfrak{H}[1]), \overline{d_{3}}\right)$ to $\left(\mathcal{S}\left(\mathfrak{G}_{\text {red }}[1]\right), \overline{\delta_{\mathfrak{g}}}[1]+[,]_{s}[1]\right)$.
The only nonvanishing Taylor coefficients of $e^{* \varphi}$ are φ_{1} and φ_{2} which can explicitly be given.
The results follows from the L_{∞} perturbation lemma. There is a (homotopy) contraction : the natural injection $i: \mathfrak{H}=\mathbb{K}[q] \mathbf{1} \oplus\{0\} \oplus\{0\} \oplus \mathbb{K}[q][\Omega] \rightarrow \mathfrak{G}_{\text {red }}$, the natural projection $p: \mathfrak{G}_{\text {red }} \rightarrow \mathfrak{H}$ with kernel $\mathbb{K}[q] E \oplus \mathbb{K}[q] \pi$, and the homotopy map h given by $h=h^{1}: \mathbb{K}[q] \pi \rightarrow \mathbb{K}[q] E, h^{1}(\alpha \wedge \pi)=\alpha \wedge E$, for $\alpha \in \mathbb{K}[q]$, and is defined to vanish in degree $-1,0,2 .\left(p \circ i=\operatorname{Id}_{U}, \operatorname{Id}_{V}-i \circ p=b_{V} \circ h+h \circ b_{U}, h^{2}=0, h \ominus i=0, p \circ h=0\right)$.

Perturbation Lemma

Let (i, p, h) be a contraction between the complexes $\left(U, b_{U}\right)$ and $\left(V, b_{V}\right)$ (the differentials b_{U} and b_{V} have degree $1, i: U \rightarrow V$ and $p: V \rightarrow U$ are chain maps, $h: V \rightarrow V$ has degree -1 and $p \circ i=\operatorname{Id}_{U}, \operatorname{Id}_{V}-i \circ p=b_{V} \circ h+h \circ b_{U}$, $h^{2}=0, h \circ i=0, p \circ h=0$) where U and V carry exhaustive and separated filtrations with V complete and such that the maps b_{U}, b_{V}, i, p and h are of filtration degree 0 .
Moreover, let $\delta_{V}: V \rightarrow V$ be a perturbation of b_{V}, i.e. a morphism $\delta_{V}: V \rightarrow V$
of degree +1 such that $\left(b_{V}+\delta_{V}\right)^{2}=0$ and suppose that δ_{V} is of filtration degree -1 Then the linear maps $\left(i d_{V}+h \circ \delta_{V}\right)$ and $\left(i d_{V}+\delta_{V} \circ h\right)$ from V to V are invertible, and we define

Perturbation Lemma

Let (i, p, h) be a contraction between the complexes $\left(U, b_{U}\right)$ and $\left(V, b_{V}\right)$ (the differentials b_{U} and b_{V} have degree $1, i: U \rightarrow V$ and $p: V \rightarrow U$ are chain maps, $h: V \rightarrow V$ has degree -1 and $p \circ i=\operatorname{Id}_{U}, \operatorname{Id}_{V}-i \circ p=b_{V} \circ h+h \circ b_{U}$, $h^{2}=0, h \circ i=0, p \circ h=0$) where U and V carry exhaustive and separated filtrations with V complete and such that the maps b_{U}, b_{V}, i, p and h are of filtration degree 0 . Moreover, let $\delta_{V}: V \rightarrow V$ be a perturbation of b_{V}, i.e. a morphism $\delta_{V}: V \rightarrow V$ of degree +1 such that $\left(b_{V}+\delta_{V}\right)^{2}=0$ and suppose that δ_{V} is of filtration degree -1 . Then the linear maps $\left(i d_{V}+h \circ \delta_{V}\right)$ and $\left(i d_{V}+\delta_{V} \circ h\right)$ from V to V are invertible, and we define

Perturbation Lemma

Let (i, p, h) be a contraction between the complexes $\left(U, b_{U}\right)$ and $\left(V, b_{V}\right)$ (the differentials b_{U} and b_{V} have degree $1, i: U \rightarrow V$ and $p: V \rightarrow U$ are chain maps, $h: V \rightarrow V$ has degree -1 and $p \circ i=\operatorname{Id}_{U}, \operatorname{Id}_{V}-i \circ p=b_{V} \circ h+h \circ b_{U}$, $h^{2}=0, h \circ i=0, p \circ h=0$) where U and V carry exhaustive and separated filtrations with V complete and such that the maps b_{U}, b_{V}, i, p and h are of filtration degree 0 .
Moreover, let $\delta_{V}: V \rightarrow V$ be a perturbation of b_{V}, i.e. a morphism $\delta_{V}: V \rightarrow V$ of degree +1 such that $\left(b_{V}+\delta_{V}\right)^{2}=0$ and suppose that δ_{V} is of filtration degree -1 . Then the linear maps $\left(i d_{V}+h \circ \delta_{V}\right)$ and $\left(i d_{V}+\delta_{V} \circ h\right)$ from V to V are invertible, and we define

$$
\begin{aligned}
\tilde{\imath} & =\left(i d_{V}+h \circ \delta_{V}\right)^{-1} \circ i & \tilde{h} & =\left(i d_{V}+h \circ \delta_{V}\right)^{-1} \circ h \\
\tilde{p} & =p \circ\left(i d_{V}+\delta_{V} \circ h\right)^{-1} & \delta_{U} & =p \circ\left(i d_{V}+\delta_{V} \circ h\right)^{-1} \circ \delta_{V} \circ i .
\end{aligned}
$$

Then δ_{U} is a perturbation of b_{U} of filtration degree -1 , and $(\tilde{i}, \tilde{p}$ and $\tilde{h})$ define a new contraction between $\left(U, b_{U}+\delta_{U}\right)$ and $\left(V, b_{V}+\delta_{V}\right)$.

L_{∞}-contraction

Let (i, p, h) a contraction between the complexes $\left(U, b_{U}\right)$ and $\left(V, b_{V}\right)$. The graded coderivations $\overline{b_{U}[1]}$ of $\mathcal{S}(U[1])$ and $\overline{b_{V}[1]}$ of $\mathcal{S}(V[1])$ are differentials. Setting $\varphi_{1}:=i[1]$ and $\psi_{1}:=p[1]$, the morphisms of graded coalgebras $e^{* \varphi_{1}}: \mathcal{S}(U[1]) \rightarrow \mathcal{S}(V[1])$ and $e^{* \psi_{1}}: \mathcal{S}(V[1]) \rightarrow \mathcal{S}(U[1])$ are chain maps satisfying $e^{* \psi_{1}} \circ e^{* \varphi_{1}}=i d_{\mathcal{S}(U[1])}$.
Since $P=\left[h, b_{V}\right]: V \rightarrow V$ is an idempotent, let V_{U} be its kernel, and

L_{∞}-contraction

Let (i, p, h) a contraction between the complexes $\left(U, b_{U}\right)$ and $\left(V, b_{V}\right)$. The graded coderivations $\overline{b_{U}[1]}$ of $\mathcal{S}(U[1])$ and $\overline{b_{V}[1]}$ of $\mathcal{S}(V[1])$ are differentials. Setting $\varphi_{1}:=i[1]$ and $\psi_{1}:=p[1]$, the morphisms of graded coalgebras $e^{* \varphi_{1}}: \mathcal{S}(U[1]) \rightarrow \mathcal{S}(V[1])$ and $e^{* \psi_{1}}: \mathcal{S}(V[1]) \rightarrow \mathcal{S}(U[1])$ are chain maps satisfying $e^{* \psi_{1}} \circ e^{* \varphi_{1}}=i d_{\mathcal{S}(U[1])}$.
Since $P=\left[h, b_{V}\right]: V \rightarrow V$ is an idempotent, let V_{U} be its kernel, and $V_{\text {acyc }}$ its image; so $V=V_{U} \oplus V_{\text {ac }}$, and $\mathcal{S}(V[1]) \cong \mathcal{S}\left(V_{U}[1]\right) \otimes \mathcal{S}\left(V_{\text {ac }}[1]\right)$ as graded bialgebras. Define $\beta: \mathcal{S}(V[1]) \rightarrow \mathcal{S}(V[1])$ of degree 0 by : for all $y_{1}, \ldots, y_{k} \in V_{U}[1]$ and $w_{1}, \ldots, w_{l} \in V_{\text {acyc }}[1]$ where $k, l \in \mathbb{N}$:

$$
\beta\left(y_{1} \bullet \cdots \bullet y_{k} \bullet w_{1} \bullet \cdots \bullet w_{l}\right)= \begin{cases}\frac{1}{I}\left(y_{1} \bullet \cdots \bullet y_{k} \bullet w_{1} \bullet \cdots \bullet w_{l}\right) & \text { if } I \neq 0, \tag{1}\\ 0 & \text { if } I=0,\end{cases}
$$

and set $\eta=\overline{h[1]} \circ \beta=\beta \circ \overline{h[1]}$.

L_{∞}-contraction

Let (i, p, h) a contraction between the complexes $\left(U, b_{U}\right)$ and $\left(V, b_{V}\right)$. The graded coderivations $\overline{b_{U}[1]}$ of $\mathcal{S}(U[1])$ and $\overline{b_{V}[1]}$ of $\mathcal{S}(V[1])$ are differentials. Setting $\varphi_{1}:=i[1]$ and $\psi_{1}:=p[1]$, the morphisms of graded coalgebras $e^{* \varphi_{1}}: \mathcal{S}(U[1]) \rightarrow \mathcal{S}(V[1])$ and $e^{* \psi_{1}}: \mathcal{S}(V[1]) \rightarrow \mathcal{S}(U[1])$ are chain maps satisfying $e^{* \psi_{1}} \circ e^{* \varphi_{1}}=i d_{\mathcal{S}(U[1])}$.
Since $P=\left[h, b_{V}\right]: V \rightarrow V$ is an idempotent, let V_{U} be its kernel, and $V_{\text {acyc }}$ its image; so $V=V_{U} \oplus V_{\text {ac }}$, and $\mathcal{S}(V[1]) \cong \mathcal{S}\left(V_{U}[1]\right) \otimes \mathcal{S}\left(V_{\text {ac }}[1]\right)$ as graded bialgebras. Define $\beta: \mathcal{S}(V[1]) \rightarrow \mathcal{S}(V[1])$ of degree 0 by : for all $y_{1}, \ldots, y_{k} \in V_{U}[1]$ and $w_{1}, \ldots, w_{l} \in V_{\text {acyc }}[1]$ where $k, l \in \mathbb{N}$:

$$
\beta\left(y_{1} \bullet \cdots \bullet y_{k} \bullet w_{1} \bullet \cdots \bullet w_{l}\right)= \begin{cases}\frac{1}{J}\left(y_{1} \bullet \cdots \bullet y_{k} \bullet w_{1} \bullet \cdots \bullet w_{l}\right) & \text { if } I \neq 0, \tag{1}\\ 0 & \text { if } I=0,\end{cases}
$$

and set $\eta=\overline{h[1]} \circ \beta=\beta \circ \overline{h[1]}$.
Then $\left(e^{* \varphi_{1}}, e^{* \psi_{1}}, \eta\right)$ is a contraction from $\left(\mathcal{S}(U[1]), \overline{b_{U}[1]}\right)$ to $\left(\mathcal{S}(V[1]), \overline{b_{V}[1]}\right)$.

L_{∞}-perturbation Lemma (Bordemann Elchinger)

Let (i, p, h) be a contraction between the complexes $\left(U, b_{U}\right)$ and $\left(V, b_{V}\right)$. Let $\left(e^{* \varphi_{1}}, e^{* \psi_{1}}, \eta\right)$ be the corresponding contraction from $\left(\mathcal{S}(U[1]), b_{U}[1]\right)$ to $\left(\mathcal{S}(V[1]), \overline{b_{V}[1]}\right)$.
Suppose $D=b_{V}[1]+D_{V}^{\prime}$ with $D_{V}^{\prime}=\sum_{k \geqslant 2} D_{k}^{\prime}: \mathcal{S}(V[1]) \rightarrow V[1]$ of degree 1 defines an L_{∞}-structure, whence $\delta_{\mathcal{S}(V[1])}=\overline{D_{V}^{\prime}}$ is a perturbation of $\overline{b_{V}[1]}$.
connected coalgebras, i.e. $e^{* \varphi_{1}}$ and $e^{* \psi_{1}}$ are morphism of graded differential connected coalgebras, and $\delta_{\mathcal{S}_{(U T 11)}}$ will be a graded coderivation of degree 1. This entails in particular that $e^{* \varphi_{1}}=: e^{* \varphi}$ is a

L_{∞}-perturbation Lemma (Bordemann Elchinger)

Let (i, p, h) be a contraction between the complexes $\left(U, b_{U}\right)$ and $\left(V, b_{V}\right)$. Let $\left(e^{* \varphi_{1}}, e^{* \psi_{1}}, \eta\right)$ be the corresponding contraction from $\left(\mathcal{S}(U[1]), \overline{b_{U}[1]}\right)$ to $\left(\mathcal{S}(V[1]), \overline{b_{V}[1]}\right)$.
Suppose $D=b_{V}[1]+D_{V}^{\prime}$ with $D_{V}^{\prime}=\sum_{k \geqslant 2} D_{k}^{\prime}: \mathcal{S}(V[1]) \rightarrow V[1]$ of degree 1 defines an L_{∞}-structure, whence $\delta_{\mathcal{S}(V[1])}=\overline{D_{V}^{\prime}}$ is a perturbation of $\overline{b_{V}[1]}$.
The maps $\widetilde{e^{* \varphi_{1}}}, \widetilde{e^{* \psi_{1}}}, \delta_{\mathcal{S}(U[1])}$, and $\widetilde{\eta}$ of the Perturbation Lemma so that $\left(\widetilde{e^{* \varphi_{1}}}, e^{* \psi_{1}}, \widetilde{\eta}\right)$ is homotopy contraction between $\left(\mathcal{S}(U[1]), \overline{b_{U}[1]}+\delta_{\mathcal{S}(U[1])}\right)$ and $\left(\mathcal{S}(V[1]), \overline{b_{V}[1]}+\overline{D_{V}^{\prime}}\right)$ automatically preserve the structure of graded connected coalgebras, i.e. $\widetilde{e^{* \varphi_{1}}}$ and $\widetilde{e^{* \psi_{1}}}$ are morphism of graded differential connected coalgebras, and $\delta_{\mathcal{S}(U[1])}$ will be a graded coderivation of degree 1. This entails in particular that $\widetilde{e^{* \varphi_{1}}}=: e^{* \varphi}$ is a L_{∞}-quasi-isomorphism with quasi-inverse $e^{* \psi_{1}}=: e^{* \psi}$.

Bibliography

Martin Bordemann and Olivier Elchinger, A remark on the L_{∞} perturbation Lemma, preprint Mulhouse and Luxembourg, 2017.
Martin Bordemann and Abdenacer Makhlouf, Formality and deformations of Universal Enveloping Algebras, International Journal of Theoretical Physics 47 (2008) 311-332.

Martin Bordemann, Abdenacer Makhlouf and Toukaiddine Petit, Déformation par quantification et rigidité des algèbres enveloppantes, Journal of Algebra 285 (2005)2, 623-648.

Martin Bordemann, Olivier Elchinger, Simone Gutt and Abdenacer Makhlouf, L_{∞}-formality check for the Hochschild complex of certain universal enveloping algebras, preprint arXiv :1807.03086.

Thank you for your attention!

[^0]: ΛV is the quotient of $\mathcal{T} V$ by the two-sided graded ideal gen. by $x \otimes y+(-1)$

