L_{∞} -formality question for the universal algebra of semisimple Lie algebras

Simone Gutt

joint work with Martin Bordemann, Olivier Elchinger and Abdenacer Makhlouf, arXiv : 1807.03086

Workshop on Poisson Geometry and Higher Structures, Rome, September 2018

Formal deformations of associative algebras (Gerstenhaber)

A formal deformation $\mu + C$ of an associative algebra (\mathcal{A}, μ) is defined by a series $C = \sum_{r>1} t^r C_r$ of bilinear maps $C_r : \mathcal{A} \times \mathcal{A}$ to \mathcal{A} so that

$$(\mu+C)((\mu+C)(u,v),w)-(\mu+C)(u,(\mu+C)(v,w))=0 \qquad \forall u,v,w\in\mathcal{A}.$$

At order 1 : $\mu(C_1(u, v), w) + C_1(\mu(u, v), w) - C_1(u, \mu(v, w)) - \mu(u, C_1(v, w)) = 0$, hence C_1 is a 2-cocycle for the Hochschild cohomology of \mathcal{A} with values in \mathcal{A} . Two formal deformations $(\mu + C)$ and $(\mu + C')$ are equivalent if there exists of a series $T = \sum_{r>1} t^r T_r$ of linear maps $T_r : \mathcal{A} \to \mathcal{A}$ such that

$$(\mu + C')(u, v) = e^{T} ((\mu + C)(e^{-T}u, e^{-T}v)).$$

At order 1 : $C'_1(u, v) = C_1(u, v) + T_1(u, v) - \mu(T_1u, v) - \mu(u, T_1v)$, i.e. $C'_1 - C_1$ is a Hochschild coboundary.

If $H^2_H(\mathcal{A}, \mathcal{A}) = 0$, all formal deformations are trivial (i.e. equivalent to μ) and any deformation at order 1 can be prolongated into a deformation.

Simone Gutt (ULB)

Non L_{∞} -formality

Formal deformations of associative algebras (Gerstenhaber)

A formal deformation $\mu + C$ of an associative algebra (\mathcal{A}, μ) is defined by a series $C = \sum_{r>1} t^r C_r$ of bilinear maps $C_r : \mathcal{A} \times \mathcal{A}$ to \mathcal{A} so that

$$(\mu+C)ig((\mu+C)(u,v),wig)-(\mu+C)ig(u,(\mu+C)(v,w)ig)=0 \qquad orall u,v,w\in\mathcal{A}.$$

At order 1 : $\mu(C_1(u, v), w) + C_1(\mu(u, v), w) - C_1(u, \mu(v, w)) - \mu(u, C_1(v, w)) = 0$, hence C_1 is a 2-cocycle for the Hochschild cohomology of \mathcal{A} with values in \mathcal{A} . Two formal deformations $(\mu + C)$ and $(\mu + C')$ are equivalent if there exists of a series $T = \sum_{r>1} t^r T_r$ of linear maps $T_r : \mathcal{A} \to \mathcal{A}$ such that

$$(\mu + C')(u, v) = e^T \left((\mu + C)(e^{-T}u, e^{-T}v) \right).$$

At order 1 : $C'_1(u, v) = C_1(u, v) + T_1(u, v) - \mu(T_1u, v) - \mu(u, T_1v)$, i.e. $C'_1 - C_1$ is a Hochschild coboundary.

If $H^2_H(\mathcal{A}, \mathcal{A}) = 0$, all formal deformations are trivial (i.e. equivalent to μ) and any deformation at order 1 can be prolongated into a deformation $\mathcal{A}_{\mathcal{A}}$.

Simone Gutt (ULB)

Non L_{∞} -formality

Formal deformations of associative algebras (Gerstenhaber)

A formal deformation $\mu + C$ of an associative algebra (\mathcal{A}, μ) is defined by a series $C = \sum_{r>1} t^r C_r$ of bilinear maps $C_r : \mathcal{A} \times \mathcal{A}$ to \mathcal{A} so that

$$(\mu+C)((\mu+C)(u,v),w)-(\mu+C)(u,(\mu+C)(v,w))=0 \qquad \forall u,v,w\in\mathcal{A}.$$

At order 1 : $\mu(C_1(u, v), w) + C_1(\mu(u, v), w) - C_1(u, \mu(v, w)) - \mu(u, C_1(v, w)) = 0$, hence C_1 is a 2-cocycle for the Hochschild cohomology of \mathcal{A} with values in \mathcal{A} . Two formal deformations $(\mu + C)$ and $(\mu + C')$ are equivalent if there exists of a series $T = \sum_{r>1} t^r T_r$ of linear maps $T_r : \mathcal{A} \to \mathcal{A}$ such that

$$(\mu+C')(u,v)=e^{T}\left((\mu+C)(e^{-T}u,e^{-T}v)\right).$$

At order 1 : $C'_1(u, v) = C_1(u, v) + T_1(u, v) - \mu(T_1u, v) - \mu(u, T_1v)$, i.e. $C'_1 - C_1$ is a Hochschild coboundary.

If $H^2_H(\mathcal{A}, \mathcal{A}) = 0$, all formal deformations are trivial (i.e. equivalent to μ) and any deformation at order 1 can be prolongated into a deformation.

Hochschild complex of an associative algebra

Let (\mathcal{A}, μ) be an associative algebra over \mathbb{K} of characteristic 0. The *Hochschild complex* of \mathcal{A} with values in the bimodule \mathcal{A} is $C_{\mathcal{H}}(\mathcal{A}, \mathcal{A}) := \bigoplus_{n \in \mathbb{N}} C^{n}_{\mathcal{H}}(\mathcal{A}, \mathcal{A})$, with grading by number of arguments.

The *Gerstenhaber multiplication* $\circ_G : C_H \times C_H \to C_H$ is the bilinear map of degree -1 defined for any $f \in C_H^k(\mathcal{A}, \mathcal{A})$ and any $g \in C_H^l(\mathcal{A}, \mathcal{A})$ by

$$(f \circ_G g)(a_1, \ldots, a_{k+l-1}) = \sum_{i=1}^k (-1)^{(i-1)(l-1)} f(a_1, \ldots, a_{i-1}, g(a_i, \ldots, a_{i+l-1}), a_{i+l}, \ldots, a_{k+l-1})$$

One considers, on the shifted space $\mathfrak{G}(\mathcal{A}) := C_{\mathcal{H}}(\mathcal{A}, \mathcal{A})[1]$ for which k - 1 is the shifted degree of a k-cochain f, the graded commutator,

$$[f,g]_G = f \circ_G g - (-1)^{(k-1)(l-1)} g \circ_G f,$$

called the Gerstenhaber bracket.

Simone Gutt (ULB)

Non L_{∞} -formality

Hochschild complex of an associative algebra

Let (\mathcal{A}, μ) be an associative algebra over \mathbb{K} of characteristic 0. The *Hochschild complex* of \mathcal{A} with values in the bimodule \mathcal{A} is $C_{\mathcal{H}}(\mathcal{A}, \mathcal{A}) := \bigoplus_{n \in \mathbb{N}} C^{n}_{\mathcal{H}}(\mathcal{A}, \mathcal{A})$, with grading by number of arguments.

The *Gerstenhaber multiplication* $\circ_G : C_H \times C_H \to C_H$ is the bilinear map of degree -1 defined for any $f \in C_H^k(\mathcal{A}, \mathcal{A})$ and any $g \in C_H^l(\mathcal{A}, \mathcal{A})$ by

$$(f \circ_G g)(a_1, \ldots, a_{k+l-1}) = \sum_{i=1}^k (-1)^{(i-1)(l-1)} f(a_1, \ldots, a_{i-1}, g(a_i, \ldots, a_{i+l-1}), a_{i+l}, \ldots, a_{k+l-1})$$

One considers, on the shifted space $\mathfrak{G}(\mathcal{A}) := C_{\mathcal{H}}(\mathcal{A}, \mathcal{A})[1]$ for which k - 1 is the shifted degree of a k-cochain f, the graded commutator,

$$[f,g]_G = f \circ_G g - (-1)^{(k-1)(l-1)} g \circ_G f,$$

called the Gerstenhaber bracket.

Any bilinear map $\mu : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is of degree 1 in $\mathfrak{G}(\mathcal{A})$, and gives an associative multiplication iff $[\mu, \mu]_G = 0$. For any such μ the square of $b := [\mu,]_G$ vanishes and defines, up to a global sign, the Hochschild coboundary operator on the complex $C_H(\mathcal{A}, \mathcal{A})[1]_{\mathbb{C}}$, where $\mu \in \mathbb{C}$ is the square of $\mu \in \mathbb{C}$.

Simone Gutt (ULB)

A differential graded Lie algebra ($\mathfrak{G}, b, [,]$), consists of a graded Lie algebra ($\mathfrak{G}, [,]$) and a \mathbb{K} -linear map $b : \mathfrak{G} \to \mathfrak{G}$ of degree 1 such that $b^2 = 0$, and b is a graded derivation of the graded Lie bracket [,]. Ex: For (\mathcal{A}, μ) an associative algebra ($C_H(\mathcal{A}, \mathcal{A})[1], b = [\mu,]_G, [,]_G$). Its cohomology \mathfrak{H} with respect to $b, \mathfrak{H}^n := \frac{Z^n \mathfrak{G}; = \{C \in \mathfrak{G}^n \mid bC = 0\}}{B^n \mathfrak{G} := \{bC \mid C \in \mathfrak{G}^{n-1}\}}$ carries a canonical graded Lie bracket $[,]_H$ induced from [,] so that ($\mathfrak{H}, \mathfrak{O}, [,]_H$) is again a graded Lie algebra.

A deformation $\mu + C$ of the associative algebra (\mathcal{A}, μ) yields an element $C \in C_{\mathcal{H}}(\mathcal{A}, \mathcal{A})[1]t[[t]]$ of degree 1 so that $[\mu + C, \mu + C]_{G} = 0$ i.e.

 $bC + \frac{1}{2}[C, C]_G = 0$ hence $bC_1 = 0$ and $[C_1, C_1]_G = -2bC_2$ so $[[C_1], [C_1]]_H = 0$

Equivalence is given by the action of e^T with $T \in C_H(\mathcal{A}, \mathcal{A})[1]t[[t]]$ of degree 0 via : $\mu + C' = (\exp[T,]_G)(\mu + C)$. Then $C'_1 = C_1 - bT_1$. One defines the infinitesimal action $T \cdot C := -bT + [T_1, C]_{\bullet}$.

A differential graded Lie algebra $(\mathfrak{G}, \mathfrak{b}, [,])$, consists of a graded Lie algebra $(\mathfrak{G}, [,])$ and a \mathbb{K} -linear map $b : \mathfrak{G} \to \mathfrak{G}$ of degree 1 such that $b^2 = 0$, and b is a graded derivation of the graded Lie bracket [,]. Ex: For (\mathcal{A}, μ) an associative algebra $(C_H(\mathcal{A}, \mathcal{A})[1], b = [\mu,]_G, [,]_G)$. Its cohomology \mathfrak{H} with respect to $b, \mathfrak{H}^n := \frac{Z^n \mathfrak{G}; = \{C \in \mathfrak{G}^n \mid bC = 0\}}{B^n \mathfrak{G} := \{bC \mid C \in \mathfrak{G}^{n-1}\}}$ carries a canonical graded Lie bracket $[,]_H$ induced from [,] so that $(\mathfrak{H}, 0, [,]_H)$ is again a graded Lie algebra.

A deformation $\mu + C$ of the associative algebra (\mathcal{A}, μ) yields an element $C \in C_{\mathcal{H}}(\mathcal{A}, \mathcal{A})[1]t[[t]]$ of degree 1 so that $[\mu + C, \mu + C]_{G} = 0$ i.e.

 $bC + \frac{1}{2}[C, C]_G = 0$ hence $bC_1 = 0$ and $[C_1, C_1]_G = -2bC_2$ so $[[C_1], [C_1]]_H = 0$

Equivalence is given by the action of e^T with $T \in C_H(\mathcal{A}, \mathcal{A})[1]t[[t]]$ of degree 0 via : $\mu + C' = (\exp[T,]_G)(\mu + C)$. Then $C'_1 = C_1 - bT_1$. One defines the infinitesimal action $T \cdot C := -bT + [T_1, C]_{\mathbf{a}}$.

A differential graded Lie algebra $(\mathfrak{G}, \mathfrak{b}, [,])$, consists of a graded Lie algebra $(\mathfrak{G}, [,])$ and a \mathbb{K} -linear map $b : \mathfrak{G} \to \mathfrak{G}$ of degree 1 such that $b^2 = 0$, and b is a graded derivation of the graded Lie bracket [,]. Ex: For (\mathcal{A}, μ) an associative algebra $(C_H(\mathcal{A}, \mathcal{A})[1], b = [\mu,]_G, [,]_G)$. Its cohomology \mathfrak{H} with respect to $b, \mathfrak{H}^n := \frac{Z^n\mathfrak{G}; = \{C \in \mathfrak{G}^n \mid bC = 0\}}{B^n\mathfrak{G} := \{bC \mid C \in \mathfrak{G}^{n-1}\}}$ carries a canonical graded Lie bracket $[,]_H$ induced from [,] so that $(\mathfrak{H}, 0, [,]_H)$ is again a graded Lie algebra.

A deformation $\mu + C$ of the associative algebra (\mathcal{A}, μ) yields an element $C \in C_{\mathcal{H}}(\mathcal{A}, \mathcal{A})[1]t[[t]]$ of degree 1 so that $[\mu + C, \mu + C]_{G} = 0$ i.e.

 $bC + \frac{1}{2}[C, C]_G = 0$ hence $bC_1 = 0$ and $[C_1, C_1]_G = -2bC_2$ so $[[C_1], [C_1]]_H = 0$

Equivalence is given by the action of e^T with $T \in C_H(\mathcal{A}, \mathcal{A})[1]t[[t]]$ of degree 0 via : $\mu + C' = (\exp[T,]_G)(\mu + C)$. Then $C'_1 = C_1 - bT_1$. One defines the infinitesimal action $T \cdot C := -bT + [T_1, C]_{\mathbb{P}}$, $(\mathbf{A}, \mathbf{A})[\mathbf{A}, \mathbf{A})[\mathbf{A},$

A differential graded Lie algebra $(\mathfrak{G}, \mathfrak{b}, [,])$, consists of a graded Lie algebra $(\mathfrak{G}, [,])$ and a \mathbb{K} -linear map $b : \mathfrak{G} \to \mathfrak{G}$ of degree 1 such that $b^2 = 0$, and b is a graded derivation of the graded Lie bracket [,]. Ex: For (\mathcal{A}, μ) an associative algebra $(C_H(\mathcal{A}, \mathcal{A})[1], b = [\mu,]_G, [,]_G)$. Its cohomology \mathfrak{H} with respect to $b, \mathfrak{H}^n := \frac{Z^n \mathfrak{G}; = \{C \in \mathfrak{G}^n \mid bC = 0\}}{B^n \mathfrak{G} := \{bC \mid C \in \mathfrak{G}^{n-1}\}}$ carries a canonical graded Lie bracket $[,]_H$ induced from [,] so that $(\mathfrak{H}, 0, [,]_H)$ is again a graded Lie algebra.

A deformation $\mu + C$ of the associative algebra (\mathcal{A}, μ) yields an element $C \in C_{\mathcal{H}}(\mathcal{A}, \mathcal{A})[1]t[[t]]$ of degree 1 so that $[\mu + C, \mu + C]_{G} = 0$ i.e.

 $bC + \frac{1}{2}[C, C]_G = 0$ hence $bC_1 = 0$ and $[C_1, C_1]_G = -2bC_2$ so $[[C_1], [C_1]]_H = 0$

Equivalence is given by the action of e^T with $T \in C_H(\mathcal{A}, \mathcal{A})[1]t[[t]]$ of degree 0 via : $\mu + C' = (\exp[T,]_G)(\mu + C)$. Then $C'_1 = C_1 - bT_1$. One defines the infinitesimal action $T \cdot C := -bT + [T_1, C]_{\mathbb{R}}$.

L_{∞} algebras

Let $W = \bigoplus_{j \in \mathbb{Z}} W^j$ a \mathbb{Z} -graded vector space. Let V = W[1] be the shifted graded vector space. The graded symmetric bialgebra of V, denoted SV, is the quotient of the free algebra $\mathcal{T}V$ by the two-sided graded ideal generated by $x \otimes y - (-1)^{|x||y|} y \otimes x$ for any homog. elements x, y in V.

The graded cocommutative comultiplication Δ_{sh} is induced by the shuffle comultiplication $\Delta_{sh}: TV \to TV \otimes TV$ which is the homomorphism of associative algebras so that $\Delta_{sh}(x) = 1 \otimes x + x \otimes 1$ (with signs given by Koszul convention).

A L_{∞} -structure on W is defined to be a graded coderivation \mathcal{D} of $\mathcal{S}(W[1])$ of degree 1 satisfying $\mathcal{D}^2 = 0$ and $\mathcal{D}(\mathbf{1}_{\mathcal{S}W[1]}) = 0$. Such a \mathcal{D} is determined by $D := pr_{W[1]} \circ \mathcal{D} : \mathcal{S}(W[1]) \to W[1]$ via $\mathcal{D} = \mu_{sh} \circ D \otimes \mathrm{Id} \circ \Delta_{sh}$ and we write $\mathcal{D} = \overline{D}$. The pair (W, \mathcal{D}) is called an L_{∞} -algebra. Ex: $(\mathfrak{G}, b, [,])$ a dga $\Rightarrow (\mathfrak{G}, \mathcal{D} = \overline{b[1] + [,][1]} \text{ on } \mathcal{S}(\mathfrak{G}[1]))$. A solution $bC + \frac{1}{2}[C, C]_G = 0$ corresponds to a $C' \in V^0 t[[t]]$ such that $\mathcal{D}(e^{C'}) = 0$. For a linear map $\phi : V^{\otimes k} \to W^{\otimes \ell}$, $\phi[j] : V[j]^{\otimes k} \to W[j]^{\otimes \ell}$ via $\phi[j] := (s^{\otimes \ell})^{-j} \circ \phi \circ (s^{\otimes k})^j$ where $s : V \to V[-1]$ is the identity.

3

イロト イポト イヨト イヨト

L_{∞} algebras

Let $W = \bigoplus_{j \in \mathbb{Z}} W^j$ a \mathbb{Z} -graded vector space. Let V = W[1] be the shifted graded vector space. The graded symmetric bialgebra of V, denoted SV, is the quotient of the free algebra $\mathcal{T}V$ by the two-sided graded ideal generated by $x \otimes y - (-1)^{|x||y|} y \otimes x$ for any homog. elements x, y in V.

The graded cocommutative comultiplication Δ_{sh} is induced by the shuffle comultiplication $\Delta_{sh}: TV \to TV \otimes TV$ which is the homomorphism of associative algebras so that $\Delta_{sh}(x) = 1 \otimes x + x \otimes 1$ (with signs given by Koszul convention).

A L_{∞} -structure on W is defined to be a graded coderivation \mathcal{D} of $\mathcal{S}(W[1])$ of degree 1 satisfying $\mathcal{D}^2 = 0$ and $\mathcal{D}(\mathbf{1}_{\mathcal{S}W[1]}) = 0$. Such a \mathcal{D} is determined by $D := pr_{W[1]} \circ \mathcal{D} : \mathcal{S}(W[1]) \to W[1]$ via $\mathcal{D} = \mu_{sh} \circ D \otimes \mathrm{Id} \circ \Delta_{sh}$ and we write $\mathcal{D} = \overline{\mathcal{D}}$. The pair (W, \mathcal{D}) is called an L_{∞} -algebra. Ex: $(\mathfrak{G}, b, [,])$ a dga $\Rightarrow (\mathfrak{G}, \mathcal{D} = \overline{b[1]} + [,][1]$ on $\mathcal{S}(\mathfrak{G}[1]))$. A solution $bC + \frac{1}{2}[C, C]_G = 0$ corresponds to a $C' \in V^0t[[t]]$ such that $\mathcal{D}(e^{C'}) = 0$. For a linear map $\phi: V^{\otimes k} \to W^{\otimes \ell}, \phi[j]: V[j]^{\otimes k} \to W[j]^{\otimes \ell}$ via $\phi[j] := (s^{\otimes \ell})^{-j} \circ \phi \circ (s^{\otimes k})^{j}$ where $s: V \to V[-1]$ is the identity.

イロト 不得 トイヨト イヨト 二日

L_{∞} algebras

Let $W = \bigoplus_{j \in \mathbb{Z}} W^j$ a \mathbb{Z} -graded vector space. Let V = W[1] be the shifted graded vector space. The graded symmetric bialgebra of V, denoted SV, is the quotient of the free algebra $\mathcal{T}V$ by the two-sided graded ideal generated by $x \otimes y - (-1)^{|x||y|} y \otimes x$ for any homog. elements x, y in V.

The graded cocommutative comultiplication Δ_{sh} is induced by the shuffle comultiplication $\Delta_{sh}: TV \to TV \otimes TV$ which is the homomorphism of associative algebras so that $\Delta_{sh}(x) = 1 \otimes x + x \otimes 1$ (with signs given by Koszul convention).

A L_{∞} -structure on W is defined to be a graded coderivation \mathcal{D} of $\mathcal{S}(W[1])$ of degree 1 satisfying $\mathcal{D}^2 = 0$ and $\mathcal{D}(\mathbf{1}_{\mathcal{S}W[1]}) = 0$. Such a \mathcal{D} is determined by $D := pr_{W[1]} \circ \mathcal{D} : \mathcal{S}(W[1]) \to W[1]$ via $\mathcal{D} = \mu_{sh} \circ D \otimes \mathrm{Id} \circ \Delta_{sh}$ and we write $\mathcal{D} = \overline{D}$. The pair (W, \mathcal{D}) is called an L_{∞} -algebra. Ex: $(\mathfrak{G}, b, [,])$ a dga $\Rightarrow (\mathfrak{G}, \mathcal{D} = \overline{b[1]} + [,][1] \text{ on } \mathcal{S}(\mathfrak{G}[1]))$. A solution $bC + \frac{1}{2}[C, C]_G = 0$ corresponds to a $C' \in V^0 t[[t]]$ such that $\mathcal{D}(e^{C'}) = 0$. For a linear map $\phi : V^{\otimes k} \to W^{\otimes \ell}$, $\phi[j] : V[j]^{\otimes k} \to W[j]^{\otimes \ell}$ via $\phi[j] := (s^{\otimes \ell})^{-j} \circ \phi \circ (s^{\otimes k})^{j}$ where $s : V \to V[-1]$ is the identity.

L_{∞} -morphisms, guasi-isomorphisms and Formality

A L_{∞} -morphism from a L_{∞} -algebra (W, \mathcal{D}) to a L_{∞} -algebra (W', \mathcal{D}') is a morphism of graded con. coalgebras $\Phi : (\mathcal{S}(W[1]), \mathcal{D}) \rightarrow (\mathcal{S}(W'[1]), \mathcal{D}'),$ intertwining differentials $\Phi \circ \mathcal{D} = \mathcal{D}' \circ \Phi$.

Such a morphism is determined by $\varphi := pr_{W'[1]} \circ \Phi : \mathcal{S}(W[1]) \to W'[1]$ with $\varphi(1) = 0$ via $\Phi = e^{*\varphi}$ with $A * B = \mu \circ A \otimes B \circ \Delta$ for $A, B \in \text{Hom}(\mathcal{S}(W[1]), \mathcal{S}(W'[1]))$

Image: Image:

- 3

L_{∞} -morphisms, quasi-isomorphisms and Formality

A L_{∞} -morphism from a L_{∞} -algebra (W, \mathcal{D}) to a L_{∞} -algebra (W', \mathcal{D}') is a morphism of graded con. coalgebras $\Phi : (\mathcal{S}(W[1]), \mathcal{D}) \rightarrow (\mathcal{S}(W'[1]), \mathcal{D}'),$ intertwining differentials $\Phi \circ \mathcal{D} = \mathcal{D}' \circ \Phi$.

Such a morphism is determined by $\varphi := pr_{W'[1]} \circ \Phi : \mathcal{S}(W[1]) \to W'[1]$ with $\varphi(1) = 0$ via $\Phi = e^{*\varphi}$ with $A * B = \mu \circ A \otimes B \circ \Delta$ for $A, B \in \text{Hom}(\mathcal{S}(W[1]), \mathcal{S}(W'[1]))$

A L_{∞} -map Φ is called an L_{∞} -quasi-isomorphism if its first component $\Phi_1 = \Phi|_{W[1]} = \varphi_1 : W[1] \to W'[1]$ -which is a chain map $(W[1], \mathcal{D}_1) \rightarrow (W'[1], \mathcal{D}'_1)$ - induces an isomorphism in cohomology.

Image: Image:

- 3

L_{∞} -morphisms, quasi-isomorphisms and Formality

A L_{∞} -morphism from a L_{∞} -algebra (W, D) to a L_{∞} -algebra (W', D') is a morphism of graded con. coalgebras $\Phi : (\mathcal{S}(W[1]), D) \rightarrow (\mathcal{S}(W'[1]), D')$, intertwining differentials $\Phi \circ D = D' \circ \Phi$.

Such a morphism is determined by $\varphi := pr_{W'[1]} \circ \Phi : \mathcal{S}(W[1]) \to W'[1]$ with $\varphi(1) = 0$ via $\Phi = e^{*\varphi}$ with $A * B = \mu \circ A \otimes B \circ \Delta$ for $A, B \in \operatorname{Hom}(\mathcal{S}(W[1]), \mathcal{S}(W'[1]))$

A L_{∞} -map Φ is called an L_{∞} -quasi-isomorphism if its first component $\Phi_1 = \Phi|_{W[1]} = \varphi_1 : W[1] \to W'[1]$ –which is a chain map $(W[1], \mathcal{D}_1) \to (W'[1], \mathcal{D}'_1)$ - induces an isomorphism in cohomology.

A formality for a differential graded Lie algebra $(\mathfrak{G}, b, [,])$ is a L_{∞} -quasi-isomorphism from the L_{∞} -algebra corresponding to $(\mathfrak{H}, 0, [,]_H)$ (the cohomology of \mathfrak{G} with respect to b), to the L_{∞} -algebra corresponding to $(\mathfrak{G}, b, [,]) : \Phi : \mathcal{S}(\mathfrak{H}[1]) \to \mathcal{S}(\mathfrak{G}[1])$, such that $\Phi \circ \overline{[,]_H[1]} = \overline{(b[1] + [,][1])} \circ \Phi$

A quasi-isomorphism yields isomorphic moduli spaces of deformations.

We look for $\varphi : S(\mathfrak{H}[1]) \to \mathfrak{G}[1]$ a degree 0 map vanishing on 1, such that $\Phi = e^{*\varphi} : S(\mathfrak{H}[1]) \to S(\mathfrak{G}[1])$ satisfies $\Phi \circ \overline{[\ ,\]_{H}[1]} = \overline{(b[1] + [\ ,\][1])} \circ \Phi$. Denoting φ_n the restriction of φ to $Sym^n(\mathfrak{H}[1])$, we have in particular that $b[1] \circ \varphi_1 = 0$ and $\varphi_1 : (\mathfrak{H}[1], 0)] \to (\mathfrak{G}[1], b[1])$ must induce an isomorphism in cohomology.

The cohomology of $(\mathfrak{G}[1], b[1])$ identifies with $\mathfrak{H}[1]$. We denote by $\pi : Z\mathfrak{G} = \{C \in \mathfrak{G} \mid bC = 0\} \to \mathfrak{H}$ the canonical projection. We must have $b[1] \circ \varphi_1 = 0$ and $\pi[1] \circ \varphi_1 = \mathrm{Id}$. We can choose a vector space X complement to $B\mathfrak{G} = \{bC \mid C \in \mathfrak{G}\}$ in $Z\mathfrak{G}$ and let φ_1 be the inverse of the restriction of π to X. The condition on $\varphi_2 : S^2(\mathfrak{H}[1]) \to \mathfrak{G}[1]$ writes more easily on its shift $\phi_2 = \varphi_2[-1] : \Lambda^2 \mathfrak{H} \to \mathfrak{G}$ as $0 = b \circ \phi_2 + [\ , \]_{\mathcal{G}} \circ (\phi_1 \otimes \phi_1) - \phi_1 \circ [\ , \]_{\mathcal{H}}$.

 ΛV is the quotient of $\mathcal{T}V$ by the two-sided graded ideal gen. by $x \otimes y + (-1)^{|x||y|} y \otimes x$.

7 / 23

イロト 不得下 イヨト イヨト

We look for $\varphi : S(\mathfrak{H}[1]) \to \mathfrak{G}[1]$ a degree 0 map vanishing on 1, such that $\Phi = e^{*\varphi} : S(\mathfrak{H}[1]) \to S(\mathfrak{G}[1])$ satisfies $\Phi \circ \overline{[\ ,\]_{H}[1]} = \overline{(b[1] + [\ ,\][1])} \circ \Phi$. Denoting φ_n the restriction of φ to $Sym^n(\mathfrak{H}[1])$, we have in particular that $b[1] \circ \varphi_1 = 0$ and $\varphi_1 : (\mathfrak{H}[1], 0)] \to (\mathfrak{G}[1], b[1])$ must induce an isomorphism in cohomology.

The cohomology of $(\mathfrak{G}[1], b[1])$ identifies with $\mathfrak{H}[1]$. We denote by $\pi : Z\mathfrak{G} = \{C \in \mathfrak{G} \mid bC = 0\} \to \mathfrak{H}$ the canonical projection. We must have $b[1] \circ \varphi_1 = 0$ and $\pi[1] \circ \varphi_1 = \mathrm{Id}$. We can choose a vector space X complement to $B\mathfrak{G} = \{bC \mid C \in \mathfrak{G}\}$ in $Z\mathfrak{G}$ and let φ_1 be the inverse of the restriction of π to X. The condition on $\varphi_2 : S^2(\mathfrak{H}[1]) \to \mathfrak{G}[1]$ writes more easily on its shift

 $\phi_2 = \varphi_2[-1] : \Lambda^2 \mathfrak{H} \to \mathfrak{G} \text{ as } 0 = b \circ \phi_2 + [\ ,\]_G \circ (\phi_1 \otimes \phi_1) - \phi_1 \circ [\ ,\]_H.$

 ΛV is the quotient of $\mathcal{T} V$ by the two-sided graded ideal gen. by $x\otimes y+(-1)^{|x||y|}y\otimes x.$

7 / 23

イロト 不得下 イヨト イヨト 二日

We look for $\varphi : S(\mathfrak{H}[1]) \to \mathfrak{G}[1]$ a degree 0 map vanishing on 1, such that $\Phi = e^{*\varphi} : S(\mathfrak{H}[1]) \to S(\mathfrak{G}[1])$ satisfies $\Phi \circ \overline{[\ ,\]_{H}[1]} = \overline{(b[1] + [\ ,\][1])} \circ \Phi$. Denoting φ_n the restriction of φ to $Sym^n(\mathfrak{H}[1])$, we have in particular that $b[1] \circ \varphi_1 = 0$ and $\varphi_1 : (\mathfrak{H}[1], 0)] \to (\mathfrak{G}[1], b[1])$ must induce an isomorphism in cohomology.

The cohomology of $(\mathfrak{G}[1], b[1])$ identifies with $\mathfrak{H}[1]$. We denote by $\pi : Z\mathfrak{G} = \{C \in \mathfrak{G} \mid bC = 0\} \to \mathfrak{H}$ the canonical projection. We must have $b[1] \circ \varphi_1 = 0$ and $\pi[1] \circ \varphi_1 = \mathrm{Id}$. We can choose a vector space X complement to $B\mathfrak{G} = \{bC \mid C \in \mathfrak{G}\}$ in $Z\mathfrak{G}$ and let φ_1 be the inverse of the restriction of π to X. The condition on $\varphi_2 : S^2(\mathfrak{H}[1]) \to \mathfrak{G}[1]$ writes more easily on its shift $\phi_2 = \varphi_2[-1] : \Lambda^2 \mathfrak{H} \to \mathfrak{G}$ as $0 = b \circ \phi_2 + [\ , \]_G \circ (\phi_1 \otimes \phi_1) - \phi_1 \circ [\ , \]_H$.

 ΛV is the quotient of $\mathcal{T}V$ by the two-sided graded ideal gen. by $x \otimes y + (-1)^{|x||y|} y \otimes x$.

Let $\varphi_1 : \mathfrak{H}[1] \to \mathfrak{G}[1]$ and $\varphi_2 : \mathcal{S}^2(\mathfrak{H}[1]) \to \mathfrak{G}[1]$ be degree 0 maps, such that their shifts $\phi_i = \varphi_i[-1] : \Lambda^i \mathfrak{H} \to \mathfrak{G}$ satisfy $0 = b \circ \phi_1, \quad \pi \circ \phi_1 = \mathrm{Id}_{\mathfrak{H}}$ and $0 = b \circ \phi_2 + [\ , \]_{\mathcal{G}} \circ (\phi_1 \otimes \phi_1) - \phi_1 \circ [\ , \]_{\mathcal{H}}.$

The linear map w₃(φ) : Λ³ 𝔅 → 𝔅 of degree −1 defined on homogeneous elements y₁, y₂, y₃ ∈ 𝔅 by

$$\begin{split} & w_{3}(\varphi)(y_{1}, y_{2}, y_{3}) = (-1)^{|y_{1}|} [\phi_{1}(y_{1}), \phi_{2}(y_{2}, y_{3})]_{G} - (-1)^{|y_{2}|} (-1)^{|y_{2}|} [\phi_{1}(y_{2}), \phi_{2}(y_{1}, y_{3})]_{G} + \\ & (-1)^{|y_{3}|} (-1)^{|y_{3}|(|y_{1}|+|y_{2}|)} [\phi_{1}(y_{3}), \phi_{2}(y_{1}, y_{2})]_{G} - \phi_{2} ([y_{1}, y_{2}]_{H}, y_{3}) + \\ & (-1)^{|y_{3}||y_{2}|} \phi_{2} ([y_{1}, y_{3}]_{H}, y_{2}) (-1)^{(|y_{2}|+|y_{3}|)|y_{1}|} \phi_{2} ([y_{2}, y_{3}]_{H}, y_{1}) \text{ satisfies } b \circ w_{3}(\varphi) = 0. \end{split}$$

(a) The trilinear map $z_3(\varphi) = \pi \circ w_3(\varphi) : \Lambda^3 \mathfrak{H} \to \mathfrak{H}$ is a graded Chevalley-Eilenberg 3-cocycle of degree -1, i.e. $\delta_{\mathfrak{H}} z_3 = 0$, and its class $c_3 = c_3(\mathfrak{G}, b, [,]_G)$ does not depend on the chosen φ_1, φ_2 .

The Chevalley Eilenberg coboundary operator on a graded Lie algebra is given by the usual formulas with signs.

() There is a L_{∞} -quis of order 3 between \mathfrak{G} and its cohom. \mathfrak{H} iff $c_3 = 0$.

8 / 23

イロト イポト イヨト イヨト 二日

Let $\varphi_1 : \mathfrak{H}[1] \to \mathfrak{G}[1]$ and $\varphi_2 : \mathcal{S}^2(\mathfrak{H}[1]) \to \mathfrak{G}[1]$ be degree 0 maps, such that their shifts $\phi_i = \varphi_i[-1] : \Lambda^i \mathfrak{H} \to \mathfrak{G}$ satisfy $0 = b \circ \phi_1, \quad \pi \circ \phi_1 = \mathrm{Id}_{\mathfrak{H}}$ and $0 = b \circ \phi_2 + [\ , \]_{\mathcal{G}} \circ (\phi_1 \otimes \phi_1) - \phi_1 \circ [\ , \]_{\mathcal{H}}.$

The linear map w₃(φ) : Λ³ 𝔅 → 𝔅 of degree −1 defined on homogeneous elements y₁, y₂, y₃ ∈ 𝔅 by

$$\begin{split} & w_{3}(\varphi)(y_{1}, y_{2}, y_{3}) = (-1)^{|y_{1}|} [\phi_{1}(y_{1}), \phi_{2}(y_{2}, y_{3})]_{G} - (-1)^{|y_{2}|} (-1)^{|y_{2}||y_{1}|} [\phi_{1}(y_{2}), \phi_{2}(y_{1}, y_{3})]_{G} + \\ & (-1)^{|y_{3}|} (-1)^{|y_{3}|(|y_{1}|+|y_{2}|)} [\phi_{1}(y_{3}), \phi_{2}(y_{1}, y_{2})]_{G} - \phi_{2}([y_{1}, y_{2}]_{H}, y_{3}) + \\ & (-1)^{|y_{3}||y_{2}|} \phi_{2}([y_{1}, y_{3}]_{H}, y_{2})(-1)^{(|y_{2}|+|y_{3}|)|y_{1}|} \phi_{2}([y_{2}, y_{3}]_{H}, y_{1}) \text{ satisfies } b \circ w_{3}(\varphi) = 0. \end{split}$$

O The trilinear map z₃(φ) = π ∘ w₃(φ) : Λ³ 𝔅 → 𝔅 is a graded Chevalley-Eilenberg 3-cocycle of degree −1, i.e. δ_𝔅z₃ = 0, and its class c₃ = c₃(𝔅, b, [,]_G) does not depend on the chosen φ₁, φ₂.

The Chevalley Eilenberg coboundary operator on a graded Lie algebra is given by the usual formulas with signs.

(1) There is a L_{∞} -quis of order 3 between \mathfrak{G} and its cohom. \mathfrak{H} iff $c_3 = 0$.

8 / 23

イロン イボン イヨン イヨン 一日

Let $\varphi_1 : \mathfrak{H}[1] \to \mathfrak{G}[1]$ and $\varphi_2 : \mathcal{S}^2(\mathfrak{H}[1]) \to \mathfrak{G}[1]$ be degree 0 maps, such that their shifts $\phi_i = \varphi_i[-1] : \Lambda^i \mathfrak{H} \to \mathfrak{G}$ satisfy $0 = b \circ \phi_1, \quad \pi \circ \phi_1 = \mathrm{Id}_{\mathfrak{H}}$ and $0 = b \circ \phi_2 + [\ , \]_{\mathcal{G}} \circ (\phi_1 \otimes \phi_1) - \phi_1 \circ [\ , \]_{\mathcal{H}}.$

The linear map w₃(φ) : Λ³ 𝔅 → 𝔅 of degree −1 defined on homogeneous elements y₁, y₂, y₃ ∈ 𝔅 by

$$\begin{split} & \mathsf{w}_{3}(\varphi)(\mathsf{y}_{1},\mathsf{y}_{2},\mathsf{y}_{3}) = (-1)^{|\mathsf{y}_{1}|} [\phi_{1}(\mathsf{y}_{1}), \phi_{2}(\mathsf{y}_{2},\mathsf{y}_{3})]_{G} - (-1)^{|\mathsf{y}_{2}|} (-1)^{|\mathsf{y}_{2}||\mathsf{y}_{1}|} [\phi_{1}(\mathsf{y}_{2}), \phi_{2}(\mathsf{y}_{1},\mathsf{y}_{3})]_{G} + \\ & (-1)^{|\mathsf{y}_{3}|} (-1)^{|\mathsf{y}_{3}|(|\mathsf{y}_{1}|+|\mathsf{y}_{2}|)} [\phi_{1}(\mathsf{y}_{3}), \phi_{2}(\mathsf{y}_{1},\mathsf{y}_{2})]_{G} - \phi_{2}([\mathsf{y}_{1},\mathsf{y}_{2}]_{H},\mathsf{y}_{3}) + \\ & (-1)^{|\mathsf{y}_{3}||\mathsf{y}_{2}|} \phi_{2}([\mathsf{y}_{1},\mathsf{y}_{3}]_{H},\mathsf{y}_{2})(-1)^{(|\mathsf{y}_{2}|+|\mathsf{y}_{3}|)|\mathsf{y}_{1}|} \phi_{2}([\mathsf{y}_{2},\mathsf{y}_{3}]_{H},\mathsf{y}_{1}) \text{ satisfies } b \circ w_{3}(\varphi) = 0. \end{split}$$

 The trilinear map z₃(φ) = π ∘ w₃(φ) : Λ³ 𝔅 → 𝔅 is a graded Chevalley-Eilenberg 3-cocycle of degree −1, i.e. δ_𝔅z₃ = 0, and its class c₃ = c₃(𝔅, b, [,]_G) does not depend on the chosen φ₁, φ₂.

The Chevalley Eilenberg coboundary operator on a graded Lie algebra is given by the usual formulas with signs.

• There is a L_{∞} -quis of order 3 between \mathfrak{G} and its cohom. \mathfrak{H} iff $c_3 = 0$.

We are interested in checking whether there is formality for the graded Lie algebra $(C_{\mathcal{H}}(\mathcal{A},\mathcal{A})[1], b = [\mu,]_{\mathcal{G}}, [,]_{\mathcal{G}})$ given by the Hochschild complex of the associative algebra (\mathcal{A},μ) when $\mathcal{A} = \mathcal{U}\mathfrak{g}$ is the universal enveloping algebra of a Lie algebra \mathfrak{g} , thus in checking whether one can build a quasi-isomophism

$e^{*\varphi}: \mathcal{S}ig(H_{\mathcal{H}}(\mathcal{U}\mathfrak{g},\mathcal{U}\mathfrak{g})[2]ig) o \mathcal{S}ig(C_{\mathcal{H}}(\mathcal{U}\mathfrak{g},\mathcal{U}\mathfrak{g})[2]ig)$

Theorem[Cartan-Eilenberg]. Let \mathfrak{g} be a finite dim Lie algebra and \mathcal{M} be a $\mathcal{U}\mathfrak{g}$ -bimodule. Then $H^n_H(\mathcal{U}\mathfrak{g}, \mathcal{M}) \simeq H^n_{CE}(\mathfrak{g}, \mathcal{M}_a)$ where $\mathcal{M}_a = \mathcal{M}$ with the action of $g \in \mathfrak{g}$ defined by $g \cdot m := gm - mg$. In particular

 $H^n_H(\mathcal{Ug},\mathcal{Ug})\simeq H^n_{CE}(\mathfrak{g},\mathcal{Ug})\simeq H^n_{CE}(\mathfrak{g},\mathcal{Sg})$

We are interested in checking whether there is formality for the graded Lie algebra $(C_{\mathcal{H}}(\mathcal{A},\mathcal{A})[1], b = [\mu,]_{\mathcal{G}}, [,]_{\mathcal{G}})$ given by the Hochschild complex of the associative algebra (\mathcal{A},μ) when $\mathcal{A} = \mathcal{U}\mathfrak{g}$ is the universal enveloping algebra of a Lie algebra \mathfrak{g} , thus in checking whether one can build a quasi-isomophism

$$e^{*\varphi}: \mathcal{S}(H_{H}(\mathcal{U}\mathfrak{g},\mathcal{U}\mathfrak{g})[2])
ightarrow \mathcal{S}(C_{H}(\mathcal{U}\mathfrak{g},\mathcal{U}\mathfrak{g})[2])$$

Theorem[Cartan-Eilenberg]. Let \mathfrak{g} be a finite dim Lie algebra and \mathcal{M} be a $\mathcal{U}\mathfrak{g}$ -bimodule. Then $H^n_H(\mathcal{U}\mathfrak{g}, \mathcal{M}) \simeq H^n_{CE}(\mathfrak{g}, \mathcal{M}_a)$ where $\mathcal{M}_a = \mathcal{M}$ with the action of $g \in \mathfrak{g}$ defined by $g \cdot m := gm - mg$. In particular

 $H^n_H(\mathcal{U}\mathfrak{g},\mathcal{U}\mathfrak{g})\simeq H^n_{CE}(\mathfrak{g},\mathcal{U}\mathfrak{g})\simeq H^n_{CE}(\mathfrak{g},\mathcal{S}\mathfrak{g})$

The Chevalley-Eilenberg complex $(C_{CE}(\mathfrak{g}, S\mathfrak{g}), \delta_{\mathfrak{g}})$

 $S\mathfrak{g}$ is a g-module via the adjoint representation. $C_{CE}(\mathfrak{g}, S\mathfrak{g})$ is canonically isomorphic to $S\mathfrak{g} \otimes \Lambda \mathfrak{g}^*$ and is \mathbb{Z} -graded by the form degree of $\Lambda \mathfrak{g}^*$. It is a graded commutative algebra by means of the tensor product of the commutative multiplication in $S\mathfrak{g}$ and the usual exterior multiplication in $\Lambda \mathfrak{g}^*$ which we also denote by \wedge . $f \in S\mathfrak{g}$ is viewed as a polynomial function on the dual space \mathfrak{g}^* so $C_{CE}(\mathfrak{g}, S\mathfrak{g})$ is viewed as the space of all polynomial poly-vector-fields on \mathfrak{g}^* . It is equipped with the usual *Schouten bracket* $[,]_{\mathfrak{g}}$:

 $[F,G]_s = \sum_{i=1}^n \iota_{e_i}(F) \wedge \partial^i G - (-1)^{(|F|-1)(|G|-1)} \sum_{i=1}^n \iota_{e_i}(G) \wedge \partial^i F.$

where e_1, \ldots, e_n is a basis of $\mathfrak{g}, \epsilon^1, \ldots, \epsilon^n$ the dual basis; $\iota_{\xi} : \Lambda \mathfrak{g}^* \to \Lambda \mathfrak{g}^*$, for each $\xi \in \mathfrak{g}$, is the usual interior product graded derivation and for each $y \in \mathfrak{g}^*$, $\iota_y : S\mathfrak{g} \to S\mathfrak{g}$ the corresponding derivation, writing $\iota_{\epsilon^i}(f) = \partial^i f$ for each $f \in S\mathfrak{g}$ and extending these derivations to $S\mathfrak{g} \otimes \Lambda \mathfrak{g}^*$. Let $\pi = [\ ,\] = \frac{1}{2} \sum_{i,j,k} c^i_{jk} e_i \otimes (e^j \wedge \epsilon^k)$ be the *linear Poisson structure* of \mathfrak{g}^* , where $c^i_{jk} = \epsilon^i([e_i, e_k]) \in \mathbb{K}$ are the structure constants. Then $[\pi, \pi]_s = 0$ and $\delta_{\mathfrak{g}} = [\pi,\]_s$ is the (shifted) Chevalley Eilenberg coboundary operator. $(C_{CE}(\mathfrak{g},S\mathfrak{g})[1], \delta_{\mathfrak{g}}, [\ ,\]_s)$ is a differential graded Lie algebra.

The Chevalley-Eilenberg complex $(C_{CE}(\mathfrak{g}, S\mathfrak{g}), \delta_{\mathfrak{g}})$

 $S\mathfrak{g}$ is a \mathfrak{g} -module via the adjoint representation. $C_{CE}(\mathfrak{g}, S\mathfrak{g})$ is canonically isomorphic to $S\mathfrak{g} \otimes \Lambda \mathfrak{g}^*$ and is \mathbb{Z} -graded by the form degree of $\Lambda \mathfrak{g}^*$. It is a graded commutative algebra by means of the tensor product of the commutative multiplication in $S\mathfrak{g}$ and the usual exterior multiplication in $\Lambda \mathfrak{g}^*$ which we also denote by \wedge . $f \in S\mathfrak{g}$ is viewed as a polynomial function on the dual space \mathfrak{g}^* so $C_{CE}(\mathfrak{g}, S\mathfrak{g})$ is viewed as the space of all polynomial poly-vector-fields on \mathfrak{g}^* . It is equipped with the usual *Schouten bracket* $[,]_s$:

 $[F,G]_s = \sum_{i=1}^n \iota_{e_i}(F) \wedge \partial^i G - (-1)^{(|F|-1)(|G|-1)} \sum_{i=1}^n \iota_{e_i}(G) \wedge \partial^i F.$

where e_1, \ldots, e_n is a basis of $\mathfrak{g}, \epsilon^1, \ldots, \epsilon^n$ the dual basis; $\iota_{\xi} : \Lambda \mathfrak{g}^* \to \Lambda \mathfrak{g}^*$, for each $\xi \in \mathfrak{g}$, is the usual interior product graded derivation and for each $y \in \mathfrak{g}^*$, $\iota_y : S\mathfrak{g} \to S\mathfrak{g}$ the corresponding derivation, writing $\iota_{\epsilon^i}(f) = \partial^i f$ for each $f \in S\mathfrak{g}$ and extending these derivations to $S\mathfrak{g} \otimes \Lambda \mathfrak{g}^*$. Let $\pi = [\ ,\] = \frac{1}{2} \sum_{i,j,k} c_{jk}^i e_i \otimes (e^j \wedge \epsilon^k)$ be the *linear Poisson structure* of \mathfrak{g}^* , where $c_{jk}^i = \epsilon^i([e_i, e_k]) \in \mathbb{K}$ are the structure constants. Then $[\pi, \pi]_s = 0$ and $\delta_{\mathfrak{g}} = [\pi,\]_s$ is the (shifted) Chevalley Eilenberg coboundary operator. $(C_{CE}(\mathfrak{g},S\mathfrak{g})[1], \delta_{\mathfrak{g}}, [\ ,\]_s)$ is a differential graded Lie algebra.

The Chevalley-Eilenberg complex $(C_{CE}(\mathfrak{g}, S\mathfrak{g}), \delta_{\mathfrak{g}})$

 $S\mathfrak{g}$ is a \mathfrak{g} -module via the adjoint representation. $C_{CE}(\mathfrak{g}, S\mathfrak{g})$ is canonically isomorphic to $S\mathfrak{g} \otimes \Lambda \mathfrak{g}^*$ and is \mathbb{Z} -graded by the form degree of $\Lambda \mathfrak{g}^*$. It is a graded commutative algebra by means of the tensor product of the commutative multiplication in $S\mathfrak{g}$ and the usual exterior multiplication in $\Lambda \mathfrak{g}^*$ which we also denote by \wedge . $f \in S\mathfrak{g}$ is viewed as a polynomial function on the dual space \mathfrak{g}^* so $C_{CE}(\mathfrak{g}, S\mathfrak{g})$ is viewed as the space of all polynomial poly-vector-fields on \mathfrak{g}^* . It is equipped with the usual *Schouten bracket* $[,]_s$:

 $[F,G]_s = \sum_{i=1}^n \iota_{e_i}(F) \wedge \partial^i G - (-1)^{(|F|-1)(|G|-1)} \sum_{i=1}^n \iota_{e_i}(G) \wedge \partial^i F.$

where e_1, \ldots, e_n is a basis of $\mathfrak{g}, \epsilon^1, \ldots, \epsilon^n$ the dual basis; $\iota_{\xi} : \Lambda \mathfrak{g}^* \to \Lambda \mathfrak{g}^*$, for each $\xi \in \mathfrak{g}$, is the usual interior product graded derivation and for each $y \in \mathfrak{g}^*$, $\iota_y : S\mathfrak{g} \to S\mathfrak{g}$ the corresponding derivation, writing $\iota_{\epsilon^i}(f) = \partial^i f$ for each $f \in S\mathfrak{g}$ and extending these derivations to $S\mathfrak{g} \otimes \Lambda \mathfrak{g}^*$. Let $\pi = [\ ,\] = \frac{1}{2} \sum_{i,j,k} c_{jk}^i e_i \otimes (e^j \wedge \epsilon^k)$ be the *linear Poisson structure* of \mathfrak{g}^* , where $c_{jk}^i = \epsilon^i([e_i, e_k]) \in \mathbb{K}$ are the structure constants. Then $[\pi, \pi]_s = 0$ and $\delta_{\mathfrak{g}} = [\pi,\]_s$ is the (shifted) Chevalley Eilenberg coboundary operator. $(C_{CE}(\mathfrak{g}, S\mathfrak{g})[1], \delta_{\mathfrak{g}}, [\ ,\]_s)$ is a differential graded Lie algebra. Kontsevich gives the construction of a quasi-isomorphism

 $e^{*\varphi}: \mathcal{S}(\mathcal{C}_{CE}(\mathfrak{g},\mathcal{Sg})[2]) \to \mathcal{S}(\mathcal{C}_{H}(\mathcal{Sg},\mathcal{Sg})[2])$

from the L_{∞} -algebra $S(C_{CE}(\mathfrak{g}, S\mathfrak{g})[2])$ associated to the graded Lie algebra $(C_{CE}(\mathfrak{g}, S\mathfrak{g})[1], 0, [,]_s)$ of all polynomial poly-vector-fields on the vector space \mathfrak{g}^* , equipped with zero differential and the usual Schouten bracket [,]_S, to the L_{∞} -algebra $S(C_H(S\mathfrak{g}, S\mathfrak{g})[2])$ associated to the graded Lie algebra $(C_H(S\mathfrak{g}, S\mathfrak{g})[1], b, [,]_G)$ of all poly-differential operators on \mathfrak{g}^* with polynomial coefficients, equipped with the Hochschild differential b and the Gerstenhaber bracket [,]_G.

Quasi isomorphism between the Hochschild complex of $\mathcal{U}\mathfrak{g}$ and the Chevalley-Eilenberg complex of \mathfrak{g} with values in $\mathcal{S}\mathfrak{g}$

Theorem (Kontsevich, also Bordemann and Makhlouf):

Let $(\mathfrak{g}, [,])$ be a finite-dimensional Lie-algebra.

There is a L_{∞} -quasi-isomorphism between the differential graded Lie algebra $(C_{CE}(\mathfrak{g}, S\mathfrak{g})[1], \delta_{\mathfrak{g}}, [,]_s)$ and the differential graded Lie algebra $(C_{H}(\mathcal{U}\mathfrak{g}, \mathcal{U}\mathfrak{g})[1], b, [,]_G)$.

In particular, this induces an isomorphism of the graded Lie algebras of their cohomologies (with respect to $\delta_{\mathfrak{g}}$ and b, respectively).

Hence, the L_{∞} -formality of $(C_{CE}(\mathfrak{g}, S\mathfrak{g})[1], \delta_{\mathfrak{g}}, [,]_{s})$ is equivalent to the L_{∞} -formality of $(C_{H}(\mathcal{U}\mathfrak{g}, \mathcal{U}\mathfrak{g})[1], b, [,]_{G})$.

Quasi isomorphism between the Hochschild complex of $\mathcal{U}\mathfrak{g}$ and the Chevalley-Eilenberg complex of \mathfrak{g} with values in $\mathcal{S}\mathfrak{g}$

Theorem (Kontsevich, also Bordemann and Makhlouf):

Let $(\mathfrak{g}, [,])$ be a finite-dimensional Lie-algebra.

There is a L_{∞} -quasi-isomorphism between the differential graded Lie algebra $(C_{CE}(\mathfrak{g}, S\mathfrak{g})[1], \delta_{\mathfrak{g}}, [,]_s)$ and the differential graded Lie algebra $(C_H(\mathcal{U}\mathfrak{g}, \mathcal{U}\mathfrak{g})[1], b, [,]_G)$.

In particular, this induces an isomorphism of the graded Lie algebras of their cohomologies (with respect to δ_g and *b*, respectively).

Hence, the L_{∞} -formality of $(C_{CE}(\mathfrak{g}, S\mathfrak{g})[1], \delta_{\mathfrak{g}}, [,]_s)$ is equivalent to the L_{∞} -formality of $(C_{H}(\mathcal{U}\mathfrak{g}, \mathcal{U}\mathfrak{g})[1], b, [,]_{G})$.

E + 4 E +

In case the Lie algebra $\mathfrak g$ is abelian, $\mathcal U\mathfrak g=\mathcal S\mathfrak g,$ the Chevalley-Eilenberg differential is zero, whence

$$H_H(\mathcal{U}\mathfrak{g},\mathcal{U}\mathfrak{g})\cong H_{CE}(\mathfrak{g},\mathcal{S}\mathfrak{g})\cong C_{CE}(\mathfrak{g},\mathcal{S}\mathfrak{g})$$

and formality of $(C_H(\mathcal{Ug},\mathcal{Ug})[1], b, [,]_G) \cong (C_H(\mathcal{Sg},\mathcal{Sg})[1], b, [,]_G)$ is the content of the Kontsevich formality theorem where one builds a quasi-isomorphism

$$e^{*\varphi}: \mathcal{S}(\mathcal{C}_{CE}(\mathfrak{g},\mathcal{S}\mathfrak{g})[2]) \to \mathcal{S}(\mathcal{C}_{H}(\mathcal{S}\mathfrak{g},\mathcal{S}\mathfrak{g})[2]).$$

Thus the Hochschild complex of the universal enveloping algebra of an abelian algebra is formal.

Cartan 3-regular quadratic Lie algebras

A triple $(\mathfrak{g}, [,], \kappa)$ is called a *quadratic Lie algebra* if the symmetric bilinear form $\kappa : \mathfrak{g} \times \mathfrak{g} \to \mathbb{K}$ is *invariant and nondegenerate*. (A symmetric bilinear form is invariant if for all $\xi, \xi', \xi'' \in \mathfrak{g}$ we have $\kappa([\xi, \xi'], \xi'') = \kappa(\xi, [\xi', \xi''])$.)

The Cartan 3-cocycle $\Omega \in \Lambda^3 \mathfrak{g}^*$ is then defined by

$$\Omega(\xi,\xi',\xi'') = \kappa\bigl(\xi,[\xi',\xi'']\bigr)$$

A quadratic Lie algebra $(\mathfrak{g}, [,], \kappa)$ is called a *Cartan-3-regular* if the cohomology class of the Cartan cocycle Ω , $[\Omega]$, is nonzero.

The Casimir is the element $q \in S^2 \mathfrak{g}$ which is the 'inverse' of κ $(q = \Sigma q^{ij} e_i \otimes e_j, \sum_j q^{ij} \kappa_{jr} = \delta_r^i)$. The space of polynomials in q, $\mathbb{K}[q]$, injects in the invariant polynomials $(S\mathfrak{g})^{\mathfrak{g}} \cong H^0_{CE}(\mathfrak{g}, S\mathfrak{g})$. When $(\mathfrak{g}, [,], \kappa)$ is Cartan-3-regular,the map $\mathbb{K}[q] \to H^3_{CE}(\mathfrak{g}, S\mathfrak{g}) : \alpha \to [\alpha \land \Omega]$ is injective.

A triple $(\mathfrak{g}, [,], \kappa)$ is called a *quadratic Lie algebra* if the symmetric bilinear form $\kappa : \mathfrak{g} \times \mathfrak{g} \to \mathbb{K}$ is *invariant and nondegenerate*. (A symmetric bilinear form is invariant if for all $\xi, \xi', \xi'' \in \mathfrak{g}$ we have $\kappa([\xi, \xi'], \xi'') = \kappa(\xi, [\xi', \xi''])$.)

The *Cartan* 3-*cocycle* $\Omega \in \Lambda^3 \mathfrak{g}^*$ is then defined by

$$\Omega(\xi,\xi',\xi'') = \kappa\bigl(\xi,[\xi',\xi'']\bigr)$$

A quadratic Lie algebra $(\mathfrak{g}, [,], \kappa)$ is called a *Cartan-3-regular* if the cohomology class of the Cartan cocycle Ω , $[\Omega]$, is nonzero.

The Casimir is the element $q \in S^2 \mathfrak{g}$ which is the 'inverse' of κ $(q = \Sigma q^{ij} e_i \otimes e_j, \sum_j q^{ij} \kappa_{jr} = \delta_r^i)$. The space of polynomials in q, $\mathbb{K}[q]$, injects in the invariant polynomials $(S\mathfrak{g})^{\mathfrak{g}} \cong H^0_{CE}(\mathfrak{g}, S\mathfrak{g})$. When $(\mathfrak{g}, [,], \kappa)$ is Cartan-3-regular,the map $\mathbb{K}[q] \to H^3_{CE}(\mathfrak{g}, S\mathfrak{g}) : \alpha \to [\alpha \land \Omega]$ is injective.

Non formality of $\mathcal{U}\mathfrak{g}$ for a Cartan 3-regular quadratic \mathfrak{g}

In $C_{CE}(\mathfrak{g}, \mathcal{S}\mathfrak{g})$ we have also the linear Poisson structure π and the Euler field $E = \sum_{i=1}^{n} e_i \otimes \epsilon^i$. The Schouten brackets are given, for $\alpha, \beta, \gamma \in \mathbb{K}[q]$ and α' denoting the derivative of the polynomial α , by: $\delta_{\mathfrak{g}}(\alpha) = [\pi, \alpha]_{\mathfrak{s}} = 0, \qquad \delta_{\mathfrak{g}}(\alpha \wedge \Omega) = [\pi, \alpha \wedge \Omega]_{\mathfrak{s}} = 0, \qquad \delta_{\mathfrak{g}}(\alpha \wedge E) = [\pi, \alpha \wedge E]_{\mathfrak{s}} = \alpha \wedge \pi,$ $[\alpha, \beta]_{\mathfrak{s}} = 0, \qquad [E, \alpha]_{\mathfrak{s}} = 2q\alpha', \qquad [E, \Omega]_{\mathfrak{s}} = -3\Omega, \qquad [\beta \wedge \Omega, \alpha]_{\mathfrak{s}} = 2(\beta\alpha') \wedge \pi = \delta_{\mathfrak{g}}(2(\beta\alpha') \wedge E),$ $[\beta \wedge \Omega, \gamma \wedge \Omega]_{\mathfrak{s}} = 2(\beta\gamma' - \gamma\beta') \wedge \pi \wedge \Omega = \delta_{\mathfrak{g}}(2(\beta\gamma' - \gamma\beta') \wedge E \wedge \Omega).$

Theorem Let $(\mathfrak{g}, [,], \kappa)$ be a finite-dimensional Cartan-3-regular quadratic Lie algebra. Then the Hochschild complex of its universal envelopping algebra is NOT L_{∞} -formal.

We prove that the Chevalley-Eilenberg complex \mathfrak{G} of \mathfrak{g} with values in $S\mathfrak{g}$ is not L_{∞} -formal. Choose any graded vector space complement of the $\delta_{\mathfrak{g}}$ -coboundaries which includes all $\alpha \in \mathbb{K}[q]$ and all $\beta \wedge \Omega$; the resulting section $\phi_1 : \mathfrak{H} \to \mathfrak{G}$ satisfies $\phi_1([\alpha]) = \alpha$ and $\phi_1([\alpha \wedge \Omega]) = \alpha \wedge \Omega$. We can choose a \mathbb{K} -linear map $\phi_2 : \Lambda^2 \mathfrak{H} \to \mathfrak{G}$ of degree -1 satisfying $\phi_2(\alpha, \beta) = 0$ and $\phi_2(\alpha, \beta \wedge \Omega) = 2(\alpha'\beta) \wedge E$.

The Chevalley-Eilenberg 3-cocycle z_3 (which represents the characteristic 3-class c_3 of the differential graded Lie algebra $\mathfrak{G} = C_{CF}(\mathfrak{g}, S\mathfrak{g})[1]$ and depends on ϕ_1 and ϕ_2 .) takes the following values: $z_3([\alpha], [\beta], [\gamma]) = 0$, and,

$$z_3([\alpha], [\beta], [\gamma \land \Omega]) = 8[q\alpha'\beta'\gamma].$$

If $c_3 = 0$, there would be a graded 2-form $\theta : \Lambda^{c}\mathfrak{H} \to \mathfrak{H}$ (where $\mathfrak{H} = H_{CE}(\mathfrak{g}, \mathcal{Sg})[1]$) of degree -1 such that $z_3 = \delta_{\mathfrak{H}} \theta$. We evaluate $\delta_{\mathfrak{H}} \theta$ on $[\alpha], [\beta]$, and $[\gamma \land \Omega]$ of \mathfrak{H} . $\theta([\alpha], [\beta]) = 0$ since both $[\alpha]$ and $[\beta]$ are of degree -1 as is θ , and $\theta([\alpha], [\gamma \land \Omega])$ has to be of degree 0, hence in $H_{CE}^{-}(\mathfrak{g}, \mathcal{Sg})$. We consider the particular case $\alpha = q = \beta$ and $\gamma = 1$. Let $D \in \text{Hom}(\mathfrak{g}, \mathfrak{Sg})$ be a $\delta_{\mathfrak{g}}$ -1-cocycle such that $[D] = \theta([q], [\Omega])$. Then $z_3([q], [q], [\Omega]) = (\delta_{\mathfrak{H}} \theta)([q], [\Omega])$ implies

 $8[q] = -2[[q], [D]]_H = 2[D(q)],$ but $D = \sum D_r$ must be a 1-cocycle, hence $D_1 : \mathfrak{g} \to \mathfrak{g}$ would be a derivation of \mathfrak{g} ,

and we must have $D_1(q) = 4q$, hence $\kappa(D_1(\xi), \xi') + \kappa(\xi, D_1(\xi')) = 4\kappa(\xi, \xi')$ which contradicts Ω_{man} exact, $\Xi = 4$

Non formality of $\mathcal{U}\mathfrak{g}$ for a Cartan 3-regular quadratic \mathfrak{g}

In $C_{CE}(\mathfrak{g}, \mathcal{S}\mathfrak{g})$ we have also the linear Poisson structure π and the Euler field $E = \sum_{i=1}^{n} e_i \otimes \epsilon^i$. The Schouten brackets are given, for $\alpha, \beta, \gamma \in \mathbb{K}[q]$ and α' denoting the derivative of the polynomial α , by: $\delta_{\mathfrak{g}}(\alpha) = [\pi, \alpha]_{\mathfrak{s}} = 0, \qquad \delta_{\mathfrak{g}}(\alpha \wedge \Omega) = [\pi, \alpha \wedge \Omega]_{\mathfrak{s}} = 0, \qquad \delta_{\mathfrak{g}}(\alpha \wedge E) = [\pi, \alpha \wedge E]_{\mathfrak{s}} = \alpha \wedge \pi,$ $[\alpha, \beta]_{\mathfrak{s}} = 0, \qquad [E, \alpha]_{\mathfrak{s}} = 2q\alpha', \qquad [E, \Omega]_{\mathfrak{s}} = -3\Omega, \qquad [\beta \wedge \Omega, \alpha]_{\mathfrak{s}} = 2(\beta\alpha') \wedge \pi = \delta_{\mathfrak{g}}(2(\beta\alpha') \wedge E),$ $[\beta \wedge \Omega, \gamma \wedge \Omega]_{\mathfrak{s}} = 2(\beta\gamma' - \gamma\beta') \wedge \pi \wedge \Omega = \delta_{\mathfrak{g}}(2(\beta\gamma' - \gamma\beta') \wedge E \wedge \Omega).$

Theorem Let $(\mathfrak{g}, [,], \kappa)$ be a finite-dimensional Cartan-3-regular quadratic Lie algebra. Then the Hochschild complex of its universal envelopping algebra is NOT L_{∞} -formal.

We prove that the Chevalley-Eilenberg complex \mathfrak{G} of \mathfrak{g} with values in $\mathcal{S}\mathfrak{g}$ is not L_{∞} -formal. Choose any graded vector space complement of the $\delta_{\mathfrak{g}}$ -coboundaries which includes all $\alpha \in \mathbb{K}[q]$ and all $\beta \wedge \Omega$; the resulting section $\phi_1 : \mathfrak{H} \to \mathfrak{G}$ satisfies $\phi_1([\alpha]) = \alpha$ and $\phi_1([\alpha \wedge \Omega]) = \alpha \wedge \Omega$. We can choose a \mathbb{K} -linear map $\phi_2 : \Lambda^2 \mathfrak{H} \to \mathfrak{G}$ of degree -1 satisfying $\phi_2(\alpha, \beta) = 0$ and $\phi_2(\alpha, \beta \wedge \Omega) = 2(\alpha'\beta) \wedge E$.

The Chevalley-Eilenberg 3-cocycle z_3 (which represents the characteristic 3-class c_3 of the differential graded Lie algebra $\mathfrak{G} = C_{CF}(\mathfrak{g}, S\mathfrak{g})[1]$ and depends on ϕ_1 and ϕ_2 .) takes the following values: $z_3([\alpha], [\beta], [\gamma]) = 0$, and,

$$z_3([\alpha], [\beta], [\gamma \land \Omega]) = 8[q\alpha'\beta'\gamma].$$

If $c_3 = 0$, there would be a graded 2-form $\theta : \Lambda^{c}\mathfrak{H} \to \mathfrak{H}_{C}(\mathfrak{g}, S\mathfrak{g})[1]$ of degree -1 such that $z_3 = \delta_{\mathfrak{H}} \theta$. We evaluate $\delta_{\mathfrak{H}} \theta$ on $[\alpha], [\beta]$, and $[\gamma \land \Omega]$ of \mathfrak{H} . $\theta([\alpha], [\beta]) = 0$ since both $[\alpha]$ and $[\beta]$ are of degree -1 as is θ , and $\theta([\alpha], [\gamma \land \Omega])$ has to be of degree 0, hence in $H^1_{CE}(\mathfrak{g}, S\mathfrak{g})$. We consider the particular case $\alpha = q = \beta$ and $\gamma = 1$. Let $D \in \text{Hom}(\mathfrak{g}, S\mathfrak{g})$ be a $\delta_{\mathfrak{g}}$ -1-cocycle such that $[D] = \theta([q], [\Omega])$. Then $z_3([q], [q], [\Omega]) = (\delta_{\mathfrak{H}} \theta)([q], [\Omega])$ implies

 $8[q] = -2[[q], [D]]_H = 2[D(q)],$ but $D = \sum D_r$ must be a 1-cocycle, hence $D_1 : \mathfrak{g} \to \mathfrak{g}$ would be a derivation of \mathfrak{g} ,

and we must have $D_1(q) = 4q$, hence $\kappa(D_1(\xi), \xi') + \kappa(\xi, D_1(\xi')) = 4\kappa(\xi, \xi')$ which contradicts Ω_{\pm} on every χ_{\pm} = 2

Non formality of $\mathcal{U}\mathfrak{g}$ for a Cartan 3-regular quadratic \mathfrak{g}

In $C_{CE}(\mathfrak{g}, \mathcal{S}\mathfrak{g})$ we have also the linear Poisson structure π and the Euler field $E = \sum_{i=1}^{n} e_i \otimes \epsilon^i$. The Schouten brackets are given, for $\alpha, \beta, \gamma \in \mathbb{K}[q]$ and α' denoting the derivative of the polynomial α , by: $\delta_{\mathfrak{g}}(\alpha) = [\pi, \alpha]_{\mathfrak{s}} = 0, \qquad \delta_{\mathfrak{g}}(\alpha \wedge \Omega) = [\pi, \alpha \wedge \Omega]_{\mathfrak{s}} = 0, \qquad \delta_{\mathfrak{g}}(\alpha \wedge E) = [\pi, \alpha \wedge E]_{\mathfrak{s}} = \alpha \wedge \pi,$ $[\alpha, \beta]_{\mathfrak{s}} = 0, \qquad [E, \alpha]_{\mathfrak{s}} = 2q\alpha', \qquad [E, \Omega]_{\mathfrak{s}} = -3\Omega, \qquad [\beta \wedge \Omega, \alpha]_{\mathfrak{s}} = 2(\beta\alpha') \wedge \pi = \delta_{\mathfrak{g}}(2(\beta\alpha') \wedge E),$ $[\beta \wedge \Omega, \gamma \wedge \Omega]_{\mathfrak{s}} = 2(\beta\gamma' - \gamma\beta') \wedge \pi \wedge \Omega = \delta_{\mathfrak{g}}(2(\beta\gamma' - \gamma\beta') \wedge E \wedge \Omega).$

Theorem Let $(\mathfrak{g}, [,], \kappa)$ be a finite-dimensional Cartan-3-regular quadratic Lie algebra. Then the Hochschild complex of its universal envelopping algebra is NOT L_{∞} -formal.

We prove that the Chevalley-Eilenberg complex \mathfrak{G} of \mathfrak{g} with values in $S\mathfrak{g}$ is not L_{∞} -formal. Choose any graded vector space complement of the $\delta_{\mathfrak{g}}$ -coboundaries which includes all $\alpha \in \mathbb{K}[q]$ and all $\beta \wedge \Omega$; the resulting section $\phi_1 : \mathfrak{H} \to \mathfrak{G}$ satisfies $\phi_1([\alpha]) = \alpha$ and $\phi_1([\alpha \wedge \Omega]) = \alpha \wedge \Omega$. We can choose a \mathbb{K} -linear map $\phi_2 : \Lambda^2 \mathfrak{H} \to \mathfrak{G}$ of degree -1 satisfying $\phi_2(\alpha, \beta) = 0$ and $\phi_2(\alpha, \beta \wedge \Omega) = 2(\alpha'\beta) \wedge E$.

The Chevalley-Eilenberg 3-cocycle z_3 (which represents the characteristic 3-class c_3 of the differential graded Lie algebra $\mathfrak{G} = C_{\mathcal{F}}(\mathfrak{g}, \mathcal{Sg})[1]$ and depends on ϕ_1 and ϕ_2 ,) takes the following values: $z_3([\alpha], [\beta], [\gamma]) = 0$, and,

$$z_3([\alpha], [\beta], [\gamma \land \Omega]) = 8[q\alpha'\beta'\gamma].$$

If $c_3 = 0$, there would be a graded 2-form $\theta : \Lambda^{c}\mathfrak{H} \to \mathfrak{H}$ (where $\mathfrak{H} = H_{CE}(\mathfrak{g}, S\mathfrak{g})[1]$) of degree -1 such that $z_3 = \delta_{\mathfrak{H}}\theta$. We evaluate $\delta_{\mathfrak{H}}\theta$ on $[\alpha], [\beta]$, and $[\gamma \land \Omega]$ of \mathfrak{H} . $\theta([\alpha], [\beta]) = 0$ since both $[\alpha]$ and $[\beta]$ are of degree -1 as is θ , and $\theta([\alpha], [\gamma \land \Omega])$ has to be of degree 0, hence in $H_{CE}^{1}(\mathfrak{g}, S\mathfrak{g})$. We consider the particular case $\alpha = q = \beta$ and $\gamma = 1$. Let $D \in \text{Hom}(\mathfrak{g}, \mathfrak{Sg})$ be a $\delta_{\mathfrak{g}}$ -1-cocycle such that $[D] = \theta([q], [\Omega])$. Then $z_3([q], [q], [\Omega]) = (\delta_{\mathfrak{H}}\theta)([q], [\Omega])$ implies

 $8[q] = -2[[q], [D]]_{H} = 2[D(q)], \qquad \text{but } D = \sum D_r \text{ must be a 1-cocycle, hence } D_1: \mathfrak{g} \to \mathfrak{g} \text{ would be a derivation of } \mathfrak{g},$

and we must have $D_1(q) = 4q$, hence $\kappa(D_1(\xi), \xi') + \kappa(\xi, D_1(\xi')) = 4\kappa(\xi, \xi')$ which contradicts Ω_2 on every ξ , Ξ

Non formality of $\mathcal{U}\mathfrak{g}$ for a Cartan 3-regular quadratic \mathfrak{g}

In $C_{CE}(\mathfrak{g}, \mathcal{S}\mathfrak{g})$ we have also the linear Poisson structure π and the Euler field $E = \sum_{i=1}^{n} e_i \otimes \epsilon^i$. The Schouten brackets are given, for $\alpha, \beta, \gamma \in \mathbb{K}[q]$ and α' denoting the derivative of the polynomial α , by: $\delta_{\mathfrak{g}}(\alpha) = [\pi, \alpha]_{\mathfrak{s}} = 0, \qquad \delta_{\mathfrak{g}}(\alpha \wedge \Omega) = [\pi, \alpha \wedge \Omega]_{\mathfrak{s}} = 0, \qquad \delta_{\mathfrak{g}}(\alpha \wedge E) = [\pi, \alpha \wedge E]_{\mathfrak{s}} = \alpha \wedge \pi,$ $[\alpha, \beta]_{\mathfrak{s}} = 0, \qquad [E, \alpha]_{\mathfrak{s}} = 2q\alpha', \qquad [E, \Omega]_{\mathfrak{s}} = -3\Omega, \qquad [\beta \wedge \Omega, \alpha]_{\mathfrak{s}} = 2(\beta\alpha') \wedge \pi = \delta_{\mathfrak{g}}(2(\beta\alpha') \wedge E),$ $[\beta \wedge \Omega, \gamma \wedge \Omega]_{\mathfrak{s}} = 2(\beta\gamma' - \gamma\beta') \wedge \pi \wedge \Omega = \delta_{\mathfrak{g}}(2(\beta\gamma' - \gamma\beta') \wedge E \wedge \Omega).$

Theorem Let $(\mathfrak{g}, [,], \kappa)$ be a finite-dimensional Cartan-3-regular quadratic Lie algebra. Then the Hochschild complex of its universal envelopping algebra is NOT L_{∞} -formal.

We prove that the Chevalley-Eilenberg complex \mathfrak{G} of \mathfrak{g} with values in $S\mathfrak{g}$ is not L_{∞} -formal. Choose any graded vector space complement of the $\delta_{\mathfrak{g}}$ -coboundaries which includes all $\alpha \in \mathbb{K}[q]$ and all $\beta \wedge \Omega$; the resulting section $\phi_1: \mathfrak{H} \to \mathfrak{G}$ satisfies $\phi_1([\alpha]) = \alpha$ and $\phi_1([\alpha \wedge \Omega]) = \alpha \wedge \Omega$. We can choose a \mathbb{K} -linear map $\phi_2: \Lambda^2 \mathfrak{H} \to \mathfrak{G}$ of degree -1 satisfying $\phi_2(\alpha, \beta) = 0$ and $\phi_2(\alpha, \beta \wedge \Omega) = 2(\alpha'\beta) \wedge E$.

The Chevalley-Eilenberg 3-cocycle z_3 (which represents the characteristic 3-class c_3 of the differential graded Lie algebra $\mathfrak{G} = C_{\mathcal{F}}(\mathfrak{g}, \mathcal{Sg})[1]$ and depends on ϕ_1 and ϕ_2 .) takes the following values: $z_3([\alpha], [\beta], [\gamma]) = 0$, and,

$$z_3([\alpha], [\beta], [\gamma \land \Omega]) = 8[q\alpha'\beta'\gamma].$$

If $c_3 = 0$, there would be a graded 2-form $\theta : \Lambda^2 \mathfrak{H} \to \mathfrak{H}_{CE}(\mathfrak{g}, \mathfrak{Sg})[1]$ of degree -1 such that $z_3 = \delta_{\mathfrak{H}} \theta$. We evaluate $\delta_{\mathfrak{H}} \theta$ on $[\alpha], [\beta]$, and $[\gamma \land \Omega]$ of \mathfrak{H} . $\theta([\alpha], [\beta]) = 0$ since both $[\alpha]$ and $[\beta]$ are of degree -1 as is θ , and $\theta([\alpha], [\gamma \land \Omega])$ has to be of degree 0, hence in $H^1_{CE}(\mathfrak{g}, \mathfrak{Sg})$. We consider the particular case $\alpha = q = \beta$ and $\gamma = 1$. Let $D \in \text{Hom}(\mathfrak{g}, \mathfrak{Sg})$ be a $\delta_{\mathfrak{g}}$ -1-cocycle such that $[D] = \theta([q], [\Omega])$. Then $z_3([q], [q], [\Omega]) = (\delta_{\mathfrak{S}} \theta)([q], [\Omega])$ implies

 $8[q] = -2[[q], [D]]_H = 2[D(q)],$ but $D = \sum D_r$ must be a 1-cocycle, hence $D_1 : \mathfrak{g} \to \mathfrak{g}$ would be a derivation of \mathfrak{g} ,

and we must have $D_1(q) = 4q$, hence $\kappa(D_1(\xi), \xi') + \kappa(\xi, D_1(\xi')) = 4\kappa(\xi, \xi')$ which contradicts Ω non exact.

 $\mathfrak{g}=\mathfrak{z}\oplus [\mathfrak{g},\mathfrak{g}]$

where \mathfrak{z} is its centre and the derived ideal $\mathfrak{l} = [\mathfrak{g}, \mathfrak{g}]$ is semisimple.

Pick any nondegenerate symmetric bilinear form on \mathfrak{z} and the *Killing form* $\kappa_{\mathfrak{l}} : (\xi, \xi') \mapsto \operatorname{trace}(\operatorname{ad}_{\xi} \circ \operatorname{ad}_{\xi'})$ on \mathfrak{l} , and let κ be the orthogonal sum of those two.

The Cartan 3-cocycle Ω w.r.t. $\mathfrak g$ is given by

 $\Omega(z_1 + l_1, z_2 + l_2, z_3 + l_3) = \Omega_{\mathfrak{l}}(l_1, l_2, l_3) = \kappa_{\mathfrak{l}}(l_1, [l_2, l_3])$

where $\Omega_{\mathfrak{l}}$ is the Cartan 3-cocycle of \mathfrak{l} which is well-known to be a nontrivial 3-cocycle.

Hence $(\mathfrak{g}, [,], \kappa)$ is Cartan-3-regular and so (the Hochschild complex of) its universal envelopping algebra is not L_{∞} -formal.

Simone Gutt (ULB)

The above shows that (the Hochschild complex of) the universal envelopping algebra of a semisimple Lie algebra is not L_{∞} -formal.

Nonetheless, the deformation theory of $\mathcal{U}\mathfrak{g}$ is well known : $\mathcal{U}\mathfrak{g}$ is rigid because

 $H^2_H(\mathcal{U}\mathfrak{g},\mathcal{U}\mathfrak{g})\cong H^2_{CE}(\mathfrak{g},\mathcal{S}\mathfrak{g})=0$

The above shows that (the Hochschild complex of) the universal envelopping algebra of a semisimple Lie algebra is not L_{∞} -formal.

Nonetheless, the deformation theory of $\mathcal{U}\mathfrak{g}$ is well known : $\mathcal{U}\mathfrak{g}$ is rigid because

 $H^2_H(\mathcal{U}\mathfrak{g},\mathcal{U}\mathfrak{g})\cong H^2_{CE}(\mathfrak{g},\mathcal{S}\mathfrak{g})=0$

beyond formality

We shall put a L_{∞} -structure on the cohomology $(H_{CE}(\mathfrak{g}, S\mathfrak{g})[1], 0, [,]_{s_H})$ of $(C_{CE}(\mathfrak{g}, S\mathfrak{g})[1], \delta_{\mathfrak{g}}, [,]_s)$ whose coderivation \overline{d} of $S(H_{CE}(\mathfrak{g}, S\mathfrak{g})[2])$ is given by a series $d = d_2 + \sum_{k \ge 3} d_k = d_2 + d'$ where $d_2 = [,]_{s_H}[1]$.

It is well-known that it is always possible to find a sequence of 'higher order brackets' $d_k : S^k(H_{CE}(\mathfrak{g}, S\mathfrak{g})[2]) \to H_{CE}(\mathfrak{g}, S\mathfrak{g})[2]$ for $k \ge 3$ and a L_{∞} -quasi-isomorphism

 $\Phi = e^{*\varphi} : \left(\mathcal{S}(\mathcal{H}_{CE}(\mathfrak{g}, \mathcal{Sg})[2]), \overline{[\ , \]_{s_{H}[}1] + d'} \right) \rightarrow \left(\mathcal{S}(\mathcal{C}_{CE}(\mathfrak{g}, \mathcal{Sg}))[2]), \overline{\delta_{\mathfrak{g}}[1] + [\ , \]_{\mathfrak{s}}[1]} \right).$

We do that for $\mathfrak{g} = \mathfrak{so}(3)$. We know that

 $\mathfrak{H}:=H_{CE}(\mathfrak{so}(3),\mathcal{S}\mathfrak{so}(3))[1]=\mathbb{K}[q]\,\mathbf{1}\oplus\{0\}\oplus\mathbb{K}[q][\Omega].$

beyond formality

We shall put a L_{∞} -structure on the cohomology $(H_{CE}(\mathfrak{g}, S\mathfrak{g})[1], 0, [,]_{s_H})$ of $(C_{CE}(\mathfrak{g}, S\mathfrak{g})[1], \delta_{\mathfrak{g}}, [,]_s)$ whose coderivation \overline{d} of $S(H_{CE}(\mathfrak{g}, S\mathfrak{g})[2])$ is given by a series $d = d_2 + \sum_{k \ge 3} d_k = d_2 + d'$ where $d_2 = [,]_{s_H}[1]$.

It is well-known that it is always possible to find a sequence of 'higher order brackets' $d_k : S^k(H_{CE}(\mathfrak{g}, S\mathfrak{g})[2]) \to H_{CE}(\mathfrak{g}, S\mathfrak{g})[2]$ for $k \ge 3$ and a L_{∞} -quasi-isomorphism

 $\Phi = e^{*\varphi} : \left(\mathcal{S}(\mathcal{H}_{CE}(\mathfrak{g}, \mathcal{Sg})[2]), \overline{[\ , \]_{s_{H}[}1] + d'} \right) \rightarrow \left(\mathcal{S}(\mathcal{C}_{CE}(\mathfrak{g}, \mathcal{Sg}))[2]), \overline{\delta_{\mathfrak{g}}[1] + [\ , \]_{\mathfrak{s}}[1]} \right).$

We do that for $\mathfrak{g} = \mathfrak{so}(3)$. We know that

 $\mathfrak{H} := H_{CE}(\mathfrak{so}(3), \mathcal{S}\mathfrak{so}(3))[1] = \mathbb{K}[q] \mathbf{1} \oplus \{0\} \oplus \mathbb{K}[q][\Omega].$

Theorem

• The Chevalley-Eilenberg complex \mathfrak{G} of $\mathfrak{so}(3)$ is NOT formal.

Ø_{red} := K[q] 1 ⊕K[q]E ⊕ K[q]π ⊕ K[q]Ω is a differential graded Lie subalgebra of (𝔅 : H_{CE}(so(3), Sso(3))[1] =, δ, [,]_s) and the injection 𝔅_{red} → 𝔅 is a quasi-isomorphism of differential graded Lie algebras.
There is an L_∞ structure d on S(𝔅[1]) whose only nonvanishing Taylor coefficient is d₃ which is the shifted characteristic 3-class d₃ = z₃[-1] and there is an L_∞-quasi-isomorphism e^{*φ} from (S(𝔅[1]), d₃) to (S(𝔅_{red}[1]), δ_g[1] + [,]_s[1]). The only nonvanishing Taylor coefficients of e^{*φ} are φ₁ and φ₂ which can explicitly be given

The results follows from the L_{∞} perturbation lemma. There is a (homotopy) contraction : the natural injection $i: \mathfrak{H} = \mathbb{K}[q] \mathbb{1} \oplus \{0\} \oplus \{0\} \oplus \mathbb{K}[q][\Omega] \to \mathfrak{G}_{red}$, the natural projection $p: \mathfrak{G}_{red} \to \mathfrak{H}$ with kernel $\mathbb{K}[q]E \oplus \mathbb{K}[q]\pi$, and the homotopy map h given by $h = h^1: \mathbb{K}[q]\pi \to \mathbb{K}[q]E$, $h^1(\alpha \wedge \pi) = \alpha \wedge E$, for $\alpha \in \mathbb{K}[q]$, and is defined to vanish in degree -1, 0, 2. $(p \circ i = \mathrm{Id}_U, \mathrm{Id}_V - i \circ p = b_V \circ h + h \circ b_U, h^2 = 0$, $h \oplus i = \mathfrak{H}, p \circ i = 0$; $h \oplus i = \mathfrak{H}$

Theorem

• The Chevalley-Eilenberg complex \mathfrak{G} of $\mathfrak{so}(3)$ is NOT formal.

- State of the second structure d on S(𝔅[1]) whose only nonvanishing
 State of 𝔅 = 𝑘𝔅(𝔅)
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 𝔅
 - Taylor coefficient is d_3 which is the shifted characteristic 3-class $d_3 = z_3[-1]$ and there is an L_{∞} -quasi-isomorphism $e^{*\varphi}$ from $(S(\mathfrak{H}_{11}), \overline{d_2})$ to $(S(\mathfrak{H}_{22}, [11]), \overline{d_2}, [11] + [12], [11])$

The only nonvanishing Taylor coefficients of $e^{*\varphi}$ are φ_1 and φ_2 which can explicitly be given.

The results follows from the L_{∞} perturbation lemma. There is a (homotopy) contraction : the natural injection $i: \mathfrak{H} = \mathbb{K}[q] \mathbb{1} \oplus \{0\} \oplus \{0\} \oplus \mathbb{K}[q][\Omega] \to \mathfrak{G}_{red}$, the natural projection $p: \mathfrak{G}_{red} \to \mathfrak{H}$ with kernel $\mathbb{K}[q]E \oplus \mathbb{K}[q]\pi$, and the homotopy map h given by $h = h^1: \mathbb{K}[q]\pi \to \mathbb{K}[q]E$, $h^1(\alpha \wedge \pi) = \alpha \wedge E$, for $\alpha \in \mathbb{K}[q]$, and is defined to vanish in degree -1, 0, 2. $(p \circ i = \mathrm{Id}_U, \mathrm{Id}_V - i \circ p = b_V \circ h + h \circ b_U, h^2 = 0$, here $i = \mathfrak{G}_{P} \circ i = \mathfrak{O}_{P}$.

Theorem

- The Chevalley-Eilenberg complex \mathfrak{G} of $\mathfrak{so}(3)$ is NOT formal.
- ^𝔅_{red} := K[q] 1 ⊕ K[q]E ⊕ K[q]π ⊕ K[q]Ω is a differential graded Lie subalgebra of (𝔅 : H_{CE}(so(3), Sso(3))[1] =, δ, [,]_s) and the injection ^𝔅_{red} → 𝔅 is a quasi-isomorphism of differential graded Lie algebras.
- There is an L_∞ structure d on S(𝔅[1]) whose only nonvanishing Taylor coefficient is d₃ which is the shifted characteristic 3-class d₃ = z₃[-1] and there is an L_∞-quasi-isomorphism e^{*φ} from (S(𝔅[1]), d₃) to (S(𝔅_{red}[1]), δ_𝔅[1] + [,]_𝔅[1]). The only nonvanishing Taylor coefficients of e^{*φ} are φ₁ and φ₂ which can explicitly be given.

The results follows from the L_{∞} perturbation lemma. There is a (homotopy) contraction : the natural injection $i: \mathfrak{H} = \mathbb{K}[q] \mathbb{1} \oplus \{0\} \oplus \{0\} \oplus \mathbb{K}[q][\Omega] \to \mathfrak{G}_{red}$, the natural projection $p: \mathfrak{G}_{red} \to \mathfrak{H}$ with kernel $\mathbb{K}[q]E \oplus \mathbb{K}[q]\pi$, and the homotopy map h given by $h = h^1: \mathbb{K}[q]\pi \to \mathbb{K}[q]E$, $h^1(\alpha \wedge \pi) = \alpha \wedge E$, for $\alpha \in \mathbb{K}[q]$, and is defined to vanish in degree -1, 0, 2. $(p \circ i = \mathrm{Id}_U, \mathrm{Id}_V - i \circ p = b_V \circ h + h \circ b_U, h^2 = 0$, $h \circ i = \mathfrak{G}_{P} \circ i = \mathfrak{O}_{E}$, $\mathfrak{F} \circ \mathfrak{O}_{E}$

Theorem

- The Chevalley-Eilenberg complex \mathfrak{G} of $\mathfrak{so}(3)$ is NOT formal.
- ^𝔅_{red} := K[q] 1 ⊕ K[q]E ⊕ K[q]π ⊕ K[q]Ω is a differential graded Lie subalgebra of (𝔅 : H_{CE}(so(3), Sso(3))[1] =, δ, [,]_s) and the injection ^𝔅_{red} → 𝔅 is a quasi-isomorphism of differential graded Lie algebras.
- There is an L_∞ structure d on S(𝔅[1]) whose only nonvanishing Taylor coefficient is d₃ which is the shifted characteristic 3-class d₃ = z₃[-1] and there is an L_∞-quasi-isomorphism e^{*φ} from (S(𝔅[1]), d₃) to (S(𝔅_{red}[1]), δ_𝔅[1] + [,]_𝔅[1]). The only nonvanishing Taylor coefficients of e^{*φ} are φ₁ and φ₂ which can explicitly be given.

The results follows from the L_{∞} perturbation lemma. There is a (homotopy) contraction : the natural injection $i: \mathfrak{H} = \mathbb{K}[q] \mathbb{1} \oplus \{0\} \oplus \{0\} \oplus \mathbb{K}[q][\Omega] \to \mathfrak{G}_{red}$, the natural projection $p: \mathfrak{G}_{red} \to \mathfrak{H}$ with kernel $\mathbb{K}[q]E \oplus \mathbb{K}[q]\pi$, and the homotopy map h given by $h = h^1: \mathbb{K}[q]\pi \to \mathbb{K}[q]E$, $h^1(\alpha \wedge \pi) = \alpha \wedge E$, for $\alpha \in \mathbb{K}[q]$, and is defined to vanish in degree -1, 0, 2. $(p \circ i = \mathrm{Id}_U, \mathrm{Id}_V - i \circ p = b_V \circ h + h \circ b_U, h^2 = 0$, $h \circ i = \mathfrak{G}_{P} \circ i = \mathfrak{O}_{E}$, $\mathfrak{F} \circ \mathfrak{O}_{E}$

The Lie <u>algebra so(3)</u>

Theorem

- The Chevalley-Eilenberg complex \mathfrak{G} of $\mathfrak{so}(3)$ is NOT formal.
- $\mathfrak{G}_{red} := \mathbb{K}[q] \mathbf{1} \oplus \mathbb{K}[q] E \oplus \mathbb{K}[q] \pi \oplus \mathbb{K}[q] \Omega$ is a differential graded Lie subalgebra of $(\mathfrak{G} : H_{CE}(\mathfrak{so}(3), S\mathfrak{so}(3))[1] =, \delta, [,]_s)$ and the injection $\mathfrak{G}_{red} \to \mathfrak{G}$ is a quasi-isomorphism of differential graded Lie algebras.
- There is an L_{∞} structure d on $\mathcal{S}(\mathfrak{H}[1])$ whose only nonvanishing Taylor coefficient is d_3 which is the shifted characteristic 3-class $d_3 = z_3[-1]$ and there is an L_{∞} -quasi-isomorphism $e^{*\varphi}$ from $(\mathcal{S}(\mathfrak{H}[1]), \overline{d_3})$ to $(\mathcal{S}(\mathfrak{G}_{\mathsf{red}}[1]), \delta_{\mathfrak{q}}[1] + [,]_s[1]).$ The only nonvanishing Taylor coefficients of $e^{*\varphi}$ are φ_1 and φ_2 which can explicitly be given.

The results follows from the L_{∞} perturbation lemma. There is a (homotopy) contraction : the natural injection $i: \mathfrak{H} = \mathbb{K}[q] \mathbf{1} \oplus \{0\} \oplus \{0\} \oplus \mathbb{K}[q][\Omega] \to \mathfrak{G}_{\mathsf{red}}$, the natural projection $p: \mathfrak{G}_{red} \to \mathfrak{H}$ with kernel $\mathbb{K}[q]E \oplus \mathbb{K}[q]\pi$, and the homotopy map h given by $h = h^1 : \mathbb{K}[q]\pi \to \mathbb{K}[q]E, h^1(\alpha \land \pi) = \alpha \land E$, for $\alpha \in \mathbb{K}[q]$, and is defined to vanish in degree -1, 0, 2. $(p \circ i = \mathrm{Id}_{U}, \mathrm{Id}_{V} - i \circ p = b_{V} \circ h + h \circ b_{U}, h^{2} = 0, h \circ i = 0, p \circ h = 0)$ 19 / 23

Perturbation Lemma

Let (i, p, h) be a contraction between the complexes (U, b_U) and (V, b_V) (the differentials b_U and b_V have degree 1, $i : U \to V$ and $p : V \to U$ are chain maps, $h : V \to V$ has degree -1 and $p \circ i = \mathrm{Id}_U$, $\mathrm{Id}_V - i \circ p = b_V \circ h + h \circ b_U$, $h^2 = 0, h \circ i = 0, p \circ h = 0$) where U and V carry exhaustive and separated filtrations with V complete and such that the maps b_U, b_V, i, p and h are of filtration degree 0. Moreover, let $\delta_V : V \to V$ be a perturbation of b_V , i.e. a morphism $\delta_V : V \to V$ of degree +1 such that $(b_V + \delta_V)^2 = 0$ and suppose that δ_V is of filtration degree -1. Then the linear maps $(id_V + h \circ \delta_V)$ and $(id_V + \delta_V \circ h)$ from V to V are invertible, and we define

 $\widetilde{\imath} = (id_V + h \circ \delta_V)^{-1} \circ i \qquad \widetilde{h} = (id_V + h \circ \delta_V)^{-1} \circ h$ $\widetilde{\rho} = \rho \circ (id_V + \delta_V \circ h)^{-1} \qquad \delta_U = \rho \circ (id_V + \delta_V \circ h)^{-1} \circ \delta_V \circ i.$

Then δ_U is a perturbation of b_U of filtration degree -1, and $(\tilde{i}, \tilde{p} \text{ and } \tilde{h})$ define a new contraction between $(U, b_U + \delta_U)$ and $(V, b_V + \delta_V)$.

Perturbation Lemma

Let (i, p, h) be a contraction between the complexes (U, b_U) and (V, b_V) (the differentials b_U and b_V have degree 1, $i: U \to V$ and $p: V \to U$ are chain maps, $h: V \to V$ has degree -1 and $p \circ i = \mathrm{Id}_U$, $\mathrm{Id}_V - i \circ p = b_V \circ h + h \circ b_U$, $h^2 = 0, h \circ i = 0, p \circ h = 0$) where U and V carry exhaustive and separated filtrations with V complete and such that the maps b_U, b_V, i, p and h are of filtration degree 0. Moreover, let $\delta_V : V \to V$ be a perturbation of b_V , i.e. a morphism $\delta_V : V \to V$ of degree +1 such that $(b_V + \delta_V)^2 = 0$ and suppose that δ_V is of filtration degree -1. Then the linear maps $(id_V + h \circ \delta_V)$ and $(id_V + \delta_V \circ h)$ from V to V are invertible, and we define

$$\widetilde{\imath} = (id_V + h \circ \delta_V)^{-1} \circ i \qquad \widetilde{h} = (id_V + h \circ \delta_V)^{-1} \circ h$$

$$\widetilde{\rho} = \rho \circ (id_V + \delta_V \circ h)^{-1} \qquad \delta_U = \rho \circ (id_V + \delta_V \circ h)^{-1} \circ \delta_V \circ i.$$

Then δ_U is a perturbation of b_U of filtration degree -1, and $(\tilde{i}, \tilde{p} \text{ and } \tilde{h})$ define a new contraction between $(U, b_U + \delta_U)$ and $(V, b_V + \delta_V)$.

Perturbation Lemma

Let (i, p, h) be a contraction between the complexes (U, b_U) and (V, b_V) (the differentials b_U and b_V have degree 1, $i: U \to V$ and $p: V \to U$ are chain maps, $h: V \to V$ has degree -1 and $p \circ i = \mathrm{Id}_U$, $\mathrm{Id}_V - i \circ p = b_V \circ h + h \circ b_U$, $h^2 = 0, h \circ i = 0, p \circ h = 0$) where U and V carry exhaustive and separated filtrations with V complete and such that the maps b_U, b_V, i, p and h are of filtration degree 0. Moreover, let $\delta_V : V \to V$ be a perturbation of b_V , i.e. a morphism $\delta_V : V \to V$ of degree +1 such that $(b_V + \delta_V)^2 = 0$ and suppose that δ_V is of filtration degree -1. Then the linear maps $(id_V + h \circ \delta_V)$ and $(id_V + \delta_V \circ h)$ from V to V are invertible, and we define

$$\widetilde{\imath} = (id_V + h \circ \delta_V)^{-1} \circ i \qquad \widetilde{h} = (id_V + h \circ \delta_V)^{-1} \circ h$$

$$\widetilde{p} = p \circ (id_V + \delta_V \circ h)^{-1} \qquad \delta_U = p \circ (id_V + \delta_V \circ h)^{-1} \circ \delta_V \circ i.$$

Then δ_U is a perturbation of b_U of filtration degree -1, and $(\tilde{i}, \tilde{p} \text{ and } \tilde{h})$ define a new contraction between $(U, b_U + \delta_U)$ and $(V, b_V + \delta_V)$.

L_{∞} -contraction

Let (i, p, h) a contraction between the complexes (U, b_U) and (V, b_V) . The graded coderivations $\overline{b_U[1]}$ of $\mathcal{S}(U[1])$ and $\overline{b_V[1]}$ of $\mathcal{S}(V[1])$ are differentials. Setting $\varphi_1 := i[1]$ and $\psi_1 := p[1]$, the morphisms of graded coalgebras $e^{*\varphi_1} : \mathcal{S}(U[1]) \to \mathcal{S}(V[1])$ and $e^{*\psi_1} : \mathcal{S}(V[1]) \to \mathcal{S}(U[1])$ are chain maps satisfying $e^{*\psi_1} \circ e^{*\varphi_1} = id_{\mathcal{S}(U[1])}$. Since $P = [h, b_V] : V \to V$ is an idempotent, let V_U be its kernel, and V_{acyc} its image; so $V = V_U \oplus V_{ac}$, and $\mathcal{S}(V[1]) \cong \mathcal{S}(V_U[1]) \otimes \mathcal{S}(V_{ac}[1])$ a graded bialgebras. Define $\beta : \mathcal{S}(V[1]) \to \mathcal{S}(V[1])$ of degree 0 by : from the formula of the product of th

$$\beta(y_1 \bullet \cdots \bullet y_k \bullet w_1 \bullet \cdots \bullet w_l) = \begin{cases} \frac{1}{l}(y_1 \bullet \cdots \bullet y_k \bullet w_1 \bullet \cdots \bullet w_l) & \text{if } l \neq 0, \\ 0 & \text{if } l = 0, \end{cases}$$
(1)

and set $\eta = \overline{h[1]} \circ \beta = \beta \circ \overline{h[1]}$. Then $(e^{*\varphi_1}, e^{*\psi_1}, \eta)$ is a contraction from $(\mathcal{S}(U[1]), \overline{b_U[1]})$ to $(\mathcal{S}(V[1]), \overline{b_V[1]})$.

Simone Gutt (ULB)

L_{∞} -contraction

Let (i, p, h) a contraction between the complexes (U, b_U) and (V, b_V) . The graded coderivations $\overline{b_U[1]}$ of $\mathcal{S}(U[1])$ and $\overline{b_V[1]}$ of $\mathcal{S}(V[1])$ are differentials. Setting $\varphi_1 := i[1]$ and $\psi_1 := p[1]$, the morphisms of graded coalgebras $e^{*\varphi_1} : \mathcal{S}(U[1]) \to \mathcal{S}(V[1])$ and $e^{*\psi_1} : \mathcal{S}(V[1]) \to \mathcal{S}(U[1])$ are chain maps satisfying $e^{*\psi_1} \circ e^{*\varphi_1} = id_{\mathcal{S}(U[1])}$. Since $P = [h, b_V] : V \to V$ is an idempotent, let V_U be its kernel, and V_{acyc} its image; so $V = V_U \oplus V_{ac}$, and $\mathcal{S}(V[1]) \cong \mathcal{S}(V_U[1]) \otimes \mathcal{S}(V_{ac}[1])$ as graded bialgebras. Define $\beta : \mathcal{S}(V[1]) \to \mathcal{S}(V[1])$ of degree 0 by : for all $y_1, \ldots, y_k \in V_U[1]$ and $w_1, \ldots, w_l \in V_{acyc}[1]$ where $k, l \in \mathbb{N}$:

$$\beta(y_1 \bullet \dots \bullet y_k \bullet w_1 \bullet \dots \bullet w_l) = \begin{cases} \frac{1}{l}(y_1 \bullet \dots \bullet y_k \bullet w_1 \bullet \dots \bullet w_l) & \text{if } l \neq 0, \\ 0 & \text{if } l = 0, \end{cases}$$
(1)

and set $\eta = \overline{h[1]} \circ \beta = \beta \circ \overline{h[1]}$. Then $(e^{*\varphi_1}, e^{*\psi_1}, \eta)$ is a contraction from $(\mathcal{S}(U[1]), \overline{b_U[1]})$ to $(\mathcal{S}(V[1]), \overline{b_V[1]})$.

L_{∞} -contraction

Let (i, p, h) a contraction between the complexes (U, b_U) and (V, b_V) . The graded coderivations $\overline{b_U[1]}$ of $\mathcal{S}(U[1])$ and $\overline{b_V[1]}$ of $\mathcal{S}(V[1])$ are differentials. Setting $\varphi_1 := i[1]$ and $\psi_1 := p[1]$, the morphisms of graded coalgebras $e^{*\varphi_1} : \mathcal{S}(U[1]) \to \mathcal{S}(V[1])$ and $e^{*\psi_1} : \mathcal{S}(V[1]) \to \mathcal{S}(U[1])$ are chain maps satisfying $e^{*\psi_1} \circ e^{*\varphi_1} = id_{\mathcal{S}(U[1])}$. Since $P = [h, b_V] : V \to V$ is an idempotent, let V_U be its kernel, and V_{acyc} its image; so $V = V_U \oplus V_{ac}$, and $\mathcal{S}(V[1]) \cong \mathcal{S}(V_U[1]) \otimes \mathcal{S}(V_{ac}[1])$ as graded bialgebras. Define $\beta : \mathcal{S}(V[1]) \to \mathcal{S}(V[1])$ of degree 0 by : for all $y_1, \ldots, y_k \in V_U[1]$ and $w_1, \ldots, w_l \in V_{acyc}[1]$ where $k, l \in \mathbb{N}$:

$$\beta(y_1 \bullet \dots \bullet y_k \bullet w_1 \bullet \dots \bullet w_l) = \begin{cases} \frac{1}{l}(y_1 \bullet \dots \bullet y_k \bullet w_1 \bullet \dots \bullet w_l) & \text{if } l \neq 0, \\ 0 & \text{if } l = 0, \end{cases}$$
(1)

and set $\eta = \overline{h[1]} \circ \beta = \beta \circ \overline{h[1]}$. Then $(e^{*\varphi_1}, e^{*\psi_1}, \eta)$ is a contraction from $(\mathcal{S}(U[1]), \overline{b_U[1]})$ to $(\mathcal{S}(V[1]), \overline{b_V[1]})$.

L_{∞} -perturbation Lemma (Bordemann Elchinger)

Let (i, p, h) be a contraction between the complexes (U, b_U) and (V, b_V) . Let $(e^{*\varphi_1}, e^{*\psi_1}, \eta)$ be the corresponding contraction from $(\mathcal{S}(U[1]), \overline{b_U[1]})$ to $(\mathcal{S}(V[1]), \overline{b_V[1]})$. Suppose $D = b_V[1] + D'_V$ with $D'_V = \sum_{k \ge 2} D'_k : \mathcal{S}(V[1]) \to V[1]$ of degree 1 defines an L_∞ -structure, whence $\delta_{\mathcal{S}(V[1])} = \overline{D'_V}$ is a perturbation of $\overline{b_V[1]}$.

The maps $e^{*\varphi_1}$, $e^{*\psi_1}$, $\delta_{\mathcal{S}(\mathcal{U}[1])}$, and $\tilde{\eta}$ of the Perturbation Lemma so that $(\widetilde{e^{*\varphi_1}}, \widetilde{e^{*\psi_1}}, \tilde{\eta})$ is homotopy contraction between $(\mathcal{S}(\mathcal{U}[1]), \overline{b_{\mathcal{U}}[1]} + \delta_{\mathcal{S}(\mathcal{U}[1])})$ and $(\mathcal{S}(\mathcal{V}[1]), \overline{b_{\mathcal{V}}[1]} + \overline{D'_{\mathcal{V}}})$ automatically preserve the structure of graded connected coalgebras, i.e. $\widetilde{e^{*\varphi_1}}$ and $\widetilde{e^{*\psi_1}}$ are morphism of graded differential connected coalgebras, and $\delta_{\mathcal{S}(\mathcal{U}[1])}$ will be a graded coderivation of degree 1. This entails in particular that $\widetilde{e^{*\varphi_1}} =: e^{*\varphi}$ is a L_{∞} -quasi-isomorphism with quasi-inverse $\widetilde{e^{*\psi_1}} =: e^{*\psi}$.

22 / 23

L_{∞} -perturbation Lemma (Bordemann Elchinger)

Let (i, p, h) be a contraction between the complexes (U, b_U) and (V, b_V) . Let $(e^{*\varphi_1}, e^{*\psi_1}, \eta)$ be the corresponding contraction from $(\mathcal{S}(U[1]), \overline{b_U[1]})$ to $(\mathcal{S}(V[1]), \overline{b}_V[1])$. Suppose $D = b_V[1] + D'_V$ with $D'_V = \sum_{k\geq 2} D'_k : \mathcal{S}(V[1]) \to V[1]$ of degree 1 defines an L_{∞} -structure, whence $\delta_{\mathcal{S}(V[1])} = \overline{D'_{V}}$ is a perturbation of $b_V[1]$. The maps $\widetilde{e^{*\varphi_1}}, e^{*\psi_1}, \delta_{\mathcal{S}(U[1])}$, and $\widetilde{\eta}$ of the Perturbation Lemma so that $(\widetilde{e^{*\varphi_1}}, \widetilde{e^{*\psi_1}}, \widetilde{\eta})$ is homotopy contraction between $(\mathcal{S}(U[1]), \overline{b_U[1]} + \delta_{\mathcal{S}(U[1])})$ and $(\mathcal{S}(V[1]), \overline{b_V[1]} + \overline{D'_V})$ automatically preserve the structure of graded connected coalgebras, i.e. $e^{*\varphi_1}$ and $e^{*\psi_1}$ are morphism of graded differential connected coalgebras, and $\delta_{\mathcal{S}(U[1])}$ will be a graded coderivation of degree 1. This entails in particular that $e^{*\varphi_1} =: e^{*\varphi}$ is a L_{∞} -quasi-isomorphism with quasi-inverse $e^{*\psi_1} =: e^{*\psi}$.

Martin Bordemann and Olivier Elchinger, A remark on the L_{∞} perturbation Lemma, preprint Mulhouse and Luxembourg, 2017.

Martin Bordemann and Abdenacer Makhlouf . Formality and deformations of Universal Enveloping Algebras. International Journal of Theoretical Physics 47 (2008) 311-332.

Martin Bordemann, Abdenacer Makhlouf and Toukaiddine Petit, Déformation par quantification et rigidité des algèbres enveloppantes, Journal of Algebra 285 (2005)2, 623-648.

Martin Bordemann, Olivier Elchinger, Simone Gutt and Abdenacer Makhlouf, L_{∞} -formality check for the Hochschild complex of certain universal enveloping algebras, preprint arXiv :1807.03086.

Thank you for your attention!

Image: Image: