Heat propagation in a thin rod

A. SILI

RIASSUNTO: Si studia il problema al contorno per l'equazione del calore in un dominio cilindrico sottile di raggio ε e lunghezza l. Si dimostra, per il tramite di un opportuno sviluppo asintotico, che per ε tendente a zero la soluzione del problema tende, in una opportuna topologia, alla soluzione di un problema al contorno per un'equazione del calore unidimensionale.

ABSTRACT: We consider the heat equation in a thin cylindric rod of radius ε and length l. We show that when ε tends to 0, the corresponding solution u^{ε} tends in a certain sense to the solution of some one-dimensional heat equation involving a zero-order term

KEY WORDS: Heat equation - Thin domains.

A.M.S. CLASSIFICATION: 35K05

1 - Introduction: statement of the problem and of the results

In this work we consider a cylindrical rod of radius ε and length ℓ , the extremities of which are maintained at fixed temperatures a_0 and a_ℓ .

The rod is plunged in an exterior bath maintained at fixed temperature I. Its initial temperature is denoted by d(x) where x denotes any point of \mathbb{R}^3 .

For $x = (x_1, x_2, x_3)$, we set $y = (x_1, x_2)$ and $z = x_3$, in such a way that x is written as x = (y, z).

In what follows, we denote by ω a regular bounded open set of \mathbb{R}^2

and by ω^{ϵ} its ϵ -homothetic defined by

$$\omega^{\epsilon} = \{(x_1, x_2) \in \mathbb{R}^2 \colon (\frac{x_1}{\epsilon}, \frac{x_2}{\epsilon}) \in \omega\}.$$

We also define the cylinder $\Omega^{\epsilon} = \omega^{\epsilon} X(0, \ell)$.

If $\partial \omega^{\epsilon}$ denotes the boundary of ω^{ϵ} and $\overline{\omega}^{\epsilon}$ the closure of ω^{ϵ} , we decompose the boundary Γ^{ϵ} of Ω^{ϵ} as follows:

$$\Gamma_0^{\epsilon} = \left\{ (y, z) \in \mathbb{R}^3 \colon y \in \overline{\omega}^{\epsilon}, z = 0 \right\},$$

$$\Gamma_{\ell}^{\epsilon} = \left\{ (y, z) \in \mathbb{R}^3 \colon y \in \overline{\omega}^{\epsilon}, z = \ell \right\},$$

$$\Gamma_N^{\epsilon} = \left\{ (y, z) \in \mathbb{R}^3 \colon y \in \partial \omega^{\epsilon}, 0 < z < \ell \right\}.$$

We then have: $\Gamma^{\epsilon} = \Gamma_N^{\epsilon} \cup \Gamma_0^{\epsilon} \cup \Gamma_0^{\epsilon}$

Fig. 1

We then set: $\Omega = \omega \times (0, \ell)$ (see fig. 1).

The boundary Γ of Ω is decomposed on:

 $\Gamma = \Gamma_0 \cup \Gamma_\ell \cup \Gamma_N$ with:

$$\Gamma_0 = \left\{ (y, z) \in \mathbb{R}^3 \colon y \in \overline{\omega}, z = 0 \right\},$$

$$\Gamma_1 = \left\{ (y, z) \in \mathbb{R}^3 \colon y \in \overline{\omega}, z = \ell \right\},$$

$$\Gamma_N = \left\{ (y, z) \in \mathbb{R}^3 \colon y \in \partial \omega, 0 < z < \ell \right\}.$$

We also set: $\Gamma_D = \Gamma_0 \cup \Gamma_1$.

If $v^{\epsilon} = v^{\epsilon}(y, z, t)$ denotes the temperature in the rod, the propagation of the heat is described by

(1.1)
$$\begin{cases} \frac{\partial v^{\epsilon}}{\partial t} - \Delta v^{\epsilon} = f(x,t) & \text{in } \Omega^{\epsilon} \times (0,T), T > 0. \\ \frac{\partial v^{\epsilon}}{\partial n} + k^{\epsilon}(v^{\epsilon} - I) = 0 & \text{on } \Gamma_{N}^{\epsilon} \times (0,T) \\ v^{\epsilon} = a_{0} & \text{on } \Gamma_{0}^{\epsilon} \times (0,T) \\ v^{\epsilon} = a_{\ell} & \text{on } \Gamma_{\ell}^{\epsilon} \times (0,T) \\ v^{\epsilon}(x,0) = d(x) & \text{on } \Omega^{\epsilon} \times \{0\} \end{cases}$$

where the physical meaning of the data is as follows:

 k^{ϵ} is the thermic conductivity of the rod: we will always assume $k^{\epsilon} > 0$. f(x,t) describes the production of heat by sources distributed in the rod, physically $f \equiv 0$ a_0 and a_1 are two given constants.

In order to deal with a problem in a fixed domain with homogeneous boundary conditions we define:

(1.2)
$$u^{\varepsilon}(y,z,t) = v^{\varepsilon}(\varepsilon y,z,t) - r(z)$$

where

(1.3)
$$r(z) = (a_1 - a_0)\frac{z}{\ell} + a_0 \qquad z \in (0, \ell)$$

If we denote by Δ' and ∇' respectively Laplace's operator and the gradient with respect to the variables $y=(x_1,x_2)$ and since Γ depends only on z, the function u^{ϵ} is the solution of:

(1.4)
$$\begin{cases} \frac{\partial u^{\varepsilon}}{\partial t} - \frac{1}{\varepsilon^{2}} \Delta' u^{\varepsilon} - \frac{\partial^{2} u^{\varepsilon}}{\partial z^{2}} = f(\varepsilon y, z, t) \text{ in } \Omega \times (0, T) \\ \frac{1}{\varepsilon} \frac{\partial u^{\varepsilon}}{\partial n} + k^{\varepsilon} (u^{\varepsilon} + r(z) - I) = 0 \text{ on } \Gamma_{N} \times (0, T) \\ u^{\varepsilon} (y, 0, t) = 0 \text{ on } \Gamma_{0} \times (0, T) \\ u^{\varepsilon} (y, \ell, t) = 0 \text{ on } \Gamma^{\ell} \times (0, T) \\ u^{\varepsilon} (x, 0) = g^{\varepsilon} (x) \text{ on } \Omega \times \{0\} \end{cases}$$

where $g^{\varepsilon}(x) = d(\varepsilon y, z) - r(z)$.

We will study the behaviour of u^{ε} when ε goes to 0.

If the conductivity coefficient is small [in the sense there exists some constant C^* such that $0 \le C^* < +\infty$ and $\frac{k^{\epsilon}}{\epsilon} \longrightarrow C^*$, then u^{ϵ} tends in a convenient topology to the solution u of the problem:

$$\begin{cases} \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial z^2} + \frac{|\partial \omega|}{|\omega|} C^* u = -\frac{|\partial \omega|}{|\omega|} C^* (r(z) - I) + \tilde{f}(z, t) \text{ in } (0, \ell) \times (0, T) \\ u(0, t) = 0 \text{ on } \{0\} \times (0, T) \\ u(\ell, t) = 0 \text{ on } \ell \times (0, T) \\ u(z, 0) = \tilde{g}(z) \text{ on } \Omega \times \{0\} \end{cases}$$
where the functions \tilde{f} and \tilde{g} are defined by:
$$\tilde{f}(z, t) = f(0, z, t) \tilde{z}(z) = d(0, z) = r(z)$$

ions
$$f$$
 and g are defined by: $ilde{f}(z,t)=f(0,z,t), ilde{g}(z)=d(0,z)-r(z)\,.$

This result is obtained under the hypotheses:

$$(1.6) \begin{cases} \text{i)} & (x_1, x_2) \longrightarrow f(x_1, x_2, z, t) \text{ is continuous} \\ \text{for almost } (z, t) \in (0, \ell) \times (0, T) \end{cases}$$

$$\text{ii)} & (z, t) \longrightarrow f(x_1, x_2, z, t) \text{ is measurable for any}(x_1, x_2) \in \omega$$

$$\text{iii)} & |f(x_1, x_2, z, t)| \leq F(z, t) \text{ for almost } x_1, x_2 \text{ and any } z, t,$$

$$\text{with } F \in L^2((0, \ell) \times (0, T)).$$

(1.7)
$$\begin{cases} i) & (x_1, x_2) \longrightarrow d(x_1, x_2, z, t) \text{ is continuous} \\ & \text{for almost } z \in (0, \ell) \text{.} \\ \\ ii) & z \longrightarrow d(x_1, x_2, z) \text{ is measurable for any}(x_1, x_2) \in \omega \\ \\ iii) & |d(x_1, x_2, z)| \leq D(z) \text{ for almost } x_1, x_2 \text{ and any } z, \\ \\ & \text{with } D \in L^2((0, \ell)) \text{.} \end{cases}$$

Turning back to the temperature v^{ε} in the thin rod, this result means that in some sense (see section 4), v^{ϵ} tends to the solution v of the problem:

(1.8)
$$\begin{cases} \frac{\partial v}{\partial t} - \frac{\partial^2 v}{\partial z^2} + \frac{|\partial \omega|}{|\omega|} C^* v = \tilde{f}(z, t) \text{ in } (0, \ell) \times (0, T) \\ v(0, t) = a_0 \text{ on } \{0\} \times (0, T) \\ v(\ell, t) = a_\ell \text{ on } \ell \times (0, T) \\ v(z, 0) = \tilde{g}(z) \text{ on } (0, \ell) \times \{0\} \end{cases}$$

where:

$$\begin{split} \tilde{\tilde{f}}\left(z,t\right) &= \tilde{f}(z,t) + \frac{\left|\partial\omega\right|}{\left|\omega\right|}C^*I = f(0,z,t) + \frac{\left|\partial\omega\right|}{\left|\omega\right|}C^*I \\ \tilde{\tilde{g}}(z) &= \tilde{g}(z) + r(z) = d(0,z) \,. \end{split}$$

In the case where k^{ε} is large [that is if $\frac{k^{\varepsilon}}{\varepsilon} \longrightarrow +\infty$] we show that u^{ε} tends in a convenient topology to u(z) = I - r(z).

Turning back to the solution v^{ϵ} of initial problem (1.1) we show that in some sense, (section 4) v^{ϵ} tends to the constant function I.

We obtain this last result assuming hypotheses (1.6) and (1.7) where f is moreover assumed to satisfy:

$$(1.9) f \in L^{\infty}(\Omega \times (0,T)).$$

This hypothesis will be used in conjunction with the maximum principle in order to obtain an L^{∞} a priori-estimate on u^{ϵ} .

Note that the limit equation (which corresponds to the situation where the rod is infinitely thin) is posed on the segment $(0, \ell)$, and that the limit u does not depend on x_1, x_2 .

In addition note that in (1.5), the term $\frac{|\partial \omega|}{|\omega|}C^*u$ appears in the left hand side of the equation and the source term $-\frac{|\partial \omega|}{|\omega|}C^*(r(z)-I)$ appears in the right hand side.

This last term takes into consideration the temperature I of the bath. If k^{ϵ} is too small ($k^{\epsilon} << \epsilon$, i.e. $C^* = 0$) these effects are not seen at the limit.

When k^{ε} is large, $(k^{\varepsilon}/\varepsilon \longrightarrow +\infty)$ the initial condition on u^{ε} is ignored and only the exterior bath is determinant since $u \equiv I - r(z)$ in this case. This result corresponds formally, to take $C^* = +\infty$ in equation (1.5).

The method employed to study this problem (passing to a fixed domain by an homothety in certain directions) has been widely used in recent years for studying various problems in elasticity; see eg. [1,3,4,5,6].

Note that the weak formulation of problem (1.4) is:

$$(1.10) \begin{cases} \frac{d}{dt} \int_{\Omega} u^{\epsilon}(x,t)v(x)dx + \frac{1}{\varepsilon^{2}} \int_{\Omega} \nabla' u^{\epsilon} \cdot \nabla' v dx + \\ + \int_{\Omega} \frac{\partial u^{\epsilon}}{\partial z} \cdot \frac{\partial v}{\partial z} dx + \frac{k^{\epsilon}}{\varepsilon} \int_{\Gamma_{N}} \gamma u^{\epsilon} \cdot \gamma v d\sigma = \\ = -\frac{k^{\epsilon}}{\varepsilon} \int_{\Gamma_{N}} (r(z) - I)\gamma v d\sigma + \int_{\Omega} f(\varepsilon y, z, t)v dx \cdot \forall v \in V \\ u^{\epsilon}(x, 0) = g^{\epsilon}(x) \end{cases}$$

where $V = \{u \in H^1(\Omega), u/\Gamma_D = 0\}$ and γ denotes the trace application from $H^1(\Omega)$ to $L^2(\Gamma)$.

We deduce easily from the theorem of J.L. Lions (see [2]; [7]) the following result:

LEMMA 1.1. There exists a unique solution u^{ε} of (1.10) such that:

$$u^{\epsilon} \in L^{2}((0,T);V) \cap C((0,T];L^{2}(\Omega)), \qquad \frac{\partial u^{\epsilon}}{\partial t} \in L^{2}([0,T];V').$$

The paper is organized as follows:

In section 2 we study the case where $\frac{k^{\epsilon}}{\epsilon} \longrightarrow C^{*}$, $0 \le C^{*} < +\infty$.

The section 3 is devoted to study the case $\frac{k^{\epsilon}}{\epsilon} \longrightarrow +\infty$.

We show finally in section 4 that the mean value with respect to (x_1, x_2) of the solution v^{ϵ} of (1.1) converges to the solution v of problem (1.8), in the case $\frac{k^{\epsilon}}{\epsilon} \longrightarrow C^* < +\infty$ and converges to I in the case $\frac{k^{\epsilon}}{\epsilon} \longrightarrow +\infty$.

2 – The case
$$k^{\varepsilon}/\varepsilon \longrightarrow C^*$$
; $0 \le C^* < +\infty$

Suppose that $\frac{k^e}{\epsilon}$ is bounded. Then there exists a constant C which depends on T and C^* , such that:

i)
$$\sup_{(0,T)} \int_{\Omega} |u^{\varepsilon}(x,t)|^2 dx \le C$$

ii)
$$\int\limits_0^T\int\limits_\Omega |\frac{\partial u^{\epsilon}}{\partial z}|^2 dx dt \leq C$$

iii)
$$\frac{1}{\varepsilon^2} \int\limits_0^T \int\limits_\Omega |\nabla' u^{\epsilon}|^2 dx dt \leq C$$

REMARK 2.2. From these estimates one deduce:

$$||u^{\varepsilon}||_{L^{2}((0,T);H^{1}(\Omega))} \leq C.$$

PROOF. we take $v = u^{\epsilon}(t)$ in (1.10). Integrating with respect to t, we obtain:

$$\begin{split} &\frac{1}{2}\int\limits_{\Omega}|u^{\varepsilon}(x,t)|dx+\frac{1}{\varepsilon^{2}}\int\limits_{0}^{t}\int\limits_{\Omega}|\nabla'u^{\varepsilon}(x,s)|^{2}dxds+\\ &+\int\limits_{0}^{t}\int\limits_{\Omega}\left|\frac{\partial u^{\varepsilon}}{\partial z}(x,s)\right|^{2}dxds+\frac{k^{\varepsilon}}{\varepsilon}\int\limits_{0}^{t}\int\limits_{\Gamma_{N}}|\gamma u^{\varepsilon}(x,s)|^{2}d\sigma ds=\\ &=-\frac{k^{\varepsilon}}{\varepsilon}\int\limits_{0}^{t}\int\limits_{\Gamma_{N}}(r(z)-I)\gamma u^{\varepsilon}(x,s)d\sigma ds+\\ &+\int\limits_{0}^{t}\int\limits_{\Omega}f(\varepsilon y,z,s)u^{\varepsilon}(x,s)dxds+1/2\int\limits_{\Omega}|g^{\varepsilon}(x)|^{2}dx\,. \end{split}$$

The second member is bounded by:

$$\begin{split} &\frac{k^{\epsilon}}{2\varepsilon}\int\limits_{0}^{T}\int\limits_{\Gamma_{N}}(r(z)-I)^{2}d\sigma ds+\frac{k^{\epsilon}}{2\varepsilon}\int\limits_{0}^{t}\int\limits_{\Gamma_{N}}|\gamma u^{\epsilon}(x,s)|^{2}d\sigma ds+\\ &+1/2\int\limits_{0}^{T}\int\limits_{\Omega}f(\varepsilon y,z,s)|^{2}dxds+1/2\int\limits_{0}^{t}\int\limits_{\Omega}|u^{\epsilon}(x,s)|^{2}dxds+\\ &+1/2\int\limits_{\Omega}|g^{\epsilon}(x)|^{2}dx\,. \end{split}$$

As f and d satisfy hypotheses (1.6) and (1.7), we have:

$$\int_{\Omega} |g^{\epsilon}(x)|^{2} dx \leq 2 \int_{\Omega} |d(\epsilon y, z)|^{2} dx + 2 \int_{\Omega} |r(z)|^{2} dx \leq$$

$$\leq 2 \int_{\Omega} |D(z)|^{2} dx + 2 \int_{\Omega} |r(z)|^{2} dx \leq C$$

and:

$$\int\limits_0^T\int\limits_\Omega |f(arepsilon y,z,s)|^2 dxds \leq \int\limits_0^T\int\limits_\Omega |F(z,s)|^2 dxds \leq C$$

for some constant C.

Since we assumed that $\frac{k^{\epsilon}}{\epsilon} \longrightarrow C^*$, that is $\frac{k^{\epsilon}}{\epsilon}$ is bounded, we conclude using Gronwall's lemma that:

i)
$$\sup_{(0,T)} \int_{\Omega} |u^{\epsilon}(x,t)|^2 dx \le C$$

we then deduce:

$$\mathrm{ii)} \quad \int\limits_0^T \int\limits_\Omega \left|\frac{\partial u^\epsilon}{\partial z}(x,s)\right|^2 \! dx ds \leq C \cdot$$

and

iii)
$$1/\varepsilon^2 \int_0^T \int_\Omega |\nabla' u^{\epsilon}(x,s)|^2 dx ds \leq C$$

Here C denotes various positive constant which depend on T and C^* . Now, we establish the following result:

Theorem 2.3: Passing to the limit. Suppose that $\frac{k^{\varepsilon}}{\varepsilon} \longrightarrow C^*,$ $0 \le C^* < +\infty$

Then the solution u^{ϵ} of (1.10) converges weakly in $L^{2}((0,T); H^{1}(\Omega))$ to the unique weak solution u of (1.5); furthermore,

$$u \in C((0,T); L^2(0,\ell) \cap L^2((0,T); H_0^1(0,\ell))$$
.

PROOF. Since u^{ϵ} is bounded in $L^2((0,T); H^1(\Omega))$ (Remark 2.2), there exists a subsequence u^{ϵ_k} wich weakly converges to some \hat{u} in $L^2((0,T); H^1(\Omega))$.

Since we will see that \hat{u} is unique, we will actually obtain that the whole sequence u^{ε} converges to \hat{u} and we thus drop the subscript k.

We see by proposition 2.1, iii) that $\nabla' u^{\epsilon}$ tends to 0 strongly in $L^2((0,T);(L^2(\Omega))^2)$, and then $\nabla' \hat{u}=0$. Therefore \hat{u} can be identified with a function u of $L^2((0,T);H^1(0,\ell))$ by:

$$\hat{u}(y,z,t)=u(z,t).$$

On the other hand, $u_{|\Gamma_D}^{\epsilon} = 0$ implies that $\hat{u}_{|\Gamma_D} = 0$. Then $u \in L^2((0,T); H_0^1(0,\ell))$.

Consider now $v \in \mathcal{D}(0, \ell)$ and $\varphi \in \mathcal{D}(0, T)$. Take $v\varphi$ as a test function in equation (1.10) and integrate by parts with respect to t. We obtain:

$$\begin{split} &-\int\limits_0^T\int\limits_\Omega u^\varepsilon(t).v\varphi'dxdt+\int\limits_0^T\int\limits_\Omega \frac{\partial u^\varepsilon}{\partial z}\cdot\frac{\partial v}{\partial z}\varphi dxdt+\\ &+\frac{k^\varepsilon}{\varepsilon}\int\limits_0^T\int\limits_{\Gamma_N}\gamma u^\varepsilon.\gamma v\varphi d\sigma dt=-\frac{k^\varepsilon}{\varepsilon}\int\limits_0^T\int\limits_{\Gamma_N}(r(z)-I)\gamma v.\varphi dxdt+\\ &+\int\limits_0^T\int\limits_\Omega f(\varepsilon y,z,t)v\varphi dxdt\,. \end{split}$$

Using hypothesis (1.6), the weak convergence of u^{ϵ} to \hat{u} in $L^2((0,T);H^1(\Omega))$, and $\frac{k^{\epsilon}}{\epsilon} \longrightarrow C^*$, we obtain after passing to the limit in the last equation:

$$\begin{split} &-\int\limits_0^T\int\limits_\Omega \hat uv\varphi'(t)dxdt+\int\limits_0^T\int\limits_\Omega \frac{\partial \hat u}{\partial z}\cdot\frac{\partial v}{\partial z}\varphi(t)dxdt+\\ &+C^*\int\limits_0^T\int\limits_{\Gamma_N}\gamma \hat u\gamma v\varphi d\sigma dt=-C^*\int\limits_0^T\int\limits_{\Gamma_N}(r(z)-I)\gamma v\varphi dzdt+\\ &+\int\limits_0^T\int\limits_\Omega f(0,z,t)v\varphi dxdt\,. \end{split}$$

Since \hat{u} depends only on z and t, the last equation becomes:

$$\begin{split} -|\omega| \int\limits_0^T \int\limits_0^\ell uv \varphi'(t) dz dt + |\omega| \int\limits_0^T \int\limits_0^\ell \frac{\partial u}{\partial z} \cdot \frac{\partial v}{\partial z} \varphi(t) dz dt + \\ + C^* |\partial \omega| \int\limits_0^T \int\limits_0^\ell uv \varphi dz dt &= -C^* |\partial \omega| \int\limits_0^T \int\limits_0^\ell (r(z) - I) v \varphi dz dt + \\ + \int\limits_0^T \int\limits_0^\ell f(0,z,t) v \varphi dx dt \,. \end{split}$$

We now remark that the tensorial product $\mathcal{D}(0,\ell) \otimes \mathcal{D}(0,T)$ is dense in $\mathcal{D}[(0,\ell) \times (0,T)]$. We thus obtain:

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial z^2} + C^* \frac{|\partial \omega|}{|\omega|} u = -C^* \frac{|\partial \omega|}{|\omega|} (r(z) - I) + \tilde{f}(z, t) \text{ in } \mathcal{D}'[(0, \ell) \times (0, T)].$$

As u is an element of $L^2((0,T); H^1_0(0,\ell))$ this equation shows that $\frac{\partial u}{\partial t} \in L^2((0,T); H^{-1}(0,\ell))$, and therefore $u \in C([0,T]; L^2(\Omega))$. In order to look of the initial condition on u, we introduce for a fixed v in $H^1_0(0,\ell)$, the following function:

$$Z^{\varepsilon}(t) = \int\limits_{\Omega} u^{\varepsilon}(x,t)v(z)dx$$

Since $u^{\epsilon} \in C([0,T];L^2(\Omega))$, we have $Z^{\epsilon} \in C([0,T];\mathbb{R})$. On the other hand, the equation:

$$\begin{split} \frac{d}{dt}Z^{\epsilon}(t) &= -\int\limits_{\Omega} \frac{\partial u^{\epsilon}}{\partial z} \cdot \frac{\partial v}{\partial z} dx - \frac{k^{\epsilon}}{\epsilon} \int\limits_{\Gamma_{N}} \gamma u^{\epsilon} \gamma v dx - \\ -\frac{k^{\epsilon}}{\epsilon} \int\limits_{\Gamma_{N}} (r(z) - I) \gamma v dx + \int\limits_{\Omega} f(\epsilon y, z, t) v dx \end{split}$$

shows that $\frac{dZ^{\epsilon}}{dt}$ is bounded in $L^{2}(0, \ell)$.

We then deduce that Z^{ε} tends uniformly to some Z in C ([0, T]). But if $\varphi \in \mathcal{D}(0,T)$, we have:

$$\langle Z^{\varepsilon}, \varphi \rangle_{\mathcal{D}', \mathcal{D}(0,T)} \longrightarrow \int_{0}^{T} \int_{\Omega} \hat{u}(z,t) v(z) \varphi(t) dx dt = |\omega| \int_{0}^{T} \int_{0}^{t} u(z,t) v(z) \varphi(t) dz dt$$

which implies that: $Z(t) = |\omega| \int_0^{\ell} u(z,t)v(z)dz$, $\forall t \in (0,T)$. In particular, we have

$$Z^{\epsilon}(0)=\int\limits_{\Omega}g^{\epsilon}(x)v(z)dx \longrightarrow Z(0)=|\omega|\int\limits_{0}^{\ell}u(z,0)vdz$$

On the other hand, we have:

$$\int\limits_{\Omega}g^{\epsilon}(x)v(z)dx\longrightarrow\int\limits_{\Omega}\tilde{g}(x)v(z)dx=|\omega|\int\limits_{\Omega}^{\ell}\tilde{g}(z)v(z)dz$$

So:

$$Z(0)=|\omega|\int\limits_0^\ell u(z,0)v(z)dz=|\omega|\int\limits_0^\ell \tilde{g}(z)v(z)dz,\quad \forall v\in H^1_0(0,\ell)\,.$$

We deduce that: $u(z,0) = \tilde{g}(z)$ for almost all $z \in (0,\ell)$. This completes the proof of theorem 2.3.

3 - The case $k^{\varepsilon}/\varepsilon \longrightarrow +\infty$

In this case the proof used in section 2 does not work. In order to establish analogous estimates to those given in proposition 2.1, we need the following lemma which is based on maximum principle.

LEMMA 3.1. Assume that f and d satisfy hupotheses (1.6), (1.7) and (1.9). Then there exists some constant C which depends on T, such that the solution u^c of (1.10) satisfies.

$$||u^{\epsilon}||_{L^{\infty}(\Omega\times(0,T))} \leq C$$

PROOF. Set

$$\lambda = \operatorname{Max}\left\{\|d + r\|_{L^{\infty}(\Omega)}; \|I - r(z)\|_{L^{\infty}(0,\ell)}; \sqrt{\|f\|}_{L^{\infty}(\Omega \times (0,T)}\right\}$$

and define: $w^{\varepsilon} = u^{\varepsilon} e^{-\lambda t}$.

It is clear that w^{ϵ} satisfies the equation:

$$\begin{split} &\frac{d}{dt}\int_{\Omega}w^{\varepsilon}vdx+\lambda\int_{\Omega}w^{\varepsilon}vdx+\frac{1}{\varepsilon^{2}}\int_{\Omega}\nabla'w^{\varepsilon}.\nabla'vdx+\\ &+\int_{\Omega}\frac{\partial w^{\varepsilon}}{\partial z}\cdot\frac{\partial v}{\partial z}dx+\frac{k^{\varepsilon}}{\varepsilon}\int_{\Gamma_{N}}\gamma w^{\varepsilon}.\gamma vd\sigma=\\ &=&\mathrm{e}^{-\lambda t}\Big[-\frac{k^{\varepsilon}}{\varepsilon}\int_{\Gamma_{N}}(r(z)-I)\gamma vd\sigma+\int_{\Omega}f(\varepsilon y,z,t)vdx\Big],\qquad\forall v\in V\,, \end{split}$$

wich is conveniently rewritten as:

$$\begin{split} &\frac{d}{dt}\int_{\Omega}(w^{\varepsilon}-\lambda)vdx+\lambda\int_{\Omega}(w^{\varepsilon}-\lambda)vdx+\lambda^{2}\int_{\Omega}vdx+\\ &+\frac{1}{\varepsilon^{2}}\int_{\Omega}\nabla'(w^{\varepsilon}-\lambda).\nabla'vdx+\\ &+\int_{\Omega}\frac{\partial}{\partial z}(w^{\varepsilon}-\lambda)\cdot\frac{\partial v}{\partial z}dx+\frac{k^{\varepsilon}}{\varepsilon}\int_{\Gamma_{N}}\gamma(w^{\varepsilon}-\lambda).\gamma vd\sigma+\\ &+\frac{k^{\varepsilon}}{\varepsilon}\int_{\Gamma_{N}}\lambda\gamma vd\sigma=\mathrm{e}^{-\lambda t}\bigg[-\frac{k^{\varepsilon}}{\varepsilon}\int_{\Gamma_{N}}(r(z)-I)\gamma vd\sigma+\\ &+\int_{\Omega}f(\varepsilon y,z,t)vdx\bigg], \qquad \forall v\in V\,, \end{split}$$

Remark now that $\lambda > 0$ and $w_{|\Gamma_D}^{\epsilon} = 0$, so the positive part $(w^{\epsilon} - \lambda)^+$ is an element of V. Then we can take $v = (w^{\epsilon} - \lambda)^+$ in the last equation, to obtain:

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\int\limits_{\Omega}(w^{\varepsilon}-\lambda)^{+2}dx \leq \mathrm{e}^{-\lambda t}\bigg[-\frac{k^{\varepsilon}}{\varepsilon}\int\limits_{\Gamma_{N}}(r(z)-I)\gamma(w^{\varepsilon}-\lambda)^{+}d\sigma + \\ &+\int\limits_{\Omega}f(\varepsilon y,z,t)(w^{\varepsilon}-\lambda)^{+}dx\bigg]-\lambda^{2}\int\limits_{\Omega}(w^{\varepsilon}-\lambda)^{+}dx - \frac{k^{\varepsilon}}{\varepsilon}\int\limits_{\Gamma_{N}}\lambda\gamma(w^{\varepsilon}-\lambda)^{+}d\sigma \leq \\ &\leq \frac{k^{\varepsilon}}{\varepsilon}\int\limits_{\Gamma_{N}}\Big(\|r(z)-I\|_{L^{\infty}(0,\ell)}-\lambda\Big)\gamma(w^{\varepsilon}-\lambda)^{+}d\sigma + \\ &+\int\limits_{\Omega}\Big(\|f\|_{L^{\infty}(\Omega)}-\lambda^{2}\Big)(w^{\varepsilon}-\lambda)^{+}dx \leq 0 \end{split}$$

according to the choice of λ .

So, we have:

$$\int\limits_{\Omega} (w^{\varepsilon} - \lambda)^{+2}(x, t) dx \le \int\limits_{\Omega} (w^{\varepsilon} - \lambda)^{+2}(x, 0) dx.$$

Since $(w^{\varepsilon} - \lambda)^{+}(0) = (u^{\varepsilon} - \lambda)^{+}(0) = (d(\varepsilon y, z) + r(z) - \lambda)^{+} = 0$ we obtain:

$$w^{\epsilon} \leq \lambda$$
 a.e. in $\Omega \times (0,T)$

This implies that: $u^{\epsilon} \leq \lambda e^{\lambda T}$ a.e. in $\Omega \times (0,T)$

A similar calculation shows that:

$$u^{\epsilon} \ge -\lambda e^{\lambda T}$$
 a.e. in $\Omega \times (0,T)$

This completes the proof of lemma 3.1.

In the following, we set for fixed $\eta > 0$:

$$\Omega^{\eta} = \omega \times]\eta, \ell - \eta[$$
and $\Gamma_N^{\eta} = \partial \omega \times]\eta, \ell - \eta[$

We also define: $\bar{u}^{\epsilon} = u^{\epsilon} + r(z) - I$ where u^{ϵ} denotes the solution of (1.10).

We verify easily that u^{ϵ} satisfies the equation:

(3.1)
$$\begin{cases} \frac{d}{dt} \int_{\Omega} \bar{u}^{\varepsilon} v dx + 1/\varepsilon^{2} \int_{\Omega} \nabla' \bar{u}^{\varepsilon} \cdot \nabla' v dx + \int_{\Omega} \left(\frac{\partial \bar{u}^{\varepsilon}}{\partial z} - \frac{dr}{dz} \right) \frac{\partial v}{\partial z} dx + \frac{k^{\varepsilon}}{\varepsilon} \int_{\Gamma_{N}} \gamma \bar{u}^{\varepsilon} \cdot \gamma v d\sigma = \int_{\Omega} f(\varepsilon y, z, t) v dx, \quad \forall v \in V \end{cases}$$

We have then the following estimates:

PROPOSITION 3.2. If $\frac{k^{\epsilon}}{\epsilon} \longrightarrow +\infty$ and f and d satisfy the hypotheses (1.6), (1.7) and (1.9), there is a constant $C(\eta)$ depending on η and T such that:

i)
$$\int_{0}^{T} \int_{\Omega^{\eta}} |\nabla' \bar{u}^{\varepsilon}|^{2} dx dt \leq \varepsilon^{2} C(\eta)$$

ii)
$$\int_{0}^{T} \int_{\Omega r} |\frac{\partial \bar{u}^{\epsilon}}{\partial z}|^{2} dx dt \leq C(\eta)$$

$$\mathrm{iii}) \qquad \frac{k^{\epsilon}}{\epsilon} \int\limits_{0}^{T} \int\limits_{\Gamma_{N}^{\eta}} |\gamma \bar{u}^{\epsilon}|^{2} d\sigma dt \leq C(\eta)$$

PROOF. Let α some function of $\mathcal{D}(0,\ell)$ such that $\alpha \equiv 1$ on $]\eta, \ell - \eta[$. The function $\bar{u}^{\epsilon}\alpha^{2}(z)$ belongs to V since $\bar{u}^{\epsilon}\alpha^{2}(z) = 0$ on Γ_{D} . We thus can use $v = \bar{u}^{\epsilon}\alpha^{2}(z)$ as test function in equation (3.1). We obtain:

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\int\limits_{\Omega}|\bar{u}^{\varepsilon}|^{2}\alpha^{2}(z)dx+1/\varepsilon^{2}\int\limits_{\Omega}|\nabla'\bar{u}^{\varepsilon}|^{2}\alpha^{2}(z)dx+\\ &+\int\limits_{\Omega}\Big(\frac{\partial\bar{u}^{\varepsilon}}{\partial z}-\frac{dr}{dz}\Big)\Big(\alpha^{2}\frac{\partial\bar{u}^{\varepsilon}}{\partial z}+2\alpha\alpha'\bar{u}^{\varepsilon}\Big)dx+\\ &+\frac{k^{\varepsilon}}{\varepsilon}\int\limits_{\Gamma_{N}}|\gamma\bar{u}^{\varepsilon}|^{2}.\alpha^{2}(z)d\sigma=\int\limits_{\Omega}f(\varepsilon y,z,t)\bar{u}^{\varepsilon}\alpha^{2}(z)dx\,. \end{split}$$

This equation can be rewritten as:

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\int\limits_{\Omega}|\bar{u}^{\varepsilon}|^{2}\alpha^{2}(z)dx + \frac{1}{\varepsilon^{2}}\int\limits_{\Omega}|\nabla'\bar{u}^{\varepsilon}|^{2}\alpha^{2}(z)dx + \\ &+ \int\limits_{\Omega}\alpha^{2}(z)\Big|\frac{\partial\bar{u}^{\varepsilon}}{\partial z}\Big|^{2}dx + \frac{k^{\varepsilon}}{\varepsilon}\int\limits_{\Gamma_{N}}|\gamma\bar{u}^{\varepsilon}|^{2}\alpha^{2}(z)d\sigma = \\ &= \int\limits_{\Omega}f(\varepsilon y,z,t)\bar{u}^{\varepsilon}\alpha^{2}(z)dx - 2\int\limits_{\Omega}\alpha\alpha'\bar{u}^{\varepsilon}\frac{\partial\bar{u}^{\varepsilon}}{\partial z}dx + \\ &+ \int\limits_{\Omega}\alpha^{2}\frac{\partial\bar{u}^{\varepsilon}}{\partial z}\frac{dr}{dz}dx + \int\limits_{\Omega}2\alpha\alpha'\bar{u}^{\varepsilon}\frac{dr}{dz}dx \end{split}$$

We now use Young's inequality and the L^{∞} estimate obtained in lemma 3.1 to obtain:

$$\begin{split} \Big| - 2 \int\limits_{\Omega} \alpha \alpha' \bar{u}^{\varepsilon} \frac{\partial \bar{u}^{\varepsilon}}{\partial z} dx \Big| &\leq \int\limits_{\Omega} \frac{\alpha^{2}}{4} \Big| \frac{\partial \bar{u}^{\varepsilon}}{\partial z} \Big|^{2} dx + \int\limits_{\Omega} 4\alpha' |\bar{u}^{\varepsilon}|^{2} dx \leq \\ &\leq 1/4 \int\limits_{\Omega} \alpha^{2}(z) \Big| \frac{\partial \bar{u}^{\varepsilon}}{\partial z} \Big|^{2} dx + C(\alpha) \end{split}$$

where $C(\alpha)$ denotes some constant depending on α . On the other hand:

$$\int\limits_{\Omega}\alpha^2\frac{\partial\bar{u}^{\varepsilon}}{\partial z}\frac{dr}{dz}dx\leq\frac{1}{2}\int\limits_{\Omega}\alpha^2\Big|\frac{\partial\bar{u}^{\varepsilon}}{\partial z}\Big|^2dx+\frac{1}{2}\int\limits_{\Omega}\Big|\frac{dr}{dz}\Big|^2\alpha^2(z)dx$$

and:

$$2\int\limits_{\Omega}\alpha\alpha'\bar{u}^{\varepsilon}\frac{dr}{dz}dx\leq 2\|\bar{u}^{\varepsilon}\|_{L^{\infty}(\Omega)}\Big|\int\limits_{\Omega}\alpha\alpha'\frac{dr}{dz}dx\Big|\leq C(\alpha)$$

We finally see that there exists a constant $C(\alpha)$ such that:

$$\begin{split} &\frac{1}{2}\frac{d}{dt}\int\limits_{\Omega}|\bar{u}^{\varepsilon}|^{2}\alpha^{2}(z)dx + \frac{1}{\varepsilon^{2}}\int\limits_{\Omega}|\nabla'\bar{u}^{\varepsilon}|^{2}\alpha^{2}(z)dx + \\ &+\frac{1}{4}\int\limits_{\Omega}\alpha^{2}(z)\Big|\frac{\partial\bar{u}^{\varepsilon}}{\partial z}\Big|^{2}dx + \frac{k^{\varepsilon}}{\varepsilon}\int\limits_{\Gamma_{N}}\gamma(\bar{u}^{\varepsilon})^{2}\alpha^{2}(z)d\sigma \leq C(\alpha)\,. \end{split}$$

This implies the bounds i), ii), iii), of proposition 3.2. We can now prove the analogous of theorem 2.3 in the case $\frac{k^{\epsilon}}{\epsilon} \to +\infty$.

THEOREM 3.3. Assume that $k^{\varepsilon}/\varepsilon$ tends to $+\infty$ as ε tends to 0 and that f and d satisfy hypotheses (1.6), (1.7) and (1.9). Then, for all fixed $\eta > 0$, u^{ε} converges weakly to I - r(z) in $L^{2}(0,T;H^{1}(\Omega^{\eta}))$.

REMARK 3.4. Proposition 3.2 gives an estimate of u^{ϵ} in $L^2((0,T);H^1(\Omega^{\eta}))$ for $\eta>0$ fixed. We can not hope to obtain an estimate of u^{ϵ} in $L^2((0,T);H^1(\Omega))$. Indeed, if this does occur, we should have $u^{\epsilon} \longrightarrow u$ weakly in $L^2((0,T);H^1(\Omega))$ and then since $u^{\epsilon}=0$ on Γ_D , we must have u=0 on Γ_D and thus $u(0)=u(\ell)=0$. But theorem 3.3

asserts that $u \equiv I - r(z)$ and this function does not satisfy in general those boundary conditions, except if $a_0 = a_{\ell} = I$.

PROOF OF THEOREM 3.3. By proposition 3.2, \bar{u}^{ϵ} is bounded in $L^2((0,T);H^1(\Omega^{\eta}))$. Therefore, there exists a subsequence \bar{u}^{ϵ_k} and some \hat{u} such that \bar{u}^{ϵ_k} weakly converges to \hat{u} in $L^2((0,T);H^1(\Omega^{\eta}))$. We will see that \hat{u} is unique and we can then drop the subscript k. We obtain from the estimate i) of proposition 3.2 that:

$$\nabla'\hat{\tilde{u}}=0 \text{ in } \Omega^{\eta}\times(0,T)$$

So $\hat{\bar{u}}$ can be identified to some function \bar{u} which only depends on z and t;

$$\hat{\bar{u}}(x,t) = \bar{u}(z,t)$$
 on $(0,T) \times \Omega$

Estimate iii) shows that:

$$\int\limits_0^T\int\limits_{\Gamma_N^\eta}|\gamma\tilde u^\varepsilon|^2d\sigma dt \longrightarrow 0 \qquad \text{when} \qquad \varepsilon \longrightarrow 0$$

and $\gamma(\bar{u}^{\epsilon}) \rightharpoonup \gamma(\hat{\bar{u}})$ in $L^2((0,T); L^2(\Gamma_N^{\eta}))$ weakly, implies that $\gamma(\hat{\bar{u}}) = 0$ on $\Gamma_N^{\eta} \times (0,T)$.

But $\gamma(\hat{\bar{u}}(y,z,t)) = \bar{u}(z,t)$.

We then have $\bar{u}(z,t) = 0$ a.e. on $]0, \ell[\times(0,T)]$

Since $\bar{u}^{\epsilon} = u^{\epsilon} + r(z) - I$, we obtain:

 $u^{\varepsilon} \rightharpoonup I - r(z)$ weakly in $L^{2}((0,T); H^{1}(\Omega^{\eta}))$, for all fixed $\eta > 0$.

4-Turning back to the original problem (1.1)

In the preceding sections we have studied the convergence of the solution u^{ϵ} of (1.4) wich is posed on the fixed domain $\Omega \times (0,T)$. We are now interested in seeing in what sense the solution v^{ϵ} of the original problem (1.1) converges and what is its limit.

Recall that by definition of u^{ϵ} , we have:

$$u^{\epsilon}(x,t) = v^{\epsilon}(\epsilon y, z, t) - r(z)$$

We define: $w^{\epsilon}(z,t) = \frac{1}{|\omega^{\epsilon}|} \int_{z} v^{\epsilon}(y,z,t) dy$.

THEOREM 4.1.

i) If $k^{\varepsilon}/\varepsilon \longrightarrow C^*$, $0 \leq C^* < +\infty$, the sequence $w^{\varepsilon}(z,t)$ converges weakly in $L^2((0,T)\times(0,\ell))$ to the solution v of problem (1.8).

ii) If $k^{\varepsilon}/\varepsilon \longrightarrow +\infty$, $w^{\varepsilon}(z,t)$ converges weakly in $L^{2}((0,T)\times(0,\ell))$ to I.

PROOF. Let $\varphi(z,t) \in L^2((0,T) \times (0,\ell)$. By the definition of w^{ϵ} , v^{ϵ} and u^{ϵ} , we have:

$$\begin{split} &\int\limits_0^T \int\limits_0^\ell w^\epsilon(z,t) \varphi(z,t) dz dt = \frac{1}{|\omega^\epsilon|} \int\limits_0^T \int\limits_{\omega^\epsilon}^\ell \int\limits_{\omega^\epsilon} v^\epsilon(y,z,t) \varphi(z,t) dy dz dt = \\ &= \frac{1}{|\omega| \varepsilon^2} \int\limits_0^T \int\limits_0^\ell \int\limits_{\omega^\epsilon} (u^\epsilon(y/\varepsilon,z,t) + r(z)) \varphi(z,t) dy dz dt = \\ &= \frac{1}{|\omega|} \int\limits_0^T \int\limits_\Omega (u^\epsilon(y',z,t) + r(z)) \varphi(z,t) dy' dz dt = \end{split}$$

In the case where $k^{\varepsilon}/\varepsilon \longrightarrow C^* < +\infty$, theorem 2.3 implies that the last term converges to:

$$\begin{split} &\frac{1}{|\omega|}\int\limits_0^T\int\limits_\Omega(u(z,t)+r(z))\varphi(z,t)dy'dzdt = \\ &=\int\limits_0^T\int\limits_0^\ell(u(z,t)+r(z))\varphi(z,t)dzdt \,. \end{split}$$

But v = u(z,t) + r(z) is the unique solution of problem (1.8).

In the case where $k^{\epsilon}/\epsilon \longrightarrow +\infty$, theorem 3.3 and proposition 3.2 imply that: $u^{\varepsilon} \longrightarrow I - r(z)$ weakly * in $L^{\infty}(\Omega \times (0,T))$. We thus have: $\int_{0}^{T} \int_{0}^{\ell} w^{\epsilon}(z,t) \varphi(z,t) dz dt \longrightarrow \int_{0}^{T} \int_{0}^{\ell} I \varphi(z,t) dz dt.$ This completes the proof of theorem 4.1.

REFERENCES

- [1] D. BLANCHARD G. FRANCFORT: Asymptotics thermoelastic behavior of flat plates, Quarterly appl. Math. Vol 54 n°4, (1987), 645-667.
- [2] H. Brezis: Analyse fonctionnelle, theorie et applications, Masson, 1983.
- [3] D. CAILLERIE: Homogénéisation des équations de la diffusion stationnaire dans des domaines cylindriques aplatis, RAIRO, Vol 15, n°4 (1981), 295-319.
- [4] P.G. CIARLET: A justification of the Von Karman equations, Arch. Rat. Mech. Anal., Vol 73 (1980), 349-389.
- [5] P.G. CIARLET: Plates and junction in elastic multi-structures: An asymptotic analysis, Masson, 1990
- [6] P.G. CIARLET P. DESTUYNDER: A justification of two dimensional plate model, J. Mécanique, Vol. 18 (1979), 315-344.
- [7] L. LIONS E. MAGENES: Problemes aux limites non homogènes, Dunod, 1968, Vol. 1.

Lavoro pervenuto alla redazione il 4 giugno 1992 ed accettato per la pubblicazione il 14 luglio 1992