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Heat propagation in a thin rod

A. SILI

RIASSUNTO: Si studia il problema al contorno per l'equazione del calo{t ir{ un
dominio cilindrico sottile di raggio € e lunghezza l. Si dimostra, per il tramite di un
opportuno sviluppo asintotico, che per e tendente a zero la soluzione del problema tev_lde;
in una opportuna topologia, alla soluzione di un problema al contorno per un’equazione
del calore unidimensionale.

ABSTRACT: We consider the heat equation in a thin cylindric rod of radius 'and
lenght 1. We show that when ¢ tends to 0, the corresponding solution u‘.tends in a
certain sense to the solution of some one-dimensional heat equation involving a zero -
order term
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1 — Introduction: statement of the problem and of the results

In this work we consider a cylindrical rod of radius € and lenght £,
the extremities of which are maintained at fixed temperatures ao and ae.

The rod is plunged in an exterior bath maintained at fixed temper-
ature I. Its initial temperature is denoted by d(z) where £ denotes any
point of IR®.

For z = (z,x,,z3), we set y = (z,,2,) and z = T3, in such a way
that x is written as z = (y, ). .

In what follows, we denote by w a regular bounded open set of R?



150 A. SIL1

2

and by w* its e-homothetic defined by

w = {(z1,72) € R%: (22, 22

?) € ) € W} .
We also define the cylinder Qf = w*X (0, £).

If dw® denotes the boundary of w® and @® the closure of w*, we
decompose the boundary I'® of Q¢ as follows:

5= {2 eR’: yea,2=0},
I‘f:{(y,z) ElRazyeE‘,z=€},
I‘f\,z{(y,z) ElRazyeaw‘,0<z<£}.

We then have: I'* =TI'{, UL UT§

4
]
!

Fig. 1
We then set: Q =w x (0,£) (see fig. 1).
The boundary I of Q2 is decomposed on:
T =T U Uy with:
To = {(y,z) eR}: yew,z =0},
= {(y,z) eR:yew,z =Z},

PN={(y,z)E]R"’:yeaw,0<z<€}.
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We also set: I'p =Ty UT,.
If v* = v*(y, 2, t) denotes the temperature in the rod, the propagation
of the heat is described by

( %z; - Av® = f(z,t) in Qx(0,7),T>0.
1) %1:1 +kf(v* =I)=0 onT% x (0,T)
. 4

v =gy on[§ x(0,T)
v* =a, onIyx(0,T)
v(z,0) = d(z) on Q° x {0}

\

where the physical meaning of the data is as follows:

k¢ is the thermic conductivity of the rod: we will always assume
k¢ > 0. f(z,t) describes the production of heat by sources distributed in
the rod, physically f = 0 ay and a, are two given constants.

In order to deal with a problem in a fixed domain with homogeneous
boundary conditions we define:

(1.2) u(y, 2, t) = v¥(ey, 2,t) — 7(2)
where
(1.3) rz) = (ay — ao)% tag  2€(0,8)

If we denote by A’ and V' respectively Laplace’s operator and the gradient
with respect to the variables y = (z,,z.) and since I' depends only on 2,
the function uf is the solution of:

ous 1 a2u5
- AU - = inQx(0,T
( ot e2 u 522 f(Ey, 2, t) In ( )
10u®
2o ke +1(2) ) =0o0n Ty x (0,T)
(1.4) { €0n
u*(y,0,t) =0 on [y x (0,7)
u®(y,£4,t)=00on T x (0,7T)
L uf(z,0) = ¢°(z) on Q x {0}

where g°(z) = d(ey, z) — r(2).
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We will study the behaviour of ©* when € goes to 0.

If the conductivity coefficient is small [in the sense there exists some
constant C* such that 0 < C* < 400 and 565 — C~], then u¢ tends in a
convenient topology to the solution u of the problem:

(1. ) 2,

2(0,t) = 0 on {0} x (0, T)
u(4,t)=00n £x(0,7)
u(z,0) = g(2) on Q x {0}
where the functions f and § are defined by:
f(z,8) = £(0,2,1),§(2) = d(0,2) — r(2).
This result is obtained under the hypotheses:
i)  (z1,22) — f(z1,72,2,t) is continuous
for almost (2,t) € (0,£) x (0,T)
(1.6) i) (z,t) — f(z1, 2, 2,t) is measurable for any(z;,T2) € w
iii) |f(z1,22,2,t)| < F(z,t) for almost z,,z, and any z,t,
with F' € L?((0,2) x (0,T)).

(1) (21,z2) — d(z1, T2, 2, t) is continuous

for almost z € (0,¢).

(1.7) { i) z-—d(z,,2,,2) is measurable for any(z;,z;) € w

iii) |d(z1,%2,2)| < D(2) for almost z,,z, and any z,

{ with D € L*((0, £)).

Turning back to the temperature +¢ in the thin rod, this result means that

in some sense (see section 4), v* tends to the solution v of the problem:
% a . 'f“f'c* =f(z,t)in (0,8) x (0,T)

(1.8) v(0,t) = ag on {0} x (0,7)

v(¢,t) = a, on £ x (0,T)

v(z,0) = g(z) on (0,£) x {0}
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where:

H . |aUJI 'S 2 Iaw| *
f(z,¢t) —f(z,t)-f-—l-JC I—f(O,z,t)+|—w|-C I

9(2) = §(2) + r(z) = d(0, 2).

£
In the case where k¢ is large [that is if - — +o00] we show that u*
tends in a convenient topology to u(z) = I —r(z).
Turning back to the solution ¢ of initial problem (1.1) we show that
in some sense, (section 4) v¢ tends to the constant function I.
We obtain this last result assuming hypotheses (1.6) and (1.7) where
f is moreover assumed to satisfy:

(1.9) feIL*x(0,T)).

This hypothesis will be used in conjunction with the maximum principle

in order to obtain an L™ a priori-estimate on u°. .
Note that the limit equation (which corresponds to the situation

where the rod is infinitely thin) is posed on the segment (0, ¢), and that

the limit u does not depend on z;, Ta. Bl
Wl ;
In addition note that in (1.5), the term -—']wl C'u appears In

16|

the left hand side of the equation and the source term ——Iw—lc'(r(z) -1)

appears in the right hand side.

This last term takes into consideration the temperature I of the bath.
If k¢ is too small (k* << &, i.e. C* =0) these effects are not seen at the
limit. .

When k¢ is large, (k/e — +00) the initial condition on u° is 1'gnored
and only the exterior bath is determinant since u = I — r(2) in this case.
This result corresponds formally, to take C* = +00 in equation (1.5).

The method employed to study this problem (passing to a fixed do-
main by an homothety in certain directions) has been widely used in
recent years for studying various problems in elasticity; see eg. [1,3,4,5,6].
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Note that the weak formulation of problem (1.4) is

( ;t / “(z,t)v(z)dz + = / V'ut.V'udz+
T+ — /'yu yvdo =
(1.10) <
= _.I"E_ (r(z) - I)fyvda+/f(sy,z,t)vdm. YveV
Cn Q

u*(z,0) = ()

where V = {u € H'(Q),u/Tp = 0} and v denotes the trace application
from H'(Q) to L(T).

We deduce easily from the theorem of J.L. LioNs (see [2]; [7]) the
following result:

LEMMA 1.1. There ezists a unique solution uc of (1.10) such that:

u® € L¥((0,T); V) N C((0, T); L*(Q)), aait € L*([0,T); V")

The paper is organized as follows:

&

In section 2 we study the case where — —s C*",0<C" < +o0.

. . ke
The section 3 is devoted to study the case — — +-o0.

€ .

We show finally in section 4 that the mean value with respect to
(1,72) of the solution v¢ of (1.1) converges to the solution v of prob-
lem (1.8), in the case £ — C" < 400 and converges to I in the case
kE

~ — +o0.

2 - The case k®/e — C*;0 < C* < +00

Suppose that "—: is bounded. Then there exists a constant C which
depends on T and C*, such that:

i) sup/[u‘(m, t)2dz < C
(O'T)n
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T
ii)//@t Pdzdt < C
c N

T
i) — / / V'uf Pdadt < C
€ 0 Q

REMARK 2.2. From these estimates one deduce:

[|u€||L2((o,T);H‘(9)) <C.

PROOF. we take v = uf(t) in (1.10). Integrating with respect to ¢,
we obtain:

t
:,12- / |u‘(x,t)|d:1:+;15 / / V'u(z, 5) *dzds+
Q 00

t

t
13 kt
+//,8i(z, s)|2dxds+—//|'yu5(:z:, s)|’dods =
0z €
4 0y
t

//(T(Z) — Dyuf(z, s)dods+

]
m|& °

+0/n/f(Ey,z,s)u‘(:r,s)dmds+ 1/2h/|ge(:z:)|2da:.

The second member is bounded by:

T t
ke 2 K / / ut(z, )2 dods+
> | [e@-D dods+ 3z | [y (e,
N

0 'y
T t
+1/2//f(ey,z,s)]2d:z:ds+ 1/2//|u‘($,3)|2d17d3+
0N 0N

+1/2/|g‘(m)|2dm.
Q
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As f and d satisfy hypotheses (1.6) and (1.7), we have:
[1g@)dz <2 [ ey, 2)da +2 [ in(a)da <
Q (7] Q

<2 / |D(2)dz + 2 / Ir(z)fdz < C
Q Q

and:
T T

/h/|f(5y,.z',.«s)lzdct:ds5-O/Q/,F(Z,S)lzdwdsS c

0

for some constant C.
Since we assumed that "?E — C*, that is % is bounded, we conclude
using Gronwall’s lemma that:

i) sup/lu‘(x,t)lzd:z: <C
(O'T)Q

we then deduce: r
. Ou* 2
ii) //|$(m,s)| dzds < C -
0 0
and
T
ji) 1/g? / / V' (z, s) Pdzds < C
0

Here C denotes various positive constant which depend on T and C*. a

Now, we establish the following result:

THEOREM 2.3: PASSING TO THE LIMIT. Suppose. that %— —C",
0<C" <+

Then the solution u¢ of (1.10) converges weakly in L2((0,T); H(S2))
to the unique weak solution u of (1.5); furthermore,

u € C((0,T); L*(0, &) N LX((0, T); HX(0, 8)) .
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PROOF.  Since u¢ is bounded in L2((0,7); H*(5?)) (Remark 2.2),
.there exists a subsequence u* wich weakly converges to some 4 in
L2((0, T); H'(%2)).

Since we will see that 4 is unique, we will actually obtain that the
whole sequence u® converges to 4 and we thus drop the subscript k.

We see by proposition 2.1, iii) that V'u® tends to 0 strongly in
L2((0,T); (L*(€2))?), and then V' = 0. Therefore % can be identified
with a function u of L%((0,T); H'(0,£)) by:

iy, z,t) = u(z, ).
On the other hand, uf.; = 0 implies that @r, = 0.
Then u € L2((0,T); H3(0, £)).

Consider now v € D(0,¢) and ¢ € D(0,T). Take vy as a test function
in equation (1.10) and integrate by parts with respect to t. We obtain:

T

—//%aw

+— //'yu 'yv<pdadt-———// (r(z) = Iyv.pdzdi+

0 Ly

+ / / f(ey, z, t)vpdzdt .
° O

Using hypothesis (1 6), the weak convergence of uf to @ in
L*((0,T); H'(2)), and % —'C‘ we obtain after passing to the limit
in the last equation:

T T
o ot Ov

- / / ave'(t)dzdt + — « —(t)dzdt+
0/‘[ 8z 0Oz

/ / Ylyvpdodt = —C* / / (r(2) = Iyvpdzdi+

0In

+/T/f(0,z,t)v<pdzdt.
0 f
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Since 4 depends only on z and ¢, the last equation becomes:

|w|//uv(p ydzdt + |w |/'/3u v t)dzdt+

T ¢
+C’|8w|//uvgodzdt=—C‘|6w|// (r(2) = Nupdzdt+
00 00

T ¢
+//f(0,z,t)mpdmdt.
00

We now remark that the tensorial product D(0,¢) ® D(0,T) is dense
in D[(0,£) x (0,T)]. We thus obtain:

o Ctlﬁ' == 'la“;'< (2) = D)+ f(=,t) in D[(0,0) x (0,T)].

As u is an element of L2((0,T); H3(0,£)) this equation shows that
& ¢ L2((0,T); H1(0,¢)), and therefore u € C([0,T); L*(Q)). In order
to look of the initial condition on u, we introduce for a fixed v in HE(0, £),
the following function:

Z5(8) = f (2, t)(2)dz

Q

Since u® € C([0,T]; L*(2)), we have Z¢ € C([0,T};IR). On the other
hand, the equation:

Ou® Ov ke
—Zf t) = - E €mvdz—
Cn
ke
s (r(z)—I)’yud:z:-}—/f(ey,z,t)vd:l:
Ty Q

shows that 42~ is bounded in L2(0, £).
We then deduce that Z¢ tends uniformly to some Z in C ([0,T}).
But if ¢ € D(0,T), we have:

T T L
(Z¢, o) pr vy — | [ 6z, )v(2)p(t)dzdt = |w| [ [ u(z, t)v(2)e(t)dzdt
o] i
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¢
which implies that: Z(t) = |w| [ u(z,t)v(2)dz, Vt € (0,T).
. 0

In particular, we have
e

/g (2)dr — Z(0) = |w I/u(z,O)vdz

0

On the other hand, we have:

/g dm—-»/g(x z)dz = le/g z)v(z)dz

So:

14

Z(0) = w| / (2,0)0(2)dz = || / 2)dz, Wue HN0,0).

0

We deduce that: u(z,0) = §(z) for almost all z € (0, ).
This completes the proof of theorem 2.3.

3 - The case k°/e — +00

In this case the proof used in section 2 does not work. In order to
establish analogous estimates to those given in proposition 2.1, we need

the following lemma which is based on maximum principle.

LEMMA 3.1. Assume that f and d satisfy hupotheses (1.6), (1.7)
and (1.9). Then there erists some constant C which depends on T, such

that the solution uc of (1.10) satisfies.

lullLeoax oy S C
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PRrROOF. Set

A = Max {[ld + rleogeyi I = (21200003 /1] 0,20}

and define: w® = ufe™*,

It is clear that w* satisfies the equation:

4 / wvdz + A / wvdz + 1 / V'we . V'vdz+
dt J J €? J

+‘/awe-@d:c+ﬁ we.yvdo =
8z 0z e J WA=

Ty

kC
=~ % [0 - Do+ [ fley,tpas],  wev,
Iy Q
wich is conveniently rewritten as:
d
p /(w‘ - Avdz + A /(w‘ — Avdz + AZ/vdx+
Q Q Q
1
+3 / V'(w® — X).V'vudz+
Q
d, . Ov k¢ .
+/az(’” - ghds+ /’y(w — \)yudo+
Q T'n
ke —at kE
+—€- /A7vdc =e [— — /(r(z) — I)yvdo+
Ty ¢ Y
+/f(€y, z, t)vdx], YveV,
Q

Remark now that A > 0 and wir,, = 0, so the positive part (w* — ’\)_+ is
an element of V. Then we can take v = (w* — A)* in the last equation,
to obtain:



(13] Heat propagation in a thin rod 161

1d [ - a2de < e - K
2dt!“”'"”+dw§eA[—E}{U@)—Dﬂw“—n+@+
€ __ + € + k¢
+h/f(sy,z,t)(w A) da:]—)?([(w - A)tde - ?r{)q(we —Atdo <

<& [ (1r2) = Thumon = A)tws = 2y*dot

Cn

+/ (||f”L°°(n) - Az)(wf — Atz <0
Q

according to the choice of A.
So, we have:

/(wE — N (z,t)dx < /('we — \)**(z,0)dz .
Q 2

Since (w® — A)*(0) = (uf — A)*(0) = (d(ev, 2)+r(z) - N =0
we obtain:
wt< A aein QX (0,T)

This implies that: u¢ < A’ a.e. in Q% (0,T)
A similar calculation shows that:

ut > =27 ae in Qx(0,T)

This completes the proof of lemma 3.1.
In the following, we set for fixed 7> 0:
Q" = wx]n)£ - 71[
and T} = Bwx|n, & —nl-
We also define: @€ = v +1(2) =1 where u¢ denotes the solution of

(1.10).
We verify easily that u® satisfies the equation:
d 3 2 1€ X7 _6_175 _ gl'_ @
az/uvdx+1/e /Vu.Vvdw+f(az dz)azd:c-}-
(31) Q Q Q

L.E
+-k— /'yﬁ‘.'yvda=/f(ey,z,t)vda:, YweV
€y R



162 A. SILI (14]

We have then the following estimates:

PropoOsITION 3.2. If % — 400 and f and d satisfy the hypotheses

(1.6), (1.7) and (1.9), there is a constant C(n) depending on  and T
such that:

T
i) / / V'@ Pdzdt < €2C(n)

0 an
T a_f
i[5 )
0 Qn
ke T
i) = / / @ Pdodt < C(n)
0 p’lb

PROOF. Let o some function of D(0, £) such that a = 1 on |1, £ — 7.
The function 4°a*(z) belongs to V since #€a?(z) = 0 on I'p. We thus
can use v = @°a’(z) as test function in equation (3.1). We obtain:

1d
2dt/|u e?(2)dz + 1/ /lV' **a?(2)dz+
Q

+/ (%f - Z*:)( 28auf + 20/ uf )dz+

+?E/|»yu| a?(2)do = /ny,Zt o*(2)dz .

This equation can be rewritten as:

2dt/luslz 2(2)dz + = /[V'“‘|2 *(2)dz+
+Q/az(z)|—87| do+ = / v Pe?(2)do =
=/f(ey, z,t)u°a?(z)dz — 2/

+/ 26udrd +/2aa dd:z:
dz
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We now use Young’s inequality and the L™ estimate obtained in lemma
3.1 to obtain:

T E
\—Q/Oza’ﬁ‘au dz
Q

oz

a? | 0uc |2

< i H-el2 <
_/4 55 d:c+/4a|u|da:_
2 Q

ous |2
< 1/4/a2(z)|-g‘z—| dz + C(a)
1)
where C(a) denotes some constant depending on a. On the other hand:

0wt dr 1 [ ,01°
2 ar < L
/a 0z dzdm—ZQ/alc’)z

Q

2 1 [dr ,
dm+§Q/‘E;‘ o?(z)dx

and: g o
2/04(1’115-7;:1:1; < 2||ﬁ‘||Loom)|/aa'd—da:\ < C(a)
dz 4 z
Q

We finally see that there exists a constant C(a) such that:
d 1 17€1202( 2)d
—/1ﬁ‘|2a2(z)dz+ L [1vaed(2)de+
dt J ety

L
2
1 o1 |2 l»‘_sf (5€)2al(z)de < Cla).
i a5 et T [ 2@
Q

Cn

This implies the bounds i), ii), iii), of proposition 3..2. oo
We can now prove the analogous of theorem 2.3 in the case - .

THEOREM 3.3. Assume that k¢/e tends to +00 @S € tends tol;) asz
that f and d satisfy hypotheses (1.6), (1.7) end (1.92. ’_’f"hen, for all fize
n > 0,uf converges weakly to I — r(z) in L*(0,T: H ()2

REMARK 3.4. Proposition 3.2 gives an estimate of ‘ u¢ in
L2((0,T); HY(Q")) for n > 0 fixed. We can not hope to obtain an els(;
timate of u¢ in L2((0,T); H*(Q)). Indeed, if this does occur, we shou
have u¢ — u weakly in L2((0,T); H'(Q)) and then since u¢ = 0 on I'p,
we must have u = 0 on I'p and thus u(0) = u(¢) = 0. But theorem 3.3
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asserts that u = I — 7(z) and this function does not satisfy in general
those boundary conditions, except if ag = a, = I.

PROOF OF THEOREM 3.3. By proposition 3.2, @¢ is bounded in
L2((0,T); H'(2")). Therefore, there exists a subsequence %* and some
@ such that 4 weakly converges to % in L2((0,T); H(Q")). We will see
that # is unique and we can then drop the subscript k. We obtain from
the estimate i) of proposition 3.2 that:

V& =0in Q" x (0,7T)
So @ can be identified to some function @ which only depends on z and t;

u(z,t) = 4(z,t) on (0,T) x Q
Estimate iii) shows that:

T
//l’)‘ﬁe|2d0’dt——>0 when e—0

n
OFN

and (%) — (t) in L*((0, T); L*(T'})) weakly, implies that (i) = 0 0B
'y x (0,T).

But 1(i(y, 2,1)) = a(z, 1)

We then have 4(z,t) =0 a.e. on ]0,£[x(0,T)

Since @° = uf + r(z) — I, we obtain:

u* — I —r(2) weakly in L?((0, T); H*(Q")), for all fixed 7 > 0-

4 - Turning back to the original problem (1.1)

In the preceeding sections we have studied the convergence of the
solution u¢ of (1.4) wich is posed on the fixed domain £ x (0, T). We
are now interested in seeing in what sense the solution v of the original
problem (1.1) converges and what is its limit.

Recall that by definition of u¢ , we have:

u®(z,t) = v%(ey, 2,t) — 7(2)
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We define: wf(z,t) = 1 [ v*(y, 2, t)dy.

THEOREM 4.1.
i) If k/e — C*, 0 < C* < +00, the sequence w(z,t) converges
weakly in L2((0,T) x (0,£)) to the solution v of problem (1.8).

it) If k€ /e — +o0,ws(2,t) converges weakly in L%((0,T) x (0,8)) to
I.

PROOF. Let ¢(z,t) € L*((0,T) x (0,).
By the definition of w¢,v* and u¢, we have:

|

T ¢ ;T
//ws(z,t)tp(z,t)dzdt= ///v‘(y,z,t)cp(z,t)dydzdt=
00 0D

w€

T €
- O//f(us(y/&%t)+r(z))<p(z,t)dydzdt=

= 2
|w|€ 0 we

1
|

T
/ / (WY, 2,t) + 7(2))p(z: t)dy'dzdt =
0 Q

In the case where kf/e — C* < +00, theorem 2.3 implies that the last
term converges to:

T
i / /(u(l,t) +1(2))p(2, t)dy'dzdt =
wt
T
/
But v = u(z,t) + r(z) is the unique solution of problem (1.8).

In the case where k* /e — +00, theorem 3.3 and proposition 3'i im—.
ply that: u® — I — r(z) weakly * in L>®(Q x 0,T)). We thus have:

¢
/(u(z, t) + r(2))e(2, t)dzdt.
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