Periodic solutions of a class of Hamiltonian systems, with any prescribed minimal period less than the largest fundamental period of the linear part

I. SCARASCIA

RIASSUNTO: In questo lavoro si prova l'esistenza di soluzioni periodiche di periodo minimo T per ogni $T \in [0, 2\pi/\omega_1)$ per un sistema Hamiltoniano di tipo (H).

ABSTRACT: In this paper one proves the existence of T-periodic solutions with minimal period T for any $T \in [0, 2\pi/\omega_1)$ for a Hamiltonian system of type (H).

KEY WORDS: Hamiltonian systems - Periodic solutions - Critical points of Mountain-Pass type.

A.M.S. Classification: 70H05 - 34C25

Let us consider the following Hamiltonian system

$$(H) \begin{cases} \dot{y}_i(t) = \frac{\partial}{\partial x_i} H(x_1(t), \dots, x_N(t), y_1(t), \dots, y_N(t)) + \omega_i \ x_i(t) \\ -\dot{x}_i(t) = \frac{\partial}{\partial y_i} H(x_1(t), \dots, x_N(t), y_1(t), \dots, y_N(t)) + \omega_i \ y_i(t) \end{cases}$$

$$i = 1, \dots, N$$

where H is a strictly convex C^2 -function on \mathbb{R}^{2N} having a superquadratic growth and $0 < \omega_1 \le \ldots \le \omega_N$. In [3] GIRARDI and MATZEU proved the

existence of a T-periodic solution of (H) with minimal period T for any $T<\frac{2\pi}{\omega_N}$. In the following, it was shown that a T-periodic solution of the same kind, with minimal period T, can be found also for $T\in(\frac{2\pi}{\omega_j}-\varepsilon,\frac{2\pi}{\omega_j})$, $j\in\{1,\ldots,N-1\}$, for $\varepsilon>0$ sufficiently small in case that $\omega_j/\omega_i\notin\mathbb{Q}$ (see [4]), or if $\omega_j/\omega_i\notin\mathbb{N}$ and a further suitable condition on H'' is satisfied (see [5]).

In this paper we are able to state the existence of T-periodic solutions of (H), with minimal period T for any $T \in [0, \frac{2\pi}{\omega_1})$ if one assumes a condition of the following type

$$\omega_N < r(\omega_1)\omega_1$$

where $r(\omega_1)$ is a suitable function of ω_1 valued in $(1, +\infty)$ which can be precisely evaluated in dependence of the growth superquadratic coefficients of H. The result relies on two basic tools: firstly a suitable version of the duality principle by CLARKE - EKELAND [2] introduced in [3] for any period $T \neq 2k\pi/\omega_j$, which is generalized, in the present paper, for any T>0; secondly, some energy estimates which are essentially consequences of the Mountain Pass nature of the solutions found by the duality method and of some properties of the Fenchel transform of a convex function.

Let us consider the following Hamiltonian system

$$(H) J\dot{z} = H'(z)$$

where J(x,y)=(y-x) $\forall (x,y)\in \mathbb{R}^{2N},\ H(z)=\frac{1}{2}\langle Q(z),z\rangle+\widehat{H}(z),$ Q is the $2N\times 2N$ matrix $\begin{pmatrix} Q_0 & 0 \\ 0 & Q_0 \end{pmatrix}$ with $Q_0=\begin{pmatrix} \omega_1 & & \\ & \ddots & \\ & & \omega_n \end{pmatrix}$ and $0<\omega_1\leq \omega_2\leq \ldots \leq \omega_N,\ \widehat{H}\in C^2(\mathbb{R}^{2n},\mathbb{R})$ is strictly convex and has a superquadratic behaviour.

One can state the following

Theorem 1. Let us suppose that \widehat{H} verifies the following assumptions

(1)
$$\widehat{H}(z)|z|^{-2} \longrightarrow 0$$
 as $|z| \longrightarrow 0$

(2)
$$\exists r > 0, \qquad \beta > 2 \mid \langle \widehat{H}(z), z \rangle > \beta \widehat{H}(z) \quad \text{if} \quad |z| > r$$

Then for any T > 0 there exists a T-periodic solution of (H).

PROOF. The proof of the existence of T-periodic solutions of (H) for $T \neq \frac{2k\pi}{\omega_i}$, $k \in \mathbb{N}$, $i \in \{1, \ldots, N\}$ was shown in [3]. It is based on the use of a suitable version of the dual principle by CLARKE - EKELAND [2] related to the consideration of the critical points of a "dual" functional given by

$$F_T(v) = \int\limits_0^T \widehat{G}(v) - \frac{1}{2} \int\limits_0^T \langle L_T^{-1} v, v \rangle$$

where $L_T = J \frac{d}{dt} - Q \colon H^{1,\alpha}_{\neq} \longrightarrow L^{\alpha}$ with

$$H_{\neq}^{1,\alpha} = \left\{ z \in H_{\neq}^{1,\alpha}(\mathbb{R}^{2N}\mathbb{R}) \mid z(0) = z(T) \right\} \qquad \alpha = \frac{\beta}{\beta - 1}$$
$$L^{\alpha} = L^{\alpha}(0, T; \mathbb{R}^{2N})$$

and \widehat{G} is the Fenchel transform of \widehat{H} that is

$$\widehat{G}(v) = \sup \left\{ v \cdot z - \widehat{H}(z) \mid z \in \mathbb{R}^{2N} \right\}$$

In case that $T=\frac{2k\pi}{\omega_i}$ F_T is not well defined, since L_T is not invertible. Neverthless, in this case, one can consider the (proper) subspace of $H^{1,\alpha}_{\neq}$ defined as $\widetilde{H}^{1,\alpha}_{\neq}=H^{1,\alpha}_{\neq}\cap R(L_T)$, where $R(L_T)=$ range of $L_T=(\mathrm{Ker}(L_T))^{\perp}$ and the restriction \widetilde{L}_T of L_T on $\widetilde{H}^{1,\alpha}_{\neq}$, so \widetilde{L}_T is a bijection from $\widetilde{H}^{1,\alpha}_{\neq}$ into $R(L_T)$. Then one defines the "dual" functional \widetilde{F}_T on $R(L_T)$ as

$$\widetilde{F}_T(v) = \int\limits_0^T \widehat{G}(v) - rac{1}{2} \int\limits_0^T \langle \widetilde{L}_T^{-1} v, v
angle$$

One can check that a duality principle holds for the functional \widetilde{F}_T in the sense that, if $u \in R(L_T)$ and $D\widetilde{F}_T(u) = 0$, then, for a suitable $u_0 \in \operatorname{Ker}(L_T)$ one has that

$$(3) z = \widetilde{L}_T^{-1} u + u_0$$

is a T-periodic solution of (H).

[Indeed the criticality of u for \widetilde{F}_T means that

$$\langle \widetilde{L}_T^{-1} u, v \rangle = \langle \widehat{G}(u), v \rangle \quad \forall v \in R(L_T)$$

that is, for a suitable $u_0 \in \text{Ker}(L_T)$, one has

$$\widehat{G}'(u) = \widetilde{L}_T^{-1}u + u_0$$

so, using the very definition of \widetilde{L}_T and the conjugacy property between \widehat{H} and \widehat{G} , one verifies that z given by (3) is a T-periodic solution of (H)].

At this point, as in [3], one suitably modifies the Hamiltonian \widehat{H} (let us still call \widehat{H} the "modified" Hamiltonian function) in such a way that \widehat{H} satisfies some further suitable conditions of superquadratic growth and such that any T-periodic solution of the "modified" Hamiltonian system is a T-periodic solution of (H) too (for details see §5 of [3]).

One can verify that, as in the case $T \neq \frac{2k\pi}{\omega_i}$ for any $k \in \mathbb{N}$, $i \in \{1, \ldots, N\}$, with L_T replaced by \widetilde{L}_T , the functional \widetilde{F}_T verifies all the assumptions of the Mountain Pass Theorem by Ambrosetti and Rabinowitz, namely

MP1) $\tilde{F}_T(0) = 0$ and there exists ρ such that $\tilde{F}_T(v) > 0$ if $\|v\| < \rho$

MP2) \widetilde{F}_T verifies the Palais-Smale condition

MP3) \tilde{F}_T is negative at some point of $R(L_T)$

The proof is completely analogous to that related to the case $T \neq \frac{2k\pi}{\omega_i}$ $\forall k \in \mathbb{N}, i \in \{1, ..., N\}$, the main difference is in the proof of (MP3) which is based on the consideration of the eigenvalues of \widetilde{L}_T^{-1} . They are given by

(4)
$$\lambda_{h,j} = \frac{T}{2h\pi - T\omega_j}$$
 where $k \in \mathbb{N}, \quad j \in \{1, \dots, N\}$

with the obvious exception of the pair (h, j) = (k, i): this is the unique difference with the case $T \neq \frac{2k\pi}{\omega}$.

Now let us investigate about T-periodic solutions of (H) having minimal period T. In [3] it was shown that, for any $T<\frac{2\pi}{\omega_N}$, there exists a T-periodic solution of (H) with minimal period T. Under suitable assumptions on ω_i 's it is possible to state that for any $T<\frac{2\pi}{\omega_1}$ there exists a T-periodic solution of (H) with minimal period T. More precisely one has the following

THEOREM 2. Let \widehat{H} verify (1), (2) and

(5)
$$\widehat{H}(z) \ge a_1 |z|^{\beta} \quad \forall z \in \mathbb{R}^{2N}, \qquad a_1 > 0$$

(6)
$$\widehat{H}(z) \le a_2 |z|^{\beta} \quad \forall z \in \mathbb{R}^{2N}, \qquad a_2 > 0$$

(7)
$$\langle \widehat{H}'(z), z \rangle \ge \beta \widehat{H}(z) \quad \forall z \in \mathbb{R}^{2N}$$

$$(8) \qquad \widehat{H}'(z) \le a_4 |z|^{\beta - 1} \quad \forall z \in \mathbb{R}^{2N}, \qquad a_4 > 0$$

(9)
$$\langle \widehat{H}''(z)\xi, \xi \rangle \le a_3 |z|^{\beta-2} \quad \forall z \in \mathbb{R}^{2N}, \\ \forall \xi \in \mathbb{R}^{2N}, \quad |\xi| = 1, \quad a_3 > 0$$

Moreover let

$$(10) \omega_N < r(\omega_1)\omega_1$$

where $r(\omega_1) = \min\{2, (1-c)^{-1}\}\$ with $c = f(a_1, a_2, a_3, a_4, \beta) \Big(\frac{\omega_1}{2(a_2 + \omega_1)}\Big)^{\frac{\beta}{2} - 1}$ and f is a suitable positive function of the coefficients a_1, \ldots, a_4, β . Then for any $T < \frac{2\pi}{\omega_1}$ there exists a T-periodic solution of (H) having minimal period T.

REMARK 1. From (10) it follows that in the interval $\left(\frac{2\pi}{\omega_N}, \frac{2\pi}{\omega_1}\right)$ there are points of the type $\frac{2k\pi}{\omega_i}$ only for k=1.

PROOF OF THEOREM 2. First of all we recall that the result was already shown in case that $T<\frac{2\pi}{\omega_N}$ in [3], so we can limit ourselves to the case

$$(11) T \ge \frac{2\pi}{\omega_N}$$

Let z be the solution given by Theorem 1 and let $u=L_T(z)$ (with L_T replaced by \tilde{L}_T if $T=\frac{2\pi}{\omega_i}$ for some $i\in\{1,\ldots,N\}$) the corresponding critical point of Mountain Pass for the dual functional. From now on we use the same notation L_T for all T. We proceed by steps.

Step 1. An estimate from below for $\langle \widehat{G}''(x)y, y \rangle$ $x, y \in \mathbb{R}^{2N}, x \neq 0$

First of all let us prove some properties of \widehat{G} .

By taking into account (5) an easy calculation yields

(12)
$$\widehat{G}(v) \leq a_6 |v|^{\alpha} \quad \forall v \in \mathbb{R}^{2N}, \qquad \alpha = \frac{\beta}{\beta - 1}$$

with a_6 given by

(13)
$$a_6 = \frac{a_1(\beta - 1)}{(a_1\beta)^{\beta/\beta - 1}}$$

and an analogous argument shows that from (6) it follows

(14)
$$\widehat{G}(v) \ge a_7 |v|^{\alpha} \quad \forall v \in \mathbb{R}^{2N}$$

with a_7 given by

(15)
$$a_7 = \frac{a_2(\beta - 1)}{(a_2\beta)^{\beta/\beta - 1}}$$

Moreover it is easy to check that from (7) it follows

(16)
$$\langle \widehat{G}, (v), v \rangle \leq \alpha \widehat{G}(v) \quad \forall v \in \mathbb{R}^{2N}$$

At this point using (5) and (7) one has $|\widehat{H}'(z)| \geq \beta a_1 |z|^{\beta-1}$ from which, taking into account that $\widehat{G}' = (\widehat{H}')^{-1}$, it follows

$$|\widehat{G}'(v)| \le a_5 |v|^{\alpha - 1}$$

with a_5 given by

(18)
$$a_5 = (\beta a_1)^{1/\beta - 1}$$

Now let us estimate $\langle \widehat{G}''(x)y, y \rangle$ for $x, y \in \mathbb{R}^{2N}$, $x \neq 0$. Let $z = \widehat{G}'(x)$. The relation $\widehat{G}''(x) = (\widehat{H}'')^{-1}(\widehat{H}'(x)) \ \forall x \in \mathbb{R}^{2N}$ and (9) yield

(19)
$$\langle \widehat{G}''(x)y, y \rangle \ge \frac{1}{a_3} |z|^{2-\beta} = \frac{1}{a_3} |\widehat{G}'(x)|^{2-\beta}$$

and from (17) it follows $|\widehat{G}'(x)|^{2-\beta} \ge \frac{1}{(a_5|x|^{\alpha-1})^{\beta-2}}$ so (19) becomes

$$\langle \widehat{G}''(x)y,y\rangle \geq \frac{1}{a_3} \frac{1}{(a_5)^{\beta-2}|x|^{(\alpha-1)(\beta-2)}} = (a_3)^{-1}(a_5)^{2-\beta}|x|^{\alpha-2}$$

and putting $a_8 = (a_3)^{-1}(a_5)^{2-\beta}$ one obtain

(20)
$$\langle \widehat{G}''(x)y, y \rangle \ge a_8 |x|^{\alpha - 2} |y|^2 \quad \forall x, y \in \mathbb{R}^{2N}, \quad x \ne 0, \quad a_8 > 0$$

STEP 2. An estimate from below for $\int_0^s \langle \widehat{G}''(u)v, v \rangle$,

$$v \in L^2(0,s), \qquad s \in [0,T)$$

Using (8), (17) and arguing as in [5] one has

$$|u(t)| \le a_4 (2/\omega_1)^{(\beta-1)/2} \left(a_2 + (\omega_N/2) \right)^{(\beta-1)/2} \frac{a_5^{\beta-1}}{T} \int_0^T |u(t)| =$$

$$= \frac{a_4 a_5^{\beta-1}}{T} \left(\frac{2a_2 + \omega_N}{\omega_1} \right)^{(\beta-1)/2} \int_0^T |u(t)|$$

so, by Hölder's inequality,

(22)
$$\sup_{t \in [0,T]} |u(t)| \le \frac{a_4 a_5^{\beta-1}}{T} \left(\frac{2a_2 + \omega_N}{\omega_1}\right)^{(\beta-1)/2} T^{1/\beta} \left(\int_0^T |u(t)|^{\alpha}\right)^{1/\alpha}$$

At this point, taking into account the Mountain Pass nature of u, the fact that the maximum eigenvalue of L_T^{-1} is given by $\frac{T}{2\pi - T\omega_j}$ for a suitable $j \in \{1, \ldots, N\}$ and (14), (16), one has

$$(23) \int_{0}^{T} |u(t)|^{\alpha} \leq \frac{1}{(1-\alpha/2)a_{7}} \left(\frac{2-\alpha}{\alpha}\right) \left(\frac{\alpha a_{6}}{2}\right)^{\frac{2}{(2-\alpha)}} \left(\frac{(2\pi - T\omega_{j})^{\frac{\alpha}{(2-\alpha)}}}{T^{\frac{2(\alpha-1)}{(2-\alpha)}}}\right)$$

so, putting

(24)
$$d = \frac{1}{(1-\alpha/2)a_7} \left(\frac{2-\alpha}{\alpha}\right) \left(\frac{\alpha a_6}{2}\right)^{2/(2-\alpha)},$$

(22) and (23), taking into account that $\alpha < 2$, give

(25)
$$\sup_{t \in [0,T]} |u(t)|^{\alpha-2} \ge \left(\frac{a_4 a_5^{\beta-1}}{T^{(\beta-1)/\beta}}\right)^{\alpha-2} \left(\frac{2a_2 + \omega_N}{\omega_1}\right)^{(\beta-1)(\alpha-2)/2} d^{(\alpha-2)/\alpha}.$$

$$\left(\frac{(2\pi - T\omega_j)^{\alpha(\alpha-2)/(2-\alpha)}}{T^{2(\alpha-1)(\alpha-2)/(2-\alpha)}}\right) \ge$$

$$\ge f(a_1, a_2, a_3, a_4, \beta) \left(\frac{\omega_1}{2a_2 + \omega_N}\right)^{\beta/2-1} \frac{T}{2\pi - T\omega_j}$$

where f can be evaluated taking into account (13), (15), (18) and (24). At this point from (20) it follows that, putting $b = a_8 f(a_1, a_2, a_3, a_4, \beta)$ $\left(\frac{\omega_1}{2a_2 + \omega_N}\right)^{\beta/2-1}$, one has

(26)
$$\int_{0}^{s} \langle \widehat{G}''(u)v, v \rangle \ge \frac{bT}{2\pi - T\omega_{j}} ||v||_{L^{2}(0,s)}^{2}$$

STEP 3. The form $Q_s(v)$.

Let us fix s in (0, T/2] and consider the form $Q_s(v)$ defined as

$$Q_s(v) = \int\limits_0^s \langle \widehat{G}''(u(t))v,v
angle - rac{1}{2} \int\limits_0^s \langle L_s^{-1}v,v
angle \quad orall v \in L^2(0,s)$$

where u is a critical point of Mountain-Pass type for the functional F_T and L_s^{-1} has the same definition of L_T^{-1} on the space $L^2(0,s)$. Note that Q_s is well defined on the whole space $L^2(0,s)$ since $s < \frac{T}{2} < \frac{1}{2} \frac{2\pi}{\omega_1} < \frac{2\pi}{\omega_N}$.

We claim that the following condition

(27)
$$Q_s(v) > 0 \quad \forall s \in (0, T/2].$$

is sufficient to guarantee that u has minimal period T, so the solution z itself has minimal period T.

Indeed a possible other period T/m, $m \in \mathbb{N}$, $m \geq 2$, cannot exist for u, since, as a general fact, if s is a period for u, then Q_s has a nontrivial kernel, which is not allowed by condition (27). Therefore the thesis of Theorem 2 will be performed if (27) will be shown.

One can check that the maximum eigenvalue of L_s^{-1} , for $s \in (0, T/2]$, is given by

$$\frac{s}{2\pi - s\omega_N}$$

(look at (4) and take into account that $s < \frac{2\pi}{\mu_N}$) so

(29)
$$\int_{0}^{s} \langle L_{s}^{-1} v, v \rangle \leq \frac{s}{2\pi - s\omega_{N}} \int_{0}^{s} |v|^{2} \leq \frac{T/2}{2\pi - T/2\omega_{N}} \int_{0}^{s} |v|^{2}$$

From (26) and (29) it follows that the form Q_s , for $s \in (0, T/2]$, verifies the estimate

$$\begin{split} Q_s(v) &\geq \frac{bT}{2\pi - T\omega_1} \|v\|_{L^2(0,s)}^2 - \\ &- \frac{T/2}{2\pi - T/2\omega_N} \|v\|_{L^2(0,s)}^2 \quad \forall v \in L^2(0,s) \end{split}$$

then a sufficient condition in order that Q_s is positive definite is $\frac{bT}{2\pi - T\omega_1} - \frac{T/2}{2\pi - T/2\omega_N} > 0$ that is

$$(30) T\left(b\frac{\omega_N}{2} - \frac{\omega_1}{2}\right) < 2\pi\left(b - \frac{1}{2}\right)$$

Now we analyse the two possible alternatives $b > \frac{1}{2}$, or $b \le \frac{1}{2}$

 $1^{st} \ case: \ b > \frac{1}{2}$

Obviously (30) is verified if $b \leq \frac{\omega_1}{\omega_N}$. If $b > \frac{\omega_1}{\omega_N}$, one has

$$T \bigg(b \frac{\omega_N}{2} - \frac{\omega_1}{2} \bigg) < 2\pi \bigg(\frac{b}{2} \frac{\omega_N}{\omega_1} - \frac{1}{2} \bigg)$$

then still (30) is verified since $\omega_1 > \frac{1}{2}\omega_N$.

 2^{nd} case: $b \leq \frac{1}{2}$

The relation (30) can be written as

(31)
$$T\left(\frac{\omega_1}{2} - b\frac{\omega_N}{2}\right) > 2\pi\left(\frac{1}{2} - b\right)$$

By (11) one has

$$T\!\left(\frac{\omega_1}{2} - b\frac{\omega_N}{2}\right) \geq 2\pi\!\left(\frac{\omega_1}{2\omega_N} - \frac{b}{2}\right)$$

then (31) is verified if $\omega_1 > (1-b)\omega_N$.

We can conclude that a sufficient condition in order that $Q_s(v) > 0$ in (0, T/2] is

$$\begin{cases} \frac{\omega_1}{\omega_N} > \frac{1}{2} & \text{if } b > \frac{1}{2} \\ \frac{\omega_1}{\omega_N} > 1 - b & \text{if } b \leq \frac{1}{2} \end{cases}$$
 that is

(32)
$$\omega_1 > \omega_N \left(\max \left\{ \frac{1}{2}, 1 - b \right\} \right)$$