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Sasakian m-hyperbolic locally conformal
Kaihler manifolds
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RIASSUNTO: St studia una classe particolare di varieta Kéhleriane localmente con-
formi e, come principale risultato, si dimostra che lo spazio di ricoprimento universale
di tale varietd é il prodotto di una varietd c-Sasakiane con uno spazio iperbolico di
dimensione dispari.

ABSTRACT: In this paper, we study a particular class of locally conformal Kahler
manifolds and, as main result, we prove that the universal covering space of such man-
ifolds is the product of a c-sasakian manifold with a hyperbolic space of odd dimension.
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1 - Introduction

An almost Hermitian manifold V2" is called locally conformal Kéhler
if its metric is conformally related to a Kahler metric in some neighbour-
hood of every point of V2", Such manifolds have been studied by various
authors (see, for instance, (14], 23], [24], [25], [6], [16]), [8], -.. )-
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Examples of locally conformal Kéhler manifolds are provided by the
generalized Hopf manifolds which are locally conformal Kihler manifolds
with parallel Lee form (see [24] and [25]). The main non-Kéhler example
of such manifolds is the Hopf manifold (see [13], [23]), which is defined

as the quotient
H" = (Cn _ {0})
o AA

where A, is a cyclic group of transformations. Another example of a non-
Kahler compact generalized Hopf manifold is the nilmanifold N(r, 1) x S?,
where N(r,1) =I'(r,1)\ H(r,1) is a compact quotient of the generalized
Heisenberg group H(r,1) by a discret subgroup I'(r,1) (see [6]). Ex-
amples of non-Kéhler compact locally conformal Kéihler manifolds with
non-parallel Lee form are obtained in [22] and [1].

On the other hand, if we denote by 57, the p-dimensional unit sphere
of constant sectional curvature ¢ (¢ € R,c # 0) then, it is well known
that the Calabi-Eckmann manifolds V"™ = §%=1x S+ (n > 1,m >
0) admit a hermitian structure (J, g), where g is the product metric (see
[5]). In fact, assuming n > m + 1, we have (see [5], [23] and [10]):

1. If n =1 and m = 0 then the structure (J, g) is Kahler,

2. If n > 2 and m = 0 then V?**?>™ = V2" and H" are diffeomorphic
and (J, g) is a non-Kéhler locally conformal Kéahler structure and,

3. Ifn > 2 and m > 1 then the structure (J,g) is hermitian but it is
not locally conformal Kahler.

Now, we can consider the product manifold V?"+2m = §%~1 x H2™+,
where H2™*! js the (2m+1)-dimensional hyperbolic space of constant
curvature —c? (c € R,c # 0). Then the manifold V?"+?™ also admits a
hermitian structure (J, g), where g is the product metric. Moreover, we
obtain

1. The structure (J, g) is locally conformal Kahler (see corollary 3.1).
2. There exist 2m unit 1-forms oy, ... , 2y, on V2*+2™ which are inde-
pendient and such that

(1.1) ;o J= Qmtj s Omij© J= —a; , ai(B) =0

2m 1
(1.2) Vw = 2¢ ;(ak ®an) , Vai=—5(®® w)
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forie{l1,2,...,2m} and j € {1,...,m}, where V denotes the Levi-

Civita connection of the metric ¢ and w and B are the Lee 1-form

and the Lee vector field respectively of V2"+2™ (see corollary 3.1).
3. The local conformal Kahler metrics are flat (see corollary 6.3).

In this paper, we study a particular class of locally conformal Kéhler
manifolds which we call sasakian m-hyperbolic locally conformal Kahler
manifolds, with m € IN, m > 0. These manifolds have similar properties
to the locally conformal Kahler manifold S%3~! x HZ™+!. A (2n+2m)-
dimensional locally conformal Kihler manifold (V27+2™ ] g) is said to
be sasakian m-hyperbolic locally conformal Kéhler if there exist 2m unit
1-forms ay,... , a3, on V2*2™ which are independient and satisfy (1.1)
and (1.2), where ¢ = _Jl%ll # 0 at every point. In particular, a gener-
alized Hopf manifold is a sasakian 0-hyperbolic locally conformal K#hler
manifold.

In section 2, we give some results on locally conformal Kéhler, c-
sasakian and c-kenmotsu manifolds. In section 3, we introduce the def-
inition of m-hyperbolic locally conformal Kahler structure on a lLc.K.
manifold. If (J,g) is a l.c.K. structure on a (2n+2m)-dimensional mani-
fold V2+2m and @, ... , (o are independient 1-forms on V?"+2™ then,
we say that (J,g, a1, ... ,qm) is a m-hyperbolic locally conformal Kéhler
structure on V2n+2m if

a;0J = tmyj, Umtj 0 J = —a; je{i,...,m}
dai=—%(a,-/\w) i€{1,2,...,2m}
a(B) =0 ie{1,2,...,2m},

where w and B are the Lee 1-form and the Lee vector field respectively
of Vn+2m_ We prove that the product manifold of a (2n-1)-dimensional
c-sasakian manifold N and a (2m+1)-dimensional c-kenmotsu manifold
M admits locally a m-hyperbolic locally conformal Kahler structure (see
proposition 3.3). Moreover, if the manifold M is the (2m+1)-dimensional
hyperbolic space (H2™+!, (ds?).) then the m-hyperbolic locally conformal
Kihler structure is globally defined and the 1-forms o; (¢ = 1,...,2m)
satisfy (1.2). In section 4, we introduce the definition of sasakian m-
hyperbolic locally conformal Kéhler (sasakian m-hyperbolic l.c.K.) man-
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ifold as a (2n+2m)-dimensional manifold V?*+?™ endowed of a m-hyper-
bolic l.c.K. structure (J,g,a,...,02,) such that the unit 1-forms ¢
(1 = 1,...,2m) satisfy (1.2), where ¢ = _Jl%ll # 0 at every point. In
this section, we characterize the sasakian m-hyperbolic 1.c.K. manifolds
and we obtain some properties of these manifolds (see propositions 4.4
and 4.5). As consequence, we prove that a compact manifold cannot be
a sasakian m-hyperbolic l.c.K. manifold with m > 1 (see corollary 4.1).
In section 5, we study the Riemann curvature tensor R of a sasakian m-
hyperbolic 1.c.K. manifold (V"*?™ J g a,... ,as,). We determine the
vector fields R(X,Y)U, R(X,Y)A; and R(X,Y)V, for all vector fields
X,Y on V#*2™ in terms of oy, u, v = —uo J, A;, U and V, where u
and U are the unit Lee form and the unit Lee vector field respectively of
V242 and A; are the vector fields on V"™ given by o;(X) = g(X, Ai),
1 <@ < 2m (see propositions 5.1 and 5.2). In particular, we obtain ex-
plicit formulas for the sectional curvature of a plane section containing
A;, U or V and for the Ricci curvature in the direction of these vectors
(see corollaries 5.1 and 5.2).

In section 6, we prove that on a sasakian m-hyperbolic l.c.K. man-
ifold (V2% J g,@,... ,0m) the leaves of the foliation F have an in-
duced c-sasakian structure, where § is the foliation on V?"*+?™ given
by u = 0,0; = 0,1 < i < 2m. Then, we say that a sasakian m-
hyperbolic 1.c.K. manifold is sasakian(k) m-hyperbolic locally conformal
Kahler (k € R) if every leaf N of the foliation § is of constant ¢n-
sectional curvature k, where (pn,€n, v, gn) is the induced c-sasakian
structure on N. Finally, using the results of the above sections, we ob-
tain that the universal covering space V2™ of & sasakian m-hyperbolic
Le.K. manifold (V2+2™ J g 0,... ,02,) is the product of a (2n-1)-
dimensional c-sasakian manifold (N, pn, &N, 7N, gn) With the (2m+1)-
dimensional hyperbolic space and we describe the induced sasakian m-
hyperbolic l.c.K. structure (J,3,@,... ,@m) OD 7*"**™ (see theorem
6.1). Moreover, if V2"+2m s a sasakian(k) m-hyperbolic l.c.K. manifold,
then we determine, up to almost complex isometries, the almost Hermi-
tian manifold (V>"*>" 7, g) (see corollary 6.4). In particular, if V2*+2™
is a sasakian(c?) m-hyperbolic 1.c.K. manifold then we have that the lo-
cal conformal Kahler metrics are flat and the manifold V""" is almost
complex isometric to S5~ x H?™*! (see corollaries 6.3 and 6.4).
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2 — Preliminaries

Let V be a C*™ almost Hermitian manifold with metric g, Riemannian
connection V and almost complex structure J. Denote by X(V') the Lie
algebra of C* vector fields on V' and by N; the Nijenhuis tensor of V,
that is,

(2.1) Ny(X,Y) = [JX,JY] - JJJX,Y] = J[X,JY] - [X,Y]

for X,Y €x(V).
The Kdhler 2-form ) is given by

(2.2) QUX,Y)=g(X,JY)
and the Lee 1-form w is defined by
(X) = ()80 X)
v T 'n-1

for X € X(V), where & denotes the codifferential and dim V=2n.

An almost Hermitian manifold (V, J, g) is said to be:

Kdhlerian if VJ = 0; Locally conformal Kdhler (l.c.K.) if every point
z € V has an open neighbourhood U such that the structure (J,e™“g) is
Kihler on U, where 0 : U — R is a real differentiable function on U
(see [14], [23), [24], [6], ... )-

Let (V,J,g) be an almost hermitian manifold with Lee form w and
V the Levi-Civita connection of the metric g. Consider

_ 1
(23)  Tx¥ =VxY - %w(X)Y - %u(Y)X +59(X,Y)B

for X,Y €%(V), where B is the Lee vector field of V given by w(X) =
g(X, B). V is a torsionless linear connection on V, which is called the
Weyl connection of g (see [19]). Moreover, if (V, J, ) is L.c.K. then V is
the Levi-Civita connection of the local metrics e?g (see [23]). In fact, in
(23], I. VAISMAN proves

ProprosITION 2.1. The following are equivalent:
1. (V,J,9) is a Lc.K. manifold.
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2. The Lee form w is closed and
(2'4) -V_xJ =0

for all X eX(V).
3. The Lee form w is closed and

(2.5)
(VxJ)Y = —;-w(JY)X - -;—w(Y)JX _ %g(X, JY)B + %g(X, Y)JB

foral XY €X(V).
4. The Lee form w is closed and

(2.6) d=wAQ , Ny=0.

Among the l.c.K. manifolds, those such that Vw = 0 are called gen-
eralized Hopf manifolds (see [24] and [25]).

On the other hand, let M be an almost contact metric manifold with
metric g and almost contact structure (i, £,n). Then we have

p'=-I+n®¢& n()=1
9(pX,pY) = g(X,Y) —n(X)n(Y)

for X,Y €X(M), where I denotes the identity transformation (see [2] and
[3]). Denote by N, the Nijenhuis tensor of ¢, that is

No(X,Y) = [pX,0Y] - ¢[pX, Y] — o[ X, pY] + ©*[X, Y]
for X,Y €X(M). The fundamental 2-form ¢ of M is given by
(X,Y) =g(X,pY).

An almost contact metric manifold M is said to be c-sasakian (see
[11]), withc € R, c £ 0 if

(2.7) N,+2dn®¢t=0 , dnp=co
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and it is called c-kenmotsu (see [11]) if
(28) N, +2p®E=0 , dp=—2mA¢ , dp=0.

The manifold M is said to be sasakian if it is 1-sasakian.
If (M,9,€,1,9) is a c-sasakian manifold or a c-kenmotsu manifold
then

where L denotes the Lie derivate on M.
Let (H2™+1 (ds?).) be the (2m+1)-dimensional hyperbolic space, i.e.,

Hgm-H = {(.'L’l, v ,$2m+1) € ]R.2m+1/.’172m+1 > 0}

and (ds?). is the Riemannian metric given by

2m+1

> (dzm)? , (c#0).

ds
( (Cx2m+l) i=1

(H?m+1 (ds?),) is a complete simply connected Riemannian manifold

with constant negative curvature —c2.
The vector fields E; (i=1,...,2m + 1) on H2™+! defined by

0
(2.10) E; = (c%2m+1) £,

form an orthonormal basis for this space.
The dual basis of 1-forms is given by

dz;

(211) a; = m

fori=1,...,2m+1.
Then, it is not difficult to prove that

2m

Vooms = —¢) o ®a

i=1
Va; = co; @ aamyy

(2.12)
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fori€ {1,...,2m}, where V is the Levi-Civita connection of the metric
(ds®)..

Let (py2m+1,yamr, Myzm1, gyame1) be the almost contact metric
structure on H>™+! defined by

m
(pHgm-{-l = Z(E; ® Omyi — LDmyi ® CI,') ’ ngm-H = E2m+1

i=1

2
'f’Hzm+1 = Qom41 gHZm-H = (ds )c.

(2.13)

Then (see [12], [7)), the almost contact metric structure (ypyzm+1,
§gzm+1, Nyam+1, Gyamel = (ds?).) on H>™*! ig c-kenmotsu.

Let (M, ¢,£,7, g) be an almost contact metric manifold and z a point
of M. A plane section 7 in the tangent space to M at z, T, M, is called
a p-section if there exists a unit vector X in T, M orthogonal to £ such
that {X, pX} is an orthonormal basis of 7. Then the sectional curvature
Kxox = g(R(X,0X)pX, X) is called a p-sectional curvature.

A c-sasakian manifold is said to be a c-sasakian space form if M has
constant ¢-sectional curvature. Examples of sasakian space forms are
provided by the manifolds $?*~!, R**"! and R x CD"~1. In fact, the
unit sphere §%"~! has a sasakian structure of constant (-sectional cur-
vature k, for all kK > —3 (see [20] and [21]); the real (2n-1)-dimensional
number space R*"! is a sasakian space form with k = —3 [18]; and
the product manifold R x CD"!, where CD"! is a simply connected
bounded complex domain in C"! with negative constant holomorphic
sectional curvature, has a sasakian structure of constant ¢-sectional cur-
vature k, for all k < -3 [21].

Let (M, ,£,7,9) be a sasakian manifold with constant - sectional
curvature k. Put

1 1
V=p,8=ck,n="n, g=75g

where ¢ € R, ¢ # 0. Then, (M,¢',£,7',¢') is a c-sasakian space form
of constant y-sectional curvature kc2. We denote by M(c, kc?) the c-
sasakian manifold with this structure.

In [21], Tanno proves that if (M, ¢,£,7,9) and (M’,¢,€,7,¢) are
(20-1)-dimensional complete simply connected sasakian manifolds of con-
stant -sectional curvature k, then, M is almost contact isometric to M,
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i.e., there exists an isometry F' of M into M’ such that F,o¢p = ¢’ o F,
and F.§ = ¢'. Therefore, by using this result, we deduce

PROPOSITION 2.2. Let M be a (2n-1)-dimensional complete simply
connected c-sasakian manifold with constant @-sectional curvature k.
1. If k> =3c?, then M is almost contact isometric to S**~(c, k).
2. Ifk = -3¢, then M is almost contact isometric to R**™(c, —3c?) =
IRZn—l (C) .
3. If k< -3¢, then M is almost contact isometric to (Rx CD™~1)(c, k).

REMARK. It is clear that the manifold S%"~!(c,c?) is ng"_l (see
section 1).

All the manifolds considered in this paper are assumed to be con-
nected.

3 — m-Hyperbolic locally conformal Kihler structures

In this section, we study a particular class of structures on a l.c.K.
manifold which we call m-hyperbolic locally conformal Kahler structures.

First, we describe the local structure of a c-kenmotsu manifold (see
(12] and [15]). For this purpose, we examine the following example:

Let M be the product manifold L x V, where L is an open interval
(a,b), —0 < a <b < o0, and (V,J',G) is a 2m-dimensional Kéhlerian
manifold. Let E be a nowhere vanishing vector field on L, E* its dual
field of 1-forms and o a positive function on L such that d(ln o) = —2cE*,
with c € R, ¢ # 0. Put

o(@'E, X) = (0,J'X) ,
(31) €= (E1 0) y = (E‘)O)

9((c’'E, X),(V'E,Y)) =0G(X,Y) + a'V,
where a’ and ' are differentiable functions on M, and X,Y € X(V). Then

it is not difficult to check that (M, , &, 7, g) is a c-kenmotsu manifold.
The converse holds locally, i.e.,

PROPOSITION 3.1. [15] If (M*™+}, . €, 9, g) is a (2m+ 1)-dimensio-
nal c-kenmotsu manifold, then the manifold M2™+! is locally the product
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(a,b)x V2™ where (a,b) is an open interval and V?™ is a 2m-dimensional
Kihlerian manifold, on which the structure (p,£,7, g) is given as in (3.1).

Let (N, ¢n,€n, v, gn) be a c-sasakian manifold and (M, @ar, Eary T
gum) a (2m+1)-dimensional c-kenmotsu manifold, with ¢ € R, ¢ # 0. Let
us consider the product manifold V = N x M with the almost hermitian
structure (J, g) defined by:

(3.2) { J(X, X") = (pnX —m(X') €n, ou X'+ v(X) Em)
' 9((X, X"),(V,Y")) = gn(X,Y) + gu (X', Y")

where X,Y € X(N) and X',Y"’ € %(M).

PROPOSITION 3.2.  The almost Hermitian manifold (V, J,g) is a
l.c.K. manifold with Lee form

— Ld
w= —2CcTyMNMm

where mpr : N x M — M is the canonical projection onto the second
factor.

PROOF. Let X,Y be vector fields on N and X', Y’ vector fields on
M. Then:

Ny((X, X, (Y, Y")) =
= (N (X,Y) + 20y(X, Y) € — 2dnae (X', ouY") x—

= 2dnm (e X", Y') &n + (V") (Leyon)X —naa(X') (Leyon)Y +
+ 217N(X) dT’M(Yli EM) Env + 277N(Y) an(&M: XI) €
Nope (X', Y') + 2dnm (X', Y") €rr + 2dnn(on X, Y) En+
+2dnn (X, onY) € + 1 (X) (Lepypr)Y' = v (Y) (Lepytom) X' —
= 200 (X") dnin (€4, Y) aa + 2104 (Y") diw (6, X) €ne)

where N, N,, and N,,, denote the Nijenhuis tensors of J, ¢n and @

respectively and L denotes the Lie derivate operator on N and M.
Thus, from (2.7), (2.8) and (2.9), we obtain that N;((X, X'), (Y, Y’)) = 0.



[11] Sasakian m-hyperbolic locally conformal etc. 51

On the other hand, using (2.2) and (3.2), the Kahler 2-form Q of the
almost Hermitian manifold (V, J, g) is given by

(3.3) Q=nydn + Thebu + 2(whe A TNIN)

where ¢y and ¢, denote the fundamental 2-forms of N and M respec-
tively and where my : V= N x M — N is the projection of V' onto the
first factor. Then, from (2.7), (2.8) and (3.3), we have that:

dQ) = =2¢(mmm) N Q.

Consequently, since 7y is a closed 1-form, we deduce that the almost
hermitian manifold (V, J, g) is L.c.K. with Lee form w = —2c7mymy. 0O

Next, we shall study the l.c.K. structure (J, g) on the product mani-
fold N x M.

PrOPOSITION 3.3. Let (J,g) be the l.c.K. structure given by (3.2)
on the product manifold N x M. Then, for every point (p,q) € N x M
there ezists an open neighbourhood U of ¢ in M and 2m independent
1-forms ay,... ,asm on U, such that:

a4 Tha;0 J=Th0myj, Mmoo J=—mpa; jE{l,...,m}
(34) d(1r{,a,—)=—-%7r{,a,~ Aw, (mha;)(B)=0 ie{l,...,2m}

where my : N x U — U 1is the projection onto the second factor and w
and B are the Lee 1-form and the Lee vector field respectively of N x M.

ProoF. If u = (p, q) is a point of the product manifold V =N x M
then, using proposition 3.1, we deduce that there exists an open neigh-
bourhood U’ = (a,b) x V of ¢, a positive function o and a nowhere
vanishing vector field E on (a,b) such that

(3.5) d(lno) =-2cmy , &m=E,
and the almost contact structure (¢ar, Ear, ar, gag) on U is given by (3.1),

where (V, J', G) is a 2m-dimensional K#hlerian manifold and (a, b) is an
open interval, —oo < a < b < 0.
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Suppose that ¢ = (I,v) with [ € L and v € V. Since (V,J',G) is a
Kéhlerian manifold there exists a coordinate neighbourhood W of v in

V, with coordinates (z,... ,Zsn), such that:
, 0 3] , 8 0
(36) Y05 = o o T

forie{1,...,m}.
Let U be the open neighbourhood of ¢ in M given by U = (a,b) x W.
“From (3.1), (3.5) and using proposition 3.2, we have that:

(3.7) w=mng(d(lno)) , B=-2cky.

Now, define on U the 1-forms o; by
(3.8) a; = @da:"

i€ {1,...,2m}. Then, from (3.6), (3.7) and (3.8), we obtain (3.4). O
The above results suggests us to consider the following particular
class of l.c.K. structure:

DEFINITION 3.1.  Let (V,J,g) be a (2n + 2m)-dimensional l.c. K.
manifold with Lee form w and Lee vector field B, and let oy, .., 2 be
independent 1-forms on V, with m > 0. We say that (J,9,01,... ,2m)
is a m-hyperbolic locally conformal Kdhler (m-hyperbolic l.c.K.)
structure on V if

ajod =my; QmyjoJ=-a; j€{l,...,m}
(39)  do; = -—%(a,-/\w) ie{1,2,...,2m}
a;(B)=0 i€{1,2,...,2m}.

REMARK. If (N,on,én,Nn,9n) is a c-sasakian manifold and
(M, or,Er,M0, 9u) is a (2m+1)-dimensional c-kenmotsu manifold, with
c € IR, c# 0, then, from proposition 3.3, we deduce that for every point
(p,9) € N x M, there exists an open neighbourhood U of ¢ in M and
2m 1-forms ay,... ,0m on U, such that (J, g, 7504,... ,Tho2m) is a m-
hyperbolic 1.c.K. structure on N x U, where (J, g) is the l.c K. structure
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given by (3.2) on the manifold N x M and ny : N x U — U is the
projection onto the second factor:

Now, let H?™*! be the (2m + 1)-dimensional hyperbolic space.
Denote by ay,...,ay, the l-forms on H?>™*! given by (2.11) and by
(pgzm+1, Ey2mer, Myzme1, gyome1) the c-kenmotsu structure on H2m+1
given by (2 13). Then, if N is a c-sasakian manifold and Tyamt1
N x H¥™+1 —, H?m*1 js the projection onto the second factor, we obtain

that

COROLLARY 3.1. The almost Hermitian structure (J,g) given by
(3.2) onto the product manifold N x H2™*! is l.c.K. with Lee form

—_ *
W= 2C7I'Hgm+17']H3m+1 .

Moreover, (J, g,w;[czmﬂal, e ,w;{gmﬂagm) is a m-hyperbolic l.c. K. struc-
ture on N x H**! and we have that

2m
Vw =2c Z(ﬂ';{zmq-x a;) ® (W;,gmﬂ a;)
(3.10) i=1
1
Vﬂ';,czmﬂ o; = —E(W;Igmuai) Qw
fori € {1,...,2m}, where V is the Levi-Civita connection of the Rie-

mannien metric g.

ProoF. The first part of this corollary follows from proposition 3.2.
Let B be the Lee vector field of the product manifold N x HZ™*!.

Then, using (3.2) and proposition 3.2 we have that
(311) B = —2CE2m+1

where E,,., is the vector field on H2™*! given by (2.10).
Therefore, from (2.11), (2.13), (3.2) and (3.11) we obtain that

(J, g, H2m+lal, oy T pama1 agm) is a m-hyperbolic l.c.K. structure on
N x H2m+1 €
Fmally, using (2.12), (2.13) and (3.2), we deduce (3.10). 0

REMARK. In proposition 3.1 we described the local structure of a
c-kenmotsu manifold. It is not difficult to prove that in the particular
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case of the c-kenmotsu manifold (H2™+1, ¢ gamt1, Egams, Nyemi, g 2m+)
such a proposition is globally true. In fact, H2™*+! = R*™ x (0, 00) and
thus it is sufficient to take in (3.1), (J, G) the usual Kahlerian structure
on R*™ and

1 4]

3.12 = , E= 1) ——
( ) 7 (~732m+1)2 (ezz +1)3$2m+1

where Tjn,; is the coordinate on the interval (0,00). Consequently,
from (2.11), (3.8) and (3.12), we also deduce that (J,g, T} amt1Q1y - -

.+ 1 Tyam4102m) 15 & m-hyperbolic L.c.K. structure on the product mani-
fold N x H2m+1,
Now, denote by N; (i = 1,2,3) the following (2n — 1)-dimensional

c-sasakian manifolds of constant ¢-sectional curvature k (see proposition
2.9),

N =8"ek) , No=R™c) , Ny=(RxCD" ) (c,k)

Let (J;, ;) be the almost Hermitian structure on N;x H2™+! (i=1,2,3)
given by (3.2). Then, from corollary 3.1, we deduce that

COROLLARY 3.2. The almost Hermitian structure (J;,g;) onto the
product manifold N; x H™™*! (i = 1,2,3) is Lc.K. with Lee form

—_— *
w= 2C7TH£m+1T)H3m+1 .
Moreover, (J;, Gir Tyami1 01, - - ,7[';{3,,,.,.1(12,-,,) is a m-hyperbolic l.c.K.

structure on N; x Hf"“"f satisfying (3.10).

4 - Sasakian m-hyperbolic locally conformal Kéhler manifolds

The results obtained in corollary 3.1 suggest us to introduce the fol-
lowing definition.

DEFINITION 4.1.  Let (J,g,0y,... ,a0m) be a m-hyperbolic l.c. K.
structure on a manifold V2™ of dimension (2n+2m), such that oy, . ..
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.v+ Qo are unit 1-forms. We say that V2"+2™ 43 o sasakian m-hyper-
bolic locally conformal Kdhler (sasakian m-hyperbolic l.c.K.)
manifold if

2m
Vu=2%a;®q,
(4.1) Z ’

Vo, = -10; Qw

forie {1,...,2m}, where w is the Lee form of V*"+?™ V is the Levi-
Civita connection of the metric g and | = |jw|| # 0 at every point.

If (Vv2rt2m ] g,0q,... ,00n) is & sasakian m-hyperbolic 1.c.K. mani-
fold then V2*+2™ is said to have a sasekian m-hyperbolic l.c. K. structure
(J,g,01,... ,Qom).

We remark that the above definition generalizes the notion of gener-
alized Hopf manifold. In fact, a generalized Hopf manifold is a sasakian
O-hyperbolic l.c.K. manifold.

In this section, our intention is to obtain information about the struc-
ture of the sasakian m-hyperbolic l.c.K. manifolds and we begin by intro-
ducing some of their properties.

Let (V2™ J 9, ¢y, .., 02m) be a sasakian m-hyperbolic l.c.K. man-
ifold and denote by A;, with 1 < i < 2m, the vector fields on V2n+2m
given by

(4.2) ai(X) = g(X, Ai)

for all X eX(V?"+2™). From (3.9) and (4.2), we obtain that
(4.3) JA; = —Anyi , JAmti = A

for i € {1,... ,m}. Moreover,

PROPOSITION 4.1.  On a sasakian m-hyperbolic l.c. K. manifold
VInt2m the vector fields A; and A;, with i # j, are orthogonal.
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Proor. If B is the Lee vector field of V?*+2™ then, from (3.9) and
(4.2), we have that
(Va,01)B = =(Va,w)A;

and thus, using (4.1), we deduce that

(4 -(5)=-(5) Steutar - (5).
ok

Consequently, from (4.4) and since [ # 0 at every point, we obtain
that a,-(A,-) =0.

This completes the proof. O

We also have,

PROPOSITION 4.2. On a sasakian m-hyperbolic l.c.K. manifold the
Lee 1-form has constant norm.

Proor. Let (V?+2™ ] g,a,,..,aom) be a sasakian m-hyperbolic
Lc.K. manifold with Lee 1-form w and Lee vector field B and let X be a
vector field on V**+2™, Denote by | = ||w||. Then, using (4.1) and (3.9),
we get

(V xw)B =0.

On the other hand
(Vxw)B = ldI(X)

and thus, since [ # 0 at every point, we have that di(X) = 0.
Therefore, we deduce that dl = 0 which implies that ! is constant. 0
Let (V242 J g a,...,00m) be a sasakian m-hyperbolic l.c.K.
manifold with Lee vector field B and Lee form w. Then, in the rest
of this paper, we shall use the following notation

«s) t=foll , u=¥ v=3  ye—ues , V=JU

1 l 1) b}
From (3.9), (4.3) and (4.5) we obtain that
U(V) = v(U) = ‘LL(A,') = 'U(A,;) =0

&(U) = ay(V) =0

(4.6)
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forie{l1,...,2m}.
Moreover, if Q is the Kahler 2-form of V2*+2™ then, using that 2 is
nondegenerate and {4.6), we have that

ProprosITION 4.3.  On a sasakian m-hyperbolic l.c.K. manifold
V2n+2m

Q= 9+ 23 (05 A Gmss) + v A )
Jj=1

where ¥ is a 2-form of rank (2n — 2) such that:

P PAuUAVAQ AL Aag, #0
Y(X, A;) =9(X,U) = ¢(X, V)=0

fori € {1,...,2m}.

Next, we give some characterizations of sasakian m-hyperbolic 1.c.K.
manifold.

PrOPOSITION 4.4.  Let (J,g,1,..,0am) be a m-hyperbolic l.c.K.
structure on a manifold (2n + 2m)-dimensional V2*+?™ such that oy, ...
.. ,Qom are unit 1-forms and the Lee form w # O at every point. Then,
(VInt2m ] g 0, .., Com) 15 @ sasakian m-hyperbolic l.c. K. manifold if and
only if | = ||| is constant and one of the following relations holds

2m l
(l) Vu=éZa,-®a,~ Va,-=—§a.~®u
Jj=1
. l 2m l
(i) VU= -2-2%-@,4,- VAi=-;a8U
i=1
(i) VV=—%[J+v®U—u®V+
= l
+ ;(aj ® Am+j — Om+j ® AJ)) VAt = —'2-0.' ® U
v) Vo= Vo = —1oi 8
(IV) V= 51'[) Q; = 9 1

forie{l,...,2m}.
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PRrOOF.
The proposition follows from (2.5), (4.1), (4.3) and using proposition
4.2 and the relations:

Vu= %Vw , ViV = (VxJ)U + J(VxU). 0

Now, we deduce another result for a sasakian m-hyperbolic l.c.K.
manifold V?**?™_ Denote by L the Lie derivate on V2n+2m,

PROPOSITION 4.5.  Let (V2™ J g, a1,... ,(0m) be a sasakian
m-hyperbolic l.c.K. manifold. Then, V is a Killing vector field for the
metric g. Moreover, the following relations hold

47)  [UV]=0, [,4]=0, [A;,4;]=0, [U,A,-]=—-é—A,-

l
(48) Lu.I=O, LvJ=0, LAkJ= ~§(U®Ak —U®Am+k)
l
(49) LAm-HcJ = *’5(’U®Am+k +U®Ak)

(410) LU'U = 0, LA‘U = 0, dv= %";ba

fori,je{l,...,2m} andk € {1,... ,m}.
PROOF. Using proposition 4.4 and since V is a torsionless linear
connection on V22" we obtain (4.7).
Let X,Y be vector fields on V?"+2™, Then, we have that
2du(X,Y) = (Vxv)Y - (Vyv)X

and thus, from proposition 4.4, we deduce that

e~

(4.11) dw(X,Y) = =y(X,Y).

2
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On the other hand, by the classical formula of the Levi-Civita con-
nection [13] we have that,

(ng) (X1 Y) = zg(VxVa Y) - 2d‘U(X, Y)

and therefore, using (4.11) and proposition 4.4, we obtain that V is a
Killing vector field.
Now, from (2.5), (4.3), proposition 4.4 and from the fact that

(LxJ)(Y) = (VxJ)(Y) = Vv X + J(Vy X)

for all X,Y eX(V2*+?m), we deduce (4.8) and (4.9).
Finally, using (4.11), (4.6), proposition 4.3 and the relations

Lyv = d(ipv) +iy(dv) , La;v = d(ia,v) +ia;(dv)

with 1 < j < 2m, we prove that Lyv = LA].'U =0,1<j5<2m. 0
Next, using proposition 4.5, we obtain an interesting result

COROLLARY 4.1. A compact manifold cannot admit a sasakian
m-hyperbolic l.c.K. structure with m > 1.

PROOF. Let (V*"*?™ J g,04,... ,02,) be a compact sasakian m-
hyperbolic 1.c.K. manifold, with m > 1. Then, from proposition 4.3, we
deduce that the (2n + 2m)-form v on V2*+2™ given by

Y= A...Aaam AUAVAYPTT?

is a volume element.
On the other hand, using (3.9) and (4.10), we obtain that

7=d((i)alA...Aaz,,;AvAgb"“)

ml

which, in view of Stokes’ theorem, is a contradiction. a0

REMARK. It is well known that the compact Hopf manifolds admit a
l.c.K. structure with parallel Lee form (see [24] and [25]), i.e., the compact
Hopf manifolds are compact sasakian 0-hyperbolic l.c.K. manifolds (other
examples of compact sasakian 0-hyperbolic 1.c.K. manifolds are obtained
in [6]). Consequently, corollary 4.1 is not true for m = 0.
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5— The curvature tensor on a sasakian m-hyperbolic l.c.K. ma-
nifold

In this section, we shall study the Riemann curvature tensor of a
sasakian m-hyperbolic 1.c.K. manifold.

Let (V™ ] g,a1,... ,09m) be a (2n + 2m)-dimensional sasakian
m-hyperbolic 1.c.K. manifold and let 4; be as in (4.2) and I, u, U, v and
V asin (4.5). Then, if R is the Riemann curvature tensor of V2"+2™ we
have,

PROPOSITION 5.1.  On a sasakian m-hyperbolic l.c.K. manifold
V2n+2m

12 2m

(5.1) R(X,Y)U = -3 ;(a,- Au)(X,Y)A4;

(5.2) R(X,U)Y = (%)2 g(ai(X)ai(Y)U - o (X)u(Y) A4)
(5.3) R(X,Y)A; = g{fé(a,. A ;) (X, Y)A;+(es A u)(X, yw}
(5.4) R(X, A)Y = - (%)2{u(X)a,~(Y)U — u(X)u(Y) At

+ f(aj(X Jai(Y)4; ~ o5(X )%‘(Y)Ai)}

i=1
wherei € {1,...,2m} and X,Y €X(V2r+2m),

PROOF. From proposition 4.4 we deduce that

2m
R(X,Y)U = % Y (2dei(X, V) Ai + au(Y)Vx Ai — 0u(X)Vy Ai) =

i=1

2m
=1) doy(X,Y)4

i=l

R(X,Y)A; = -é{Zda,-(X, Y)U + s(Y)VxU — au(X)Vy U}

= -.-;-{2da,-(X, Y)U - z%(a.- A o)X, Y)A;}

i=1
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for all X, Y eX(Vint2m),

Thus, using (3.9), we obtain (5.1) and (5.3).

(5.2) and (5.4) follow from (5.1) and (5.3) respectively and using the
relation

(5.5) 9(R(X,Y)Z,W) = —g(R(Z, W)Y, X)

for all X,Y, 2, W € X(V?n+2m), a
Also, we have

PROPOSITION 5.2.  On a sasakian m-hyperbolic l.c.K. manifold
V2n+2m

(5.6) RX,Y)V = (%)2{—v(X)Y +u(¥)X + 2 Au)(X,Y)U+

2m

+2Y (v A @)X, Y)A}

i=1

(57) R(X,V)Y = (%)z{v(Y)X WX )(Y)U+

XU+ aK)e(Y) =g (X, YV =3 e X)o(¥) A}

for all X,Y ex(Vin+am),

ProoF. Using propositions 4.4 and 4.5 and since the 1-form u is
closed we obtain that

RX,Y)V =
= _%{(VXJ)Y — (V)X + (X, YU — lzm(v Ao ) (X, Y)A;+

Jj=1

+u(X)(- %( JY +y(Y)U - u(Y)V+fj(ai(Y)Am+i —am+i(Y)Ai)))+

- u(Y)(—é(JX+v(X)U—u(X)V+f:(a.-(X)A,,.+.- — amyi(X)Ai)))+

i=1

+ 3 (2d0i(X, Y) Amsi — 200m4i(X, Y) A; — Loy (Y ) otmai(X)U+

i=1

+lap.i(Y)oy(X)U)} .
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Thus, from (2.5), (3.9) and proposition 4.3, we deduce (5.6).
(5.7) follows from (5.5) and (5.6). 0

Let z be a point of V?**2m, Denote by Kxy and by p(X, X) the
sectional curvature for the plane section in T, M with orthonormal basis
{X,Y} and the Ricci curvature in the direction X respectively. Then, by
using (5.1), (5.3) and (5.6), we obtain

COROLLARY 5.1. On a sasakian m-hyperbolic l.c.K. manifold
V2n+2m

Kxo=~(5) g(ai(xnz,

Kxa = —(3) (@OP + 3 (@)

=i

Kya;, = Kap; = —(%y

I\2
p(U,U) = p(A;, A;) = —2m(§)
fori,je{l,...,2m}.

COROLLARY 5.2. On a sasakian m-hyperbolic l.c.K. manifold
V2n+2m

K = () (1 - @O0 - Y- (0}

=1

Kpv=Kyv=0

p(V,V) = 2(n — 1)(5)?

2
forie{1,...,2m}.
From proposition 5.1, we have

COROLLARY 5.3. On a sasakian m-hyperbolic l.c.K. manifold
V2n+2m

R(X,Y)Z = R(X',Y')Z' + l—;{i(a‘- Au)(X,Y)((2)U - u(Z)A:i)+
- § o;(Z)(0s A a;)(X,Y) A}

ij=1
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for all X\Y,Z €X(V**?™), where X', Y' and Z’ are the orthogonal
projections of X, Y and Z respectively onto the tangent planes of the
leaves of the foliation ¥ given byu=10, a; =0, with 1 <i < 2m.

Let R be the curvature tensor of the Weyl connection V given in
(2.3). Then,

PROPOSITION 5.3. On a sasakian m-hyperbolic l.c.K. manifold
V2n+2m

(5.8) R(X.Y)Z=R(X'Y)Z —{g(Y’ ZNX' - g(X', 2)Y"},

for all X,Y,Z eX(V¥+™™), where X', Y' and Z' are the orthogonal
projections of X, Y and Z respectively onto the tangent planes of the
leaves of the foliation § given by u =0, oy =0, with 1 <7 < 2m.

PRroOF. Using proposition 4.4 and a well known relation (see [9], pg.
115) we deduce

l2 2m

R(X,Y)Z=R(X,Y)Z + {Z 0i(V)ai(Z2) X — ei(X)ai(Z)Y +

+9(Y, Z)ai(X)Ai — Q(X Z)oy(Y)Ai)+
(u(X )9(Y, 2Z) - u(Y)g(X, 2))U+
Y)u(2)X - u(X)u(Z)Y) — (3(Y, 2)X — 9(X, Z)Y)}

for all X, Y, Z €X(V2"+?™), and thus the result follows from corollary
5.3. 0

6 — The universal covering space of a sasakian m-hyperbolic
l.c.K. manifold

In this section we shall study the universal covering space of a sasa-
kian m-hyperbolic 1.c.K. manifold.

Let (V2™ J.9,04,...,03,) be a sasakian m-hyperbolic l.c.K.
manifold and let A; be (1 <i<2m)asin (4.2) and !, v, U, v, V asin
(4.5). Denote by ¢ = —% and by ¥ the foliation given by u =0, a; =0,
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1 < i < 2m. §F defines on V2"*2™ 4 foliation of dimension (2n — 1), which
we call the canonical foliation of V?"*?™_ Using (4.7), proposition 4.4
and corollary 5.1, we deduce

PROPOSITION 6.1. The canonical foliation § of a sasekian m-
hyperbolic l.c.K. manifold is totally geodesic with integrable normal bun-
dle. Moreover, if §* is the foliation determined by the normal bundle of
¥, then §* also is totally geodesic and its leaves are of constant sectional
curvature —c?.

Let i : N — V+Mm be the inmersion of a generic leaf N of
the canonical foliation . We define an almost contact metric structure

((pNagNanrgN) on N by
(6.1) onX =JX + (@) X)U |v, év ==V |n, v = —(i"v), gy =779
for all X €X(N). Then, we have

PROPOSITION 6.2.  The almost contact metric structure (on,€n,
N, gn) on N is c-sasakian.

PROOF. Let X,Y be vector fields on N and N;, N, and L the Ni-
jenhuis tensors of J and ¢y and the Lie derivate on V27+2™ regpectively.
Then,

NlPN(X! Y) + ZdUN(X, Y)fN =
= Ny(X,Y) = v(Y{(LyJ)X + (Lyv)(X)U}+
+v(X){(Ly )Y + (Lyv)(Y)U} + 2(dv(J X, Y) + du(X, JY))U

which, from (2.6), (4.8) and (4.10), implies that the structure (¢n, &n, IN)
is normal, i.e., N, +2dny ® £En = 0.

On the other hand, if ¢ and Q denote the fundamental 2-form of
N and the Kéhler 2-form of V2"+?™ respectively then, using (6.1), we
obtain that

¢N=i'9=i'(¢+2i(a;/\am+;)+2v/\u) =1i"p.

i=1
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Thus, from (4.10), we deduce that
dny = cPn-.

Consequently, (¢n,én,7n,gn) is a c-sasakian structure on N. a

Now, consider the inmersion j : M — V2"+2™ of a generic leaf M of
the foliation F* on V?"*2™_ We define an almost contact metric structure
(a1, Eaty Maey gu) o0 M by

SOM(Y) =JY + (]"U)(Y)V IM! €M =U |M’

(6.2) . "
"’Mz(J u)) M =79,

for all Y €X(M). Then, we have

PROPOSITION 6.3.  The almost contact metric structure (o, Ea,
sty gu) on M is c-kenmotsu.

PROOF. Let X, Y be vector fields on M and N,,,, the Nijenhuis tensor
of vps. Then,
N,

PM

(X,Y) = Ny(X,Y) + u(¥){(LvI)(X) — (Lvu)(X)V}+
—w(XH(LvI)(Y) - (Lvu)(Y)V}

and thus, using (4.8), (2.6) and since Lyu = 0, we obtain that
Nep (X,Y) =0.

On the other hand, it is clear that the 1-form n,, is closed. Moreover,
if ¢ps is the fundamental 2-form of M then, from (6.2), we deduce that
oum = 7*Q, which, using (2.6), implies that déar = ¢ A j*w, i€,

ddar = —2cnar A dar.

This completes the proof. 0
Let N be a leaf of the canonical foliation § and (¢, &n, v, gn) the
induced c-sasakian structure on N.



66 J.C. MARRERO - J. ROCHA (26]

Suppose that N is of constant ¢y-sectional curvature k. Then, from
(6.1) and using a theorem of Ogiue [17] and the fact that the foliation §
is totally geodesic, we have that

R(X,Y)Z =

=1 (k +3)(g(Y; 2)X — g(X, Z)Y)+

2k = A(XW(B)Y = oV )(Z)X +(g(X, Zp(Y )+
oY, ZW(X))V + g(JY, Z)IX — g(JX, 5)IY +
+29(X, JY)IZ + (0(X)g(JY, Z) — o(¥)g(J X, Z)+
+20(2)g(X, JY))U}

(63)

for all X, Y, Z € X(N), where R is the Riemann curvature tensor of
V2n+2m.

Now, we give the following definition.

DEFINITION 6.1. A sasakian m-hyperbolic l.c.K. manifold is called
sasakian (k) m-hyperbolic l.c.K. (k € IR) if every leaf N of the canon-
ical foliation § is of constant @y -sectional curvature k, where (on,€n, I,
gn) 18 the induced c-sasakian structure on N given by (6.1).

If (V22+2m J 9,04,... ,Q2,) is a sasakian(k) m-hyperbolic l.c.K.
manifold then V27*2™ 5 gaid to have a sasakian(k) m-hyperbolic Lc.K.
structure (J, 9, ay, ... ,Qom).

Let V2n+2m be a sagakian m-hyperbolic l.c.K. manifold. Denote by R
the curvature tensor of the Weyl connection V on V2*+2™ given by (2.3).

From ( ) and using corollary 5.3 and proposition 5.3, we obtain

COROLLARY 6.1.  If (V®**2™ J g,04,...,02m) 18 & sasckian m-
hyperbolic l.c. K. manifold then, the following conditions are equivalent:

i) (V2+2m ] g,a4,... ,Q2p) 3 a sasakian(k) m-hyperbolic l.c.K. man-
ifold.
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ii)

iif)

For dll X,Y,Z € Z(V?+om)
R(X,Y)Z =
_ %(k +3R)(g(Y", Z)X' — g(X', Z)Y')+
+ 20k = XN = oV )AZ)X' + (9(X', Z)o(Y 1+
_ oY, ZV(X)V + g(JY', ZVIX' — g(JX, Z)TY'+
+29(X, YV Z' + (o(X)g(IY", Z) = o(¥)g(TX", Z')+

(6.4)

+20(Z)g(X, TYNU)+ 5 (3 (e AWK Y e 20+

—w(Z2)A) - Y a(Z)(e: Aoy)(X,Y)As}

ij=1

where X', Y’ and Z' are the orthogonal projections of X, Y and Z
respectively onto the tangent planes of the leaves of the canonical

foliation.
For all X, Y, Z € X(Vi~+im)

R(X,Y)Z =
- %(k — ){g(Y', Z)X' - g(X', Z)Y" + o(X)u(Z)Y'+
(65) —o(¥)u(Z)X'+ (X', Z)(¥) - o', ZW(X)V+
+g(JY', Z)IX' — g(JX', Z)JY" +29(X', JY')J Z'+
+ ((X)g(JY', Z') - v(Y)g(J X', Z') + 20(Z)g(X", JY)U}

where X', Y' and Z' are the orthogonal projections of X,Y and Z
respectively onto the tangent planes of the leaves of the canonical
foliation.

If (V2+2m ] g,04,... ,Qom) is & sasakian m-hyperbolic 1.c.K. man-

ifold then, every point z € V2**2™ has an open neighbourhood U such
that the structure (J,e~?g) is Kihler on U and R is the curvature tensor
of the local metric =g, where o : U — IR is a real differentiable func-
tion on U (see section 2). Moreover, using (6.5) and proposition 5.3, we
deduce
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COROLLARY 6.2.  Let V¥*?™ be g sasakian m-hyperbolic l.c.K.
manifold. Then, the following conditions are equivalent:
i) V24 45 g sasakian(c?) m-hyperbolic l.c.K. manifold.

ii) The leaves of the canonical foliation are of constant sectional curva-
ture c?.

iii) The local metrics e~°g are flat, i.e., R = 0.

Next, we introduce a definition which will be useful in the sequel.
Let N, k be a (2n-1)-dimensional manifold and a real number re-

spectively and let (H2™+!, (ds?).) be the (2m+1)-dimensional hyperbolic
space, with ¢ < 0.

DEFINITION 6.2. A distinguished sasakian m-hyperbolic(c)
l.c.K. (respectively distinguished sasakian (k) m-hyperbolic(c)
l.c.K.) structure on V"™ = N x H*™*! is a sasakian m-hyperbolic

l.c.K. (respectively sasakian(k) m-hyperbolic l.c.K.) structure (J, g, ay, ...
vouyOzm) Oon VM guch that:

i) The metric g is of the form

g =do?* + (ds?).

where do? is a Riemann metric on N and,
ii) The Lee 1-form w and the 1-forms a;, 1 < i < 2m, are given by

W= _2% o= _dm
Tam+41 CZam+1
where (z,,... ,Zam+1) are the usual coordinates on H2™*1,
We have,
PROPOSITION 6.4. If (J,g,01,...,q9py) i3 a distinguished sasakian

m-hyperbolic(c) L.c.K. structure on V2™ = N x H¥™+1 | then the man-
ifold N carries an induced c-sasakian structure (¢n,€n,Mn,gn) and the
almost hermitian structure (J, g) on V**+?™ is given by (3.2). Moreover,
if (J,9,01,... , @am) i8 & distinguished sasakian(k) m-hyperbolic(c) l.c.K.
structure on V"+2™ then N is of constant py-sectional curvature k.
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PROOF. From definition 6.2, we obtain that

i} 0
g= do? + (ds2)c , U= (cm2m+l)am2m+1 ) A= (w2m+1)_a_27:
for all i € {1,...,2m}, where (z;,... ,T2m+1) are the usual coordinates

on the hyperbolic space 2™+,

By using (4.6) and first and second relation of (4.7) and (4.10) we
deduce that £y = —JU = -V and ny = u o J = —v define a vector field
and a 1-form respectively on N.

Let X be a vector field on N. Then, X = X +v(X)V with v(X) = 0.
Define py X = JX.

From (4.9) and first and third relation of (4.8) we have that oy
defines a (1, 1)-tensor field on N.

Now, it is easy to check that (on,&n,Tv,gny = do?) is an almost
contact metric structure on N.

On the other hand, from definition 6.2, we deduce that the leaves
of the canonical foliation of V2"*?™ are N x {(z3,...,29,,,)}, with
(23,...,29,,1) € H™*'. Thus, by proposition 6.2, we get a c-sasakian
structure on each N x {(z3,...,25.:1)} (&% ... ,23pyy) € HZ™. In
fact, if (z9,...,23,,,,) € H?™*! then, it is not difficult to check that
the application 7,9, .0 ) of N x {(3,...,23m41)} into N given by
B(29,... 'Igmﬂ)(z,z‘l’, .+, Tomyy) = T is an almost contact isometry.

This, in view of proposition 6.2 and definition 6.1, completes the
proof. a

REMARK. Let (N, on,€n,Mn,9n) be a c-sasakian manifold. Then,
using corollary 3.1, we obtain that the product manifold N x Him+l
carries an induced distinguished sasakian m-hyperbolic(c) l.c.K. struc-
ture (J,9,01,... ,asm). Moreover, it is clear that if N is of constant
@n-sectional curvature k then (J,g,qi,... ,09m) is a distinguished sasa-
kian(k) m-hyperbolic(c) L.c.K. structure on N x H>™*'. Therefore, the
converse of proposition 6.4 is also true.

Using the above remark and corollary 6.2 we obtain

COROLLARY 6.3.  On the sasakian m-hyperbolic l.c.K. manifold
S~ x H2™+1 the local conformal Kihler metrics are flat.
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Next, we shall describe the universal covering space of a sasakian
m-hyperbolic l.c.K. manifold.

THEOREM 6.1. The universal covering space of a (2n + 2m)-
dimensional complete sasakian m- hyperbolzc L.c.K. manifold V¥"*+2™ with
Lee form w is a product space 7 = N x H>™*!  where N is the
universal covering space of an arbitrary leaf of the canonical foliation of
yintm o = —|w||/2 and HZ™*! is the (2m + 1)-dimensional hyperbolzc
space. The lift of the sasakian m-hyperbolic l.c.K. structure to V 2nam
gives a distinguished sasakian m-hyperbolic(c) l.c. K. structure on 7
Moreover, if the structure of V2"+2™ 4s 4 sasakian(k) m-hyperbolic l.c. K
structure, then, considering the induced c-sasakian structure on N, we
have:

i) If k> —3c%, then N is almost contact isometric to S~ (c, k);
i) If k= —3c2, then N is almost contact isometric to R**™}(c);
iii) Ifk < —3c?, then N is almost contact isometric to (RxCD"1)(c, k).

2m

PROOF. Let (V"™ J g,qy,... ,as,) be a (2n + 2m)-dimensional
complete sasakian m-hyperbolic l.c.K. manifold and u the unit Lee form
of V2n+2m

Denote by g the induced metric on v Then, using proposition
6.1 and theorem A of [4], we deduce that (Vzn+ ™,9) is the Riemannian
product N x H2™+1 where N is the universal covering space of an arbi-
trary leaf of the ca.nonical foliation § and ¢ = —14L. Moreover, if §* is
the foliation determined by the normal bundle of 3 then, the lift of the
foliations §F and F* to pentam are the foliations with leaves of the form
N x {z} (x € H™+') and {n} x H>™*! (n € N) respectively.

2"-'I’g’(’):»l let @; and % be the lift of o; (1 < i < 2m) and u respectively to
14 - Then, it is clear, from (3.9) and from the fact that % is a closed
1-form, that {@,@,... ,@m} is a global basis of 1-forms on H?™*!. The
dual basis of vector ﬁelds on H¥™*1 ig given by {U, 4;,... , Azm}, being
U and 4; (1 <i < 2m) the lift of U and 4; (1 <i < 2m) respectxvely to

V*"**™ Thus, using the following lemma 6.1, we obtain that

7] — 8
, Ai= (C$2m+1)5;

U= (C-’Bzm-f-l) 9z, "
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for i € {1,...,2m}, where (z;,... ,Zom41) are the usual coordinates on
H?m+1 Consequently,

dTom+1 - dz;
y 0=

CTom+1 CTam+1

u=

for i € {1,...,2m}, which implies that the lift of the sasakian m-hyper-
bolic l.c.K. structure (J, g, a1, ... ,Qam) to 7" s a distinguished sasa-

kian m-hyperbolic(c) Lc.K. structure on V""",

If (J,g,01,. .. ,asm) is a sasakian(k) m-hyperbolic l.c.K. structure on
V2n+2m then the lift of this sasakian(k) m-hyperbolic l.c.K. structure to

i gives a distinguished sasakian(k) m-hyperbolic(c) 1.c.K. structure
=2n42m . : .
onV and therefore, since N is a simply connected complete man-

ifold, the rest of theorem follows using proposition 6.4 and proposition
2.2. a

LEMMA 6.1. Let M be a (2m + 1)-dimensional complete, sim-
ply connected, Riemannian manifold of constant negative curvature —c?
(c # 0) and U, A; vector fields on M such that {U, A,,... ,Asm} form
an orthonormal basis for M and (U, A;] = cA;, [Ai, Aj] =0 fori,j €
{1,...,2m}. Then, there is an isometry F of M to the (2m + 1)-
dimensional hyperbolic space HX™*!, satisfying

P 0
F.U=(C$2m+l)m , F'Ai=(“’%+1)55‘.’

fori € {1,...,2m}, where (z,... ,Tams1) are the usual coordinates on
H3m+1.

PROOF. Let z be a point of M. We consider the linear isometry L
of T, M onto Ty, ... o,1)( H2™!) given by

L(Uz) =

0
az2m+1) l(O,....O,l) ) L((At)z)= c(a:) |(0,... o)

for i € {1,...,2m}. Then, there is an isometry F of M onto H?>™+! such
that the differential of F at z is L (see, for instance, [13]) and thus, using
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the relations [U, A;] = cA;, [4i, A;] =0 (1 < 4,7 < 2m) we prove that

0 g
’ F*Ai = (C.'E2m+1)—

F-U = (Cx2m+1) o, 3

31‘2m+1

forie {1,...,2m}. 0
Finally, from theorem 6.1, we deduce

COROLLARY 6.4. : Let V2*+2™ be g complete sasakian(k) m-hyper-
bolic L.c.K. manifold, V-""™ the universal covering space of V"+?™ and
¢ = —||w||/2, where w is the Lee 1-form of V3n+2m,

i) Ifk > =32, then V4"

HZ"H'I,

i) Ifk=—3¢2 then V""" is almost complez isometric to R*(c) x

H2m+! gnd
iii) If k < —3c2, then VT s almost complex isometric to (IR X

CD™ 1) (e, k) x HIm+1,

In particular, if V2"*?™ {5 o complete sasakian(c?) m-hyperbolic l.c.K.

. 52n+2 .
manifold then V' is almost complez isometric to St x HImHL

is almost complez isometric to S**~(c, k) x
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