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On a singular limit for a class of solutions
of the simplified Wheeler-Dewitt equation

with a massless single scalar field

J.P. DIAS — M. FIGUEIRA

RIASSUNTO: i ottiene una soluzione Yoo di una equazione di Schrodinger come

limite, quando p — oo, di Yp(z,y) = e 2% Yp(, CpY), Cp = 5(P - D, p#1L
essendo 1, & una soluzione particolare dell’equazione di Wheeler-DeWitt. Si studia il
comportamento asintotico (iny) di Yoo.

ABSTRACT: In this paper we consider a special class Yp of solutions of the
Wheeler-De Witt equation (cf. (5], [3], [1]) and we study the limit, when p — oo, of the

associated functions Jp(z,y) = iV zCP Up(T, oY), Cp = ';‘(P - 1), p #1. We prove
that, in an appropriate sense, Jp — Yoo and Yoo verifies a Schrodinger equation.
Finally we study the decay (in y) pl;‘;pc:rties of Yoo
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1 — Introduction and main results

The Wheeler-DeWitt equation in the minisuperspace model with a
massless single scalar field y € R can be written as follows (cf [5], (3], [1])

—— — m_—-

%P %Y oy 4
1.1 Y g =
(1.1) 7 o o TC =0,
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is a scale factor, p € IR is a given cor_xstant (p reflects ’.che
Z.Ll:;:-cfrge%g ambiguity) and ¢ : Ry X R — C is the wave fl.mctu})ln
of the universe for the minisuperspace model: In quan.tum gravity, t e
dynamics of universe is determined by its possible quantized states which
are described by a wave function 1 which depends on the geome'Fry of
three dimensional compact manifolds (here representejd by z, radius of
universe) and the value of matter fields on these manifolds (here repre-
sented by a single scalar field y, without mass). The. Ca}lchy problem (for
data at y = 0) for the equation (1.1) has b_elen studied in (1] by means of
the following transformation: u(z,y) = "7 9(z, Y), with 2z =logz € R.
The equation (1.1) becomes, with V(z2) = e?*,

(1.2) gi;:—-g%f+4l(p—1)2u+Vu=O.
Then, with

Hy={ve H\R)| vive IX(R)}
and

X={vem} %—Vveﬁ},

we proved in [1] the following results:

THEOREM 1.  Assume (uo,w1) € X x HL. Then there exists an
unique solution u € C*(IR; L*)nCYR; HY) n C(R; X) of the equation

(1.2) such that u(z,0) = uy(2), -Z—Z(z, 0) =u(2), z€ R.

THEOREM 2.  Assume (uo,u1) € X, x X, where X; = {v € X|

T; —Vv € H}}. Then we have

. 2 ou
2, J V) e | 2

whenz u ;s the solution of the corresponding Cauchy problem for the equa-
tion (1.2).

2(z,y)} dz=0,
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In this paper we will consider a special class of solutions 1, of the
equation (1.1) depending on the parameter p (p # 1) verifying, for exam-
ple,

%

H2(2,0) = ~5(0 ~ Diy(2,0) = ~5(0 ~ Ve 4o,

We prove that, if §, — 4o (p — +00) in an appropriate sense, then
Yp — €4 (p — 00), where 1)1, are solutions of a singular Schrédinger
equation with initial (that is for y = 0) data 1. Then we study the
decay (in y) properties of the solutions of this Schrédinger equation. We

d
obtain a decay for %9+, in the L? { Ry; ;:v_) norm for each g € [2,+00),

that is, for large values of y, the wave functions ¥+, are very small for
large values of . Now, with domain D(4,) = X, p € IR, we introduce in
L2(IR) the following operator defined by

d*v 1
(1.3) Apv=—az—i+c:v+Vv, Wherecp=§(p—1) .

This operator which is associated to the form

(1.4) a(u,v) = d—Ud—vdz+c2/uﬁdz+/Vuﬁdz, u,v € Hy ,
RdZ dZ P R R

is self-adjoint in L2(IR) (cf [6], ch. VI). It is easy to see that p(A,) (resol-
vent set of A,) is contained in ] — oo, cZ[. Furthermore, theorem 2 implie.s
that if 0,(A,) is the point spectrum of A, then g,(4,)N [}, +oo[= 0. Fi-
nally, by applying the theorem 5.7.1 of [8], we easily obtain that o. (4,) D

[c2, +oo[, where o.(A,) is the essential spectrum of A,. Hence, denoting
by o(A) the spectrum of A,, we obtain:

PROPOSITION 1. We have o(Ap) =0c(Ap) = [c2,400[ and g,(4,)=0.0

Now, for each p # 1, let us consider a function &, : Ry — C such
that the function ¢, : IR — C defined by

(1.5) &(2) = fp(ez) y 2€R,
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verify
(1.6) &, € D(4,) = X, £ fawsd €400 (respectively &, e £_)in X,

X with the A; graph norm through this paper. Let us also consider, for
eachp#1,6, € R, 0< 4§, <1, such that §, — 1 and let u, be the

p—0o0
solution of the equation (1.2) for the initial data

00 w0 =5, G0 = -ihakE), zcR.

This means, with u,(2,y) = 2% ¢¥,(x,y), 2 = log a:

0

% Py(z, 0) = §(2), = 8‘2‘“ (z,0) = —i,c,6,(z), z€Ry .

As a consequence of a result of H.O. FATTORINI (cf [2], ch. VII) we will
prove the following theorem, where co means +o0o (or —oo, respectively):

THEOREM 3. Let, for each p # 1, v, defined by
(1.8) Up(2,y) = €9V 1, (2, ¢59) -
Then, for each M € R, we have

Up =7, Voo in C([-M,M]; X) ,

where vy, € C1(IR; L2)NC(IR; X) is the unique solution of the Schrédinger
equation

OV 1 [0%04
(1.9) 11—+ (W‘

dy 2 "V”w)=0, z€R, yeR,

with the initial condition

(1.10) Voo(2,0) = £o(2), zER .
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Now, let Jp(:c,y) = vy(z,y) = eic?’”x%pp(z,cpy), p # 1, with
z = log x, and put

Yoo (T, Y) = Voo (2, Y) and €eo(T) = Ew(2) -

We obtain
OV 1 5 0% o 4 )
—9+— _ - w | =0, R, veR,
i ” 2(1' 57 +z B z* zelR;, ¥

Yoo (2,0) = €uo(z), TER, ,

and f, — Yo in O(~M, MJ; L*(Ry;du)) with dys = Ldz, ¥ M > 0.

Finally, we prove the following decay result for the equation (1.9):

THEOREM 4. Assume vy € D(A?) = {u € X| %2—1; —Vue X} and
letv € C'(IR; X)NC(IR; D(A2)) be the unigue solution of the Schrodinger
equation (1.9) for the initial (y = 0) data vo. Then, for each g € 2, +00],
we have

. 1
yll.rgoHVE(z) v(z9) LIR)

We can speculate that the approximation result in theorem 3 is re:
lated to the theory of the “small quantum subsystems of the universe

(cf [9)).

2 — Proof of Theorem 3

Let us consider, for each p# 1, the function v, defined by (1.8) and

1
put £, =5 — 0 It is easy to see, by (1.2), (1.7) and theorem 1, that
D

—ic2
v, € C*(R; L?) N C'(R; H}) N C(IR; X) and that v, and w, = e™" Y,
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verify
2 2.
(2.1) c;za(,a;l::’—-aa2 +Cw,+Vw,=0, zeR, yec R,
. Ov, v, 1/(8%, )_
22 za—y—ep8y2 —(azz—va =0,z€eR,yeR,

u(20) = &,(2), ep%%(z,O) =11-5)8(2), zeR.

Furthermore, we have _d£ +V = A, with domain D(A4;) =

in L2(IR) which is (cf § 1) self-adjoint and o(4;) = [0, +oo[ (prop. 1).
Hence, we can apply the results of H.O. FALTORINI in the ch. VII of [2]
(since 6, = 1) and we obtain

Up 72 Voo in C([-M,M);L*), VM >0,

where v, € C'(IR; L2)NC(IR; X) is the unique solution of the Schrédinger
equation (1.9) with the initial data (1.10).

Furthermore, since fp € D(A;) = X and Ep o €w in D(A,) for
the graph norm (and hence v,(Z, 0) hvd Eoor Ep a—y”(z, 0) 2 0 in D(4;)

for the graph norm), we can apply the operator commutation techniques
used in the proof of theorem 1.1 in [7] in order to obtain

A1y — Ay v in C(I-M, M];L?), VM >0,

and this achieves the proof of theorem 3. 0

3 — Proof of Theorem 4
du

For u € D(A?) we get —% + VE +4Vu = diz(Alu) € L% In
particular, if ¢ € D(IR) we deduce, by integration by parts,

dep( d&°p dp ) / 2
dp dp d dz =
Re/ndz( T2+ v 4 avg)ds+8 [ ViePdz

A= ERAY

dz,
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and so, by the density of D(R) in D(A?) with the norm (||ul3; +
IVEu|2, + ||A1w)%:)} (proof similar to the one of lemma 3.1 in [1])
and by standard arguments, the quantity

dz]

E(g)=§[/ dz +/v[d

3 H 1 2 2 2
du 1% V— L4,
is finite. Hence ] € HV andsou € H , VU E L l 73 + Iz €

d
We conclude that EZ € D(4,).
We start with the proof of the

d?ul?
dz?

PROPOSITION 2. Under the assumptions of theorem 4 we have

(3.1) lim [[V4(2) v(2, W) oy =0

y—0o L2(R)

PROOF. We have, with V(z) = e*,

v 1(8% )
i — 4+ = 7= — =0.
(3.2) ’ 0y t3 (322 Vo

Multiplying the equation (3.2) by 51;), taking the real part and integrating

in z € IR, we obtain (since diV = 4V and the integration by parts is
z

justified by 3 € D(A))):

(3.3) Re i g—‘i‘fd +/ V|v[*dz =0

Since v € D(A2?) we get g—; € D(A,) and we can write

[ Ov 0B d ov / v
bkl A T —dz—-R dz
Rﬁ1nay6z.dz a—glm/nvazdz eznvayaz
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Hence, by (3.3) we deduce
d ov 2 . / 0™
(3.4) —@Imfnvadz = /RV|v| de+Reif vt da.
From (3.2) we derive

2= 3
; 2 1<a”—V@-4Vﬁ) € L?.

_16y32=_§ 023 0z
We get
) 0w 1 B _ov _
Rez/nvayade——éRe/Rv[ﬁ—Va—4Vv]dz
= - [ VIvl*dz,
R

by integration by parts with a density argument in D(A2).
Hence, by (3.4) we obtain

(3.5) ilm/ v@dz=2/ Vil dz .
dy R Oz R

Now, multiplying the equation (3.2) by Z—Z, taking the real part and

integrating in z € IR we obtain, first for v € D(A?) and after, by density,
for v € D(4,),

(36)  E(u(y)) = % /R [ % g VI'UIZ] dz=E(u), Yy e R.

By (3.5) and (3.6) we obtain, for y > 0,

Y
(3.7) / / Vv dzds < 2E(vo) + / foo|? dz
o JR 2J/r

(since, by the conservation of charge, fg [v(y)|?dz = fg |vo|® dz).
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The same arguments apply to Z—Z (first for v € D(A3), and hence

%Z € D(A?), and after, by density, for v € D(A?)). Hence, we obtain

s [ [ viwe+|2[
<2E(vo)+2E( ) 2/|”°|2dz+2”a

Now, put Q(y) = Jg V|v|*dz. Following a techmque introduced by
d
R.T. GLASSEY in [4], we get —-Q(y) =2Jq VRe(—— 7) dz and so, with
0<y<rt<y+Ly=>0

Q(T)——Q(yl //VRe( )dzds
<[ [ v]ir ] e

Integrating again in 7 € [y;,y + 1] we deduce

]dzds <

dz, Yy>0.

[(¥+1)-2:]Q(y1) S/:H Q(‘rﬁ dT+2[(y+1)—3/1]/:“/E V[|v|2+ g—sr] dzds

and so, with y; =y,

Q) </ Q(7) d'r+2/ lv[2 ‘_3_' dzds

p+1 ov
2, |OV — 0,
37 [t +\3y| dzas =,

by (3.8). By the reversibility in y, this achieves the proof of proposi-
tion 2. a

Now, we will prove the following
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PROPOSITION 3. Under the assumptions of theorem J we have

B(2w) < °°[E<“°> +/ s+ (350 +

ov

(3.9) fdot E( 2 (0))+

] , VyeR,
where ¢y is a positive constant.
ov
PROOF. Let u = P We have, from (3.2),

2
(3.10) i? += (g =~ Vu- 4Vv) =0.

Multiplying by %, taking the imaginary part and integrating in 2 € IR
we obtain by density, since « € D(4;),

i/ |u|2dz=4Im/ Voudz .
dy Jr R
Hence, for each £ > 0, we obtain, for all y > 0,

v
/Iul"’(y)dzs/ |u(0)]2dz+4Im/ / Votdzds <
R R 0 JR

v
(3.11) < / w(O)2dz + ¢ / [ Vil dzds+
R 0o JR
14
+c(e)/ / Vi|v|*dzds .
0o /R
Now, suppose v € D(A43). We get %S € D(A?) and so ﬁ(@) € D(A,).
&u By
Hen

6—
ce, 5= 3y = 3200 3 € L2 Mult1p1y1ng the equatlon (3.10) by 37 and

ou 8%
i t t‘ bt —_— —_— = — — ——
integrating we obtain {since /n ( 577 Vu) 6 dz 9z 520y z
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a—
/ Vu 6—; dz, by density), taking the real part:
R

1d Ou|?
(3.12) 5?15[/Rl?9?

Furthermore we have, integrating by parts,

Re/ Vv

dz— Re/ V@fdz—Re/ woPlas=
Oy Oy

= d 2
=— Vuedz—2— | VivfPdz.
Re/ vy dz 2 / |v|* dz

Hence, by (3.12) we obtain, for each §>0and forally2>0,

B(u(y)) < Bw(0)) +co Blw) +6 [ [ Viufdet

(3.13) -

+c(6)/oy/RV—

and this inequality can be extended, by density, to v € D(A32).

o0u
Now multiply equation (3.10) by o and take the real part.
integration (and once again by density, since v € D(A,)) we obtain

(3.14) Reif O % s +/V|u|2dz—2Re/ Vv——dz—O
y 0

and

ou ) o
ReLVvé;dz=—LV|u| dz—Re]R4Vvazdz

—/ V|u|2dz+8/ Vivl dz .
R R
We get, by (3.14),

(3.15)  Re faua—d +3/ lu|2dz—16/ Vio[2dz =0.

dz] +4Re/ Vo =0,
R Oy

By
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Furthermore we have, if v € D(A3),

Ou du

(3.16) Rei| — —dz Im/u—dz—Rez/ d

r Oy 9z Jy az

Hence, by (3.15), (3.16) we obtain

_4 Im/ uos dy = —3/ Vlu|*dz+
dy r Oz R
(3.17)

2—

3}
Oy 0z

+16/ V|v|2dz+Rez'/u dz .
R R

Now, from the equation (3.10), we deduce, with v € D(A43) and by
density,

8% 8T ou _ _
Rez 8 Ep ——dz= —Re/ [323 Va —8Vu—16V'v]dz
= [ ViuPdz—a [ Viofdz~8Re [ v 54z
R R rR Oz
= —3/ Viuf?dz + 16/ Vivj*dz .
R R
Hence, by (3.17) we obtain
d
(3.18) d—Im/ L 6/ Viu? dz —32/ Vo2 dz .
Yy r 0z R R

This implies
v
2 2
/o /HV|u| dzds < ¢; (/R |u(0))* dz + E(u(O)))+
v
(3.19) +e / / Viol? dz ds+
0 JR
+ c3/ luf? dz + cg E(u(y)), Vy > 0.
R

This inequality can be extended to v € D(A2), by density. The result is
now a consequence of (3.8), (3.11), (3.13) and (3.19): from (3.19), (3.8)
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o

[STRT

and (3.11) we obtain, with € =

Yy
(3.20) / / VIu? dzds < cs +2¢1 B(u(y)), Yy 20,
0 JR

with ¢5 of the form in the right hand side of (3.9). Then, by (3.13), (3.8)

and (3.20), putting 6 = %c;l, we achieve the proof of proposition 3 (the

case y < 0 is obtained by reversibility). a
We can now complete the proof of theorem 4:

We have aﬁ(V%v) = V%? +2Viy € L3(IR), for each y € IR, and so
z 2

5, 1 (l 1 Ov & )
—(V2 <2(||VI +({{V2v .
Now, let g € [2,+00]. With
a=a(q)=%—% (hence 0 < a < 3)

we have, by the inequality of Gagliardo-Nirenberg and (3.21),

el

L2(R)
a
) "Vév
L2(R)

The theorem is now a consequence of propositions 2 and 3 and inE-]
equality (3.22).

1-a

L%(R)

0 .1
‘(;(V"’”)

[V40] o, < @

13’0
Vi’é;

(3.22)

1-a
L2(R)

+ “V’i’v

<2 e(o)

L*(R)
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