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A uniform estimate of the perimeter

for minimizers of a free boundary problem

Y. YAMAURA

RIASSUNTO: Si studia un problema di superficie minima per un funzionale di area
con un termine addizionale, del tipo introdotto da H.W. Alt e L.A. Caffarelli, che porta
ad un problema di frontiera libera. Si stabilisce una stima uniforme del perimetro intro-
ducendo una misura di Radon e dimostrando la proprietd di minimo di un sottografo di
un minimizzatore. Il punto cruciale nella prova di questa proprietd di minimo ¢ quella
di costruire una funzione campione appropriata per il funzionale.

ABSTRACT: We treat a minimal surface problem for the area functional with such
an additional term causing the free boundary as introduced by H. W.Alt and L.A. Caf-
farelli. By introducing a Radon measure and showing the minimality of the subgraph of
a minimizer, we establish a uniform estimate of the perimeter. The crucial step in the
proof of the minimality is to construct a testing function appropriate to our functional.
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— Introduction

Let 2 be a bounded domain in the n-dimensional Euclidean space
IR", n > 1, with the Lipschitz boundary Q and S a subset of 92 with a
positive (n — 1)-dimensional Hausdorff measure.

We consider the free boundary problem:

In the class BV(Q), minimize
(P) 9§ J(w)= / 1+ [Dwp + / QXusodL™ + / ho — w0 dH™™,
1] Q S
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where @Q is a bounded measurable function, u° a non-negative function
in BV(Q) and X, means the characteristic function of the set Q (w >
0) := {z € Q|w(z) > 0}.

Let u be a minimizer of the problem (P) (see [6, Theorem 1.1} for
the existence) and we denote by U the subgraph of u in © x IR! defined
by U = {(z,t) € 2 x R'|t < u(z)}. Then our main result is that the
following uniform estimate for |DXy |, the perimeter of U holds:

THEOREM. For any n-dimensional ball B, compactly contained in
2 x R!, we have

1
[1PX0]< 50+ Qa0+ Dwnsa™,
B,

where Qmax = SUpq |Q| and wy4, is the volume of the (n+ 1)-dimensional
unzt ball.

In case U is an area minimizing set in IR™*! (see [3, Theorem 1.20]
for the definition) the following uniform estimate has been proved to hold
([3, (5.14)]): For any n-dimensional ball B, ¢ R"*!

(1) [1Dx5] < S(n+ D wnsss™

By
This is one of the estimates used in the proof of the smoothness of minimal
surfaces (see [3, Section 8]).

In order to prove Theorem we show the minimality of U as in Main
Lemma of Section 1. This is stated by making use of a Radon measure,
constructed in Section 1 and denoted by Q2|6,XU|, correspoding to the
second term of J(u). In fact, we arrive at the uniform estimate in The-
orem by taking the same comparison set as in the proof [3, page 72] of
(1) (see the proof of Theorem). The idea of such treatment of the second
term of J(w) is taken from the paper [4].

In the proof of the minimality of U, the most important step is to ob-
tain the following inequality: For a measurable set F in §2 x IR! satisfying

EH>OxR!,
/ @ Xupso dL™ < / Q*|8:xz],
0

1
xRy
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where wg on the left side is, roughly speaking, the function which gives
for each z €  the length of the set {(z,t) € R"*!|(z,t) € EN(QxR})}.
This inequality is proved to hold by making a device of constructing an
original testing function given by (2.6), which is absolutely continuous
only in the t-direction, takes the value zero in Q (wg = 0) x IRI, and has
zero L'-trace on §2 x {0}.

In Appendix, we state, without the proof, a result which gives the rep-
resentation of the Radon measure Q?|8,Xg| in terms of the n-dimensional
Hausdorff measure H™ when E is a set, the boundary GF being the n-
dimensional C!-surface and, in some sense, finite. Making use of the
result, we can directly show the transformation equality (2.14) for the
second term of J. '

We here sum up notations used in this paper.

Let G be an open set of R', I > 1. The function spaces Cy(G),
CY(G), CX(G), C=(G), C(G), L}(G), Lh,(G) and L=(G) are as in [2],
and BV(G) is as in [3]. We denote by IR} and IR the set of positive
and negative numbers respectively:

R, = {teR'[t>0},
R! = {teR'|t<0}.

Let w be a non-negative function defined in Q. Then we write Q(w >
0) = {z € Q| w(z) > 0}, @ (w=0) = {z € Q| w(z) = 0} and

1 z€Q(w>0),

Xuse(z) = {o z€Q(w=0)

For w € BV () we use the notation

/ 1+ |Dwp? = sup /(("“ + w div E) ac,
f

ceci (R
[<1<1

where ¢"*! is the (n + 1)-th component of ¢ = (¢*,+-+,¢"*,¢™*"), and
¢ = (¢, -+ ,¢™). For a function f defined in 2 x R!, we use the notation

spt f = {z € QxR'|f(z) #0},
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where 2 means the closure of the set A C 2 x IR! with respect to the
(n + 1)-dimensional Euclidean topology.

1 - Construction of a Radon measure and the proof of Theorem

In this and later sections, we extend to 2 x IR! the domain of the
definition of @ as follows:

(1.1) Q(z,t) = Q(z) for (z,t) € 2 x R

Let w be a function in BV(?) and W be the subgraph of w defined by
W ={(z,t) € @ x R' |t < w(z)}, and Xw be the characteristic function
of Win Q x R:

X N = 1 (z,t) eW,
w(zt) = {o (z,t) € (2 x R') \ W.

Then, Xw belongs to L} (? x IR') and has the derivative DXy which
is the (n + 1)-dimensional vector valued Radon measure with the finite
total variation

(1.2) / |Dxw| = sup / Xw div ¢ dC™H!
1 n
IxR! (ECO(QEIISK:,R “)ﬂle

(see [3, Theorem 14.6)).

On the other hand, we shall introduce a Radon measure defined in
xR’ and denoted by Q?|8:Xw|. For this purpose, we treat an arbitrary
function f belonging to L} (2 x IR') whose derivative has the finite total
variation in @ x R'. We here remark that, for any open set G C 2 x R},
the total variation of Df in G:

(1.3) / IDfl = sup [ fdiv¢dCm+t
G (EC&(G) G
1¢1<1

is finite. Then we have
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LEMMA 1.1.. Let f be as above. Then, for any open set G C @ xIR?
we have

CEC(G) &
Ici<1

(1.4) sw [ fQ°0¢ ac < @, [ DS,
G

where Q is the extended function defined by (1.1) and Qmax = supq 1Ql.

PROOF. Let G be an open set in © x R! and let ¢ be an arbi-
trary function belonging to C3(G) and satisfying that |[{| < 1in G. Let
{Q;}32, C C>(Q) be such that sup, |Q;| < Q2,, for all 7 and Q; con-
verges almost everywhere in Q2 as j — oo to Q (refer to (2, Lemma 7.2]).
We extend to 1 x IR! the domain of the definition of QJ in the same way
as (1.1). Then for each Q;, we have from (1.3)

(1.5) f FQ20,C dL™ = / FOUQ2C) dL™ < QL / IDS|.
G G G

Since Q; converges almost everywhere in €2 x R! as j — oo to @, we
obtain by letting j — oo in (1.5) that

[1@tc et < Qi [ 1os1.
G G

Taking supremum over all such (, we arrive at (1.4). 0

For a function f as in Lemma 1.1, we define L; as a linear functional
on CL(Q x IR!) which gives for each ¢ € C3(Q x R') the value

£¢ = [ sQPag e

xRl

By virtue of Lemma 1.1, the functional £; is continuous on CHa x
IRI) and hence Ly is umquely extended to a continuous linear functional
L; defined on Co(f2 x IR'). Here, let us apply the Riesz representation
theorem to £, (see [5, Theorem 4.1]): There exists & unique finite Radon
measure g, defined in © x R' and a unique us-measurable function vy



614 Y. YAMAURA [6]

defined in O xR satisfying that [v;| = 1 almost everywhere, with respect
to the measure uy, in 2 X R and satisfying, for any ¢ € Co(§2 x RY),

Li¢ = / Cuy duy.

OxRl!
In the sequel, we shall use the notation Q?|8, f| instead of uy. Recalling

the method of the construction of the Radon measure @Q2?|0,f| (see the
proof of [5, Theorem 4.1]), we have

(16) [@as = sw [ 1t ac,
P ‘?ﬁ‘i(f"""

where G is an open set in Q x IR!, and moreover, combining (1.6) with
(1.4), we obtain

[@al < @ [1051
G G

Furthermore, owing to the outer regularity of the Radon measure ([5,
Theorem 1.3]),

(17 [@al < @i [107]
A A

for any subset A of 2 x R.

Let w be a function in BV(R2). Then, as stated above, the function
Xw, the characteristic function of the subgraph of w, belongs to Ll (2 x
R') and has the finite total variation in 2 x IR'. Hence, the Radon
measure Q2|0 Xy | is defined as above. Then there holds the following
lemma which plays an important role in the proof of Theorem and will
be proved in Section 3:

MAIN LEMMA.  Let u be a minimizer of the problem (P) and let
U be the subgraph of u in Q x R!. Then for every measurable set F in
2 x R! such that spt (Xr — Xy) is compactly contained in 2 x R}, we
have

(1.8) /IDxU|+ /QZI&XUIS /leF|+ / Q%|8.X k.

1 1 . 1 1
xR OxR OxR ﬂxR+
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By making use of Main Lemma, we can demonstrate Theorem in the
following way:

THE PROOF OF THEOREM. Take U\B,, 0 < r < p, as a comparison
set F' in Main Lemma: Since spt (Xv — Xy\5,) C By,

[ioxol+ [ @oxls [iIbxEls [ @loxs,
By B,

B,,n(nxni) B,,n(nxn}‘_)

Then from (1.7) and [3, Remark 2.13] we have for almost all < p

[10%0] < (1+ Qi) [1DX0\z, 1=
B, B,
(1.9)
=(1+@){ [ IDx|+(0B.NV)
Bo\Br

We next take UUB, as a comparison set. Then, by the similar calculation,
we have for almost all r < p that

(1.10) /|Dx,,|g (1+Q%) /|DXU|+H"(3B»~\U)
Bp

Bo\Br

From (1.9) and (1.10) we obtain for almost all 7 < p

/ |Dxy| < (1+Q2,) / |DXy |+ max(H*(3B, \ U), H(8B, NV))p <
5, ' BB

(1.11)

S(1+Q?m){ / IDXuI+%(n+1)wn+xr"}-

B\B;

By letting r  p, the integration in the last term of (1.11) vanishes. This
completes the proof of Theorem. g
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2 - A result connecting J(w) with the parametric form

In this section we investigate the relations between the first two terms
of J(w) and the parametric form, which will be used in the proof of Main
Lemma. Let E be a measurable set in Q x IR' satisfying

21) {(2.1—a) E> QxR

(21-b) L*YEN(QxRL)) < oo.

We define for k& > 0 the function wy in 2 as follows:

k
(2:2) wi(z) = /XE(I,T) dcMr) forze Q.
0

We here remark that (2.1-b) implies that wy converges in L*(§2) as k — oo
to a function which is denoted by wg:

wg = im w,  in L}(Q).
k—o0
Now we state the main result of this section:

PROPOSITION 2.1.. Let E be a measurable set in Q@ x R' satisfying
(2.1-a,b). Then

/,/1+|Dw3|2+/Q2wa>odc"5 /|DXE|+ / Q?|8:X &
Q Q

1 1
xR QxR+

PROOF. It is proved in [3, Theorem 14.8] that
/,/1 + |Dugl < / |DXg].
f xRl
Hence, in order to establish the conclusion it is sufficient to show

(23) / @*Xup>0dL" < / @|0uxs].
1]

1
an+
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We first show (2.3) under a bounded condition for E: Let E be satisfy
(2.4) ECQx (—o0,K)
for some positive number K. In the following, we assume, for simplicity,
that K =1: E C 2 x (—00,1). Then we remark that

(2.5) we(z) = / Xe(z,7) dC(r) forz e Q.

To show (2.3) we introduce the function 7 in Q x IR} defined by

r

WEl(z) /XE(Z, ‘l')dL',1 (r) for (z,t) € (wg>0)x (0,1),
0
(2.6) n(z,t)=/4 92—t for (z,t)€Q (we>0)x[1,2],
LO otherwise in Q x R".

Then it holds that:
(i) n is L -measurable in Q x R;
(i) 0<9n<1 in QxRi;
(iii) =0 on Q x {0} and on Q x {2};
(iv) For each zo € §, the 1-dimensional function n(zo,t), t > 0, ts
absolute continuous and 8y € L}(Q x R}).

The assertion (i) holds, since 7 is the pointwise limit of the sequence
{n;}32, defined by

( k/P
1 k k+1
wp(@) 0/x;_:;(:z:,‘r)dLZ‘('r) for (z,t) € Qwg > 0)x (2,~ o ),
T’J(m$t)=j k=0)1!"'121_1)
2—-1 for (z,t) € Q(wg > 0) x [1,2],

L 0 otherwise in 2 x R},
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which is £"+!-measurable in Q x IR'. The assertion (ii), (iii) and the first
one in (iv) are directly proved in view of (2.6). We shall finally make sure
that 8,7 € L'(Q x IR} ). Since it holds that

XE(x1t) for almost all (x’t) €N (‘wE > 0) X (0, 1)’
wg(z)
27) Bmlzt)={ _; for all (z,t) € Q (wg > 0) x (1,2),
0 otherwise in Q x R?,

we infer the integrability of 9,7 in the following way:

/ |OunldL™+ = / d[,"(a:)( / xji“(’ ;)dﬁl( )+ / ld,C‘('r))
0

nxlqL Q(wg>0)

=2L"(Q (wg > 0)) < oo,

(2.5) being used in the last equality.

Now let us show (2.3). Let ¢ be a function in C3(€2) such that [¢| < 1
in Q. From (i), |¢n| < 1in Q x RY. Furthermore, by (ii) and (iii), we
can substitute ¢n to ¢ in (1.6) w1th f=Xgand G=0Q xR} :

[ @oxslz [ @)elmdc (a) / (Xz(z, )oin(z, 1)) dL*(2)

QXR}*_ Qwg>0)
= [ Q@i / Xs(z, )AL 2)
Q(wg>0)
= [ Xup»o@?pac™,
1]

(2.4) with K = 1, (2.5), (2.7), and the equality Xg = X% being used.
Letting ¢ / Xq, we arrive at (2.3).

We next prove (2.3) without the assumption (2.4). For a positive
number k, let E, = EN{Q x (—o0,k)}. Then E; satisfies (2.4) with
K = k, and therefore we have

(28) / PXupo d” < [ Qo]

Oxnl
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Let us calculate the limit of the right side of (2.8) as k — co. Because
Ex C Q x (0,k] and E, = E in Q x (0, k), we infer

(2.9) [ @xal= [ @loxsl+ | @oxs,.

axRL ax(0,k) ax{k}
From (1.7), we have for £!-almost all k > 0 that

210) [ Qoxe,|s @ [ 1DXa] = Qhul (EN@X {K))
Qx{k} Qx {k}

(refer to [3, Remark 2.14] for the last equality). By (2.1-b), klin;ﬁ" (En
(€2 x {k}))= 0, and hence from (2.10)

(2.11) lim / Q*|6xz,| = 0.
Qx{k}

Letting k — oo in (2.9), we deduce from (2.11)

(2.12) Jim / Q%|6:XE, | = / Q%8 Xl

1
axRL axR}

Next, since wy converges in L!(f2) to wg, in the same way as in the
proof of the lower-semicontinuity of the functional J (see the proof of (1,
Theorem 1.3]) we can choose a sequence {k;}32, such that k; — oo as
Jj — oo and

(2.13) lim inf / Q% Xy 50 AL 2 / Q*Xwg>o dL™.
a Q

Thus, by passing j — oo in (2.8) with k replaced by k;, j = 1,---,
(2.3) follows from (2.12) and (2.13). This completes the proof of Propo-
gition 2.1. a

In case that E, in Proposition 2.1, is the subgraph of a non-negative
BV (2)-function, we can assert the stronger result:
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COROLLARY 2.1. Let w be a non-negative function belonging to
BV (). Then

n/,/1+|Dw|2+‘[czﬂx,,,>oaw*= /|wa|+ / Q|0 xw]-

1 1
xR an+

PROOF. Since it is proved in [3, Lemma 14.6] that

/,/1+|Dw|2 = / |DXw],
1]

OxR!

in order to derive the conclusion we have only to show

(2.14) Q*Xy>odL™ = Q?80:Xw|.
/ /

1
an+

Because W satisfies (2.1-a,b), there holds (2.3) with Xg, wg replaced
by Xw, w respectively. Now we show the reverse inequality. Let ¢ €
C(© x R%) be such that |¢| < 1in @ x R’. Then we have

w(z)
/ Q% BCdL™ = / Q*(z)dL™(2) / 8¢ (z, £)dL (2)
xR 2(w>0)- o
- / Q*(z)¢(z, w(z)) dL™(z)
Q(w>0)
< szw>0dcn'
[

Taking supremum over all such ¢, we obtain the reverse inequality. 0
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3 —~ The proof of Main Lemma

From the results of Section 2 we prove Main Lemma, being stated in
Section 1, in the following way:

THE PROOF OF MAIN LEMMA. Let F be as in Main Lemma.
Assume initially that F O Q x IR%. Then, since F satisfies (2.1-a,b),
we can apply Proposition 2.1 to F:

(3.1) / 1+ [Dws] + / Q™ Xupr0dL” < / | DX |+ / Q20X
Q Q

1 1
xR 0xﬂ+

Since spt (X — Xy) is compactly contained in @ x R!, wp = u on S.
Hence, from the minimality of u,

(3:2) [ 1+ 1Du+ [ @Xusode® < [ \f1+1Durl+ [ @Xapsodt®
Q 1] 1] Q

and owing to Corollary 2.1,

(3.3) / |DXy| + / @8xw|= / J1+ [Duf? + j Q™Xy50d LM
f [13

QxR nxnl+

Gathering (3.1), (3.2) and (3.3), we establish (1.8).

Next we show (1.8) for F which does not necessarily satisfy F' D
 x R!. Suppose that Main Lemma is not true. Then there exists a
measurable set F such that spt (Xp — Xy) is compactly contained in
Q x IR! and such that

(3.4) /[Dxu|+ / Q*|oxu|> /|Dxpl+ / Q%X F|.

1 1
OxRL xRy OxR xR}

Let H = Q x IR!. Then, since F = FUH in @ x R},

(3:5) [ @oxel= [ Qoxeunl

1 1
nxn+ l’lxl‘t.+
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and furthermore, from Lemma 3.1 below,

(3.6) / IDXz|> / |DXron|.

xR xRl
Substituting (3.5) and (3.6) to the right side of (3.4), we obtain
61 [Ixl+ [ @loxul> [1Dxrunl+ [ Q*loXeunl

1 1 1 1
xR an+ OxR an+

From the non-negativity of minimizers ([6, Theorem 1.2]), u > 0 in
and so U O Q x IR!. Hence, we have

spt (XFUH - Xu) C spt (XF - XU).

Therefore spt (XFug — Xy) is compactly contained in £ x IR'. Moreover,
since FUH D QxR!, FUH satisfies the initial restriction. Hence, (3.7)
is a contradiction. We thus accomplish the proof of Main Lemma. 0

LEMMA 3.1. Let F be a set as in Main Lemma and let H = Q xR} .
Then

(3.8) / |DXpun| < / IDX|.

QxR xRl
PROOF. From (3, Lemma 15.1],
(3.9) /|Dxm|+ / | DXFur|< /lDXF|+ / | DX |

OxR! OxR! xRl xR

By the assumption for F, there exists a positive number K such that
F 5 Q x (—o00, —K) and hence we can apply [3, Theorem 14.8] to FN H:

(3.10) / | DX a2 / V14 |Dwpan|’ = £7(Q) = / | DX,
OxR?! Q xRl

where wrny is defined for F N H as in the beginning of Section 2. From
(3.9) and (3.10) we obtain (3.8). 0
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— Appendix

To begin with, we define a finite C-set: Let E be a subset of 2 x R!
satisfying the following (i) and (ii):
(i) The boundary 9F is the n-dimensional C*-surface.
(i) H*(BEN (2 x R')) < oo.
Then we denote by v(€) the unit normal to dF at £ € 8F and put
v(€) = (v(€),e,), where e, = (0,---,0,1) € R, From (i), v, is con-
tinuous on JE and hence the set dE(v, > 0) = {£ € OE|wn(£) > 0} is
decomposed into relatively open connected sets. Since each connected set
has a positive H"-measure, then (ii) yields that the number of them is at
most countable. Hence, we can write

OE(v, > 0) =) _ B8E}.
k=1

Set Qf = proj E}, the orthogonal projection of dE; onto Q. Then each
Qf is an open set because for each £ € E; it holds that 1,(§) > 0 and,
from (i), 0E; is n-dimensional C!-surface in a neighbourhood of §&. By
replacing the inequality v, > 0 with v, < 0 in the above argument, we
can also define the family of open sets {0} }52,.

DEFINITION A.1. Let E be a subset of Q x R'. Then, E is called
a finite C'-set if E satisfies (i), (ii) above mentioned and
(iii) For each x € Q, there exists a neighbourhood N, of = such that the
sets { positive integer k| N,NQ} # ¢} and {positive integer k| NoN
Qi # ¢} are finite.

In particular, from (i) and (ii) there holds that the characteristic
function Xz of E has the derivative with the finite total variation Q x IR*
for any finite C'-set E (see [3, Example 1.4]). Therefore as in Section 1,
the Radon measure Q?|8,Xg| is defined and then there holds the following:

THEOREM A.l. Let E be a finite C*-set. Then for any open set
G c Q@ x R! we have

[@toxsl= [ @l am

(] GNOE
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where v is the unit normal to OF and v, is the t- component of v.

COROLLARY A.1. Letw be a function belonging to C*(2) N BV (Q).
Then

[@unoder = [ @ooxwl
Q

1
an+

PROOF. The subgraph W of w in 2 x IR satisfies (i)-(iii). In fact,
(i) and (ii) directly follow from the condition w € C'(2) N BV (). (iii)
is verified to hold by taking Q as N, for each z € §2, because Qf = Q for
k=1and Qf =¢ for k> 2, and Q; = ¢ for k > 1. Now we can apply
Theorem A.1 to W:

(A1) /Qzlatxwl= / Q?|v|dH™.

axRl 8w N (OxR})
Noting that 8W N (Q x RL) = 8W N (2 (w > 0) x R'), we have

(A.2) / Q|wi|dH" = / Q*|s|dH™ | oW = / Q*Xuso, dL™.

aWn(axR}) (w>0)xR! 2
Hence, from (A.1) and (A.2) we arrive at the conclusion. 0
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