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Foliated differentiable spaces
Stability and quotient structure

A. PIATKOWSKI - K. SPALLEK

RIASSUNTO: Si introducono nozioni molto generali di foliazioni F su spaz dif-
Serenziabili X (ridotti o no) e si inizia, in questo ambito generale, lo sviluppo di una
teoria delle foliazioni stabili, estendendo ampiamente e unificando risultati classici. Ad
una foliazione F si associano lo spazio delle foglie X/F e due gruppi di olonomia (che
coincidono nel caso classico). Per casi del tutto generali ma non troppo “selvaggi” si
collega la stabilita di F con la finitezza dei gruppi di olonomia e con il fatto che lo
spazio delle foglie X/F sia uno spazio differenziabile (avente in generale singolaritd
anche nel caso in cui X sia una varietd).

ABSTRACT: We introduce very general notions of foliations F on diﬂgmntiablc
spaces X (reduced or not) and start to develop a theory of stable foliations in thz.§ general
frame, extending largely and unifying classical results. To F there are associated t(u
leaf space X/F and two holonomy groups (whick coincide in classical cases). For quite
general, but not too “wild” cases the stability of F is connected with the ﬁmteness. of
the holonomy groups and with the leaf space X/F being a differentiable space (having
in genernl singularities even for manifolds X ).

KEY WORDS: Foliations — Singularities — Integral manifolds ~ Stability — Differ-
entiable spaces and manifolds.

A.M.S. CLASSIFICATION: 57TR30 - 32K15

— Introduction

CH. EHRESMANN proposed in [3] some quite general theory of folia-
tions. A rigorous development of such a theory however is not so easily
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carried out. One runs for example into problems of singularities, even if
one - as up to now - starts with manifolds: The leafspace has in general
singularities. So one should start right from the beginning with objects,
which may include singularities, i.e. with differentiable spaces: reduced,
but even non reduced ones [18]. This general level of foliated spaces has
important impact also with other fields ([11], [1]).

We propose to develop a quite general theory of foliated spaces, which
might have been already in the mind of Ch. Ehresmann. For the con-
venience of the reader, we fix our intention to the C™-case. But all
works also for the C-case (for example for subanalytic spaces) and the
C“*-case (especially for complex spaces). Our technics are those from
differentiable spaces, which are well developed by now (after the times
of Ehresmann). To avoid too lengthy and involved papers for the read-
ers convenience, we proceed stepwise and discuss in this paper foliations
only of reduced spaces into manifolds, however of (possibly) different di-
mensions, so called coherent foliations from [22] (extending (8], where
all manifolds have the same dimension; extending [10], [2], where only
manifolds are foliated, see also [12] with some other extension; extending
[14], [15], where the foliations are obtained by Lie groups operating on
spaces). Some other general type of foliations of (sometimes even only
topological) spaces, where the leaves even may be spaces, is discussed in
[17], [4], [5]. In another paper we extend our results to some most gen-
eral situation (still with reasonable results), which will cover all different
relevant cases as those mentioned above.

In 1-6 we establish the stability-theorem (main theorem) for coher-
ent foliations (6.2). Besides other technics from the theory of spaces,
especially notions and results about locally integrable vectorfields ([20],
[22]) and coherent foliations ([9], [22]) are relevant. Also the technics
in [8], developed for foliations of differentiable spaces, are important in
our generalizing procedures. In our case of foliated spaces, two differ-
ent holonomy groups (describing the neighbourhoods of the leaves) are
involved right from the beginning: The analogue of the classical group,
which we call “geometric” (due to its nature; see 5.6) and some bigger

group, which we call formal (due to its more formal nature, see 2.4). Only
for manifolds, foliated into manifolds, but all of them with the same di-
mension (classical case!), both groups always coincide ([8]; see [21] for the
complicated possibilities in the case of space).
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In 7 we first complement 1-6 by describing without proof some ad-
ditional results to coherent foliations, especially their quotient structure
{see 7.1). After this, we describe in 8 a far reaching extension of the notion
of foliated spaces from 1-6 and indicate further results in this direction
and some relations to different fields (for ex. [11]: mixed manifolds and
supermanifolds, {1]: control theory).

We should mention, that our coherent foliations are (since quite re-
cently) also called Stefan feliations in the special case of foliated mani-
folds, sometimes also singular foliations. But this is misleading, because
we introduce in this paper what are really singular foliations, namely
where the leaves themselves may have singularities. Our name “coher-
ence” indicates, that along any leaf the geometry of the foliation does not
really change. Especially, the leaves are then manifolds (of possibly dif-
ferent dimensions however). And some analogue of our formal holonomy-
groups are called transverse holonomy groups in the case more compli-
cated foliated manifolds (note however: both of our holonomy groups are
in fact “transverse”. So we prefer our more “intentional” names), some
version also appeared in [5].

1 — Preliminaries

Let X be a reduced differentiable space ({18]). Assume that X is
locally compact. We give some fundamental definitions and facts. For
the convenience of the reader, we may suppose: X C R” (embedded
situation).

DEFINITION 1.1.  ([22]) A smooth foliation F of X is a family

of connected manifolds {L;;j € J} with [-I-immersions i : L; — X,

such that the following holds: \J L; = X, LyN Ly = 8 for j # k. The

jEJ . .

manifolds L; are called leaves. Ifz € X, then the leaf coniaining T s
denoted by L,.

The set-sheaf of all germs of locally integrable vector fields on X is
denoted by VH{X). V(X) is & CV-sheaf ({19]).

DEFINITION 1.2, ([22]) 4 distribution V on X is a CN -subsheaf of
Vi(X). V is called o Lie distribution if V 18 a C¥-sheaf of Lie algebras
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(ie. V,VICV).

DEFINITION 1.3. ([22]) A distribution V is called integrable if, for
each point £ € X, there is a manifold M C X such that z € M and, for

each y € M, we have

T,M =V(y) :={ve T, X;(3V e V)V(y) =v}.

PROPOSITION 1.4. ([20]) IfV is an integrable distribution, then the
local integral manifolds of V “stick together” to a smooth foliation F of

X. We have
(VLe F)(Vye L)YT,L=V(y).

DEFINITION 1.5. ([22]) A foliation induced by an integrable distri-
bution V as in Proposition 1.4 is called coherent and denoted by F (V).

Let oo and Tp be the natural differentiable structure and the natural
topology on X, respectively. Let F be a coherent foliation of X. F in-
duces on X some new differentiable structure o and some new topology
Tx.

We have, by [22] and [9]:

PROPOSITION 1.6.  For a smooth foliation F = {L;;5 € J}, the
following conditions are equivalent:
i) F is coherent,
ii) forany L € F, z € L and v € T, L, there exists in a neighbourhood
U of = a vector field V such that V(z) = v and V is tangent to leaves
of F in each point of U,
iii) for each z € X, if z € Lj,, r = dim L;,, there ezist U € Ty with z €
U, an open connected neighbourhood W C R" of w, a set ACIR"™",
0 € A, and a diffeomorphism ¢ : U — A x W, such that
a) ¢(z) = (0, w),
b) for each L' € F we have o(L'NU) =S x W, where S’ := {a €
A; ‘p_l(a"w) € L’})
c) ifdim L' =r, then S’ is countable,
d) ifdimL’' =1, then olUNL : (UNL',05) = (S' X W,04 X 00) s
a diffeomorphism, where o4 is the differentiable structure of the
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0-dimensional manifold of A and o, is the natural differentiable
structure of W,

e) for each a € S' and for dimL' = r, the set ™ ({a} x W) is a
connected component of UNL' in Tr and in Ty, as well.

DEFINITION 1.7. (U,¢,A x W) described in Proposition 1.6 iii) is
called an adapted chart of F around x. The set A is called a transversal
of the adapted chart. Each connected component of the set UNL' is called
a plaque of U in L'. From e) it follows that ~*({0} x W) is a plaque
which is called the central plaque of U.

Denote by F|U the foliation of U whose leaves are plaques of U.
Proposition 1.6 easily implies the following,.

ProposiTION 1.8. If (U,p,A x W) is an adapted chart around
x of F, then the decomposition of A into connected components of the
sets S’ described in Proposition 1.6 iii) is a coherent foliation F4 of A.
Moreover, ¢ : (U,o5u) = (A X W,05, X 00) is & diffeomorphism.

Denote by p,py and pa the equivalence relations induced, respec-
tively, by F,F|U and F4, and let m,my and and 74 be the respective
canonical projections. By Corollary II., 2.12 from (9], we have

PROPOSITION 1.9. The equivalence relations p, py and pa are open.

It is clear that the spaces A/,, and U/, are homeomorphic. Denote
this homeomorphism by Ay. From [9] we have

PROPOSITION 1.10. Let F be a coherent foliation of X and let
L € F. For any z,2’ € L, there are open neighbourhoods U(z), U(z')
and a diffeomorphism ¢ : U(z) — U(z’'), such that
i) ¥(z) =7,
ii) ze L' <= Y(z)eL' VzeU(z) VL'€F,
iii) ¥ is a diffeomorphism relative to ox.
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Let L € F.

DEFINITION 1.11. L is called stable if there is a basis of p-saturated
neighbourhoods of L. L s called transversely stable if, for some adapted
chart (U,p, A x W) around some z € L, the leaf {0} of the foliation F4
is stable.

By Proposition 1.10, the above definition does not depend on the
choice of an adapted chart. In a simple way, using Proposition 1.8, we
obtain the following

PROPOSITION 1.12. Let L be a transversely stable leaf of F and
(U,p,A x W) - an adapted chart around z € L, p(z) = (0,w). Set
O := ¢ YC x V) with C being a ps-saturated open subset of A,C C A,
V - an open connected neighbourhood of w in W. such that V. .C W,
z € 0 and O CU. Then (0,9|0,C x V) is an adapted chart around
and, for each plaque P = ¢~ 1(S x V) of O, the equality

P=p(SxV)
holds. Here the closure P is taken with respect to Tr.

By using the openness of the equivalence relation induced by a co-
herent foliation, it is easy to show the following properties satisfied by
the coherent foliation near a transversely stable leaf:

PROPOSITION 1.13. Let L be a transversely stable leaf of ¥, x € L,
and let (U,p,A x W) be an adapted chart around z. Let S2 be a pa-
saturated neighbourhood of 0 in A and V - a connected neighbourhood of
w in W. Then the mapping

ifi.U : fj'/i’;; 2 [z’]pa — [zllpu €U/py

with U = ¢ (2 x V) is a homeomorphism onto an open neighbourhood
of [z] inU/,,. :
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By the above proposition, the set 2/, can be considered as an open
neighbourhood of [0],, in A/,, or equivalently, the set U/ p; - 85 an open
neighbourhood of [z],, in U/,,.

DEFINITION 1.14. A leaf L € F is called proper if To|L = Tx|L,
i.e., for each = € L, there is an adapted chart (U,p,A x W) around z
with UNL = = 1({0} x W).

By the methods used in [10], we obtain

PROPOSITION 1.15. Each closed leaf L € F is proper.

2 — Formal holonomy group

Let L be a transversely stable leaf of 7. Now, we construct a formal
holonomy group of L.

DEFINITION 2.1. Let (U,p,A x W) be an adapted chart around
z € L. A homeomorphism h : T' = T’ of open neighbourhoods of [z] in
U/, is called F-faithful at [z] if and only if
i) h(lz]) = [=],
if) (Ve € T)(3L' € F)ng'(c),n5 (h(c)) are plaques of U in L'.

Let H(L) denote the set of all germs [h];) of F-faithful homeomor-
phisms at [z].

REMARK 2.2. Condition i) gives a possibility to compose represen-
tative elements of two germs and the composition has a germ in H(L)
which does not depend on the choice of the respective elements. In such
a way we get a structure of a group in H(L).

We want to prove that the isomorphism class of H(L) depends only
on the leaf L.

Choose z' € L and an adapted chart (U’,¢', A’ x W’) around z'.
With these data, we construct the group H'(L) of all germs [h),) of
F-faithful homeomorphisms k' of neighbourhoods I",IV of [z'] in U/,

PROPOSITION 2.3. H(L) and H'(L) are isomorphic.
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PROOF. By Proposition 1.10, we have a diffeomorphism ¢ : U(z) —
U(z') which maps z into z’ and is compatlble with the foliation. We can
restrict the charts (U, ¢, 4 x W), (U, ¢, A'xW') to charts (U 8, AxW),
(0',@, A x W') so that U cU(@),U c U'), and A, A’ are p, - and
par - saturated, respectively.

The diffeomorphism % induces the homeomorphism

l&;:fj/l’ﬁ—'ﬁl/%ﬁ

with the properties that
i) $(lzloy) = [leg0
if) (Vee U/,,A)(BL’ € f)vr:‘(c) (1/3(c)) are plaques in L’.

Define
H(L) 3 [Blg — [Bohod |z € H'(L).
It is easy to see that this mapping is an isomorphism of the groups.

DEFINITION 2.4. The group H(L) is called formal holonomy group
of L.

8 — Technical coverings
We extend some notions and results from [8] and first we have the
following topological results:

LEMMA 3.1. Let M be a paracompact topological space and {U,};c; -
an open covering of M. Then there ezists a locally finite open refinement
{Y }ies of {U:}ier with a refinement mapping 7 : J — I, such that if
Y., nY, #0, thenY,UY, C Urir) NUr(a)-

For the proof see for example [8].

DEFINITION 3.2. {Y;};es is called a star-refinement of {U,}:er.
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Let F be a coherent foliation of X and L € F be a closed transversely
stable leaf.

LEMMA 3.3.  Let {(U,p:, Ai x W;);i € I} be a family of adapted
charts around points of L, where U; are compact and UIP.- = L with P,
i€
being the central plague of U;. Then there ezist a family {0;,v;,C; x
V;);3 € J} of adapted charts around points of L and a refinement map-
ping 7 : J — I, such that
i) J is countable,
ii) {Q;}jes is a locally finite Tx-open covering of L, where Q; is the
central plaque of O;,
iii) (Vr,s € J)ﬁ,- Nno, #0 = 0,U0, C Urir) MU,
iv) (Vj € J)O; is compact, ¥; = 0,305, .
v) (Ve J)C,isa Pa,;,-Saturated open subset of A,(; and C; is com-
pact.
Moreover, it follows from ii)-v) that:
vi) if Q- NQ, # 0, then,
for open Ty, := m0,(0, N O,) C Or/po, CUsr(r)/pu,,,, there exists a
(uniquely defined) homeomorphism

hra : Pra - Far

such that
heso 7r0.-|0r no, = WO.IOr no,,

and
(Ve e Pra)""c—): (C):’rc-).l (hrs(c))
are plaques of the same leaf. Additionally, (h,;)™! = h,,.

PROOF. By Proposition 1.15, we can assume that U; N L = F;. Let
{G:}ier be a family of open sets such, that {U;} U {G:} is a covering
of X and G,NL = @ for t € T. To the covering of X obtained, we
can apply Lemma 3.1 (X is paracompact, since it is locally compact and
has a countable basis ([13])). From the star-refinement we choose the
family {Yi}rex with Yi N L # 0. If o is a refinement mapping, then, for
each k € K, o(k) € I. For each k € K, the set Y is compact. Since
X is paracompact, thus normal ([13]), we can choose a covering {2y}
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of L with Z, being relatively compact in Y; and Z, N L # @. For each
k € K, the compact subset Z; N L of Y; can be covered by a finite family
{(Ok.ty, O(k.tys Akty xW(k,,)}?_f_':) of adapted charts around points of L. We
can assume that @ ) is a restriction of @, k), Ak, is relatively compa.ct
and pa,,,-saturated in A, (), and Wk, is compact. Let J : U M,

where M, := {(k,t);1 <t < n(k)} and let 7 : J > (k,t) — a(k) elr
and Y1) = Po (k)| Ok, t)-

Property i) follows from the existence of a countable basis. For the
proof of ii), we use the local finiteness of the star-refinement of the cov-
ering {U;} U {G,} and the finiteness of M;. Properties iii)-v) are obvious
by construction.

To prove vi), assume that O,NO, # 0. Then Iy, := 7o, (O-NO,) # O.
By Propositions 1.9 and 1.13, I',, is open in U,/ PU, (- In view of iii),
we have O, U O, C U,y NUy(,). For ¢ € Tpyy w5l (c) NO, # 0. By the
Ts-connectednes of 75}(c), it is contained in the unique plaque of Us()-
Thus hy,(c) := 7y, ,, 77 *(c) is a correctly defined mapping with values in
I,r. By iv), we have

hys 0 70,|0, N 0, = 70,10, N O, .

It is easy to see that the above equality decermines the mapping h,,
uniquely. It is obvious that m5!(c) and 75} (h..(c)) lie in the same leaf
since they lie in the same plaque of Uy (,).

Finally, h,, is a homeomorphism by Proposition 1.9. 0

PROPOSITION 3.4. Let L be a closed transversely stable leaf and,
for zo € L, let (U, p, A x D) be a fired adapted chart around zo, where D
is the open disc in R™ with cenire 0 and radius 1, and ¢(zo) = (0,0).
i) Then, for each = € L, there is an adapted chart (U, s, Az X D;)
around z € U,,U,, = U, such that
a) ¢(LNUi) = {0} x D,
b) wz(z) = (0,0) € A; X D;,A; x D, is open in A x D and A, is
pa-saturated,
c) for each( € (Az/pa. ) Ay/pa,) C Alpas Ty Au. (€), 75, Au, (€)
lie in the same leaf of F.

Moreover, we can assume that, for each x € L, the set D, is the open
disc with centre 0 and radius 1. )
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ii) If L is compact, then there are zy,... ,Z, € L with the properties
a) 'U1 Uy, DL,

ﬂ) A-'Bi = Aij = C(V")J):

v) a), b) and c) from i) hold.
iii) There ezists a family {(0;,v;,C; x V;);j € J} of adapted charts for
the family {(U,, ¢.,A: X D,);z € L} as in Lemma 3.3, such that

a) UO;DL,
jeJ

b) %;(LN0;) = {0} x V;(¥j € J),

c) there is a mapping T : J — L such that O; is relatively compact
in Ury), C; is an open relatively compact and py_, -saturated
neighbourhoods of 0 in A,(j), Vj-relatively compact in D, ;) and
¥; = r»|0;)

d) vi) from Lemma 8.8 holds.

Moreover, we can assume that V; is an open disc with cenire 0 and
radius 0 < €; < 1. If L is compact, then we can assume that card J < oo.

PROOF. Choose an adapted chart (U, ¢, A x D) around z, with LN
U = ¢~ ({0} x D) and p(z,) = (0,0), where D is the open disc with
centre 0 and radius 1.

To prove i), take the neighbourhoods U(z), U(zo) and the diffeomor-
phism 1 : U(z) — U(z,) as in Proposition 1.10. Choose a p4-saturated
open neighbourhood A, of 0, such that ¢~'(A; x D;) C U(z,). Define

U: = ¢—1‘P—1(Az X Dz)y Pz i=9poO v.

We obtain the adapted chart (U, ¢., 4. X D.) which fulfils a)-c).
We can apply the homothety in the last variables so that D. be the disc
with radius 1.

To prove ii), choose Z,, .., Z, € L with &) and set C := (i, 4z,- The
charts obtained by the restriction fulfil ii).

Finally, iii) is obvious. g

DEFINITION 3.5. A covering {O;} of L as in Proposition 3.4 is
called a technical covering of L.
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PROPOSITION 3.6. Let L be a closed transversely stable leaf of F.
Then there is a covering {U;;i € I} of L by charts such that, fori € I, the
set U;N L i3 one plaque of U;. For this covering, there ezists a technical
covering {(0;,¥;,C; x V;);j € J} of L as in Proposition 8.4 iii) such
that

a) (0,0) € C; x V;(Vj € J),

B) for each j € J, V; is the open disc in R™ with centre 0 and
radius 1.

Fully analogous considerations as in [8] prove the assertion of the
above proposition and the assertion of the following.

PROPOSITION 3.7.  Let L be a compact transversely stable leaf
and s € IN - a fized number. Then there exists a technical covering
{(0;,9,C; x V;);5 € J}, J ={1,..,m}, of L with

(Vi1 -y 4o € {1,.,mPO1N...N05 #0 = OunN...N0;,NLF#D

DEFINITION 3.8. The technical covering of L which fulfils the con-
dition of Proposition 8.7 is called a technical covering of power s with
respect to L.

4 — Chains

DEFINITION 4.1. Let Oy, .., 0, be domains of adapted charts and let
LeF.
i) Oy,..,0; is called a chain on L of length T with a base = if
a) for each 1 <t <, there is a plaque P, of O, in L,
b) z € B,
c) foreach1<t<r—1, RNPy #0.
ii) Let P,,., P, be plagues of Oy,., 0, respectively. The sequence Py, ., P,
is called a chain of plaques of length r with a base x if
8.) zE Ply
b) foreach1<t<r—1, PN Py #0.
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iii) The chain O,,..,O, (resp. Py,.,P,) is called simple if

O:NO,#0 (resp. PNP,#0) < |t—3s|<1.

From the above definition we easily get

REMARK 4.2. Let P,.., P, be a chain of plaques with a base z, P,
being a plaque of a domain O; of an adapted chart around a point of a
fixed leaf L. Then O,,..,0; is a chain on L, with a base z.

Exactly as in [8] we can show the following

REMARK 4.3. Let Oy,..,0, be domains of adapted charts around
points of L. Let Oy,.., 0, be a chain on L with a base . Then there is
an open po,-saturated set S C Oy, T € S, such that Oy,..,0; is a chain
on L, with a base y for each y € S.

We now have

PROPOSITION 4.4. Let L be a compact transversely stable leaf of F,
let {(Ok, vk, Ck x Vi);k € K} with K = {1,..,7} be a technical covering
of L of power 2 with respect to L, z € L (we can assume that z € 0y)
and M € IN - g fized number. Then there ezists an open po, -saturated
neighbourhood S C O, of « such that, for each chain Qy, .., Qi, of plaques
of O;,,..,0;, € {Oy,..,0,} of length < M and a base in S, the inclusion

Q, c01U...U0, =:0,1<t<s,
holds.

PROOF. Let P, be a plaque of O; in L, 1 < i < r. We first prove the
following assertion:

1) For each y € P,, there exists an open neighbourhood V(y) of y in O;
such that, for each z € V(y), if P is the plaque of O; through z, then
PcoO.

Assume that this assertion is false. Thus there are y € P, and a
sequence (zn) of points in O; with lim z, =y, such that if P, is the
plaque of O; through z,, then P, is not contained in O. Therefore, for
each n € IN, there exists r, € Py such that r, ¢ O. Remark that r, are
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contained in the compact set 0\ O C U, since P, C O;. thus we can
assume nli_'rgo e =1 € O;\ O C U,(;. We now show that

.) Pry @) (‘I‘) = nlg%o PI; Pr(i) (rn) =0.

Assume that Nm pr; -(;)(rn) # 0. Then there exists a pa ,-saturated
" neighbourhood G of 0 in A,(;) with pr, ¢.;)(rs) € G for an infinite num-
ber of n € IN. Thus pr; @-(;y(z.) ¢ G for an infinite number of n € IN
since r, and z, lie in the same plaque of U,;), and G is pA,(‘.)—satumted.
Therefore nl_{.ngo 2, # y. The contradiction obtained proves *).

It follows from *) that r lies in the plaque of U,(; through y, so
r € L C O, which contradicts r € O; \ O. Thus 1) holds.

Choose now y € P; and V(y) as in 1). Then S; := n5}mo,(V(y)) is
open in O;, and P; C S;. Denote by P, the plaque of O; through z. Then,
for z € S;, we have P, C O.

‘We now prove the following assertion:

2) Each chain Q,, .., Q:, of plaques of Oy, .., O, of length < M induces a
chain O;,,..,0;, on L of length < M.

Since {0y, .., Oy} is of power 2 with respect to L, we have the following
sequence of implications:

Qithit-H #0 = Oignoiu,l #0 = O, ﬂO.-an;éo
= P, N .,+19(=01<t<n 1,

which implies 2).
Moreover, we have:

3) For each chain Oy, ..,0;, on L, there exists an open po, -saturated
set S(iy,..,in) C Os, containing P, such that, for each cham of plaques

Qiys - Qi With Qi C S(i1,..%s), the inclusion Q,CcOfor1<t<n
holds.

Indeed, let Y,—; := "5:,,_,"0-',._1(5%—1 N S;,). Define inductively
Yo_e —"ro LT L (YaeaNSy, ) for2<t<n-1. ThenY,_, is open
inS; _,, and P;, C Y, The set S(iy, .., in) = Y1 has properties asserted
in 3

)If @i, NQ;, # 0, then there is a plaque P of Ur(,) with PNO;, =Qy,
since Oy, has a pa,, - saturated transversal.
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Moreover, we have Q;; N Q,, C P. Since Q;, C Y}, theset Q;, NY;
is nonempty, and @ # PNY; =PNQ;,NnY2=Q,, NY,. Thus @i, C Y,
since Y, is poy, -saturated in O,,.

Inductxvely, we get in this manner Q;, C S;,, 1 < t < n. Therefore
Q,, coO.

By 2), each chain Q;,..,Q;, of plaques induces a chain on L. Since
{#1,..,ia} < {1,..,7}, there are only a finite number of chains on L of
length < M which begin with i;, say, k chains. For each of these k chains
on L, there is a set as in 3). The intersection of these sets is the required
set S. 0

8 — Geometric holonomy group

We define as in [8] the notions of a pseudogroup of homeomorphisms
of a topological space Y, a subpseudogroup of a pseudogroup, a system
of generators of a pseudogroup, a symmetric system of generators and a
finitely and countably generated pseudogroup.

Let {(O;,%;,C; x V;);5 € J} be a technical covering of L for the
family {(U;, p;, A; x W;);i € I} with a refinement mapping 7: J — I.

Let Y := E Oj/po, denote the disjoint union of the spaces O;/po;-

2

Let II denote the set of all homeomorphisms h,, : Iy, — I, from
Lemma 3.3 vi). Let II be the pseudogroup of local homeomorphisms of Y
generated by II i.e. an element of I is a finite composition of elements
from I1. ThenIlisa symmetrlc and countable system of generators of I1.

For a € Y with g, Y(a) C L, j being a suitable index, let I, = {h €
IT; h(a) = a} be the 1sotropy pseudogroup of II at a. The set of all germs
of elements from II, at the point a will be denoted by G(a).

Lemma 3.3 vi) easily implies:

REMARK 5.1. Let h € II, with the domain D(h) and the range
W (h), contained in O;/po;. Then, for each y € D(h), there exists L' € F
such that 75} (y), 75, (k(y)) C L.

As a corollary we obtain.

REMARK 5.2. G(a) is a subgroup of H(L).
We need the following.
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LEMMA 5.3. Let (Ul, Y1, Ay X Wl),(Uz,(pz,Az X Wz), be adapted
charts around points of L and let z € Uy N U, N L. Then there are
open neighbourhoods T'y,T'; of [x] in Uy/py,, Uz/py, respectively, and a
homeomorphism f :T'; — Iy, satisfying the following condition:

(V¢ € T1)(3y € U1 N Ua)m(€) € Ly = 75, (£(Q)) € Ly

PROOF. We can restrict both charts to relatively compact neighbour-
hoods of z which are contained in U; N U, and have p,4,-saturated and
pa,-saturated transversals, respectively. Then we get a similar situation
as in vi) of Lemma 3.3 and f is defined in the same way as h,,.

We now show that the isomorphism class of G(a) depends only on
the plaque P which represents a.

Let {(O},v;,CL x V{);k € K} be another technical covering of L
(for some covering {(U!, ., A. x W]);r € R}), Y’ := kz;( Oi/Po,> -
the countable symmetric set of homeomorphisms h;, : 16"’" — I, as in
Lemma 3.3 and I’ - the pseudogroup generated by Ir.

We first consider the case when {O}} is a topological refinement of
{O0;}. Let A : K — J be a refinement mapping. Let h,, € II, A, :
0./po, D I'ys = Ty C O0,/po, With h.,(b) = c where b is a fixed base
point defining a plaque of O, in L. Choosing z € O,NO, with 1o,.(x) = b,
let P be the plaque of O, containing = and let y € P. We can find a
simple chain P, of plaques of O, 0 < ¢ < v joining z to y and such
that P, NP #0,i=0,.,v. Set b= Wo;‘o(:l:) € O;‘O/po;‘o, & := moy _,
(y) € 01,/ po, - By Lemma 5.3, we have homeomorphisms

fior:Oky/ PO, DTk = TrCOr/po,; fory:04/P0, P4 = Tty € Ok./pPoy,

such that b € T, fko,.(f)) =b, c €T, fu,(c) =¢and they “map plaques
of a leaf into plaques” of the same leaf.
Let Y,y :== wai 7o, (O, NO%,_). For2 <t <w, we define
v—1 v=-1
inductively Y,,; := w;i o, _, (Yo—ts1 N O;c.,_,)-
y—t v=
Then z € Y, and Y, is open in Oj.
For an arbitrary point z € Yp, we have a chain of plaques F, .., P, of
Oiys - Ok, With z € Py, P, C Y;,0 <t < v, where Y, = raiuwo;’u (Ok,_N
'
ko)-
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We have O, N O, # @ since P,, N P # 0. Therefore Oxu,) N O, # 8
and O}, C 0,\(;,,) C Us(s)- There is a plaque P of U,y with z € P. In
particular, P;U...UP, C P. Thus we have:

For each z € Yo, there exists exactly one plaque Pof U, (s such that,
for any 0 < t < v, the inclusion P/ C Pn O, bolds.

We now choose on open neighbourhood I' C Oy, / pPo; of b such that:
i) r C Pkg) fkor(r) C D(hrl)’
li) hra(fkor(r)) - Fu
iii) 7"0' (faks rafkor(r)) cY.,
lv) P C D(h, 1’:0 .0 hkokl)’
v) for each ( €T, there is a plaque N(() of O, such that @ # 7r5,1 ©)n
O, Cc N(¢).
Let ¢ € T", P} be a plaque of O} with o (Pj) =¢ and let Fy,.., P,
be the respective chain. By iii), we have o, (P’) € D(f,kv) Then

fox, (moy, (Py)) =70,(P,N0,) =0, (P(Q)N0,) =m0, (P(Q)),

so ~
7oy, (By) = faky (7"”7(-) (PO))-
We get

e ky © - O Ry (€) =Hi g, 0+ by (moy (FoNO)) =
=R, sk, 0+ O Rkyiy (Top, (A) =
Ky 0+ 0 Kigey (o (PR = o=
=m0y (F)) = for(Tuyq,) (P(©))
= fur, (M, (N () =
= fur, (MU, 75, TO, (Wo' )NO0y)) =

= fak" oh, 0 fkor(C)

and therefore,

h;‘v—lkv ©...0 h;cokllr = faku o hrs o fko"lr € H’.



690 A. PIATKOWSKI - K. SPALLEK [18]

Let now h; _ ;. 0...0 h.o.1 € II,. Choose yo € Oy, N O;; N L with
o, (%) =aand y; € Px = 7"0‘ (higir (a)) with y1 € O;,.

Inductively, choose y, € O,t +1 N Oy, such that y,..; and y, lie in the
same plaque of O0;,, 1 <t < n—1. The points yo, y, lie in the same plaque
P of O, = O;,, since h;,_,;, ©...0 hyy, (a) = a. Choose now = € P. Let
z € O. As above, we can deﬁne a “mapping chain” ;‘3-1 Kt OO hkg k¢
(1<t<n-1)from y,, to y, h;c?,_lkg o... oh;cgk? from z to yp h;‘:f—l’ﬁ'a' o

++ 0 hinyn from y to z. There exists a neighbourhood I' of a such that

Finkg © Big_yin © -+ 0 higi; © figa [T =

= finky O Rip_y10 © fk:,"'li,‘_l ° fi,._;k,’,"l 0...0 fukt © Pigiy © frgio|U =
! ]

= (h;‘:f.x"a‘ o0...0 h;ea‘k'{) o...0 (hkg_,kg 0...0 hkgkg)lr =

Y ! / "—
= hk;‘_,k:,‘ 0...0 hkgk?ll‘ el d:= 1ro;° (z).

Thus [fmk"]a [htn 16 @+ © hmtx]a [fk°z°]d [hk" k" <..© hkok?]d

In this way, we get a homomorphlsm j:G(a) = G’ (d) where G'(d)
is the group of germs of homeomorphisms from IT;. The homomorphism
j is, of course , injective. Moreover for each h’ € IT);, there is an element
h € I, such that j([h],) = [h']4 since {O}} is a refinement of {O;}.
Therefore j is an isomorphism.

Now, we can consider a general case. Let {O;}.} be an arbitrary techni-
cal covering of L. The family {Z,; := O;NO;;j € J,k € K,0;NO;, # 8}
is an open covering of L which is a reﬁnement of {O,} as well as of {O;,}.
For this covering, there exists a refinement {U;’;t € M} whose elements
are domains of adapted charts. A technical covering {OY;i € I} for {U!'}
is a topological refinement of {O}} as well as of {O;}. Now, the isomor-
phism class of G(a) depends only on the plaque P by the particular case
considered above. a

We now have to show that G(a) depends only on the leaf L.

REMARK 5.4. If z,y € L, then there are jo,jn € J such that, for
z € Ojy, Y € Oj, and a = 7o, (2), b := mo;, (y), there exists h € II with
h(a) =b.

PROOF. There is a simple chain of plaques P;, of O;, (0 < t < n)
from z to y.
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The mapping h := h;,_,;, ©...0h;,; is the required homeomorphism. 0
If f € I1,, then hfh~! € II,, and [f], — [hfh~!}, is an isomorphism
G(a) — G(b).
In this way we have proved the following

PROPOSITION 5.5.  The group G(a) is determined by the leaf L
uniquely up to an isomorphism.

Let Hol(L) denote this group.

DEFINITION 5.6. Hol(L) s called a geometric holonomy group of L.

6 — Stability theorem

Let Y be a topological space, R - an equivalence relation on Y and
let y € Y. Denote by H(R,y) the group of all germs of local homeomor-
phisms h of open neighbourhoods of y such that h(y) = y and, for each
z € D(h), we have zRh(z).

To prove the stability theorem, we need the following

LEMMA 6.1. Let G C H(R,y) be a finite subgroup. Then there
exist an open neighbourhood U of y and a finite group G(U) of homeo-
morphisms of U onto itself, such that

i) (Vge GU)gly) =y,
ii) (Vu € U)(Vg € G(U))uRg(u),
iii) G = {lglig € G()},
iv) ord G = ord G(U).
Moreover, if O is an open neighbourhood of y, then U can be chosen in
such a way that U C O.

For the proof of the above lemma, see, for example (8].
‘We now have

THEOREM 6.2. Let L be a compact transversely stable leaf of F
with the finite geometric holonomy group Hol(L). Then L is stable.



692 A. PIATKOWSKI - K. SPALLEK [20]

PROOF. Let {O;;j € J} be a technical covering of L of power 2
respective to L. Let J = {1,...,r}; then L C 0,U...UO, =: O. Choose
z € O1NL, no,(x) = a € O1/po, and, for each h € Hol(L), choose
g € I, with [g], = h, ordHol(L) =: m. By Lemma 6.1, there are open
neighbourhood U C 0,/po, of a and g1, ..,gm € II,, such that

i) Hol(L) = {[gdail < i < m),
ii) {g:)U:U - U;1 <i < m} is a group of homeomorphisms.

Set G = {h € Iih = hiy_5, 0... 0 by, t S 1y 10 = 1, (V]) 45 €
{1,...,r}}. Then the set G is finite. Choose an open neighbourhood
S C O, of z as in Proposition 4.4 for M :=r-m - card G, i.e. for each
chain Q;,,..,Q;, of plaques of O;,,..,0;, of length < M and with a base
in S, the inclusion Q,-l C O holds for each 1 <t < n. By Lemma 6.1, U
can be chosen in such a way that 75 (U) C S. Now, the group Hol(L)
acts on the set U by g;|U, i =1,..,m.

Let Or(¢) be the orbit of ¢ in this action. In particular, card Or(¢) <
m = ord Hol(L). Then

PQO= U =5
yEA(Or(C))
he€G,1<j<r
is the union of at most M plaques.
Then we have:
If L' € F with L' D 5} (¢),then L' = P(().
Indeed, by the definition, P(¢) C L', P(¢) # @ and P(() is T'r-open.
We have to show that P(¢) is Tx-closed. Let z be a point of the T'x
closure of P(¢). Then, for some j € J, we have, by Proposition 1.12,
2 € 750 (4) = ¢33)(S; x V) with y = h(f(()), h € G, f € {g:|U} and
¥; (7r5; (¥)) = S; x V;. Therefore, by Proposition 4.4, z € O. Thus there
exists s € {1,..,7} with 2 € 0,, i.e. z € n5}(n) for some n € O,/po,. We
have O, N O; # @ since z € O; N O,. Consequently, h;,(y) = 1. Since
the plaques P, of O; in L cover L (1 < i < r), there exists a simple chain
of plaques P, P;,,..,P;,, P;, P, with 1 < 71,..,5; < r of length < 7 + 1.
Define '

g 1:=hjs°hj¢j°"‘°hljl GG,£=Q(7])

- Then £ = g(n) = g(hjs(y)) = gohs0ho f((), gohj,oho f €I, and
consequently, there exists k € {1,..,m} such that go hj,oho flU = g;|U.
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Therefore £ € Or(¢) and

70,(2) =1 = g7 (£) € g7} (Or(¢))

with g~! € G; consequently,

z€75,(971(€)) C P(C).

The set V := | P(() is a saturation of 75! (U), so it is an open and
¢CEU
p-saturated neighbourhood of L with U c O. 0

7 — Additional results, special cases

A coherent foliation F on a space X induces toeach L€ F,z € L
and adapted chart (U,p,A x W) with z € U C X by the projection
A x W — A a projection my : U — A. The coherent foliation Fy
respectively F,4 induced on U respectively on A by F are connected by

the relation: Fyy = 7' (F4) (see 1.6-1.8). We have now the following two
more restricted subcases.

CASE 1. Let F4 consist only of isolated points. For the quotientspace
we then have U/Fy := U/my = A. If the (geometric) holonomy group
Hol(L) of L is finite, it operates (without restriction) on A, and the
quotientspace A/ Hol(L) is again a differentiable space (i.e with singu-
larities, even if X, hence A is a manifold - as in the classical case): See
[14], [15]. Note for the space (X/F)|U of global leaves passing through
U:(X/F)|U =U/p= A/Hol(L). If all leaves are compact and have fi-
nite holonomies then these local quotients A/ Hol(L) easily glue together
to give a global quotientspace X/F with additional differentiable struc-
ture ([8]): A

X/F is in a natural way a differentiable space with local charts
A/ Hol(L). Moreover, if the “local transversals” A are not too “wild”
(as in the sense of [8], especially: if the A’s are subanalytic or even man-
ifolds) also the inverse of the stability theorem holds ([8]). With this
one obtains in case 1 for a foliation with compact leaves of the same
dimension:

THEOREM 7.1. For (X,F) the following conditions are equivalent:
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1) The leaf space X/F is Hausdorff.
2) X/F is (in a natural way) a differentiable space.
3) The foliation F on X is stable.

Moreover, many geometric properties of X carry over to the quotient
X/F ([8]). In general, the leaf space X/F of a compactly foliated space is
Hausdorff only on a “large” subset, and hence a differentiable space there.
So we run here into some generalised notion of differentiable (:almost
differentiable) space, which we study elsewhere.

CASE 2. Let the foliation F be induced by a Lie group G operating
properly on X. The quotient space X/F = X/G is again a differentiable
space [14], [15]. In this case the foliation F is induced by the connected
components fix; of the identity of the (compact!) isotropy groups fix, C
G at all points z € X. Now, A/ps = A/ fix; is a differentiable space [14);
for z € L (as above) we have differentiable “projections”

my:U—A— Alpa=:A".

and fix, / fix] operates differentiably as (finite!) holonomy group Hol(L)
on A*. Then the differentiable quotient space X/G has each A*/ Hol(L) =
A/ fix, as local differentiable chart.

PROBLEMS. 1) it is not known, under which quite general, “weak”
assumptions the “transverse” coherent foliation F4 on each A, induced
by F according to 1.8, leads to a differentiable space as quotientspace
A/pa = A/Fa. If this is always the case for some F, then Hol(L) op-
erates differentiably on A/F4 and the quotient space becomes again a
differentiable space; the analogue of theorem 7.1 then also holds (using
[4]).

2) It is not known, under which “weak” assumptions a finite holon-
omy group Hol(L), which operates on A/p4, can be “lifted” to a finite
group Hol(L)*, operating differentiably on A. If this lifting is possible, we
would have a differentiable space A* := A/ Hol(L)* with a coherent foli-
ation F4- on A* such that each quotient A*/F 4+ would be a local chart
of X/F. Then, one could try to build up a general theory of foliations

on abstract spaces of the local type A*/F4-. For partial results to the
lifting problem see [16).
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It is clear now, that one needs still more, but not too(!) general
versions as those mentioned up to here. By all this, what appeared above,
the definitions in the following paragraph are partly motivated. Other
parts are motivated by Jurchescus “mixed spaces” ([11]), still other parts
by the theory of “super manifolds” in physics ([11]).

8 — Some generalizations

Let X = (X,X) be a ringed space, where X is a (say Hausdorff)
topological space, S := X a sheaf of local K-algebras (K = IR or = C)
on X. Then the reduction red S is some sheaf of germs of K-valued
functions on X (not necessarily continuous). See for example [18]. In the
following way we consider X as a foliated space:

A local leaf L of X is a connected and locally connected subset L C X
such that the following holds: For any z € L and each U(z) of some basis
U(z) of neighbourhoods U(z) C X of z in X we have:

*) LNU(z) = {y € U(z)|f(z) = f(y) for each f € (U, 5)}

L NU(z) is connected.

L is called local leaf of X passing through (any) z € L. L may be
just one point = : L = {z}. There also may be no leaf passing through
some z in the just mentioned sense. Then we call {z} a local leaf of X
passing through z € X. The family of all of these local leaves we denote
by F%, more simply by F'.

If two such leaves L,, L, € F' pass through some common point z,
they coincide in some neighbourhood W(z) C X of z:

**) L1 N W(I) = L2 N W(:B)
Hence: This local foliation F* induces a global foliation F (better:
Fx) on X into maximal connected leaves L — X. Here — denotes an

injective mapping, which locally is topological onto its local images.
By **) , the intersections U(z) N L from ) define a new topology Tx

on X. The connected components in this topology are just the leaves of
F.

DEFINITION 8.1. X together with F* resp. F just described is called
a foliated space. The elements of F are called global leaves of X.



696 A. PIATKOWSKI - K. SPALLEK [24)

NOTE 8.2. o) The function germs of red S need not be continuous;
thus for some z € X but no open U(z) C X, the leaves LN U(z) may be
closed in U(z); the leaves may also not be locally compact. For example
take F! = {{0},IR?\ {0}} in R? or ¥ = Q x {0} UIR?\ (Q x {0}).

B) Instead of deriving foliations from given sheaves one also may
start from given (local) foliations and associate to them in a natural way
sheaves of germs of functions.

v) To avoid too “wild” foliations, additional assumptions are neces-
sary. For example “simple” ones: For each £ € X and some neighbour-
hood U(z) € X of = we require the equality *) for each L € F!. Or we
require, that red S should have only “nice” functions, for example contin-
uous or even “better” ones. If one wants to obtain some “nice” global leaf
structure of X, that means of F, hence of the leaf space X/F (identifying
global leaves to points), one will have to know in advance, that already
the local leaf structure of X, i.e. of ', hence of each U(z)/(F' N U(x))
is “nice” in a similar way.

So for example we may define:

DEFINITION 8.3. a) A foliated space X is called CN- transversely
foliated, if the following holds: To each z € X there ezists a basis U(zx)

of neighbourhoods U(z) C X of = and to eack U € U(z) a (local) CN-
quotient morphism

o7 X|U - XV = (XY, XY),ie.

i) XY is a ringed space, “situated” in an N -differentiable standard space
NXVY such that: XY = NXU, XY ¢ Né_” (write XU «— N X ).
ii) ¢V is @ morphism of ringed spaces.
iii) ¢V : U — XY is continuous, open and the inverse image (¢”)~1(L)
XY of any global leaf L of XY is connected and locally connected.
iv) gu gives an isomorphism X' — X for eachz € U, y = ¢(z).

Moreover we require that these local CN -quotient morphism are CN -
equivalent, i.e: If ¢V, 4" are local CV-quotient morphisms from our sys-
tem above, then to each x € UNV we have a commutative diagramm in
some neighbourhood W(z) CUNV:
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X|wW
?Y|w ww
*
XUlQU(W) ‘). XVlQV(W)

| |

MxUlg(W) —— NxVig¥(w)

where the last line is a CV-diffeomorphism and the line above a biomor-
phism induced by the last line.

B) Each XY, satisfying o), i-iv) is called a local C¥ - quotient of X.

Note, that 8.3 does not fully cover our earlier definitions. For this
one has for example to drop the assumption X Uew X U under a), i) and
to change the “C"-equivalence” appropriately. We describe some special
cases to make clear the meaning of 8.3:

CASE 1. @) XY = MXV. Then each leaf of XU is just one point
and the local CN-quotient morphisms are automatically connected by
bimorphisms *). These are automatically already C"-diffeomorphisms,
because the ¥ XV are by our assumption standard spaces (for example
reduced spaces, see [23]). If each XY in addition is reduced, one can prove
an analogue of theorem 7.1. However one may extend this result also to
non-reduced spaces and obtain under slight geometric assumptions on the
foliated space X (we discuss this in some forthcoming paper):

THEOREM 8.4. X is stably foliated <=> The leafspace of X is a
differentiable space <> red X is stably foliated <= The leafspace of
red X is a (reduced) differentiable space.

In addition X may come from on C*-differentiable space: ¥ X «— X
with M < N, and all ¢V differentiable.

CASE 2. X and all XV are reduced. The foliation ! on XV is given
by a stable coherent foliation on XV as in 1-6. There will be similar
results now as in 1-6. One obtains the situation in 1-6, if in addition
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X — N X for an CV-differentiable space, and the foliation on X is given
by a coherent foliation on N X.

Other special cases are now obvious. To extend the last example,
mentioned under case 1 for M < N also for M > N, for example, we
still need some more structured foliated spaces (however not yet the most
general ones):

DEFINITION 8.5. X =(X,S,S*) is called a foliated space of mized
type (M, N) if the following holds:
i) (X,S) is a CM-transversely foliated space, with X U=MxU ing3, i).
ii) For each local CM-quotient morphism ¢” in 8.3, each z€ XY and each
nelN, n<M the n-th-order fiber (X|U)|(¢") "} (z)™=(¢") (), the
space (S* /Q-l(mg)l(@”)'l(x)) is an N-differentiable space. Here

my C Z(_;: denotes the mazimal ideal in z.

Again, special cases make clearer our intentions:

CASE 1. Let D* be the sheaf of C*-function germs in (some) K™,
k=0,1,..,00,w,w*, K =1R or C (appropriately chosen), D"* the sheaf
of germs of functions in K™ x K™ being “mixed” differentiable of class
Ch* (C! in K-, C* in K™-direction, see {19]).

The projection 7 : K™ x K™ — K™ induces for U C K", V C K™
open “mixed” differentiable morphisms

m: (U x V, D) = (V, D)
and for appropriate ideals also morphisms
x : (D", D"* /T*) — (D, D*/1*).
Now in 8.4 and 8.3 we may have in local charts
(X, S)U = (D¥*, Dbk /TH)
XY ~ (D, D*/T*)
¢V induced by .

More specifically, (D"*, D"*/I"*) may be a “mixed” product space
(D', D!/TY) x (D*, D*/T*) ([19)).
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Stability results will hold in this context ([11]).

Special mixed spaces of this type are studied in Jurchescues theory
of mixed spaces. The problem is, whether his type of results also hold in
our more general cases.

CASE 2. Let X = (X,S5") be an N-differentiable space of constant
local embedding dimensions dimT,X, such that (X,S) = red X is a
differentiable manifold. By {7] there exists a differentiable manifold M*
with dim M* = dim T, X and a (highly non canonical!) embedding X «—
M™* and hence a retraction M* — red X, hence a retraction X < red X,
which makes (X, S, 5*) a foliated space of mixed type (N,N). I N = o0
and S*/m, is a formal power series ring for each maximal ideal m, C S,
we obtain the space part of a supermanifold as foliated space (expressed
in the language of differentiable spaces now: see {11] for more details).
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