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Some remarks on Hamilton-Jacobi equations

and non convex minimization problems

A. CUTRIi

RIASSUNTO: Si considerano problemi di minimizzazione, nella classe di Lipschitz,
di funzionali integrali non convessi F(u) che intervengono nel calcolo delle variazioni.
Si dimostra che soluzioni generalizzate di alcune equazioni di Hamilton-Jacobi associate
alla funzione integranda, minimizzano F. In particolare viene dimostrato un teorema
di esistenza e data una reppresentazione esplicita della soluzione quando la funzione
integranda ha crescita al pit lineare rispetto al gradiente.

ABSTRACT: We consider the minimization problem, in the Lipschitz class, of non
convez integral functionals F(u) of the calculus of variations. We show that generalized
solutions of some Hamilton-Jacobi equations associated to the integrand function, min-
imize F. We prove ezistence theorems and provide an ezplicit representation formula
Jor the solution, when the integrand grows at most linearly with respect to the gradient
variable.
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— Introduction

This paper deals with minimization, in the Lipschitz class, of non
convex integral functionals arising in the Calculus of Variations of the

form
F(u) =/nH(:z:, Du(z)) dz,
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where (2 is an open bounded subset of R" with boundary 8 sufficiently

smooth and H(z,p) is a real-valued continuous function on  x IR,
Consider the problem:

(P) Min{ F(u) : u€ Lip(2) , u=1u, on 9 }

where u, € C(89).

It is well known that the non convexity of the integrand, with respect
to the gradient variable p, causes the lack of lower semicontinuity of F'(u)
in * — W1 topology, making impossible the application of the Direct
Method of the Calculus of Variations (see for example G.BUTTAZZO [1])
in order to obtain the existence of minima for F(u).

Methods based on relaxation of F(u) were considered, in the non
convex case, by P.MARCELLINI (see (2],[3]) and by E.MaAscoLo and R.
SCHIANCHI (see [4],(5]). The results in ([4],[5]) apply when H(z,p) is
convex with respect to p, for large |p| .

In this paper Lipschitz-continuous solutions of some Hamilton-Jacobi
equation associated to H(z,p) are shown to minimize F(u), under suit-
able assumptions on the hamiltonian H.

The results indicate that, if H(z,p) 2 ¢(z) -p+d(z), for some c and d,
then no convexity for large |p| is required. On the other hand we assume,
roughly speaking, that the above inequality is strict for large Ip|.

In particular, an existence theorem will be proved for integrands of
the Isaacs’ form:

H(z,p) = inf sup{ —f(z,0)b-p~ 9(z,0) — h(z,a) - b }.
a beB

This approach allows to find an explicit representation formula for a solu-
tion of (P) in terms of the value funcion of the differential game associated
to H. Moreover, thanks to a representation formula due to L.C. EVANS
and P.E. SOUGANIDIS (see [6]), this result extends to general H growing
at most linearly in p.

In the first section we explain the link between the minimization
problem (P) and Hamilton-Jacobi equations and recall briefly some basic
facts about viscosity solutions; the second section is devoted to the proof
of existence theorems.
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1 — Some relations between problem (P) and Hamilton-Jacobi
equations

Let 2 be an open bounded subset of RY (N > 1), with boundary
80 sufficiently smooth. Let then H € C(2 x R ;R) and u, € C(89).
Consider the (non convex) minimization problem:

(P) Min {F(u) =/QH(:1:,Du(x))d:c tu € Lip(N),u = u, on GQ} .

The next simple result relates the Dirichlet problem for the Hamilton-
Jacobi equation
H(z, Du(z)) = c¢(z) - Du(z) +d(z) inQ
(HI)
U= U, on 99,

with the minimization problem (P).

Denote by S the (possibly empty) set of generalized solutions of (HJ),
namely the set of u € Lip(2) N C(Q) which satisfy the equation in (HJ)
almost everywhere in 2 and the boundary condition pointwise.

PROPOSITION 1.1. Assume H(z,p) satisfies
(H1) H(z,p) > c(z) -p+d(z) Vzef,VpeR",
for some d € C(Q) and c € Lip(Q;R") NCE;RY) such that div c =0
" Q;.l‘hen, every u € S is a solution of (P). Conversely, if S # 0, then
any solution of (P) belongs to S.

PROOF. Let u € S and let v any other Lipschitz-continuous function
which attains the same boundary value u,. (H1) yields:

/ H(z, Dv(z))dz > / c(z) - Dv(z)dz +/ d(z) dz
o) n Q
and from the divergence theorem and the fact that dive = 0, it follows:

(1.1) ./n c(z) - Dv(z)dz = ,/n c(z) - Du(z) dz.
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Hence,
/ H(z, Dv(z))dz > / H(z, Du(z)) dz
1] n

and the first part of the claim is proved.
Now, if u € Lip(Q) is a solution of (P), then it coincides with u, on

95). Moreover,
H(z, Du(z)) = c(z) - Du(z) + d(z) a.e. in Q.

In fact, let us suppose by contradiction, using (H1), that there exists
a Lebesgue-measurable subset A of {2 with positive measure, such that:

H(z, Du(z)) > c(z) - Du(z) + d(z) a.e. in A.
Then, for any v € S (#0),

/ H(z, Dv(z))dz > / H(z, Du(z)) > / c(z) - Du(z) + d(z) dz
0 ) Q

so, by (1.1),
/n[H(z, Du(z)) — ¢(z) - Dv(z) — d(z)]dz > 0

and this provides, using (H1), a contradiction because v is assumed to
satisfy the Hamilton-Jacobi equation almost everywhere in Q. a

Let us observe that (P) may have solutions which doesn’t belong to
S but, in this case, S has to be empty. Consider, for istance, the one-
dimensional minimization problem with integrand H(z,v'(z)) = |v'(z)|
in = (a,b), with u,(a) # u,(b). This verifies (H1) with c =d = 0.
The unique solution of (P) is the affine function u(z) = wu,(a) +
ﬂg%;(a)-(z —a), but u doesn’t belong to S (which in fact is empty).

Let us observe also that, from (H1), it follows that u € Lip(Q),
u = u, on 99, is a solution of (HJ) (and consequently of (P)), if and only
if H(z, Du(z)) < ¢(z) - Du(z) + d(z) almost everywhere in Q.
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REMARK 1. A different connection between the minimization prob-
lem (P) and Hamilton-Jacobi equations was exploited by E. MAscoLo—

R. SCHIANCHI (see [4],[5]). Namely, they considered the Dirichlet prob-
lem:

(1.2) { 1y (Du(z)) =0 o0

U= U, on 91,

where
K(z)={P€lRN : H(z,p)>H*"(:v,p)} a.e. in Q

and H**(z, p) denotes the bipolar function of H, namely the lower convex
envelope of H with respect to p. They proved that any solution of (1.2)
is a minimum for (P), provided U,eqK (z) is an open bounded set. Let us
observe that this assumption fails, in general, if H grows at most linearly.

In the next section we will discuss the existence of generalized solution
of (HJ). This is more easily done by proving first the existence of weak
solutions in the viscosity sense and then their lipschitz continuity.

Let us recall that u € C(f) is a viscosity solution of (HJ) (see for
example [7] for more details) if

(SUB) H(z,p) <c(z)-p+d(z) Vpe Dru(z)
and

(SUP) H(z,p) > c(z)-p+d(z) Vpe D u(z)
where

D*u(z) = {p € R" : limsup uy) ~ulz) ~p: v — 2) < O}
y—z,VEQ ly —=|

and

) Ny soe ) —u(x) —p- (v — 2)
D~ u(x) = {pelR 31_12;2% V=] - 20} .
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It is easy to check that any viscosity solution of (HJ), which is in
Lip(Q), satisfies the equation almost everywhere in Q. If H is convex in
p, then generalized solutions of (HJ) are also viscosity solutions; but this
is false, in general, for H non convex (see e.g. [8]).

REMARK 2. Note that, if (H1) holds, then the supersolution condi-
tion (SUP) is always trivially satisfied.

Moreover, let us point out that in many respects, is useful to con-
sider viscosity solutions because they are stables with respect to uniform
convergence. So, they may be approximated by solutions of elliptic prob-
lems, with the vanishing viscosity method (see [9]) or of Hamilton Jacobi
problems like

H,(z, Du,(z)) = c(z) - Dun(z) +d(z) in
o |
Uy = U on 902,

with H, — H locally uniformly in @ x R". In fact, holds that, if u,, is a
viscosity solution of (HJ), and if u, — u locally uniformly in Q, then u
is a viscosity solution of (HJ). Furthermore, let us remark that in some
case, the viscosity solution of (HJ) is known to be unique (see [10]). All
this fails if one consider only generalized solutions.

2 — Existence of minima for (P)

In this section we prove some existence results for problem (P). The
idea is to show that, under some suitable assumptions, equation (HJ) has
a viscosity solution u € Lip(2)NC(Q) and to apply then proposition 1.1.
The main difficulty is related to the compatibility conditions that the
boundary data u, must satisfy. The next result provides such conditions
in a one-dimensional case, when H depends only on p.

PROPOSITION 2.1. Let H € C(IR) satisfy (H1) in Q = (a,b) C R,
with ¢ and d independent of z.

Then (HJ) has a viscosity solution u € Lip(a,b) N C([a, b)), if and
only if, either p = w solves H(P) = ¢p + d, or there exist p; € R
(i=1,2) such that

(2.1) P1<P<p2 and H(p;) = cp; +d.
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PROOF. If H(P) = ¢p + d, by an affine extension of u,, (that we still
denote by u,), we obtain trivially a solution of (HJ). On the other hand,

if (2.1) holds, a lipschitz continuous viscosity solution of (HJ) may be
obtained by putting

( {uo(a)-}-pl(:z:—a) a<z<T
u(z) =
U(a) +pa(z—d) T<Lz<b

Uo(b) — uo(a) + p1a — pad o
(®) :D(1 szpl P2 , as it is easy to check, taking into
account Remark 2 and that u is differentiable in Q\ {Z} and D*u(z) = 0.
Conversely, assume by contradiction there exists a function
v € Lip(a,b) N C([a,b]) viscosity solution of (HJ) and that

with T =

(2.2) H(p)>c-p+d, forall p>7p.

So, v satisfies (¥J) almost everywhere in (a, b), as observed above and, by
(2.2), v' # v/, in a subset of positive measure. Hence ||v'||L1(a) > [Pl(b—a)
and consequently ||v'||Loo(e,s > |P| Thus, we may choose (a, 8) C (a,b),
with |8 — a| > 0, such that

W()i>pl  ae in(e,p)

and, assuming > 0 (which is not restrictive), and denoting by I, =
{z € (a,8) : V() >P}and I, = {z € (&, B) : v'(z) < =P}, we may
decompose (a, 8) in (a,8) = ; UI,UN, where N is a negligeable subset
where v’ doesn’t eventually exist. Since |8 — a| > 0, at least one of these
I; (i = 1,2) need to have positive measure. If |I;| > 0, v cannot be a
solution of (HJ) since, by (2.2), it does not verify the equation in I, so we
get a contradiction. If |I;| = 0, v/(z) < —P almost everywhere in (e, B)
and, consequently, v'(z) < § almost everywhere in (a,b), in view of the
definition of (a,3). So,

v(b) — v(a) < B(b - a) = u(b) — u(a)

and the boundary condition fails.
Analogously, if

(2.3) H(p) >c-p+d, forall p<7,
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and |I,| > 0, the contradiction follows from the same argument; while, if
it is negligeable, in order to satisfy the boundary condition, there should
exist (0,6) C (a,b) with |6 — ¢| > 0 and (0,6) N (a,B) = 0, where
-P < v'(z) < p. Also in this case, we get & contradiction because in
(0,6) v does not verify the equation. 0

REMARK 3. MARCELLINI (see [2]) proved a similar result by a dif-
ferent method, under the assumption of superlinear growth.

The following corollary is a straightforward consequence of proposi-
tions 1.1 and 2.1

COROLLARY 2.2. Assume H € C(R) satisfy (H1) in Q = (a,b) C
b)—uo(a

IR, with c and d independent of z and either 7 = ﬂ‘-(—l);a—u solves H(p) =
cp + d, or there exist p; € R (i=1,2) such that (2.1) holds.
Then (P) has a solution. a

Let us consider now the minimization problem (P) with integrand
H(z,p) of the following type:

(2.4) H(z,p) = }ggfgg{ —f(z,a)b-p—g(z,a) — h(z,a)- b},

with A and B compact subsets of RN, f € C(Q x A; IRNQ), geC(l x
A;IR), and h € C(f1 x A; R") satisfying, for some L > 0,

|f(z,a) — f(y,a)| < L|z —~ 9| B
(2.5) l9(z,a) — g(y,a)| < Llz—y| Vz,y€l Va€A
|h(z,a) - h(y,a)| < L|z — y|

Assume, moreover, that
(2.6) VvzeQ,Vac A, 3beB: h(z,a):-bL0,

and that

vz € Q0 and Va € A, Jp = p(z,a) > 0 such that

(27 f(z,a)(B) 2 udB(0,1),
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where B(0,1) is the unit sphere of IR¥ centered at zero. Notice that

the continuity of f and the compactness of A and Q imply that
inf p(z,a) = & > 0, so that (2.7) is equivalent to

z€MacA

(2.8) 34 > 0 such that f(z,a)(B) 2 5dB(0,1) Vz € Q, Va € A.

Integrands H of the form (2.4) are special but important cases of
Isaacs’ functions and are related to the theory of two players, zero-sum
differential games (see [11]).

For this kind of integrands, under suitable assumptions, one may give
an existence theorem for the solution of (P) and a representation formula,
as we will see below.

At this purpose, let us denote by A and B, respectively, the function
spaces L>([0,+00); A) and L*([0, +00) ; B); set

tz(a,b) =inf{ ¢t : y.(t) €N},
where y.(t) is the solution of the ordinary differential equation
92(t) = f(=(t), a(t))b(t) for t>0
{ ¥=(0)=z € Q,
for fixed a € A and b € B; denote by

(2.9)

I'={8:A— B st. a(t) =a'(t) forae. t <t
implies Bla](t) = Bla’](t) for ae. t <t}

and, for z € Q,

(2.10) I[,={B€er : t(afp(a)) < +oo, Va€ A}
Define

(2.11) d(z) = int {~9(z,0)}

and

(2'12) T(:B) = Blglfz igg tz(a’ ﬂ(a))
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As a consequence of (2.6) and (2.8), the following hold:

(2.13) VreQ, 3b,€B suchthat t;(a,b:)<ocoVa€A;

(2.14) Vz €89, 3b, € B such that f(z,a)b;'n(z) >0 Vac A,

where n(z) is the exterior normal to 992 at z; and for any fixed p €
IR" \ {0}, there exists b € B such that

(2.15) f(z,a)b-p<—y<0 VzeQ,Va€A,

where « is a positive constant.

In particular, (2.13) means that I'; # 0 for any = € Q while (2.13)
and (2.14) imply the continuity of T(z) in £, (see [11]).

For the minimization problem (P) associated to H the following result
holds:

THEOREM 2.3. Let Q be convez. Assume (2.5), (2.6), (2.8) and that

vz €, and VB € Tz, 3d € A such that:
(2.16)9(y=(t, a(2), B(a) (¢)), a(t)) = max{g(y=(t,a(t), B(a)(t)), a(t))}
and

h(y.(t),a(t)) - B(a)t) 2 ho V¢ >0,

where h, is a non negative constant. Then

. tz(a,8(a))
u(z) = jnf sup { /o 9(y:(t, a,8(a)), a) + h(y:(t, a, B(a)), a) - B(a)
(2.17) + d(ya(t, a, B(a)))dt + u,(ys(tz(altz), B(a)(t2)))) }

is a solution of (P) provided the following compatibility condition holds:
(2.18) 35 > 0 such that u,(z) < u(z) Vz €

where Qs = {z € Q : dist(z,00) < 8} and u, is any lower semicontinu-
ous extension to Qs of the boundary datum.
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PROOF.
1° part: H verifies (H1) with ¢(z) = 0 and d(z) defined in (2.11). Indeed,
by (2.6) and (2.8), Vz € ), Va € A and ¥p € R”, there exists b € B such
that — f(z,a)b-p — h(z,a) - b > 0. Hence, for any z € 1,

iof sup{ —(2,0)6-p ~ (z,) ~ h(z,0) b

> inf{ ~g(z,0) } = d(z).

2° part: u(z) defined by (2.17) is bounded in Q and verifies
(2.19) uw(z) < u(¥:(T(2))) + KT(z) inQ,
with K > 0 and T'(z) defined in (2.12). By (2.16) we get

u(z) 2 Inf {hota(8 B(a)) +uolus(t:(3(t), @) D))
(2-20) 2 —[[to]| Loo(om)
so that u is bounded from below even if the integrand in (2.17) is not
strictly positive. On the other hand, by definition of d(z) and the com-

pactness of A and B, we obtain from (2.5) that there exists K > 0 such
that

Va € A, VB ET,,
l9(v=(t, a, B(a)), a) + h(y:(t, 0, B(a)), a) - Bla) + d(y:(t, @, B(a)))] < K.
Hence, u(z) < KT(z) + |[to]| Loo(sny which is bounded in £, as observed
above.
In order to check (2.19), let us observe that Ve > 0, 33, € I'; such
that:
(2.21) T(x) < t.(a,B:(a)) <T(x)+e Va€A
On the other hand,

'U.(.’E) < igﬁ{Kt-t(a’ ﬂl‘(a)) + uo(yr(tz(ay .Bt(a))))}y
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therefore, there exists a, € A such that:

u(z) < Kt.(a.,B.(a.)) + uo(yz(tz(ac, Be(ac)))) +&.

Thanks to (2.13) and (2.14), T(z) is finite everywhere in $2, so we may
subtract u,(y-(T(z))) and obtain

“(z) - uo(y:(T(z))) < wuo(‘y:(T(x)) - yz(tz(ac’ ﬂc(ac)))l)
+ Ktz(acaﬂt(ac)) +¢,

where w,,, denotes the modulus of continuity of u, on 9§2. So, taking into
account (2.21) and the lipschitz continuity of t — y;(t), as a consequence
of the continuity of f and the compactness of A and B, we get

w(z) < o(y:(T(2))) + KT(z) +¢,

and letting £ go to zero, the claim.

3° part: u(x) defined by (2.17) is continuous in Q. In fact, fix z, € Q,
n > 0 such that B(z,,n) C Q and let z € B(z,,7). Assume first that
u(z) > u(z,). For any € > 0, let § € I';, such that

sup { /ot”(a.p;)()y:a(t, a, 8(a)), ) + h(ys, (t, a, B(a)),a) - Bla)+

aEA

(222) -+ Ayt B@))t+ ol b (ol ), )21 |
< u(z,) + ¢,
and choose @ € A verifying:

@28 ) < [ 9lnl63,0),0) + hias(t, 3 5@).2) - 6@

+ d(ys(t, 8, B(@)))dt + uo(y=(t:(a(te), B(@)(2:)))) + &,

for any g €T';. _
By (2.8), there exists b € B such that:

Fy(8),a(®)b = I:;_E_;:_l
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for t <%= 2|z, — z|, the first time where y,(t,a(t),b) = z..
Hence, if we choose @(t) = @(t + t) in (2.22) and

b t<t
B(a(t)) ={ . _
B(a(t)) t=t,

we get 8 € I, and, by (2.23),

' — —
u(z) < / 9(¥a(t,a(t),B),(2)) + h(ys(2,3(2), B), a(2)) - b+

_ tz, (5,8(a)) -
+d(ga(tae) e+ [ e (6,30, B@O), G0N

(2.24) + h(yz, (t,a(t), B@)(t)), &(t)) - B@)(t) i
+ d(ya, (t, 3(t), B(E)(£)))dt + o (Yo (tz0 (E(ts,), B(E)(Ez,)))) + €

< [ o(uu(6,30,5),50) + luste 300, B a(0) - B+
+ d(y=(t,a(t),b))dt + u(z,) + 2¢ < Kt +u(z,) + 2.

Therefore,

T K
0 S u(z) - 'u(xo) S Kt + 2¢ = Elz_zol + 2¢.

The same argument applies if u(z) < u(z,), changing the role of z
and z,. Letting € — 0, we obtain the continuity of u in Q.

4° part: If (2.18) holds, u is continuous also on Q and satisfies (HJ) in
the viscosity sense. In fact, let z € 092. Then

imi < liminf < limsup u
u,(2) < El_l’rgelg&uo(ﬁ)_f_}ggg,,‘ﬁ(é) Jim sup &)

< Hm(uo(ue(T(E)) + KT()) = uol2)

since u.(y.(T(z))) is continuous in {I and T(z) = O for each z € 8.
Hence, u is continuous on 9.
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Moreover, u satisfies the Dynamic Programming Principle:

(@) = jaf sup{ [o(uclera,B(e)),0) + K (t, 0. ), ) - B(@)

BETy aEA

+ d(y2(t, 0, B(0)))dt + u(ys(r A t.(a(ts), B@)(8)))) };

so it is easy to verify that u is a viscosity solution of the equation (HJ)
(see [12]).

5° part: u is a solution of (P). By (2.15), it follows that for any G > 0
and for any p € R with |p| > G, there exists b, € B such that:

int sup{ ~£(z,a)bp—h(z,)-b-g(z,0) } 21GHint {~0(z,0)—h(z,a)b} .

Thus, if G > C/~, where C is an upper bound for |h(z,a) - b,|, Vz € Q,
then H(z,p) — d(z) > 0 uniformly in Q. Therefore,

(2.25) lﬁl inf H(z,p) —d(z) >0  uniformly in 2,
p|~—00

so, choosing u,(y.(T(z))) + KT(x) as supersolution of (HJ) (see Remark
2) greater than u(z), the global lipschitz continuity of u follows from
the same arguments as used by IsHII (see [13]), taking into account the
convexity of 2. Hence, applying proposition 1.1, we get the claim. 0

REMARK 4. We observe that condition (2.25), which is used in the
last step of the proof, is similar to one made by P.MARCELLINI (see [3])
in order to prove the existence of solution of (P), when H depends only
on the absolute value of Du and u, is constant on 952.

REMARK 5. The compatibility condition (2.18) plays in the proof,
the same role as the bounded slope condition on u, considered by MASCO-
LO-SCHIANCHI (see [4], [5]).

Thanks to assumptions (2.6) and (2.16), this condition holds if, for
example, u, can be extended in s in such a way that

ho
(2.26) Juo(z) — uo(¥)] < M—Iz -y Vz,y €Q,
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where M = sup,cq, .qsca |1(z,a)].
In fact, by (2.20), as

£(8,8(8)) 2 7o - 1(ta(6,6@)]  VBET.,

we get, using (2.26),

u(@) 2 Jnf {7olz — a(ta(d, @) +uolys(t:(a, @)} 2 uo(@)

and therefore (2.18).

Let us remark that (2.18) is a generalization of the standard condi-
tion which in the convex case, is necessary and sufficient to assure the
continuity, up to the boundary, of solutions of Hamilton Jacobi equations,

see ([9]).

REMARK 6. The result of theorem 2.3 applies to non convex inte-
grand H(z,p), bounded from below with respect to p and satisfying the
structure conditions:

(2.27)
|H(z,0)| <C

|H(z,p) — Hy, )| <Cz—yl+Ip—4ql) Vz,yeqVp,geRY,
for some C > 0, and

. liminf H i Q.
(2.28) im ind (z,p) > ,,;'.‘fn H(z,p) VzeQ

In particular, to H which grows at infinity as |p|®, for some a € (0, 1], or
which has an oblique asymptote with respect to p.

In fact, in this case, (H1) is satisfied with ¢(z) = 0 and d(z) =
inf,cg~v H(z,p). Moreover, in view of (2.28), it is clearly not restnctwe
to look at H(z,p) for p € B(0,R), where B(0,R) is a ball of R" cen-
tered at zero and with radius R, which contains all points of minimum
of p — H(z,p), for any z € Q. Furthermore, as observed by EvANs and
SOUGANIDIS (see [6]), under assumption (2.27). for any p > 0 and |p| < p,
H(z,p) can be represented as inf-sup of affine functions in the following
way:

(2.29) H(z,p)= inf sup {-Cb.-p+ H(z,a)+ Ca-b}.
a€B(0.p) be&B(o 1)
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Therefore, if we choose p = R, as (2.29) is a special case of (2.4), and (2.5),
(2.6), (2.8), (2.16) are clearly satisfied, we can apply theorem 2.3 provided
(2.18) holds. Moreover notice that, in the present case, f(z,a)b = Cb.
Hence, y.(t) and, consequently, t, depend only on b.

REMARK 7. Let us mention that, if H > 0 is a lipschitz function
which depends only on |p| and satisfies:

|H(0)| < C
|H(p) - H(q)| <Clp—q| Vp,geR",

and
hml ] inf H(|p|) > 0,
p|—o0

then (2.18) is verified if, for example, u, has a lipschitz extension on a
neighbourhood ;5 of the boundary 0f2, with constant less than L, =
max{|p| : H(|p|) = 0}. Observe that, in this case, M = C while h, =
L,C, as it is easy to check, writing H as (2.29), with p = R > L,.
Therefore, all assumtions of theorem 2.3 are satisfied and u given by (2.17)
is a minimum for (P). Furthermore the particular form of f, independent
of a, implies that u is given by

u(:r:) = Bigl_fz{LoCtz(ﬂ) + uo(yx(t:(ﬂ)))}a

as an easy calculation shows. In particular notice that, if u, is constant,
infger, t-(B) = C~1dist(z,09).
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