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RIASSUNTO: Il lavoro riguarda certe proprietd di una espressione differenziale
del tipo di Legendre. Ci sono cingue diverse espressioni di questo tipo, normalizzate
nell’intervallo [—1, +1] dell’asse reale. La prima & del secondo ordine (la classica espres-
sione di Legendre), tre espressioni sono del terzo ordine (quelle trovate da H.L. Krull
nel 1938 e nel 1940). L'ultima espressione & del sesto ordine ed & stata trovata da
L.L. Littlejohn nel 1981; essa ha un certo numero di proprietd interessanti, che sono
esaminate in questo lavoro. Si determinano in particolare le proprieta di regolaritd degli
elementi del dominio massimale ed il dominio dell’operatore autoaggiunto. Questi risul-
tati sono messi in relazione con t polinomi ortogonalt generati in uno spazio di misura
e con quelli generati dalla equazione differenziale spetirale del sesto ordine, associata
alla espressione differenziale del tipo di Legendre.

ABSTRACT: This paper is concerned with certain properties of one of the Legendre-
type differential expressions. After normalization to the compact interval [—1,1] of the
real line, there are five distinct such differential expressions. There is one of the second
order (the classical Legendre differential ezpression), three expressions of the fourth
order (discovered by H.L. Krall in 1938 and 1940), and one of the sizth order (dis-
covered by Littlejohn in 1981). The sixth-order expression has a number of interesting
properties when considered in the classical integrable-square space on (—1,1), and in
the relevant measure integrable-square space on [—1,1]. The paper discusses some of
these properties and determines the smoothness conditions satisfied by elements of the
mazimal domain and the self-adjoint operator domain. These results are related to the
orthogonal polynomials generated, firstly in the measure space and, secondly, by the
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sizth-order spectral differential equation linked to the Legendre-type differential expres-
sion.
KEy WORDS: Legendre-type differential expressions — Legendre-type orthogonal

polynomials — Positive Borel measure — Legendre integral — Lagrange symmetric differ-
ential expression — Mazimal domain - Self-adjoint operator.
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1 - Introduction

The positive and non-negative integers are denoted by N={1,2,3,.. }
and INy = {0,1,2,...}, and the real and complex numbers by IR and C.
With M and N real, non-negative parameters let the monotonic,
non-decreasing function i : IR = IR be defined by
~-1-M (z€ (—o0,-1])
(11) @) =4 o (z € (-1,1))
1+N (z€[1,00)).
Let 4 be the regular, non-negative measure generated by i on the Borel
sets of R, and let L?([~1, 1]; u) denote the integrable-square Hilbert space

of equivalence classes of Borel measurable functions with norm and inner
product given, respectively, by

12) W= [ i@ dua)

[’1111

(ho:= [ f@3(z) duta)
[-111]
(1.3)

= Mf-03(-1) + [ f@03(e)dz + NF(D3(1).

The integral in (1.2) is a Lebesgue-Stieltjes integral and the integral in
(1.3) is the standard Lebesgue integral.

The measure p has finite moments in respect of the sequence of pow-
ers {z"|n € Np}; i.e.

22" € L¥([-1,1; 1)) or f Iz Pdu(z) < 0o (n € No).
-1.1)
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(3]

Furthermore, the set {z"|n € IN,} is linearly independent in L?([~1,1]; p).

The Legendre-type polynomials is the orthogonal polynomial systems
formed by applying the Gram-Schmidt orthogonalization process to the
set {z"|n € INo} in L*([—1,1]; u). Five cases emerge from the measure p:

) M=N=9(
(i) M>0, N=0
(1.4) (iii) M=0, N>0
(ivy M=N>0
(v) M>0, N>0, M#N.

Case (i) yields the classical Legendre polynomials; see CHIHARA [1, Chap-
ter V] and SzEGO [17, Chapter IV)]. The cases (i), (iii) and (iv) were con-
sidered by H.L. KRALL [10], [11] and A.M. KRALL [9]. The final case
(v), which is the subject of this paper, was developed by LITTLEJOHN in
his thesis [12].

The orthogonal polynomials in all these five cases (1.4) are special
examples of the general KOORNWINDER polynomials considered in (8]; see
in particular [8; Sections 1-4] with & = § = 0. The general Koornwinder
notation of {P®#M:N(z)|z € [-1,1];n € No} then reduces to

(1.5) {PYOMN(z)|z € [-1,1];n € No}

for the orthogonal polynomials considered in this paper.

Another significant unifying property of these five cases (1.4) of or-
thogonal polynomials is that each system is also generated by a formally
symmetric spectral differential equation of the form

2 "
16) YU (eEW@) =ME) (@e(-L1)),

r=0

where s € IN, the spectral parameter A € C, and the coefficients

{glr=0,1,...8}

are real-valued polynomials on IR with degree (¢-) = 2r (r =0,1,... s).
The best possible (i.e. the smallest) integer s for which (1.6) is effective



776 W.N. EVERITT - L.L. LITTLEJOHN - §.M. LOVELAND [4)

depends on the particular case determined by (1.4); the coefficients {g,}
depend not only on the case in (1.4) but also on the parameters M and
N, but not on the spectral parameter A.

For case (i) of (1.4), we have s = 1, yielding the classical second-
order Legendre differential equation (see {1] and [17]). For cases (ii),
(ili) and (iv), the value of s is 2, yielding the fourth-order Legendre-type
differential equations of H.L. KRALL [10], [11]. For case (v), s = 3,
yielding the sixth-order Legendre-type differential equation studied by
LITTLEJOHN [12].

Later work on these Legendre-type differential equations was under-
taken by EVERITT, A.M. KRALL, LITTLEJOHN, LOVELAND, and MARIG;
see [3], 4], [5], [7], and [9]. A detailed statement of some properties of
all five Legendre-type differential equations (1.6) can be found in the
research report of EVERITT, LITTLEJOHN, and LOVELAND [6, Sections
0,1, and 2). The spectral theory of the self-adjoint differential opera-
tors generated by the differential equations (1.6) in the Hilbert spaces
L?([-1,1]; p) is considered in detail in the thesis of LOVELAND [13]; see
also the forthcoming papers [14] and [15].

In this paper, we are concerned with properties of the operator do-
mains arising in case (v) of (1.4) when the order of the Legendre-type
differential equation is 6. We give below the explicit form of this dif-
ferential equation, quoting from [6, Section 1, (1.22, 1.23, 1.24)]. For
this purpose it is convenient to introduce the positive numbers A and B

defined by (recall (v) of (1.4))
1n A=M1 B=N"1.

The differential equation then takes the form, hereby defining, in the
notation of [6, (1.22)], the differential expression M)

(1.8) .
MOB@)=- (1-29%)" + (1 - )12 +a(l -2y ()

— (n(z)y (@) + ky(z) = My(z) (= €(~1,1)),

where, see (1.7),

(1.9) o:=3A+3B+6,
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(1.10)  =(z) := 6(2AB+3A+3B+4+2(A-B)z—(A+B+2AB)7?),

and k > 0 is a translation parameter essential for the proof of certain
spectral theoretic properties of the associated differential operators.

If, in the notation of Koornwinder, {P2%¥:¥(z)jn € INy} denotes
the system of orthogonal polynomials arising in case (v} of (1.4) and
the corresponding measure u, then it was established by LITTLEJOHN in
[12] that P3OMN(.) is a solution of the differential equation (1.8) with
X = A (k) where (the set {)\,(k)|n € INo} is called the set of eigenvalues
of (1.8))

(1.11)
n(k) (24AB + 124 + 12B)n + (12AB + 424 + 42B + 72)n(n — 1)

+ (24A 4+ 24B + 168)n(n — 1)(n — 2)

+ (3A + 3B + 96)n(n — 1)(n — 2)(n — 3)

+ 18n(n — 1)(n —2)(n — 3)(n — 4)
+a(n-1(n-2)(n-3)(n—4)(n-5)+k (n€Ny);

this solution property of P%M:N(.) holds for all n € INy. Furthermore
the explicit form of these polynomials was obtained by LITTLEJOEN in
[12], and is (recall (1.7))

. olf)M.N( )= Z (-1)r/2A(2n — )'Q(n,r)z" "
ROMNE) = 2 gnitn = [+ D/2) /n — i+ A+ )

r=0

where

Qn,r) = li—_(;_l)" [(n‘ + (2A+ 2B — 1)n® + 4AB)
+ 2r(n? +n+A+B)] + }——(z-ﬁ(4B—4A),

and [-] denotes the greatest integer function. This definition of POOMN ()
gives a normalization property of PO V(1) = 1(n € INy).

In this paper it is convenient to take k = 1, and then with only one
case of (1.4) under consideration, to define the differential expression M{[:]
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by
(L13) M[]=MP[,
with eigenvalues {\, = A.(1)|n € INy}.
The differential expression M|[-] is Lagrange symmetric and of the

general form considered in the now classic text of NAIMARK [16, Chapter
V]. The domain D of M[] is defined by

D:={f:(-1,1) > C|f € AC{)(-1,1),r = 0,1,2,3,4,5}

and Green’s formula takes the form, for all f,g € D and for all compact
[a’ﬂ] Cc (_1’ 1)’

]
119 [{36)- MG - £=) - M@}z = 11,

Here the skew-symmetric bilinear form [,-](-): Dx D x (-1,1) — €,
see [16, Section 15.3], is given explicitly in Section Six below, see (6.2).

The maximal domain of M[] in L?(—1,1) is defined by (note A here
is A of [6, Section 1])

(115) A= {f(—l,l)ﬁq}lfGD,f,M[f]ELQ(—].,].)}
From (1.14) it follows that the limits
(1.16) Jim [f, gl(z) = [, 9)(£1)

exist and are finite in C, for all f,g € A.

The classical theory of the determmatlon of all self-adjoint opera-~
tors generated by M[] in L?(—1,1) is given in [16, Section 18]. In this
space L?(—1,1), the domains of all self-adjoint operators with separated
boundary conditions applied at the endpoints +1, are found by apply-
ing a well-determined number of boundary conditions to elements of the
maximal domain A, of the form

(1.17) fiw](-1)=0 [fiws](1)=0
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here w- and w, are chosen in a prescribed way from A. For details of
this method see [16, Section 18], and for the application in the case of
M[] in L*(~1,1) full details are given in [13, Section 7.6].

In this paper we are concerned with the domain D(T) of the self-
adjoint operator T in the Hilbert space L?([-1,1];u), with measure u
determined by (v) (1.4), such that:

(i) the spectrum of T is discrete with eigenvalue {A,|n € Ny} given

by (1.11) with k = 1,

(ii) the corresponding eigenvectors of T' are the orthogonal polyno-

mials { P2MN|n € INy}.

This required operator T was first defined in [12] and later considered
in [13]. From these works we take the following definitions:

(1.18) @) D(T):={f € Allf,¥-)(-1) =[f,%,](1) =0},
where 9+ € A and are defined on [—-1,1] by

(1.19) Y_(z) =4(1 —2?) + (B +2)(1-2*)?
' P (z) = 4(1 — 2?) + (A +2)(1 - 2%)*,
24A[f"((1)-(B+1)f')]+fA) z=-1
(1.20) (i) (TF)(z)={ M[fl(z) almost all z € (-1,1)
24B[f"(1)+(A+1) f/(1)]+f(Q2) z=+.

The spectral properties of T are established in [13, Chapter VII).

It will not escape notice that the definition of the operator T requires
information about f € D(T) at the singular endpoints %1 of the interval
(-1,1). The purpose of this paper is to prove the following Theorem
which distinguishes between the properties of the maximal domain A of
M[] in L?(~1,1), and of the operator domain D(T) in L?([-1,1};4).
The properties of the domain D(T") justify the explicit definition of the
operator T as given in (1.20).

THEOREM 1.1. Let the Lagrange symmetric differential expression
M[] be defined by (1.8) and (1.13); let the mazimal domain A be defined
by (1.15); let the operator domain D(T') be defined by (1.18) and (1.19).
Then the following properties hold:
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() if f € A, then f' € L3(—1,1), f € AC[-1,1), and
(1.21) fz)=0(ln(1-2%)) (z—£1),

(ii) $f f € D(T), then f® € L*(-1,1) and f, f', f" € AC[-1,1].
The result stated in (i) and (ii) are best possible in the following sense:
(i)* there ezists g € A such that ¢'(z) ~ In(1 — z?) (z — +1)

(ii)* there ezists g € D(T) such that g¢® ¢ LP(~1,1) for any index
p > 2; here g is independent of p.

PROOF. The proof of the statements (i) and (i)* is given in Sections
Three and and Four below. The proof of the statements (ii) and (ii)* is
given in Sections Five, Six and Seven below.

REMARKS. 1. Even though the differential expression M[:] has singu-
larities at the endpoints %1, in that the leading coefficient z — (1 — z2)3
has zeros of order 3 at both £1, nevertheless all functions in the maximal
domain A are continuous on the closed interval [—1, 1]; this is in marked
contrast to the general behaviour at finite singular endpoints of func-
tions in the maximal domain of differential expressions, when singular
behaviour is to be expected.

2. Even more striking is the degree of smoothness of all elements in
the operator domain D(T); here all functions have a continuous second
derivative on the closed interval [-1,1].

3. The smoothness results for all elements of the operator domain
D(T) justify the form of the definition of the operator T" given in (1.20).

4. The methods of proof of these results owe much to earlier work in
this area; in particular, to the results obtained for the classical Legendre
equation (case (i) of (1.4)) in {7], and to the results obtained for the
fourth-order Legendre-type expression determined by case (iv) as given
in [3] and [4].

5. It is to be noted that in the proof of Theorem 1.1 no use is made
of the required M s N as given in (v) of (1.4). However this condition is
required to establish the existence of the sixth-order differential equation
(1.8), as was shown in the thesis [12]. If in (1.8) we put M = N, i.e.
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A = B, then all the results in this paper and in the report [6] remain valid.
It is interesting to note that when M = N the orthogonal polynomials
{ PooN:Nin € Ny}, as given in (1.12), identify with the orthogonal poly-
nomials which arise in case (iv) of (1.4). Thus the set {P2*"V|n € INo}
is generated from both a fourth-order and a sixth-order differential equa-
tion. Moreover, it can be shown that these two differential equations are
essentially distinct.

The contents of this paper are as follows. Section Two contains the
statement of technical lemma (due to CHISHOLM and EVERITT [2]); the
results of this lemma are essential to the proof of Theorem 1.1. Section
Three indicates how to reduce the proof of Theorem 1.1 to the simplest
possible form of elements in A and D(T'). Section Four gives a proof of
properties (i) and (i)* for A. Sections Five, Six and Seven give a proof
of properties (ii) and (ii)* for the operator domain D(T’).

2- A boundedness result in L?(—1,1)

The following result is essential for our proof of Theorem 1.1. The
proof of Theorem 2.1 may be found in [2, Section 2].

THEOREM 2.1 (Chisholm-Everitt). Let [a,b] be a compact interval
of R and suppose A,v : [a,b] — C satisfy
A€ L? [a,]), ve L (a,b).

loc

Define the two operators A, B : L*(a,b) — L}, .(a,b) by

(A1) =v(@) [ AOfOd, (@€ @b)
(BN@ =)o) [ vOi0d,  @e @),

for all f € L*(a,b). Then a necessary and sufficient condition for both A
and B to map L*(a,b) into L*(a,b) is that there exists a positive number
K such that

z

b
/ |A(t)|’dt / |u(t)|’dt <K, (z € (a,])) . 0
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3 — Preliminaries

We remind the reader that a right-definite spectral analysis of the
sixth-order expression M{¥[], defined in (1.8), may be found in the thesis
(13} of LOVELAND. Our objective here is to confine consideration to the
proof of Theorem 1.1 given in Section One.

In Section Four, we prove part (i) of Theorem 1.1 and show that this
results is best possible. The proof of part (ii) of Theorem 1.1 is more
detailed and lengthy than that of part (i); we give this proof in Sections
Five and Six. In Section Seven, we show that the result in part (ii) of
Theorem 1.1 is best possible in the sense of (ii)* of Theorem 1.1.

We recall the definitions of M[-], A, and D(T'); see (1.13), (1.15) and
(1.18), respectively.

In the proof we can restrict attention to the endpoint +1 since the
results for the endpoint —1 can be obtained by similar methods.

Now let f € A. In proving the required results we can take, without
loss of generality

(i) f to be real-valued on (-1,1),

(ii) f to be identically zero in the interval [ -1, 1] by using the
fundamental result in NAIMARK [14, Section 17.3, Lemma 2], in
order to simplify the analysis at the endpoint +1.

To summarize, we can take f € A with the properties

31)  fi(-L) =R f(z)=0 (:z:e [—1-;-])

4~ The maximal domain A

We first establish the results given in parts (i) and (i)* of Theorem 1.1.

With M|[f] given in (1.8) and (1.13), integrate twice over the interval
[0,z] with z € (-;—, 1) to obtain, and hereby define the mapping A :
[0,1]lzA - R
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41) Az f) = ~(1=2°)*fO(2)) + (1 - ) (12+ a1 - 2%) f"(z) =

= / { / (MIF1(s) - F())ds }dt + / n(8)f/(t)dt =

@ o= [{ [ onn- feds e+ w(a)2) - [ w10,
0

o "0
on integrating by parts to give (4.2). In all that follows we use either

definition (4.1) or (4.2) as required.
We note from (4.2) that

(4.3) A f) € 120,1) and A(5f) € ACc[0,1).

Define the second-order, Lagrange symmetric differential expression
N[] by, here g : [0,1) = IR and g,¢’' € ACi.[0,1),

(4.4) Nlgl(z) == —((1 — 2)°¢'(=))' + A — 2*) (12 + (1 - z*))g(2)
(z €[0,1)).

Now rewrite the definition (4.1) in the form
(4.5) N[f")(z) = A(z;:f)  (z€[0,1)

regarding this result as a functional identity for f with A defined by
(4.2). This suggest that we study the non-homogeneous, second-order
differential equation

(4.6) N[yl(z) =A@z f) (= €[0,1))
which requires consideration of the solutions of the homogeneous equation

@7  Nyl(z) = -((1 - 2*)%'(2)) + (1 - 2)) (12 + o1 - 2%))y(z) =0
(ze€[0,1)).

If we consider this equation, with its analytic coefficients, in the com-
plex plane then the point +1 is a regular singularity of (4.7) for which the
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indicial roots are 1 and —3. From the Frobenius theory of series solutions
the equation (4.7) has a solution ¢ of the form

(4.8) o(z) = (z-1) Z an(z—1)" (ap#0)

with convergence for |z — 1| < 2. Clearly this solution can have only
a finite number of zeros in [0,1), since lim1 ¢'(z) # 0; hence for some

€ €[0,1) we have p(z) #0 (z € [¢,1)).
A second, linearly independent solution to the equation (4.7) is given
by

i dt
(49  ¥(@) =) €/ Treap @<

As initial values for ¥ at &, we see that
$(6)=0 end ¥(§) = (p(E)1-€))7
and so for the Wronskian of the pair of solutions ¢ and ¢, we have

(4.10) W(p,¥)(z) = R (p(z)' (z) — ' (z)(z)) =1
(z€l€1)).

The asymptotic form of these solutions ¢ and 3 near 1 can then
be obtained from (4.8) and (4.9) (we omit the details for 1) to give, as

z—1,

(4.11) o(z) = ap(z—1) +0(lz - 11*) ¢'(z) = a0 +0(jz — 1])

(412) $(=) = 7 b1)3+0(|x—11|2> Ve = = +°(|a:—1|3)

where we note that ag 7 0 and by # 0.



[13] Some properties of the sixth-order etc. 785

Now define the function ¥ : [£,1] x A —= IR by
z 1
(413) (3 f) = p(z) / Y(E)A(L; fdt + 9(z) / (t)A(E; fdt,
€ z

noting that ¥ is well-defined on using (4.11), (4.12) and the properties
(4.3) of A(z; f). We have ¥(-; f) € C[¢,1] but in general, in view of
(4.12), ¥(-; £ ) will be singular at 1.

By direct differentiation and use of ¢, ¥ as solutions of (4.7) satisfying
(4.10) it may be seen that

(4.14) N[‘Il(z, f)] = A(z; f) (z €f¢ 1),

so that ¥(-; f) is a particular solution of the equation (4.6) on [£,1).
Hence the general solution of (4.6) on [£, 1) is of the form, where a, 8 € IR,

y(z) = ap(2) + AY(z) + ¥(z; f) (z€[61))-

Returning now to (4.1), if we write y(z) = f“(z) (z € [§,1)) then
(4.6) becomes (4.5) and so, for some unique a,8 € R, we obtain the
representation

(4.15) F"(z) = ap(z) + Bp(z) + ¥(z; f) (z€[61).

It should be noted that this is a functional identity for f from which
we draw information about the form of f € A near the singular end-

point 1.
Since, in this part (i) of Theorem 1.1, we require information on bid

we integrate (4.15) over the interval [€, z] to obtain

vy TOT@e ! o(t)dt + 8 €/ B(t)dt + ! V(t; f)dt

(z€§,1)).
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We have to examine in detail the last term on the right-hand side of
(4.16); t.e.

[uetina-= | s0(t){ / ¢(8)A(s;f)48}dt+
(4.17) ¢ ¢

+f w(n{ [ wons f)ds}dt-
€ t

Consider the first term on the right-hand side of (4.17); integration
by parts yields

1

/ w(t){ / ¢(8)A(s;f)d8}dt =~ [wls)ds [()Ar(s: Pds+
3 § z 3

z

+ ! { / so(s)ds}w(t)Act; fdt;

i.e. for all z € [€,1),

< / lo(s)|ds ! |6(s)A(s; £)|ds+

] o0){ / Y(o)A(s: f)ds
4 13 ’

(4172) + / { ] Iw(S)ldS}Iw(t)A(t; f)lat.
€t

Now from (4.11) and (4.12), with K a positive number, not necessar-
ily the same number in subsequent lines,

/ lo(s)]ds < K / (1-s)ds < K(1—-2)? (z€[€,1))

ly(s) < K1-29)° (s€l&D);
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and so, for all z € [¢,1),
1 z z
2 [ lo(e)lds [ [w(e)A(si Plds < K(1=2%) [ 1) |AGe lds.
z £ £
To the right-hand side of this last result, we apply Theorem 2.1 above
with
a=§¢, b=1, v(iz)=Q1-2)?%, Mz)=(Q1-2)° (zeltl))

for which we have
z 1
/ IA@)[ dt / (®)|’dt< K (z€lE,1)).
3 z

There is a similar result for the second term of (4.17a).
Since A(-; f) € L?[€,1) (see (4.3)), Theorem 2.1 gives

1 z
T [w(s)ds!¢(s)A(s; f)ds € L*[¢,1).

The second term in (4.17), on integration by parts, firstly reduces to
consideration of

[lw(s)lds/ le(s)A(s; f)lds < K(1 - z)~? [ (1 = t)|A(E; £)|dt
€ z x

on [£,1); this yields a term in L?[€,1) on use of Theorem 2.1 with a =&,
b=1,Mz)=(1-2)"2% v(z)=(1—-2z); ie

z /¢(t){ /tp(s)A(s;f)ds}ds € L?*¢,1). .
] t

Secondly to a similar term with also lies in L?[¢, 1).
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Taken together these results give
- 3
(4.18) z / W(t; f)dt € L, 1) .
3

Returning now to (4.16) we integrate again over [£, z] to give, for all
z €[§1),

(419) (@) = FQ+z-OF €+ { [ lavto)+puis)1+uts f)]dS}dt-
§€ ¢

From the asymptotic form of 9 given in (4.12) we obtain

z t ﬂbo
ﬂef{5/¢(s)ds}dt~ D) (zf 1)

which shows that this term in (4.19) is not in L?[¢,1) if 8 # 0. From
(4.11) and (4.18) all other terms in (4.19) are in L?[£,1); thus we must
have § = 0 and the representation (4.15) for f” reduces to

(4.20) f'(z) = ap(z) + ¥(z; f) (z€[61),

and (4.16) for f’ reduces to
(2)  f@=£©O+a[e0d+ [VENE @eleD).
3 §

We have seen that, in particular using (4.18), all terms on the right-
hand side of (4.21) are in L?[¢,1), and hence we deduce that f’ € L*[0, 1).
The result f’ € L?(—1,0] follows from a similar argument and together
we obtain the result

(4.22) feA implies f'€L*-1,1)
which gives in turn

(4.23) feA implies fe€ AC[-1,1],
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provided we define, as we now do, f(%1) := Ihill f(z).
It now follows from (4.2) that

(424) f€ A implies A'(:;f) € L*(-1,1) and A(;f) € AC[-1,1].
Returning to (4.21) we note the first two terms in the rigid-hand side

are bounded near 1~. From (4.24) we obtain the result that A(-; f) is
bounded on [—1,1] and so from (4.17),

<K ! o0l{ E/ ol it ! weolf / oolds b

<K /(1 ~t)(1-t)"%dt + K/(l —t)3(1 ~-t)3%dt <
€ 3

6/ Y(t; f)dt

<K|h(l-7)| (z€l61).

With a similar inequality holding near the endpoint —1 it now follows
from (4.21) that

(42) f@)=0(|b1-a?)]) (@—1);

in particular, f’ € L?[0,1). This complete the proof of part (i) of Theo-
rem 1.1.

This last result (4.25) is best possible for the maximal domain A;
this is best seen from the detailed Frobenius analysis of the solutions of
the homogeneous differential equation M[y] = 0 on (—1,1). This analysis
is carried out in [13, pages 181-184] where it is shown that this equation
has & solution ¢, with a series representation

H@)=3In(l-2)@- DY enlz ="+ -1) Y dalz~1)",
n=0 n=0
with ¢g # 0 and dy # 0, and this representation is valid for (—1,1). Since
@1 € L?[0,1) it follows that @; € A, at least on [0,1), and so

@ € L?[0,1) and ¢ € AC[0,1].
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However
#1(z) ~3a(l-2|) (z—1)

which implies that, in general, (4.25) is best possible. This establishes
part (i)* of Theorem 1.1 on choosing g = ;.

5 — The operator domain D(T): Part 1

We begin our proof of part (ii) of Theorem 1.1. Here again we argue

only in the neighbourhood of the endpoint +1 and again take f to have
the properties (3.1).
From (4.24) we can write

1
(1) A =- [N +AGS) (el-11).

We now state
LEMMA 5.1. Let f € A; then
(5.2) f"eL}-1,1) and f,f' € AC|-1,1] if and only if
A(x1; f) =0.

PROOF. Consider the endpoint +1. From (4.21) and then (4.13) we
obtain, for all z € [€,1),

£"(z) = apl@) + ¥(zi f) =
= ap(z) + p(a) [ WOAE N)dt+9(a) [ pOAG fdt =
€ z

3 z 1
(5.3) = ap(z) + A(L; f) [sp(z) / P(t)dt + ¥(z) / tp(t)dt]+
§ =

- (z) ] w(t)( /1 A'(s; f)ds) dt — ¢(z) j sa(t)( ] A'(s; f)ds) dt
€ t z t
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on using also (5.1). We claim that the last two terms in (5.3) are in

L2[¢,1).
For integrating by parts,

z)j¢(t)(/1A'(8;f)ds)dt <
3 t
ot [ ([ osras)wts e <
3 3

1 T
<K@ -2)" [1: [N flds + K1 -2) [0 -8 2|N(E Dlat
z ¢

o(@) [w(t)dt [ A(s; f)ds)+
€ T

(5.4)

where we use the asymptotic forms (4.11) and (4.12). An application
of Theorem 2.1, following the applications given above in Section Four,
yields the result that both terms of the rigid-hand side of (5.4) are in
L?[¢,1). There is a similar argument for the last term of (5.3), which is
also in L%[¢, 1).

Looking now at the second term on the rigid-hand side of (5.3), the
_ asymptotic form (4.11) and (4.12) of ¢ and ¥ show that

(55) olz) [ w(O)dt +¥(z) [ o0t = —aabofz~ 1) +0(1) (1)
e z

and we recall ag # 0, by # 0.

Returning now to (5.3) it follows that f” € L?[0,1) if and only if
A(1;f) = 0. There is a similar result for the endpoint —1; i.e. f’ €
L*(~1,0] if and only if A(~1; f) =0

This complete the proof of Lemma 5.1. a
It follows from (4.2), on differentiating, twice, that A”(:; f) € L*(-1,1)
if and only if f” € L*(—1,1). Thus, we have, recall (4.24),

fe€A and A(£l;f)=0 implies A”(;f) € L*-1,1)

(5.6)
and A'(; f) € AC[-1,1]
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in which circumstances we have for all z € [¢,1)

67 Amf)=(E-DNGH+ / ( / A"(s; f)ds)dt.

We can now state
LEMMA 5.2. Let f € A then

f®er?)-1,1) and f,f,f" € AC[-1,1] in and only if

(58) A(£1; f) =0.

PROOF. If A(1; f) # 0 then f” ¢ L?[0,1) and this implies that ) ¢
L?[o,1).

Suppose then A(1; f) =0.

Differentiate (4.20), which is valid for all f € A, to obtain

(5.9) FO(z) = ay/(z) + ¥'(z; f) (z€l61).

Clearly ¢' € L?[¢,1); for ¥ we have, from (4.13), (5.6) and (5.7)

V(z; f) = ¢/(z) [$OME Dt +9(2) [ oA fat =
€ z

=A(1;f) <¢’(x) / (t — 1)p(t)dt +¥'(z) / (t— 1)<P(t)dt) +
I3 z

+tp’(m)/z1/)(t){ /1 (jA”(u; f)du)ds}dt+
€ t

(/IA"('u.; f)du)ds}dt.

t 8

(5.10)

1 1

+¥(@ [ w(t){
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On using the asymptotic forms (4.11) and (4.12) the first term on
the right-hand side of (5.10) becomes

AL ) (ao( —bo(z— 1))+ ( — 3bo(z — 1) an(z - 1)3] +0(1))) -

=0(1) (z—1)
since the principal terms in (z — 15‘1 cancel out.

For the second term in (5.10) we note that following appropriate
applications of Theorem 2.1 we obtain, using (5.6)

1
(5.11) s o 3%1 / A"(u; f)du € L2[€,1)

1 1
(512)  tw— (t_l—l)z f (s—-1) (s—il / A" (u; f)du) ds € L?[¢,1)

and

5.13) z lj(t—l)zw(t){z.t—_ll—)zj(s——l) (;i—I’/IA”(u; f)du)ds}dt
€ L%[¢,1).

This last expression is the second term in (5.10) except for multipli-
cation by () ~ ag # 0 (z — 17) and so the whole term is in L€, 1).

For the third term in (5.10) we note that following appropriate ap-
plications of Theorem 2.1 we obtain, again using (5.6), that (5.11) and
(5.12) hold together with

T (x_l—l);‘-!(t—l)%(t){ (t_ll)z/l(s—l) (s—i—l-’/lA”(u; f)du)ds}dt

t

€ L*[¢,1)
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(recall p(t) = ao(t—1)+0(]t —1|?). This last expression is the third term
except for the factor —3bo in ¥, and so the whole term is in L?[¢, 1).

Taking these assessments of each of the three terms on the right-hand
side of (5.10) it follows that, subject to the condition A(1; f) = 0, that
W'(-; f) € L?[0,1) and then from (5.9) that f® € L?(0,1).

A similar argument at the endpoint —1 shows, subject to the con-
dition A(—1; f) = 0, that ¥'(+; f) € L?(—1,0] and then again from (5.9)
that f® € L*(~1,0). Finally provided that we make the following defi-
nition of function values at +1

(5149 FOE) 1= Jim, fa) (r=0,1,2),

it also follows that f, f’ and f" € AC[-1,1].
This complete the proof of Lemma 5.2. o

6 — The operator domain D(T): Part 2

The final stage in the proof of part (ii) of Theorem 1.1 is to establish

LEMMA 6.1. Let the operator domain D(T) be defined as in (1.18)
and (1.19); t.e.

D(T) = {f € Allf,%4](+1) = [f,9-](-1) = 0}

then

(6.1) D(T) = {f € AA(L f) = A(=1; f) = 0}.

PROOF. We recall that [-,-] is the skew-symmetric form associated
with the differential expression M[]; this form has the property [-,]:
A x A — €. The explicit representation of this form, in terms of f,
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g € A is from [13, page 168],
[£,0)@) = { - (1 = 2)°F ()" + ((1 - 2*) (12+
+a(l - 2%) () - (@) f'(z) }g(z)+
-{- (@ -2Pg9@)" + (1 - =Y (12+
+a(1 - 2%))3(@))’ - n(2)7 (@) } £ (=) +
(6.2) ~{ - (-2 fO@) + (1 -2} 12+
+ a1 - 27) "(2) }7' () +
+{ = (-2 @) + (1 -2?)(12+
+a(1 - 29)3"(z) } £ (=) +

- (1 =2 (2)g"(z) — §°(2) f"(=)} -

It follows from Green’s formula for M[] that, see [13, pages 41 and
42), for all f,g€ A

(6.3) :l—j.rill[f’ g](£1) exist and are finite.

By direct computation it follows that
(6.4) zw—1, (1-z%), (1-z*)%€A.

Recall from part (i) of Theorem 1.1 that for any f € A we have
fe€ AC[-1,1] and f(£1) = Jim, f(=z).
We can now state the following results; for any f € A:

(1) [ 1) = lim (A'(z; f) = m(2)f ()
() [f,1-=2%(£1) = 2A(1; f) — 48(A+2)f(1)
[f,1—2%)(-1) = —2A(-1; f) +48(B + 2)f(-1)
(i) [f, (1 = 2%)%) (1) = £192f (1)

(6.5)
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where the positive numbers A and B are those involved in the definition
of the measure u generated from 2 in (v) of (1.4), and the differential
expression M|-] in (1.8) and (1.13).

The proof of the results in (6.5) follows from direct substitution of
the functions in (6.4) into the form (6.2) and proceeding to the limit at
+1, using the following information:

(8) Alzf)=—(1-2"f9) '+
+(1-2%)(12+ a(1-2%)f"(z) (z € (-1,1))
which is the definition (4.1)

®) 11 =A@ -@f @) (@€ (-1LD)
(@ Jim (1-2)f(a) =0

since from part (i) of Theorem 1.1, we have f/(z) = 0(/In(1 — z?)|)
(z — £1) :

z
(d) ﬁx;rhxl / A(t; f)dt  exist and are finite
0

using (4.3) or (4.24)
(©)  lim,(1-s)fO(a) =0

using (a), (c) and (d) to give that the limits in (e) exist and are finite;
if these limits are not zero, repeated integration over [0,z] or [z,0] and
then letting z — %1, yields that f' ¢ L?[0,1) or L*(~1,0] respectively;
this contradiction to part (i) of Theorem 1.1 establishes (e).

With the boundary condition functions given by, see (1.19), for all
z € [-1,1],

Vi(z) = 40-20)+ (A+2)(1-2%)?, ¥-(z) = 4(1-2°)+(B+2)(1-=z?)?
we find, for f € A using (6.5)
[f,94)(1) = 8A(L; f) — 192(A + 2) f(+1) +192(A + 2) f(1) =
=8A(L; f)

[f,9-](-1) = -8A(-1; f) + 192(B + 2)f(-1) — 192(B + 2) f(—1) =
= —8A(-1;f).
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This complete the proof of Lemma 6.1, on recalling the definition of
D(T), the condition (6.1), and utilizing the last result above. 0

Finally then to prove part (ii) of Theorem 1.1 we have only to note
that if f € D(T), as defined in (1.18) and (1.19), then from Lemma 6.1 it
follows that A(£1; f) = 0 and then from Lemma 5.2 that f® € L?(—1,1).
This result implies that all of f, f/, f” may be regarded as in AC[-1, 1]
provided we define these functions at the endpoints +1 by (5.14) to ensure
the required continuity.

7 — Best possible result for operator domain D(T)

It remains to prove part (ii)* of Theorem 1.1.
The required function g can be obtained by putting

1) ¢9() = (1 - 2)"?Ia(l - 2)) (x e B— 1))

and then completing the definition on [— 1, %] by polynomial extension

so that the resulting function g, say, is in C®[-1,1). The function g
itself is then defined by

o(@) =[-8’ Ot (=€ -1,1).
(]

A computation shows that ¢ € A and that A(*1;9) = 0; hence
g € D(T). From the definition (7.1), it follows that g € L*(—1,1) but
g® ¢ LP(—1,1) for any p > 2.

This completes the proof of Theorem 1.1.
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